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Abstract 
In this report different design-based estimators are studied as to how well they perform when 
it comes to estimating victimization rates for different criminal offences at municipality and 
county level domains in the Swedish Crime Survey. 
Linear and logistic generalized regression estimators with different auxiliary information, 
such as domain specific intercepts, reported number of crimes at the municipality level and 
reported crimes at the respondent level (i.e. whether the respondent reported the crime or not) 
are studied. Earlier research suggests that the classical Wald interval works poorly in the 
situation of rare events and small samples. The Wilson interval has been suggested as an 
alternative.  
The estimators are examined through a design-based simulation study based on real life data 
from the Swedish Crime Survey. 
One major finding of the study is that using reported crime at the individual level (if the 
person has reported an offence or not) reduces the MSE of the GREG estimators by 10-20 
percent. The smaller the dark figure, the better the auxiliary variable is to explain the variance 
and hence the more precise the estimator. To get the same effect by increasing sample sizes 
one would have to increase the sample size by as much as 25 %. The other auxiliary variables, 
such as domain specific intercepts and the number of reported crimes at municipality level, 
are not as good. 
Another finding is that there is no large gain by using the logistic GREG instead of the 
ordinary linear GREG. Previous research suggests that the logistic GREG should outperform 
the linear GREG, if the auxiliary information is strong enough. In this study the auxiliary 
information was not strong enough to get any larger gains. 
A third finding is that the Wald interval performs badly, even for quite large sample sizes, 
such as 101 < n < 349. The Wilson interval, adapted for the GREG estimator, proved to work 
much better. For less rare offences such as "Crime against persons" the Wilson interval works 
for all domain sizes. For the less common crime types, such as robbery and sexual assault, the 
Wilson interval works well for sample sizes with n > 100. 
Based on the results of the study one main conclusion, all crime types can be estimated down 
to n > 100 and for some, more common crime types such as harassment, estimates can be 
produced for sample sizes n > 40. For smaller sample sizes it is possible to produce estimates 
for "Crimes against persons", but the issue is if the intervals may be too wide to be of any 
practical use. 
The possibility to use police records in the estimation phase should be studied further since 
this variable seems to be a strong auxiliary variable in estimation of crime rates. 
 
Keywords: 
Small area estimation, victimization, Swedish Crime Survey 
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1.  Introduction  
1.1. Background 
In Sweden as well as in other countries there is an increased demand for statistical estimates of smaller 
and smaller geographical and demographical domains. These estimates are often needed for public 
policy and decision-making in different agencies and organizations. In register-based surveys or 
censuses, estimates for small domains are not a difficult problem since all elements are (in theory) 
observed and the sampling error is non-existent. In sample-based surveys, on the other hand, estimates 
for small domains become a problem when estimates are sought for smaller domains than the survey 
was originally intended for.  

The problem for sample-based surveys will increase further if the estimates that are sought for are rare 
in the population as a whole. In these situations even quite large domains will end up with very few or 
even no elements with the observed characteristics. In the design-based framework the variance 
estimate will end up with zero if the Horvitz Thompson variance estimator is used and then an interval 
estimate will not be possible to produce. The smaller the domains get, the larger the problem will be. 
In really small areas there will probably be no objects in the domain with the rare characteristic.  
Sweden's largest victimization survey, The Swedish Crime Survey (SCS), has a sample size of 20 000 
each year, but when it comes to estimates at lower regional levels as counties (“län” in Swedish) and 
municipalities (“kommuner” in Swedish) the sample sizes get smaller. In some counties the sample 
size is just 500 and in the municipalities sample sizes can be as small as just a handful of respondents.  

One of the major purposes of the SCS is to estimate the victimization rates of different offences and 
many of those offences are very rare. For instance, in the year of 2008, only 1 percent of the 
respondents reported that they had experienced robbery and only 0.7 percent of the Swedish 
households reported experience of grand theft auto (Irlander and Westfelt 2010:1, pp. 28, 38.). These 
low rates mean that there are a large number of small domains that will lack respondents having 
experienced robbery – even if the sample is large enough for other types of estimates. 
One of the primary users of the SCS is the Swedish police. The police use the Swedish crime survey to 
benchmark between counties and compare the development of victimization rates over time in each 
county.  
The only estimates published today regarding victimization are pooled estimates including a large 
number of different crimes called “Crimes against persons” and “Crimes against households”, but this 
pooling is not of interest for all the main users. They are interested in each crime type such as robbery, 
assault etc.  
To be able to compare changes in time and between counties the interval estimates should be as 
narrow as possible, both when it comes to the more rare types of crimes as well as the more common 
types. 

1.2. Purpose of study 
The purpose of this study is to examine different small area estimators and to examine how they 
perform in the presence of rare events. These estimators will be studied in the context victimization 
rates for different offences (some more rare than others) in the SCS. Statistics of interest are totals and 
proportions in different geographical domains such as counties (NUTS 3-level) and municipalities 
(NUTS 5-level). Estimates for different types of experienced offences are of interest, such as assault, 
robbery, burglary, threats, harassment and sexual offences. The aim of this study is also to be able to 
evaluate different estimators and examine if these estimators can be used in the production of official 
statistics. 
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1.3. Previous research and theory 
1.3.1. Small area estimation - theory 
The most widely used definition of small area estimation is given by Rao (2003) at the very first page: 
“Small area estimation is defined as estimates for domains that are too small, with regard to sample 
size, to support direct estimates of adequate precision.” Direct estimates are defined as estimates based 
only on the sample within the specific domain. In Lehtonen and Pahkinen (2004) the definition of 
small area estimation is plainly “Estimates for domains with small sample sizes.” 

Both in ordinary sampling theory as well as in the area of small area estimation, there are three main 
schools of inference, design-based inference, model-based inference and Bayesian inference. A 
comparison between the different approaches to inference is given by Thorburn (2009): 

     Table 1: Different approaches to survey sampling (Thorburn 2009) 

 

In Thorburn (2009) p. 14-16 three different approaches to inference is illustrated in both small area 
estimation and survey sampling. As presented in the table, the randomness and uncertainty are very 
different in the different schools. In the design-based approach there is randomness created by the 
sampling process whereas the population is treated as fixed. The model-based inference, on the other 
hand, assumes that a stochastic super population model creates the population. The Bayesians do not 
assume a population model or introduce their own, homemade, randomness. Instead the Bayesians 
take what they know into account and describe it as a probability distribution. The randomness in the 
Bayesian sense is more of an uncertainty than randomness (Thorburn 2009, pp. 14-16). 
The main focus of the three approaches differs as well. The Bayesian approach and the design-based 
approach focus on the population values in the finite population. The model-based approach, on the 
other hand, sees the population as a sample of the super population and puts its focus on the 
parameters of the stochastic super population model (Thorburn 2009, pp. 14-16 and Ott 2007). 
In the Bayesian approach the prior distribution, based on prior knowledge, is combined with the 
observed data to a posterior distribution. The posterior distributions are then used for inference to the 
population. This makes the Bayesian approach different from the other two schools. In both the model-
based and the design-based schools of thought the inference is frequency-based. An interval estimate 
of 95% means that the calculated interval will cover the true value in the population (design-based) or 
the super population model parameters (model-based) in 95% of repeated samples (Thorburn 2009, 
pp. 14-16 and Ott 2007).  
The last main difference between the different approaches to inference from sample surveys is that the 
end result of the design-based and the model-based approaches is only one estimate. When estimates 
have been calculated and disseminated the statistician’s job is done. In the Bayesian approach the 
purpose of the posterior distribution is not only to disseminate statistics but also to be an aid in 
decision making. By using the posterior distribution, decision problems can be examined more in 
detail (Thorburn 2009, pp. 14-16). 
In small area estimation all approaches are being used and studied (se for example Rao 2003). Since 

Design-based Model-based Bayesian

Randomness/ Uncertainty Home-made
Main focus Population Parameters Population

Parameters Population values Unknown/ Unobservable
Inference Frequency-based Frequency-based Probability-based

Output Point-estimates/Intervals

Possible Use Not my problem! Not my problem!

Given by nature/ 
Frequency-based

Subjective/Rationality 
axioms

Do not exist, but useful/ 
DeFinetti Theorem

Point-estimates/ 
Confidence intervals

Posterior distributions/ 
means and variances
Rational interface with 
decisions
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the scientific area of small area estimation is, by definition, the problem of estimation areas that has 
been too small for design-based estimation, much focus has been put on using model-based and 
Bayesian methods. But also different design-based estimators have been proposed as solving some 
small area problems. 
The second and third purposes of this study are to examine different estimators for small domains in 
the SCS that can be included in the production of official statistics. In official statistics today almost 
all estimators used are design-based and one of the main purposes of this study is to look into 
estimators that can be used for official statistics. For this reason as well as to limit the scope of this 
study only design-based estimators will be studied. 
 
1.3.2. Design-based estimation 
The basic philosophy in the design-based approach to survey sampling has been explained in part 
1.2.1 above. The main focus of the design-based estimation is to estimate population parameters (as 
totals) in a finite population by “controlling” the uncertainty. A short introduction to notations and 
definitions is needed. The definitions and notations largely follow the definitions and notations of 
Särndal, Swensson and Wretman (1992) and Lehtonen and Pahkinen (2004). 

A population, denoted U, contains N elements. A sample, denoted s, of (1 , ... , n) elements is chosen at 
random from the population.  The probability of drawing a particular sample, s, is denoted p(s) and is 
called the sampling design where the space of all possible samples is denoted !. This sampling design 
can also be defined as the random variable S with the pdf p(s). Based on the sampling design the first 
order inclusion probability of element k, !k, and second order inclusion probability of element k and l, 
!kl can be calculated in the following way (Särndal, Swensson and Wretman 1992, pp. 24-33.): 

!
!

=
sk

k sp )("                    (1) 

!
!#!

=
slsk

kl sp )("                      (2) 

These inclusion probabilities are fundamental in the design-based school of inference. The inclusion 
probabilities are used in most estimators under the design-based framework.  
In most cases you are interested in a property or variable of the objects observed. Let us denote this 
variable y. The entity of interest is mostly functions of the population as a whole or a subset, a 
“domain”. These entities are called parameters and are denoted ".  

An example: If y is an indicator variable that indicates whether a respondent in the SCS has 
experienced robbery during the last year or not, a parameter of interest, denoted ", would be the total 
number of people who have experienced robbery "1 or the proportion "2 , calculated in the following 
way (Särndal, Swensson and Wretman 1992, pp. 38-39): 

 

!=
U

iy1$                   (3) 

!=
U

iy
N
1

2$                    (4) 

 
An estimator is a function of the sample, s that should be as close to the population parameter of 
interest as possible. The proportion of the sample that has experienced a certain offence can, for 
example, be used to estimate the proportion of the whole population. Since the sample is a random 
variable S, an estimator is a random variable of a given parameter where functions of random 
variables, as expectation and variance, can be calculated: 

)(ˆˆ S$$ =                     (5) 
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To evaluate different design-based estimators both bias and variance are taken into account, and 
together they make up the mean squared error of the estimator. An estimator is considered design-
unbiased if: 

0)ˆ()ˆ( =&= $$$ EBias           (8) 
 
One of the most basic estimators for totals is the Horvitz-Thompson estimator for population totals. 
This estimator and the variance estimate are calculated the following way under simple random 
sampling (SRS): 
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This estimator is both direct in the sense that the estimator only uses information from the sample. It is 
design-unbiased and does not use any auxiliary information in the estimation procedure apart from N 
(Särndal, Swensson and Wretman 1992, pp. 42-44). 
One important characteristic of official statistics is that the confidence interval that is computed relies 
on approximately asymptotic unbiased estimators because unbiased estimators have interval estimates 
that can be interpreted correctly (Särndal, Swensson and Wretman 1992, pp. 40-41 and Lehtonen 
2009, p. 15.). 
In the area of small area estimation the main problem is that the domains where the estimates are 
sought for are often too small (by definition) to yield estimates with sufficient precision. Two main 
components that are needed to succeed in increasing the precision of small area estimates are good 
auxiliary information and a good linking model to make use of the auxiliary information. If those two 
components are present the variance of the estimates can be reduced for the estimates of interest (Rao 
2003). 
In this study the purpose is to find estimators that can be used in official statistics. In these estimates 
the estimates of interest is then often produced together with an interval estimate. This implies that 
interval estimates need to be based on design-unbiased estimators to be interpreted correctly, even 
though this assumption is complicated in the presence of survey non-response. 
In the design-based framework, with its need of (asymptotically) design-unbiased estimators, the 
estimators used to incorporate auxiliary variables to reduce the estimator variance are so called model-
assisted estimators. These estimators come in various shapes but are all, more or less, special cases of 
the generalized regression estimator (GREG). Examples of different GREG-estimators are the 
poststratification estimator, the ratio estimator and the regression estimator (Lehtonen and Pahkinen 
2004, pp. 87-88.). 

 
1.3.2.1. Design-based model-assisted small area estimators 
The main type of estimators of interest in this study is the design-based model-assisted estimators and 
hence I will follow the work of Lehtonen and Pahkinen (2004).  
These types of estimators come in various shapes, suited for different purposes. The first characteristic 
of the estimator you need to decide on is whether the estimator should be linear or nonlinear. Linear 
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estimators suit continuous response variables while nonlinear estimators, such as the logistic estimator, 
often work much better for binary data (Lehtonen and Pahkinen 2004, p. 196.). 
The second property of the estimator is the covariate effects on the dependent variable. There are 
mainly three different ways that the auxiliary data can be included in the underlying model. The first 
model choice is the population-fixed effect where a model is fit to the whole population and the same 
coefficients in the model are constant over the domains. The second model choice is the domain-fixed 
effect model where domain effects are included in the model as slopes and/or intercepts in the model. 
The last model type is the mixed effect domain model, where there are both fixed effects and domain 
random effects (Lehtonen and Pahkinen 2004, pp. 196-198.). 
The different types of estimators can be seen in table 2 (based on Lehtonen and Pahkinen 2004, p. 
197.): 

 
Table 2: Different model-assisted design-based small area estimators 
Model effects 
 

Level of aggregation Functional 
form 

Estimator Model 

Linear GREG-P E(y k)= z k´ ! + # k Population model 

Logistic LGREG-P E(logit(y k))= z k´ ! + # k 
Linear GREG-D E(y k) = z k´ ! d + # k 

Fixed effects 

Domain model 

Logistic LGREG-D E(logit(y k))= z k´ ! d + # k 
Linear MGREG-D E(y k)= z k´(! + ud) + # k Mixed effects Domain model 

Logistic MLGREG-D E(logit(y k))= z k´(! + ud) + # k 

 
The main difference between the GREG-D and the GREG-P models is that the GREG-D model is 
direct in the sense that one model is produced for each domain, while the GREG-P model is indirect 
since the same coefficients in the model is used to estimate in all domains (se for example Lehtonen 
and Veijanen 2009 pp. 233-234). 
One problem, especially with the domain specific models, is the problem of rare events. In many 
domains, especially when the domains get smaller and smaller, there will be situations with no events 
at all (all y will be zero, for instance). This means that there is a risk that the domain models will be 
very volatile and will not work very well.  
When it comes to the specific problem of this study all the dependent variables will be binary. This 
means that the linear estimators are not suitable for this problem. Today in the SCS, the GREG-P 
estimator is used (as a calibration estimator). This estimator will be a reference point for the other 
estimators studied. The model is the model used to produce predicted values kŷ , in each domain, 

'̂'ˆ kkd zy =  in the linear case and 
'̂'1

1ˆ
kzkd

e
y

&+
=  in the logistic case. 

All GREG-estimators of domain totals follow the same general estimation formula given by Lehtonen 
and Pahkinen (2004), pp. 198-200: 
 

!!
!!

&
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dd sk k
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yy
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"

ˆˆˆ      (11) 

where Ud is the population in domain d and sd is the sample in the domain d. 
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   An approximation of the variance of the estimators, given that the domains are planned, the direct 
estimator is used and the sampling design is simple random sampling in each domain, is given by the 
formula 6.15 in Lehtonen and Pahkinen 2004, p. 202. 
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ddGREG nn
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where kkk yye ˆˆ &=  and !
!

=
dsk d

k

n
e

e
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There is a discussion whether the variance estimation should be calculated conditioned on the 
achieved sample size or over all theoretical samples (se for example Lehtonen and Pahkinen 2004, p. 
202 and Holt and Smith 1979). In this study I will condition on the given sample, and hence all 
domain sample sizes will effectively be treated as planned. By conditioning on the sample size the 
variance is calculated over all theoretical samples with the same sample size, not over all samples. 

To calculate an interval estimate for the parameter of interest the Wald confidence interval is then used 
(Särndal, Swensson and Wretman 1992, p. 238.). 

 

)ˆ(ˆˆ
2/1 dGREGdGREG tVzt (&±       (13) 

The HT interval will be calculated the following way: 

)ˆ(ˆˆ
2/1 dHTdHT tVzt (&±       (14) 

where 2/1 (&z is the 1-"/2 percentile of the standard normal distribution. 

Since the domains in these studies often are very small and the variance will be estimated the 
students t-distribution will be used instead of the standard normal distribution in interval 
estimation. The sample size (n) in each domain will be used as degrees of freedom. 
 
1.3.3. Previous research – small area estimation in victimization surveys 
A lot of research has been done in the area of small area estimation, both in the model-based and the 
Bayesian framework. An overview can be found in Rao (2003). Some research has also been made 
under the design-based framework, but the main focus has been on model-based and Bayesian 
approaches. 
Small area estimation in victimization surveys has, until this date, only been studied in one small study 
in the Netherlands. In this study the authors, Buelens and Benschop, use a model-based approach to 
reduce the confidence intervals of violent crime victimization rates estimates. Estimates are produced 
for 25 different police zones in the Netherlands. These police zones were quite large compared to 
traditional small domains - the minimal number of respondents in each police zone was as large as 750 
(Buelens and Benchop 2009, p.1.). 
The model used by the authors is the Fay-Harriot (domain) area level model where victimization rates 
are modelled at the area level and with this model different auxiliary variables were evaluated as to 
how much they would reduce the variances of the estimates. By using both demographic auxiliary 
variables (proportion of people older than 30 years) and the number of reported violent crimes, the 
authors succeed in reducing the confidence interval with as much as 40 percent in some smaller 
domains. This shows the possible gains of using small area estimation in victimization surveys 
(Buelens and Benchop 2009, pp. 2-5.). 
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Even though no studies of design-based model-assisted estimators for small area estimation have been 
made in the area of victimization studies, some studies regarding model choice and model robustness 
of the GREG-family type estimators in small area estimation are of interest for this study. 

In a Monte Carlo experiment by Lehtonen, Särndal and Veijanen (2005) different model structures 
were studied to see how these differences affect the properties of the estimators. One of the main 
conclusions of the study was that GREG estimators were only negligibly affected when it comes to 
accuracy of the estimator when mixed effect models were used instead of fixed effects models. The 
second conclusion was that neither domain specific slopes nor intercepts affected the accuracy of the 
estimators. Models with both domain specific slopes and intercepts were as good as the model that 
only included domain intercepts and only slightly better than the model without any domain specific 
information (Lehtonen, Särndal and Veijanen 2005, pp. 668–669.). 
These results are positive since, with very rare events, there will be many domains with no 
occurrences at all. This will probably affect the robustness of the parameter estimates negatively more 
since a domain specific model is less robust than a population specific model. 

Myrskylä (2007) studied the properties of the logistic regression estimator and came to the conclusion 
that the logistic GREG outperforms the linear GREG when the model is strong and the domain size is 
not very small (n # 24). 
A general problem when it comes to rare events is estimation of confidence intervals of proportions 
from the binomial distribution. It has been shown by Brown, Cai and DasGupta (2001) that estimating 
a confidence interval of the binomial proportion with the classic normal-based Wald interval will 
result in confidence intervals with too low coverage probability, both regarding small samples and 
samples as large as n = 500. One of the main findings by Brown, Cai and DasGupta is that the Wilson 
interval outperforms the classical Wald intervals when it comes to very small proportions. This means 
that the Wilson interval will be studied and compared with the Wald interval based on the variance of 
the GREG estimates.  
The classical Wilson confidence interval is calculated the following way: 
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where !
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p 1ˆ  and 2/1 (&z  is the 1- "/2 percentile of the standard normal distribution.  

As is obvious this interval is not motivated from a design-based perspective. Some design-based 
confidence intervals for small proportions have been suggested, but none of them for GREG 
estimators (see for example Korn and Graubard 1998).  
A very simple way to use the Wilson interval for GREG estimates is simply to exchange the variance 
and the point estimates with the GREG point and variance estimates in the following way: 
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where nd is the total sample size for domain d for all strata. The Wilson interval will be calculated for 
the HT-estimator the following way: 
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Since the domains in these studies often are very small and the variance will be estimated the Students 
t-distribution will be used instead of the standard normal distribution in interval estimation. The 
sample size in each domain will be used as degrees of freedom. 

 

1.4 Research questions 
In this study two main questions will be discussed: 

1) Which design-based estimators, point and interval, have the best properties for estimating 
victimization rates at county and municipality level in the Swedish crime survey? 

2) How do point and interval estimates behave in the presence of rare events/skewed variables of 
interest?  

 
1.5. The Swedish crime survey 
In most countries there is an interest to know how the juridical system is working and how the safety 
of the citizens can be monitored and sustained. The traditional official statistics regarding crime and 
justice, such as reported crimes, convicted persons etc. have the problem that a large number of crimes 
are not reported to the police. These dark figures make it hard to estimate the ”true” number of crimes 
or offences based on the reported crimes, especially since different crimes have different dark 
numbers. Grand theft auto has a relatively small dark figures since the insurance companies demand a 
police report to pay the insurance claim while bicycle thefts has quite large dark figures (Irlander and 
Westfelt 2010:1, p. 44.). 
To be able to estimate the number of offences or the number of victimized individuals many counties 
have complemented the regular crime statistics with a victimization survey. In different countries these 
types of studies have been conducted for different time periods. The National Victimization survey in 
the US, for example, has been conducted since 1973. In Sweden the Swedish victimization survey, The 
Swedish Crime Survey, was conducted in 2006 for the first time (see Groves et al 2004, p. 11 and 
Irlander and Westfelt 2010:1, p. 15.). 

In the survey, a random sample of the Swedish population aged 16 - 79 years, is asked questions about 
experiences of offences (victimization), general safety, confidence in the Swedish justice system and 
victimized peoples’ contacts with the Swedish justice system. The mode of the survey is primarily 
computer-assisted telephone interviewing (CATI) but if the respondent does not want to answer by 
phone or is not reached, a paper questionnaire is sent to the respondent. The answers are 
complemented with register-based information such as age, sex, income etc (Irlander and Westfelt 
(2010:1), pp. 17-19.). 
 

1.5.1. Sampling design, estimation and potential errors 
The SCS is based on a stratified random sample of 20 000 people (with exception of the 2006 pilot 
survey where the sample size was 8 000) and has been conducted yearly since 2006. The frame is the 
Swedish registry for the total population created by Statistics Sweden. The stratification is made by 
demographic and geographic variables. Most sample sizes in strata are proportional to the population 
size but young males and small counties are over-sampled. The over-sampling counters low response 
rates among young people since these groups tend to respond less frequently than other groups, and 
the over sampling of small counties enables estimation at county level with sufficient precision 
(Irlander and Westfelt 2010:1, pp. 18-19.). 
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The percentage of survey non-respondents has increased during the years. The non-respondent rate has 
been around 20-30 percent during the years 2006-2009 and in the survey conducted in 2009 the 
number of non-respondent rose to 29.6 %, the highest level so far. To correct for non-response bias 
GREG-estimation (as calibration weight) is used for estimation. The same assisting model is then used 
both as national estimates and domain estimates. 

1.6. Method  
To evaluate the different estimators a design-based simulation study has been conducted. In this type 
of study a large number of samples is drawn from a defined population. Each estimate for each domain 
is then calculated and the properties of the estimators are evaluated over all these samples. This 
method, sometimes called Monte Carlo simulation or experiment, is one of the main methods used to 
evaluate different design-based estimators (see for example Särndal, Swensson and Wretman 1992, 
p.36 and Lehtonen and Pahkinen 2004, p. 210.). 
 
1.6.1. Population, sample size, number of domains and sample design 
The population that was used in this study is based on real life data. The respondents of the SCS 
during the years 2006 - 2009 were used with a total sample size of 50 514.1 Partial non-response at the 
dependent variables of interest has been excluded from the study to facilitate the study. The size of the 
partial non-response was only 0,68 % of the population and for this reason the effect of excluding the 
partial non-response should not have any effects on the results of the study. The total size of the 
simulation population after exclusion of partial non-response was 50 173 respondents. 
To minimize the effect of the finite population correction factor a sample cannot be the same size as 
the ordinary sample of 20 000. Other design-based simulation studies have used the proportion 
between sample and population of roughly 1 to 7 (Lehtonen and Pahkinen 2004, p. 210.). In this study 
the sample size is 5000, which is in the same proportion as other similar simulation studies but still the 
sample size is just one third of the overall received sample in one year from the SCS.  
To be able to study the domain estimators, counties and municipalities will be clustered together 3 to 1 
to resemble the sample collected sample size of the SCS. The clustering of municipalities and counties 
can be found in appendix 1. 

The sample will be drawn with the same sampling design as in the SCS. A sample will be stratified 
and there will be at least 500 respondents in each cluster of 4 counties to resemble the real survey 
sampling design. In the study each domain will be estimated K times and the estimates for each 
domain will be studied depending on the mean sample size of the domain over all samples. 
Since the SCS is stratified in two dimensions, by county and by age class, the age class strata will cut 
through all domains, even the very small domains. This means that situations will occur where the 
domains are so small that there will be only one or zero respondents in each stratum. In these cases the 
variance cannot be estimated and these domains will, for this reason, be excluded and not estimated. 

 
1.6.2. Variables of interest to estimate 
This study will evaluate the estimator properties for different response variables. Response variables 
that indicate experiences of assault, sexual offences, threat, robbery, fraud and harassment will be 
evaluated. 

The reason for choosing different response variables is to study how different estimators perform 
under various levels of rare events. These different offences also differ with regard to dark figures. In 
2008 only 19 percent of the sexual offence were reported to the police while as much as 43 percent of 

                                                 
1 The number of respondents and sample sizes has varied during the years. The number of respondents has 

been  13909 (2009), 14973 (2008), 14945 (2007) and 7687 (2006). For details see Irlander and Westfelt 
(2010:2), p. 18, Irlander and Wigerholt (2009), p.19, Töyrä and Wigerholt (2008), p. 17 and  Töyrä (2007), p. 
19. 
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the experienced robberies were reported (Irlander and Westfelt 2010:2, p. 28.). These dark figures 
should, theoretically, influence the effectiveness of using reported crimes as an auxiliary variable.  
 

Table 3. Descriptive statistics of the response variables 
Victimization rates Counties d=7 Municipalities d=97 
Type N Mean Minimum Maximum Minimum Maximum 

Robbery 51173 1,01% 0,49% 1,29% 0% 2,48% 
Assault 51173 3,10% 2,48% 3,26% 0% 4,98% 
Sexual 
offences 

51173 0,93% 0,73% 1,00% 0% 2,13% 

Threats 51173 4,58% 3,83% 4,88% 1,23% 9,76% 
Fraud 51173 2,51% 1,83% 2,89% 0% 5,19% 
Harassment 51173 4,51% 3,80% 4,99% 1,23% 9,25% 
Any crime 51173 12,68% 10,35% 13,52% 6,13% 17,82% 
 
You can see from the table that there is a difference between different municipalities and counties 
when it comes to how large proportion of the population have experienced the different crime types. In 
some municipalities the true proportion is that none has experienced the less frequently occurring 
offences such as robbery and sexual offences. 

 
1.6.3. Choice of auxiliary variables 
The results of Buelens and Benchop (2009) showed that the best auxiliary information in Holland for 
estimation of number of victims of violent crime was the number of reported violent crimes (Buelens 
and Benchop 2009, pp. 5-6). Other criminal offences, however, such as traffic offences and property 
crimes were not as good auxiliary variables in the model. These results will be used in the design of 
this study and in each model the number of reported crimes of the same type as the response variable 
will be included. 
This approach will result in four sets of auxiliary variables used (see table 11 below), the auxiliary 
information used in the current SCS, the number of reported crimes of the same type together with the 
auxiliary variables used today and the number of reported crime, the interaction of the variable “if 
reported” number of reported crimes will be used and the auxiliary information used today. The last 
setup that will be used is the variable “have reported the crime to the police”. This variable, today 
asked in the SCS, will be used as proxy for whether the respondent reported the crime at the unit level. 
The number of reported crimes in the study will be calculated as the means of the number of reported 
crimes of the years included in the population. This is done since the population is based on different 
years with different numbers of reported crimes.  

The crimes reported to the police follow the Swedish Penal law while the SCS ask questions that are 
less detailed than the Swedish penal code. In the SCS each question has a definition that makes it 
possible to compare the experienced offence with the reported number of crimes (Irlander and Westfelt 
2010:1, pp. 25-26.). These definitions have been used in this study. 
 

Table 4. Reported offences in the population 
Reported offences   Counties d=7 Municipalities d=97 
per 100 000 citizens Mean Minimum Maximum Minimum Maximum 
Robbery 59 18 103 1 225 
Assault 733 664 929 217 1192 
Sexual offences 83 69 125 26 135 
Threats 482 424 628 221 743 



 11

Fraud 286 307 614 106 725 
Harassment 378 339 491 157 544 

 

Table 5. Gender distribution in the population 
Sex Frequency Percent 
Male 24851 48,56 
Female 26322 51,44 

 

Table 6. Civil status in the population 
Civil Status Frequency Percent 
Not married 32021 62,57 
Married or registered partnership 19152 37,43 

 

Table 7. Age in the population 
Age Frequency Percent 
16-29 17613 34,42 
30-40 7474 14,61 
41-50 7138 13,95 
51-65 10569 20,65 
66-74 4566 8,92 
75-79 3813 7,45 

 

Table 8. Income in the population (in thousands) 
Income 
(thousands 
of SEK) 

Frequency Percent 

0-149 20765 40,58 
150-299 21013 41,06 
300- 9395 18,36 

 

Table 9. The origin of the respondent  
Born Frequency Percent 
Sweden 47132 92,1 
Elsewhere 4041 7,9 

 

Table 10. Proportions living in urban/rural areas in the population 
Municipality 
type 

Frequency Percent 

Rural 34731 67,87 
Urban 16442 32,13 
 
Table 11. The different setups of auxiliary variables used in this study 
Setup Variables Comments 

Setup 1: SCS today x1 = county of residence  
x3 = age class 
x4 = born/not born in the Nordic 
countries  

These auxiliary variables are currently 
used in the SCS. Here it is used as a 
baseline to compare with different 
variable setups. 
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x5 = civil status 
x6 = income 
x7 = urban/rural area 
x8 = sex 

Setup 2: Reported 
crimes (area) 

x1 = county of residence  
x3 = age class 
x4 = born/not born in the Nordic 
countries 
x5 = civil status 
x6 = income 
x7 = urban/rural area 
x8 = sex 
x9 = number of reported crimes in the 
municipality (of the same type) 

As has been shown by Buelens and 
Benchop (2009), the number of 
reported crimes can explain a great 
part of the variation in victimization in 
an area level model. The question is 
whether this is possible when a unit-
level model is used. 

Setup 3: 
Municipality 
intercept 

x2 = municipality of residence 
x3 = age class  
x4 = born/not born in the Nordic 
countries 
x5 = civil status 
x6 = income 
x7 = urban/rural area 
x8 = sex 

As has been shown by Lehtonen et 
al. (2005) a domain-based model is 
often slightly better than a population 
model. This means that this model 
should be better than the model used 
in the SCS today. 

Setup 4: Reported 
crimes (unit level) 

x1 = county of residence 
x3 = age class 
x4 = born/not born in the Nordic 
countries 
x5 = civil status 
x6 = income 
x7 = urban/rural area 
x8 = sex 
x10 = if the respondent has reported the 
experienced crime 

Buelens and Benchop (2009) showed 
that reported crimes at an area level 
could explain a great deal. In a unit 
level model, unit level information 
should carry more information and 
hence be much better to use than 
area level information. 
 
Variable x10 is an indicator variable 
that indicates if the respondent has 
reported a crime of the type that is 
estimated or not. If the victimization 
rate for harassment is estimated, the 
x10-variable indicates if the 
respondent says he or she has 
reported harassment to the police 
during the year. 

 
 
1.6.4. Estimators and models 
Nine different estimators will be evaluated for each crime type, linear and logistic GREG for each of 
the four variable setups seen in table 11 above and the Horvitz-Thompson estimator. The Horvitz-
Thompson estimator and the linear GREG-estimator used today (setup 1) in the SCS will be used as 
reference in the comparisons of the different estimators (Lehtonen and Pahkinen 2004, p. 199.). 
All these estimators that will be studied are more or less based on the GREG-P model as can be seen 
from the table 11 above. Research has shown that there are very small gains to be had by borrowing 
strengths from other domains under the design-based framework (see for example Estevao and Särndal 
2004). In setup 3 each municipality will have its own intercept but all other covariate effects will be 
estimated for the population as a whole. The reason why no GREG-D is used is because of the data 
structure with lot of rare binary dependent variables. A lot of municipalities will not have any 
occurrences of and hence the model will have problems estimating covariate coefficients. In this case 
it is simply not possible to use a GREG-D model. 
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Since the response variables are binary variables, logistic models are preferred (Lehtonen and 
Pahkinen 2004, pp. 196-197.). Logistic model estimators will use the same four setups of auxiliary 
variables.  

Mixed-effect models will not be included in this study since earlier research concluded that the effect 
of a mixed-effect model should not be much better for modest sample sizes compared to a domain 
specific fixed effects model (Lehtonen, Särndal and Veijanen 2005, pp. 668–669.). 

The estimation procedure will follow the operational steps given by Lehtonen and Pahkinen (2004). A 
model will be fit on the observed data after the sample is drawn. This model is then used to predict the 
value of each element that is not observed in the sample (the population). These results are then 
inserted in formula (11) and (12) to calculate the estimate and the variance of the estimate. 
Interval estimates will be produced using the classical confidence (Wald) interval for GREG estimates 
(15) and HT estimates (16) and the Wilson interval based on GREG point and variance estimates (17) 
and the Wilson interval for HT estimates (19). 
 
1.6.5. Number of simulated samples 
To study the properties of the different estimators 1000 samples (1,2,…,K), will be drawn from the  
population. For each sample all estimates will be calculated and, based on these samples, 
measurements of performance for each estimator will be computed. This is approximately the same 
number of samples or more than similar simulation studies (See for example Lehtonen and Pahkinen 
2004, p. 211.). 

Since the smallest domain in some cases will be excluded (because n<2 in a stratum) the number of 
simulations will be smaller for the smallest domains.  
 
1.6.6. Evaluation of the estimators  
To evaluate the different estimators and to compare each estimator regarding bias and accuracy MSE 
and bias will be calculated over the simulated samples. Since there are some domains where the true 
total is zero, the absolute relative bias (ARB) and Relative root mean square error (RRMSE) cannot be 
used as a measure (See for example Lehtonen and Pahkinen 2004, p. 210.). Instead the average bias 
(AB) is used. This measure is calculated in the following way: 
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To be able to use the statistics in the production of official statistics interval estimates of good quality 
must be possible to produce, besides ordinary point estimates. Since the material is based on small 
samples and the response variable is highly skewed, any assumptions regarding normality of the 
estimates are probably not valid in the calculation of interval estimates, especially since it has been 
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shown by Brown, Cai and DasGupta (2001) that the classical Wald statistic for estimation of 
proportions is error prone. To study the properties of interval estimates (that is based on the Wald 
statistic) a coverage percent will be calculated for all estimators to evaluate the interval estimates. 

Since some of the response variables (for example sexual offences) are very rare in the population, this 
means that, in some domains, there will be no occurrences of the variable of interest. In these cases 
some estimators (for example the HT-estimator) will not be able to compute variances or model 
parameters correctly and hence it will not be possible to compute interval estimates. This occurrence 
will be seen as an estimator breakdown and the percentage of estimator breakdowns will be used as a 
measurement of robustness for rare event small area estimation.  
The rare event problem will also result in the risk of having calculated confidence interval, based on 
normality assumption that will be logically incorrect. Theoretically, in the presence of very skewed 
response variables, estimates will have confidence interval that will include negative values or values 
larger than one. This will be seen as logically incorrect confidence intervals. A percentage of the 
number of logically incorrect intervals will also be a measurement of the interval estimation quality.  
Another problem that can arise with the GREG estimator is that the estimate can be negative. This can 
be problematic and research has been conducted on how to correct those problems. (see for example 
Stukel, Hidiroglou and Särndal 1996). The proportion of negative GREG-estimates for each estimator 
will be studied to see if there is a difference between the logistic and the linear GREG estimator. 
When the GREG estimate is negative, p̂ is set to 0 when interval estimates are calculated. 
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1.6.7. Summary of technical details of Monte Carlo experiment 
 
Population 
N = 51 173  
Respondents from the Swedish 
crime survey 2006 to 2009. 
Elements with partial non-
response excluded. 
 
Sample size 
n = 5000  
 
Number of domains 
D1 = 7 large domains (counties)  
D2 = 97 small domains 
(municipalities).  
See appendix 1 for details. 
 
Target parameters: 
Totals and/or proportions in 
each domain 

Number of simulated 
samples: 
K = 1000  
 
Response variables 
Experience during the last year: 
y1 = any crime type 
y2 = assault 
y3 = sexual offences 
y4 = threat 
y5 = robbery 
y6 = fraud 
y7 = harassment 
 
Auxiliary data 
x1 = county of residence  
x2 = municipality of residence 
x3 = age class 
x4 = born/not born in the Nordic 
countries 
x5 = civil status  
x6 = income  
x7 = urban/rural area 
x8 = sex 
x9 = number of reported crimes 
(the same offences as the 
response variables above) 
x10 = if the respondent has 
reported the experienced crime 

Estimators: 
HTt̂ = Horvitz-Thomson 

estimator (baseline),  

PGREGt &
ˆ = GREG-estimator 
based on the different setups of 
auxiliary variables,  

PLGREGt &
ˆ = logistic GREG-
estimator based on the different 
setups of auxiliary variables, 
 
Measures of performance: 
Average bias (AB) 
Root mean squared error 
(RMSE) 
Estimator breakdown percent 
Interval coverage percent 
Logically incorrect interval 
percent 
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2. Results 
2.1. Model fit of the GREG-estimators 
To be able to produce small area estimates the degree of explanation made by the model is the key for 
good estimates. The better the model is to explain the variability in the data the better the estimators 
will perform. To study how well the different models work for the data all models have been fit to the 
whole population in the study to see how much different models explain of the variability. 
 
Table 12: Model fit (R2 linear regression), whole population  
R2-values (linear) Setup 1 Setup 2 Setup 3 Setup 4 
Robbery 0,8% 0,8% 0,9% 35,5% 
Assault 3,1% 3,1% 3,2% 31,0% 
Sexual offences 1,2% 1,2% 1,4% 16,2% 
Threat 1,5% 1,5% 1,7% 20,0% 
Fraud 0,6% 0,6% 0,8% 29,0% 
Harassment 1,2% 1,2% 1,4% 14,7% 
Any crime against persons 3,9% 4,0% 4,1% 26,1% 
 
As you can see from the table above only a very small part of the variability is explained by the 
independent variables in the setup 1 to setup 3. This result means that since the model explains such a 
small part of the variance, the GREG should not perform much better than the ordinary HT-estimator. 
The fourth variable setup, on the other hand, where information on whether the person has reported the 
crime or not is included, seems to be a much better variable setup to use. From the table above it is 
obvious that when it comes to robbery and assault a quite large part of the variability in the data is 
explained by the variables in setup 4. 
The differences between the crime types are probably explained by the different dark figures. Sexual 
offences and harassment, for example, have a larger dark figure than for example robbery (see Brå 
2008, p.29) which means that a larger part of the variability in the data regarding robbery is explained 
by whether the person reported the crime to the police or not. 
 

2.2. Point and variance estimator problems 
One important aim of this study is to see how well the different estimators can handle rare events in 
the population (and in the sample). When it comes to rare events in the population there are some 
special situations in which it is not possible to produce credible estimates. This occurs in three 
situations as was explained in Chapter 1.6.6 above.  

2.2.1. Proportions of possible variance estimates in the SCS 
In the SCS today only counties are accounted for in the sampling design. This means that the 
municipality domain sample sizes can vary in size. Each domain, county and municipality, 
respectively, is also stratified by age in order to over sample young and elderly persons. In order to 
estimate the variance unbiasedly in the design-based framework each stratum needs a sample size of n 
> 1. This is not always the case for the smaller domains. 

Table 13. Percentage of domains where all strata have a sample size n > 1 
Number Mean sample 

size in domain of domains 
Percent (%) 

-20 26 36.1 
21 - 40 28 68.3 
41 - 100 33 93.9 
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101 - 349 9 100.0 
350 - 8 100.0 

 
In the smallest domains, where the mean sample size is smaller than 20, the domains where the 
domain contain enough respondents in all strata’s were only 36 per cent. The only way to cope with 
this problem is to include all domains in the sampling plan to be sure that all strata in all domains will 
have a sample size greater than 1. 

This also means that the results in this study are based on a different number of simulated samples in 
different domains. But since the number of domains in the smallest mean sample size class is larger 
than in the largest class, the results should be equivalent and comparisons should be possible to do. 

 
2.2.2. Variance estimates of zero for HT estimators 
The first example of estimator problems for rare events is when the variance estimate is zero, which 
can happen for the HT variance estimator if there are only zeroes in the sample for a specific domain. 
In these cases it is not possible to calculate a logical Wald-interval estimate for the HT-estimator. 

Table 14. Percentage of Horvitz-Thompson variance estimate of zero 
Mean sample size in domain Type of 

experienced 
offence 

-20 21 - 40 41 - 100 101 - 349 350 - 
Any crime against 

person 
19.7 4.6 0.1 0.0 0.0 

Assault 65.8 42.1 15.5 1.5 0.0 
Fraud 73.3 54.0 24.2 4.0 0.0 

Harassment 49.7 28.6 6.5 0.2 0.0 
Robbery 93.8 79.7 55.4 22.9 4.2 

Sexual offences 88.3 79.1 60.2 20.6 1.8 
Threat 52.4 30.2 7.6 0.4 0.0 

 
The table above shows that the proportions with a variance of zero get larger as the sample size gets 
smaller. The offences that are more rare, such as robbery and sexual offences also have a larger 
proportion of variance estimates of zero. This is logical and in line with what can be expected from 
theory.  

 

2.2.3. Convergence of the logarithmic regression (LGREG) 
Another problem is if the logarithmic regression does not converge. When it comes to the convergence 
the only problem was that in modelling Harassment, in 10 % of the simulations the ridging failed to 
improve the likelihood function when domain specific intercept were used. This should not affect the 
estimates to any larger extent and hence no way to improve the ridging was used. 

 
2.2.4. Negative GREG estimates 
The last situation where there can be problems with the point estimates is when the GREG point 
estimates are negative. This can happen with GREG estimators even though the results are logically 
wrong in the sense that negative proportions or totals cannot exist. 

Table 15: Percentage of Negative GREG estimates 
  Any 

crime 
Assault Fraud Harass-

ment 
Robbery Sexual 

offences 
Threat 
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 against 
person 

      

Mean 
sample 
size in 
domain 

Auxiliary 
variables 

Estimator 
type 

Linear  9.0 33.0 38.2 26.4 54.1 45.4 25.8 Setup 1 
Logistic  9.2 32.8 39.5 26.7 54.8 45.0 26.5 
Linear  8.7 33.1 37.4 26.5 53.6 44.5 25.4 Setup 2 

Logistic  9.1 32.8 39.6 26.7 55.0 44.9 26.5 
Linear  6.3 26.1 25.5 19.0 45.9 38.4 18.1 Setup 3 

Logistic  8.5 32.6 39.5 26.5 54.9 44.9 26.4 
Linear  5.1 21.5 27.7 17.9 51.2 39.9 15.2 

-20 

Setup 4 
Logistic  5.0 21.5 27.9 17.9 52.1 39.7 15.2 
Linear  1.5 17.3 24.5 11.9 39.4 36.6 12.2 Setup 1 

Logistic  1.5 17.0 24.8 11.8 39.1 35.3 12.2 
Linear  1.4 17.2 24.3 11.9 39.5 36.3 12.1 Setup 2 

Logistic  1.4 17.0 24.8 11.8 39.2 35.3 12.2 
Linear  1.3 16.5 22.4 11.2 37.6 34.8 11.4 Setup 3 

Logistic  1.2 17.0 24.8 11.9 39.2 35.5 12.4 
Linear  0.2 6.0 9.1 5.0 23.7 23.1 5.1 

21 - 40 

Setup 4 
Logistic  0.2 5.8 8.9 4.8 24.0 22.9 5.0 
Linear  0.1 5.9 10.5 2.5 26.2 27.8 2.7 Setup 1 

Logistic  0.0 5.6 10.5 2.4 25.9 26.8 2.7 
Linear  0.1 5.9 10.4 2.5 26.2 27.7 2.7 Setup 2 

Logistic  0.0 5.6 10.4 2.4 26.0 26.8 2.7 
Linear  0.0 6.2 11.2 2.8 27.0 28.1 3.1 Setup 3 

Logistic  0.0 5.6 10.7 2.4 26.1 27.2 2.7 
Linear  0.0 0.9 1.3 0.9 6.2 15.6 0.6 

41 - 100 

Setup 4 
Logistic  0.0 0.9 1.2 0.9 6.0 15.3 0.5 
Linear  0.0 0.6 1.6 0.0 10.2 8.8 0.1 Setup 1 

Logistic  0.0 0.5 1.7 0.0 9.9 8.1 0.1 
Linear  0.0 0.6 1.5 0.0 10.1 8.7 0.1 Setup 2 

Logistic  0.0 0.5 1.7 0.0 9.9 8.0 0.1 
Linear  0.0 0.6 1.9 0.1 10.6 9.3 0.1 Setup 3 

Logistic  0.0 0.5 1.7 0.0 10.2 8.2 0.1 
Linear  0.0 0.0 0.0 0.0 0.0 2.1 0.0 

101 - 349 

Setup 4 
Logistic  0.0 0.0 0.0 0.0 0.0 1.9 0.0 
Linear  0.0 0.0 0.0 0.0 2.0 0.8 0.0 Setup 1 

Logistic  0.0 0.0 0.0 0.0 1.9 0.7 0.0 
Linear  0.0 0.0 0.0 0.0 2.0 0.9 0.0 Setup 2 

Logistic  0.0 0.0 0.0 0.0 1.9 0.8 0.0 
Linear  0.0 0.0 0.0 0.0 2.0 0.8 0.0 Setup 3 

Logistic  0.0 0.0 0.0 0.0 1.3 0.6 0.0 
Linear  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

350 - 

Setup 4 
Logistic  0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 
From the table above the conclusions can be drawn that setup 4 outperforms the other models when it 
comes to the proportion of negative estimates. In all domain sizes the proportion of negative estimates 
is highly reduced when information on whether the respondent reported the crime or not is used.  
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When it comes to differences between the logistic GREG and the linear GREG it is obvious that the 
logistic GREG is slightly better when the model is stronger (setup 4) and when the sample size is 
larger than 40. But the difference is quite small, even though the logistic estimator will only predict 
positive values. 
Another interesting result is that in the more rare situations, such as robbery and sexual offences, there 
is still a quite large proportion of the estimates that are negative even for the larger domains. In the 
domains with a mean sample size of 101-349 still 10 percent of the estimates will be negative and 
hence erroneous. 

 

2.3. Effectiveness of point estimates 
The effectiveness of the estimator has been studied regarding both biases of the estimators as 
well as the mean squared error. The first property that is studied is the bias of the estimators: 
Table 16: Average Bias (AB) of the estimated proportions 

Any 
crime 

  

against 
person 

Assault Fraud Harass-
ment 

Robbery Sexual 
offences 

Threat 

Mean 
sample 
size in 
domain 

Auxiliary 
variables 

Estimator 
type 

None HT  0.009 0.003 0.002 0.005 0.001 0.001 0.004 
Linear  0.005 0.003 0.002 0.004 0.001 0.001 0.003 Setup 1 

Logistic  0.005 0.003 0.002 0.004 0.001 0.001 0.003 
Linear  0.006 0.003 0.002 0.004 0.001 0.001 0.003 Setup 2 

Logistic  0.005 0.003 0.002 0.004 0.001 0.001 0.003 
Linear  0.006 0.002 0.002 0.004 0.001 0.001 0.003 Setup 3 

Logistic  0.005 0.002 0.002 0.004 0.001 0.001 0.003 
Linear  0.005 0.002 0.002 0.003 0.001 0.001 0.003 

-20 

Setup 4 
Logistic  0.005 0.002 0.002 0.003 0.001 0.001 0.003 

None HT  0.002 0.001 0.001 0.001 0.000 0.001 0.001 
Linear  0.002 0.001 0.001 0.001 0.001 0.001 0.001 Setup 1 

Logistic  0.002 0.001 0.001 0.001 0.001 0.001 0.001 
Linear  0.002 0.001 0.001 0.001 0.001 0.001 0.001 Setup 2 

Logistic  0.002 0.001 0.001 0.001 0.001 0.001 0.001 
Linear  0.002 0.001 0.001 0.001 0.000 0.001 0.001 Setup 3 

Logistic  0.002 0.001 0.001 0.001 0.000 0.001 0.001 
Linear  0.002 0.001 0.001 0.001 0.000 0.000 0.001 

21 - 40 

Setup 4 
Logistic  0.002 0.001 0.001 0.001 0.000 0.000 0.001 

None HT  0.001 0.000 0.000 0.001 0.000 0.000 0.001 
Linear  0.001 0.000 0.000 0.001 0.000 0.000 0.001 Setup 1 

Logistic  0.001 0.000 0.000 0.001 0.000 0.000 0.001 
Linear  0.001 0.000 0.000 0.001 0.000 0.000 0.001 Setup 2 

Logistic  0.001 0.000 0.000 0.001 0.000 0.000 0.001 
Linear  0.001 0.000 0.000 0.001 0.000 0.000 0.001 Setup 3 

Logistic  0.001 0.000 0.000 0.001 0.000 0.000 0.001 
Linear  0.001 0.000 0.000 0.001 0.000 0.000 0.001 

41 - 100 

Setup 4 
Logistic  0.001 0.000 0.000 0.001 0.000 0.000 0.001 

101 - 349 None HT  0.001 0.001 0.000 0.001 0.000 0.000 0.000 
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Linear  0.001 0.001 0.000 0.001 0.000 0.000 0.000 Setup 1 
Logistic  0.001 0.001 0.000 0.001 0.000 0.000 0.000 
Linear  0.001 0.001 0.000 0.001 0.000 0.000 0.000 Setup 2 

Logistic  0.001 0.001 0.000 0.001 0.000 0.000 0.000 
Linear  0.001 0.001 0.000 0.001 0.000 0.000 0.000 Setup 3 

Logistic  0.001 0.001 0.000 0.001 0.000 0.000 0.000 
Linear  0.001 0.000 0.000 0.001 0.000 0.000 0.000 

 

Setup 4 
Logistic  0.001 0.000 0.000 0.001 0.000 0.000 0.000 

None HT  0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Linear  0.000 0.000 0.000 0.000 0.000 0.000 0.000 Setup 1 

Logistic  0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Linear  0.000 0.000 0.000 0.000 0.000 0.000 0.000 Setup 2 

Logistic  0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Linear  0.000 0.000 0.000 0.000 0.000 0.000 0.000 Setup 3 

Logistic  0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Linear  0.000 0.000 0.000 0.000 0.000 0.000 0.000 

350 - 

Setup 4 
Logistic  0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 
As can be expected the bias is very small with these estimators - as theory suggest. From the results 
above you can see that all estimates can be regarded as design-unbiased. 
Since all estimators are design-unbiased the RMSE is effectively the same as the variance of the 
estimators. 
Table 17: Root mean squared error (RMSE) of the estimated proportions 

Any 
crime 

  

against 
person 

Assault Fraud Harass-
ment 

Robbery Sexual 
offences 

Threat 

Mean 
sample 
size in 
domain 

Auxiliary 
variables 

Estimator 
type 

None HT  0.083 0.039 0.034 0.054 0.011 0.017 0.051 
Linear  0.078 0.039 0.034 0.053 0.012 0.018 0.050 Setup 1 

Logistic  0.078 0.039 0.034 0.053 0.012 0.018 0.050 
Linear  0.078 0.039 0.034 0.053 0.012 0.018 0.050 Setup 2 

Logistic  0.078 0.039 0.034 0.053 0.012 0.018 0.050 
Linear  0.072 0.035 0.031 0.049 0.011 0.016 0.046 Setup 3 

Logistic  0.075 0.037 0.032 0.051 0.010 0.016 0.049 
Linear  0.070 0.033 0.030 0.049 0.011 0.016 0.044 

-20 

Setup 4 
Logistic  0.070 0.033 0.030 0.049 0.011 0.016 0.045 

None HT  0.059 0.029 0.025 0.036 0.014 0.015 0.035 
Linear  0.054 0.028 0.025 0.035 0.014 0.015 0.034 Setup 1 

Logistic  0.054 0.028 0.025 0.035 0.014 0.015 0.034 
Linear  0.054 0.028 0.025 0.035 0.014 0.015 0.034 Setup 2 

Logistic  0.054 0.028 0.025 0.035 0.014 0.015 0.034 
Linear  0.054 0.028 0.025 0.035 0.014 0.015 0.034 Setup 3 

Logistic  0.055 0.029 0.025 0.036 0.014 0.016 0.034 
Linear  0.047 0.024 0.021 0.032 0.012 0.013 0.030 

21 - 40 

Setup 4 
Logistic  0.047 0.024 0.021 0.031 0.012 0.013 0.030 

41 - 100 None HT  0.042 0.021 0.018 0.025 0.011 0.010 0.025 
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Linear  0.039 0.020 0.018 0.025 0.011 0.010 0.024 Setup 1 
Logistic  0.039 0.020 0.018 0.025 0.011 0.010 0.024 
Linear  0.039 0.020 0.018 0.025 0.011 0.010 0.024 Setup 2 

Logistic  0.039 0.020 0.018 0.025 0.011 0.010 0.024 
Linear  0.039 0.020 0.018 0.025 0.011 0.010 0.024 Setup 3 

Logistic  0.039 0.020 0.018 0.025 0.011 0.011 0.024 
Linear  0.034 0.017 0.015 0.023 0.008 0.009 0.021 

 

Setup 4 
Logistic  0.034 0.017 0.015 0.023 0.008 0.009 0.021 

None HT  0.030 0.015 0.014 0.018 0.009 0.009 0.019 
Linear  0.028 0.015 0.014 0.017 0.009 0.009 0.018 Setup 1 

Logistic  0.028 0.015 0.014 0.017 0.009 0.009 0.018 
Linear  0.028 0.015 0.014 0.017 0.009 0.009 0.018 Setup 2 

Logistic  0.028 0.015 0.014 0.017 0.009 0.009 0.018 
Linear  0.028 0.015 0.014 0.017 0.009 0.009 0.018 Setup 3 

Logistic  0.028 0.015 0.014 0.017 0.009 0.009 0.018 
Linear  0.025 0.012 0.012 0.016 0.007 0.008 0.016 

101 - 349 

Setup 4 
Logistic  0.025 0.012 0.012 0.016 0.007 0.008 0.016 

None HT  0.014 0.007 0.006 0.009 0.004 0.004 0.009 
Linear  0.013 0.007 0.006 0.008 0.004 0.004 0.009 Setup 1 

Logistic  0.013 0.007 0.006 0.008 0.004 0.004 0.009 
Linear  0.013 0.007 0.006 0.008 0.004 0.004 0.009 Setup 2 

Logistic  0.013 0.007 0.006 0.008 0.004 0.004 0.009 
Linear  0.014 0.007 0.006 0.009 0.004 0.004 0.009 Setup 3 

Logistic  0.014 0.007 0.006 0.009 0.004 0.004 0.009 
Linear  0.012 0.006 0.005 0.008 0.003 0.004 0.008 

350 - 

Setup 4 
Logistic  0.012 0.006 0.005 0.008 0.003 0.004 0.008 

 
From the table above you can see that using the variable setup 4 means quite a large gain compared to 
using the other setups, especially in the smaller domains and when the criminal offence is less 
common. To clarify the gains in estimator precision the following table compares the RMSE between 
Setup 1 and 4 for the linear GREG estimator: 

 
Table 18: RMSE ratio between GREG (linear) Setup 4 and GREG (linear) Setup 1 from table 
X above 

Any 
crime 

Mean 
sample 
size in 
domain against 

person Assault Fraud 
Harass-

ment Robbery 
Sexual 

offences Threat 
-20 0.901 0.851 0.881 0.926 0.859 0.905 0.895 

21 - 40 0.868 0.860 0.852 0.892 0.824 0.850 0.894 
41 - 100 0.874 0.840 0.841 0.934 0.756 0.911 0.890 
101 - 349 0.885 0.851 0.864 0.936 0.814 0.929 0.905 

350 - 0.878 0.847 0.842 0.924 0.778 0.925 0.901 
All 0.881 0.850 0.856 0.923 0.806 0.904 0.897 

 
As expected, the gains in precision are larger for robbery and assault and smaller for sexual offences 
and harassment. The crime types as sexual offences and harassment that has larger dark figures have a 
worse model fit compared to assault, that is recognized as having a smaller dark figure. As such the 
estimator precision gains for setup 4 is, as expected, larger for the crime types with a smaller dark 
figure.  
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The gain of using setup 4 varies between the crime types but the RMSE is reduced both for harassment 
and sexual offences as well as for estimates for assault and robbery. To get the same gains by 
increasing the sample size one would have to increase the sample size by between 8 percent 
(harassment) and 24 percent (robbery). 

 

2.4. Interval estimates 
As has been concluded in the section purpose of this study, an important part of the production of 
official statistics is credible confidence intervals for different domains of interest. The first interval is 
the classical Wald interval that is usually applied for the GREG and HT estimators. 

2.4.1. Wald (GREG) interval estimator 
Table 19: Wald coverage proportion (95%, based on Student’s t-distribution)  

Any 
crime 

  

against 
person 

Assault Fraud Harass-
ment 

Robbery Sexual 
offences 

Threat 

Mean 
sample 
size in 
domain 

Auxiliary 
variables 

Estimator 
type 

None HT 0.760 0.332 0.254 0.487 0.060 0.110 0.461 
Linear  0.769 0.444 0.369 0.515 0.602 0.510 0.506 Setup 1 

Logistic  0.769 0.455 0.350 0.512 0.597 0.543 0.502 
Linear  0.769 0.445 0.368 0.515 0.602 0.507 0.504 Setup 2 

Logistic  0.769 0.455 0.347 0.513 0.593 0.516 0.495 
Linear  0.784 0.442 0.373 0.512 0.603 0.513 0.498 Setup 3 

Logistic  0.785 0.406 0.294 0.498 0.574 0.431 0.471 
Linear  0.710 0.382 0.343 0.486 0.634 0.494 0.456 

-20 

Setup 4 
Logistic  0.709 0.397 0.328 0.483 0.633 0.528 0.453 

None HT 0.874 0.569 0.456 0.704 0.201 0.207 0.689 
Linear  0.887 0.591 0.471 0.710 0.347 0.361 0.695 Setup 1 

Logistic  0.886 0.599 0.469 0.711 0.341 0.435 0.696 
Linear  0.887 0.592 0.470 0.710 0.346 0.358 0.695 Setup 2 

Logistic  0.886 0.598 0.468 0.711 0.335 0.393 0.695 
Linear  0.897 0.585 0.463 0.711 0.337 0.352 0.697 Setup 3 

Logistic  0.895 0.577 0.459 0.711 0.295 0.207 0.696 
Linear  0.855 0.487 0.424 0.651 0.356 0.362 0.614 

21 - 40 

Setup 4 
Logistic  0.854 0.499 0.418 0.652 0.363 0.435 0.615 

None HT 0.914 0.816 0.751 0.876 0.444 0.396 0.869 
Linear  0.928 0.820 0.751 0.880 0.506 0.447 0.872 Setup 1 

Logistic  0.929 0.821 0.752 0.880 0.488 0.472 0.872 
Linear  0.928 0.820 0.752 0.881 0.505 0.447 0.872 Setup 2 

Logistic  0.929 0.821 0.752 0.880 0.487 0.468 0.872 
Linear  0.931 0.821 0.753 0.883 0.503 0.440 0.876 Setup 3 

Logistic  0.931 0.822 0.753 0.883 0.471 0.396 0.876 
Linear  0.917 0.730 0.641 0.865 0.410 0.396 0.837 

41 - 100 

Setup 4 
Logistic  0.917 0.732 0.641 0.865 0.396 0.422 0.838 

None HT 0.925 0.901 0.903 0.918 0.750 0.777 0.918 
Linear  0.942 0.904 0.905 0.926 0.751 0.780 0.921 

101 - 349 
Setup 1 

Logistic  0.942 0.903 0.904 0.926 0.750 0.781 0.921 
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Linear  0.942 0.904 0.904 0.925 0.751 0.781 0.921 Setup 2 
Logistic  0.942 0.903 0.904 0.926 0.750 0.781 0.921 
Linear  0.944 0.904 0.906 0.925 0.751 0.780 0.923 Setup 3 

Logistic  0.942 0.904 0.904 0.924 0.751 0.779 0.922 
Linear  0.938 0.892 0.885 0.920 0.633 0.737 0.912 

 

Setup 4 
Logistic  0.938 0.894 0.885 0.922 0.632 0.737 0.911 

None HT 0.942 0.934 0.931 0.942 0.922 0.890 0.936 
Linear  0.945 0.937 0.927 0.940 0.920 0.890 0.938 Setup 1 

Logistic  0.944 0.935 0.927 0.940 0.920 0.887 0.938 
Linear  0.945 0.937 0.927 0.940 0.920 0.890 0.938 Setup 2 

Logistic  0.944 0.935 0.927 0.940 0.920 0.888 0.938 
Linear  0.941 0.934 0.923 0.937 0.916 0.889 0.934 Setup 3 

Logistic  0.939 0.930 0.921 0.937 0.912 0.885 0.934 
Linear  0.943 0.932 0.920 0.939 0.838 0.897 0.935 

350 - 

Setup 4 
Logistic  0.943 0.932 0.920 0.939 0.839 0.898 0.935 

 
From the results in the table above one the conclusion can be drawn that the Wald interval does not 
work at all for domain estimation for more rare events. For proportions that are small, such as sexual 
offences and robbery, the coverage proportions are extremely low even for the large domains (101-
349). But for larger proportions such as “Any crime against person” the Wald interval works quite 
well for even for medium sized domains such as 41 - 100. 
The Wald interval is based on the assumption on the central limit theorem approximation of the 
normal distribution. To study this assumption the proportions of intervals where values smaller than 0 
(or greater than 1) is covered by the interval is calculated. These logically incorrect intervals suggest 
that the asymptotic of the central limit theorem does not work empirically for this sample size and can 
explain the coverage problems seen above. 
 
Table 20: Wald incorrect interval proportions (95%, based on Student’s t-distribution) 

Any 
crime 

  

against 
person 

Assault Fraud Harass-
ment 

Robbery Sexual 
offences 

Threat 

Mean 
sample 
size in 
domain 

Auxiliary 
variables 

Estimator 
type 

None HT 0.554 0.306 0.237 0.423 0.057 0.106 0.402 
Linear  0.761 0.850 0.861 0.873 0.903 0.919 0.834 Setup 1 

Logistic  0.759 0.874 0.846 0.868 0.894 0.911 0.833 
Linear  0.756 0.850 0.864 0.874 0.904 0.917 0.835 Setup 2 

Logistic  0.755 0.874 0.847 0.869 0.893 0.912 0.832 
Linear  0.782 0.858 0.897 0.915 0.915 0.926 0.861 Setup 3 

Logistic  0.767 0.885 0.860 0.889 0.894 0.913 0.854 
Linear  0.605 0.600 0.689 0.739 0.850 0.812 0.645 

-20 

Setup 4 
Logistic  0.600 0.621 0.674 0.733 0.843 0.819 0.643 

None HT 0.495 0.510 0.428 0.597 0.193 0.202 0.594 
Linear  0.526 0.834 0.859 0.836 0.867 0.907 0.825 Setup 1 

Logistic  0.525 0.856 0.842 0.832 0.869 0.929 0.826 
Linear  0.525 0.834 0.863 0.837 0.873 0.910 0.825 Setup 2 

Logistic  0.525 0.856 0.842 0.832 0.870 0.929 0.824 

21 - 40 

Setup 3 Linear  0.517 0.868 0.931 0.893 0.908 0.927 0.875 
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 Logistic  0.511 0.871 0.852 0.840 0.874 0.927 0.836 
Linear  0.263 0.537 0.573 0.644 0.576 0.669 0.614 

 
Setup 4 

Logistic  0.261 0.550 0.553 0.643 0.591 0.705 0.610 
None HT 0.125 0.625 0.635 0.569 0.425 0.386 0.580 

Linear  0.083 0.755 0.840 0.626 0.888 0.918 0.645 Setup 1 
Logistic  0.083 0.759 0.832 0.625 0.885 0.938 0.644 
Linear  0.083 0.755 0.840 0.627 0.891 0.919 0.645 Setup 2 

Logistic  0.083 0.758 0.831 0.625 0.885 0.938 0.644 
Linear  0.086 0.770 0.882 0.634 0.930 0.947 0.653 Setup 3 

Logistic  0.087 0.758 0.836 0.618 0.890 0.940 0.637 
Linear  0.010 0.408 0.485 0.489 0.425 0.701 0.405 

41 - 100 

Setup 4 
Logistic  0.009 0.409 0.478 0.485 0.420 0.729 0.404 

None HT 0.001 0.380 0.475 0.162 0.605 0.671 0.159 
Linear  0.000 0.366 0.503 0.132 0.805 0.860 0.130 Setup 1 

Logistic  0.000 0.361 0.499 0.133 0.797 0.858 0.130 
Linear  0.000 0.366 0.501 0.132 0.803 0.858 0.129 Setup 2 

Logistic  0.000 0.361 0.498 0.132 0.797 0.857 0.129 
Linear  0.000 0.365 0.504 0.137 0.820 0.871 0.134 Setup 3 

Logistic  0.000 0.356 0.499 0.138 0.797 0.851 0.135 
Linear  0.000 0.063 0.217 0.049 0.382 0.688 0.027 

101 - 349 

Setup 4 
Logistic  0.000 0.064 0.216 0.049 0.379 0.676 0.027 

None HT 0.000 0.002 0.028 0.000 0.434 0.344 0.000 
Linear  0.000 0.002 0.027 0.000 0.469 0.353 0.000 Setup 1 

Logistic  0.000 0.002 0.028 0.000 0.469 0.347 0.000 
Linear  0.000 0.002 0.027 0.000 0.469 0.353 0.000 Setup 2 

Logistic  0.000 0.002 0.028 0.000 0.468 0.348 0.000 
Linear  0.000 0.002 0.028 0.000 0.456 0.336 0.000 Setup 3 

Logistic  0.000 0.003 0.027 0.000 0.443 0.322 0.000 
Linear  0.000 0.000 0.000 0.000 0.087 0.200 0.000 

350 - 

Setup 4 
Logistic  0.000 0.000 0.000 0.000 0.088 0.202 0.000 

 
As can be seen from the table above the proportion of incorrect intervals decreases both with the 
sample size and the rareness in the populations – which is in line with the central limit theorem. It can 
also be seen that the variable setup 4 outperforms the other setups with auxiliary variables. 

When it comes to rare events as sexual offences and robbery the interval does not converge to the 
normal distribution even in the largest domains. Using the variables used today in the SCS only 55 % 
of the estimated confidence intervals would be correct in the sense that they wouldn’t include negative 
values.  

As concluded above the coverage problems and the inclusion of negative values in the confidence 
interval suggest that the distribution of the estimators does not converge to the normal distribution and 
hence the Wald interval should not be used to estimate confidence intervals for rare events in domains, 
even in very large domains. 
There is no big difference between the logistic and the linear estimator in these cases. The logistic 
estimator is slightly better than the linear, but the difference is very small. 

 
2.4.2. Wilson intervals 
The Wilson interval is the interval recommended by Brown et al (2001) for estimating a binomial 
proportion. In this study the interval has been applied ad hoc to the design-based framework in 
Chapter 1.3.2 above and in the study the Students t-distribution has been used in the interval 
estimation to include the uncertainty of the variance estimate in the study. 
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Table 21: Wilson ad hoc interval coverage proportion (95%, based on Student’s t-
distribution) 

Any 
crime 

  

against 
person 

Assault Fraud Harass-
ment 

Robbery Sexual 
offences 

Threat 

Mean 
sample 
size in 
domain 

Auxiliary 
variables 

Estimator 
type 

None HT 0.947 0.926 0.920 0.942 0.742 0.820 0.951 
Linear  0.945 0.887 0.881 0.922 0.719 0.776 0.913 Setup 1 

Logistic  0.946 0.886 0.883 0.921 0.722 0.775 0.913 
Linear  0.944 0.887 0.877 0.922 0.717 0.770 0.912 Setup 2 

Logistic  0.945 0.886 0.880 0.922 0.722 0.774 0.912 
Linear  0.960 0.900 0.902 0.941 0.678 0.759 0.933 Setup 3 

Logistic  0.957 0.888 0.891 0.935 0.597 0.715 0.930 
Linear  0.944 0.883 0.890 0.918 0.724 0.777 0.914 

-20 

Setup 4 
Logistic  0.944 0.880 0.891 0.919 0.720 0.774 0.914 

None HT 0.954 0.960 0.960 0.957 0.897 0.940 0.959 
Linear  0.956 0.930 0.920 0.942 0.854 0.887 0.945 Setup 1 

Logistic  0.955 0.928 0.920 0.941 0.854 0.881 0.945 
Linear  0.955 0.930 0.920 0.942 0.853 0.888 0.945 Setup 2 

Logistic  0.955 0.929 0.920 0.942 0.854 0.884 0.945 
Linear  0.964 0.937 0.929 0.951 0.858 0.899 0.952 Setup 3 

Logistic  0.961 0.930 0.924 0.945 0.829 0.899 0.948 
Linear  0.959 0.925 0.920 0.940 0.837 0.865 0.943 

21 - 40 

Setup 4 
Logistic  0.959 0.925 0.920 0.940 0.838 0.860 0.943 

None HT 0.953 0.966 0.962 0.963 0.940 0.956 0.965 
Linear  0.955 0.946 0.947 0.955 0.907 0.914 0.956 Setup 1 

Logistic  0.954 0.946 0.947 0.955 0.908 0.912 0.955 
Linear  0.954 0.946 0.947 0.955 0.907 0.914 0.956 Setup 2 

Logistic  0.954 0.946 0.946 0.955 0.908 0.912 0.955 
Linear  0.957 0.950 0.948 0.957 0.909 0.917 0.958 Setup 3 

Logistic  0.956 0.947 0.947 0.955 0.901 0.910 0.956 
Linear  0.958 0.944 0.944 0.955 0.882 0.909 0.956 

41 - 100 

Setup 4 
Logistic  0.958 0.943 0.944 0.955 0.888 0.905 0.956 

None HT 0.951 0.961 0.967 0.965 0.958 0.965 0.960 
Linear  0.952 0.947 0.957 0.957 0.942 0.948 0.952 Setup 1 

Logistic  0.952 0.947 0.957 0.956 0.942 0.942 0.952 
Linear  0.952 0.947 0.957 0.956 0.942 0.948 0.952 Setup 2 

Logistic  0.952 0.947 0.957 0.956 0.942 0.941 0.952 
Linear  0.954 0.948 0.959 0.956 0.941 0.945 0.951 Setup 3 

Logistic  0.955 0.947 0.956 0.952 0.940 0.935 0.951 
Linear  0.953 0.953 0.954 0.958 0.940 0.940 0.953 

101 - 349 

Setup 4 
Logistic  0.952 0.953 0.952 0.957 0.939 0.940 0.954 

None HT 0.959 0.964 0.960 0.961 0.967 0.957 0.961 
Linear  0.949 0.948 0.951 0.951 0.955 0.950 0.948 Setup 1 

Logistic  0.948 0.946 0.951 0.952 0.954 0.945 0.948 

350 - 

Setup 2 Linear  0.949 0.948 0.951 0.951 0.955 0.949 0.947 
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 Logistic  0.949 0.947 0.951 0.952 0.954 0.945 0.948 
Linear  0.945 0.944 0.946 0.947 0.948 0.943 0.944 Setup 3 

Logistic  0.945 0.940 0.945 0.947 0.944 0.931 0.941 
Linear  0.950 0.945 0.952 0.952 0.952 0.946 0.947 

 

Setup 4 
Logistic  0.949 0.944 0.952 0.951 0.950 0.948 0.947 

 
From the table you can see that the Wilson interval performs much better than the Wald interval in 
almost all situations. One example is estimates for sexual offences and robbery in the 101-349 domain 
sizes where the Wilson interval has a coverage of between 94 and 96 percent while the Wald interval 
has a coverage between 63 and 77 percent. When it comes to the more common variable “Any crime 
against person”, the Wilson interval again has a coverage percentage between 94 and 96 percent while 
the Wald interval has a coverage of only 71 and 78 percent. Clearly the Wilson interval outperforms 
the Wald interval in these situations.  

In the larger domains (100 - ) the Wilson ad hoc interval performs generally very well both for the HT 
estimator as well as the GREG estimators. But in the smaller domains the Wilson interval have a 
coverage proportion that can be considered good only for the crime types that are less rare.  

The reason may be that the true values in many of those domains are zero and the Wilson interval only 
very seldom include zeros in the interval. If the population would be larger (as in the SCS) the 
probability that the municipality would have zero occurrences would be much smaller and hence the 
interval coverage would perform better.  

 
Table 22: Wilson ad hoc interval coverage proportion (95%, based on Student’s t-
distribution) for more rare offences 
*= no domains where the population value in the domain is zero 

Robbery Sexual 
offences 

True value in 
population 

True value in 
population 

  

> 0 0 > 0 0 
Mean 

sample 
size in 
domain 

Auxiliary 
variables 

Estimator 
type 

None HT 0.898 0.488 0.916 0.465 
Linear  0.902 0.582 0.893 0.546 Setup 1 

Logistic  0.901 0.583 0.889 0.546 
Linear  0.901 0.580 0.892 0.531 Setup 2 

Logistic  0.901 0.584 0.892 0.542 
Linear  0.920 0.498 0.915 0.457 Setup 3 

Logistic  0.917 0.300 0.908 0.261 
Linear  0.890 0.595 0.896 0.539 

-20 

Setup 4 
Logistic  0.889 0.585 0.891 0.535 

None HT 0.940 0.525 0.934 * 
Linear  0.888 0.546 0.883 * Setup 1 

Logistic  0.888 0.531 0.877 * 
Linear  0.887 0.545 0.885 * Setup 2 

Logistic  0.887 0.534 0.881 * 
Linear  0.898 0.497 0.896 * Setup 3 

Logistic  0.896 0.231 0.896 * 

21 - 40 

Setup 4 Linear  0.868 0.549 0.860 * 
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  Logistic  0.873 0.503 0.856 * 
None HT 0.950 0.504 0.952 * 

Linear  0.917 0.522 0.912 * Setup 1 
Logistic  0.918 0.526 0.909 * 
Linear  0.917 0.529 0.912 * Setup 2 

Logistic  0.918 0.526 0.910 * 
Linear  0.919 0.515 0.915 * Setup 3 

Logistic  0.918 0.281 0.908 * 
Linear  0.891 0.516 0.906 * 

41 - 100 

Setup 4 
Logistic  0.898 0.488 0.903 * 

 
From the table you can see that the main problem for the interval estimates is when the true value is 
zero, which should not be a real problem in the SCS. But even if the true value is considered to be 
larger than zero the Wilson interval has problems with the coverage probability for these very rare 
crime types. But compared to the Wald interval the Wilson interval is to be preferred even in these 
situations. 

If the HT-interval estimates are considered the Wilson interval is also to be perferred. The problem in 
small domains and rare events is that the variance estimate is zero and the Wald interval cannot be 
computed. By using the Wilson interval instead, interval estimates with good coverage proportions can 
be estimated. 
Even though it would be possible to produce interval estimates for even the smallest domain they may 
not be results of any interests for the users. The interval width in the smallest domains may be so large 
that the interval estimates are probably of no real use. 

 
2.4.3. Comparing the width of the interval estimates 
Above the different interval estimators have been studied regarding the coverage proportions of the 
estimates. Another important aspect of the interval estimate is the width of the estimates. Too wide 
estimates will not be of any use. If the width of the interval was mere a function of the variance the 
RMSE in Chapter 2.3 above would be the end of the story. But the Wilson interval in not just the 
function of the variance, but also a function of the domain size. 

 
Table 23: Interval mean width (95%, based on Student’s t-distribution) 

Any crime 
against 

person 

Assault Harassment Robbery Sexual 
offences 

  

Wilson Wald Wilson Wald Wilson Wald Wilson Wald Wilson Wald 
Mean 

sample 
size in 
domain 

Auxiliary 
variables 

Estimator 
type 

None HT 33.9 28.9 26.3 9.5 28.3 15.2 23.7 1.6 24.1 2.9 
Setup 1 Linear  34.0 29.5 26.3 10.5 28.3 16.1 23.7 2.2 24.1 3.6 

-20 

Setup 4 Linear  32.1 25.3 25.5 7.8 27.7 14.4 23.6 1.8 24.0 3.1 
None HT 23.7 22.0 16.5 9.0 18.0 12.1 13.9 2.7 13.9 2.9 

Setup 1 Linear  23.4 22.0 16.4 9.4 17.8 12.4 13.8 3.0 13.9 3.3 
21 - 40 

Setup 4 Linear  21.3 18.6 15.5 7.3 17.0 10.7 13.6 2.3 13.6 2.7 
None HT 16.5 15.5 10.0 7.3 11.4 9.5 7.5 3.0 7.3 2.6 

Setup 1 Linear  15.8 15.5 9.7 7.4 11.1 9.5 7.4 3.1 7.3 2.9 
41 - 100 

Setup 4 Linear  14.1 13.4 8.8 5.8 10.5 8.7 7.0 2.1 7.1 2.4 
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None HT 12.0 11.3 6.6 5.7 7.7 6.9 4.7 3.1 4.6 3.1 
Setup 1 Linear  11.3 11.2 6.3 5.7 7.4 6.9 4.5 3.1 4.5 3.1 

101 - 349 

Setup 4 Linear  10.0 9.9 5.6 4.7 7.0 6.4 4.1 2.3 4.3 2.9 
None HT 5.7 5.3 3.0 2.7 3.6 3.3 1.7 1.4 1.8 1.5 

Setup 1 Linear  5.3 5.3 2.8 2.7 3.4 3.3 1.7 1.4 1.7 1.5 
350 - 

Setup 4 Linear  4.6 4.6 2.4 2.3 3.2 3.1 1.4 1.1 1.6 1.4 
 
From the table above you can see that the Wilson interval enlarges the interval for the smallest 
domains. Compared to the Wald interval the difference can be extremly large in the smallest domains. 
Another interesting feature of these estimators is that the effect of using setup 4 to reduce the variance 
of the estimators is larger as the domain size gets larger. When it comes to sexual offences and 
harassment using setup 4 would mean only a very small gain. 
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3. Conclusions 
 
In this study the following two research question were considered: 

1) Which design-based estimator, point and interval, have the better properties for estimating 
victimization rates at county and municipality level in the Swedish crime survey? 

2) How do point and interval estimates behave in the presence of rare events/skewed variables of 
interest? 

Based on earlier research two types of point estimators were included in this study. The first one was 
the GREG estimator, which is currently used in the SCS. The second type was the logistic GREG that 
has been proven to work better in some situations than the ordinary GREG. 
In the previous research regarding small area estimates for victimization surveys reported crimes have 
been identified as good auxiliary variables to model victimization. Criminological theory suggests that 
this information should work better for crime types that have a smaller dark figure. For this reason and 
since earlier research suggests that domain specific intercepts may improve estimates different 
variable setups were examined in this study. The auxiliary variables used today, reported crimes at the 
area level (municipality), domain specific intercepts and whether the respondent reported the crime or 
not to the police was studied 
Regarding interval estimates the classical Wald interval was included in the study. As a complement to 
the Wald interval that, by previous research, had been shown to perform very poorly, the Wilson 
interval was adapted ad hoc to the design-based framework and the GREG estimator. 

3.1. Auxiliary variables 
As already concluded in Chapter 2.1 the different variable setups differ in the explained variance. 
Variable setup 4 explains a lot more of the variance than the other variable setups. As suspected the 
explained variances differ between the crime types where robbery has a larger part of explained 
variability than sexual offences. 

3.2. GREG and LGREG type estimators 
The results in this study show that the difference in bias between the LGREG and the GREG estimator 
is very small. Even if the LGREG tends to have a larger bias in the smallest domains, the difference is 
very small between the two estimators.  

When it comes to the RMSE the LGREG estimator is slightly better than the GREG estimator. But, as 
with the bias, the difference is very small (n # 24). Earlier research by Myrskylä (2007) showed that 
the logistic GREG could outperform the GREG if the model was strong. In the case with variable 
setup 4, a R2-value of 0.30 is apparently not strong enough to give sufficient gains in the estimation.  
The problem with negative estimates is slightly smaller with the LGREG the GREG estimator, but the 
difference is to small to be of any practical use. The skewness of the dependent variables has a huge 
impact on both the GREG estimates and the LGREG estimates when it comes to negative estimates. 
The more skewed the variable is, and the smaller the sample, the more negative estimates. “Any crime 
against persons” with a true p of 12 % in the population only gets 7 % negative values in the smallest 
domains while when it comes to more rare events such as sexual offences more than 40 % of the 
estimates were negative in the smallest domains. The main difference depends on the strength of the 
auxiliary variables. With variable setup 4 which can be considered as a stronger model the proportion 
of negative estimates is reduced by as much as a half in some situations. 
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3.3. Interval estimation 
The main difference between the Wald and Wilson interval is that the Wilson interval takes the sample 
size explicitly into account when estimating the confidence interval – to correct for small (or non-
existing) variance estimates of the binomial proportion. The Wald interval, on the other hand, only 
takes the variance estimate of the estimator into account and that the estimator is assumed to be 
normally distributed – given by the central limit theorem. 

This means that the Wald interval is always shorter than the Wilson interval and from that point of 
view the Wald interval is to be preferred. The main problem is that the Wald interval relies on the 
central limit theorem to approximate to the normal distribution, an assumption that does not always 
hold. In the situation with small samples and skewed variables the convergence is not fast enough.  
Theory suggests that the skewer the variable the longer it takes to converge to the normal distribution. 
In this study the conclusion is that for the more rare events in the population (p < 1 %) the Wald 
interval cannot be used at all, even in the largest domains, while for the less skewed variable “Any 
crimes against persons”, the Wald interval can be used for sample sizes down to n>100. This is of 
course dependent on how strict you are when it comes to the coverage proportion of the estimates. 
The Wilson interval works quite well for almost all domains. For the larger domains (n>100) the 
coverage proportions are around 95%. But the skewer the variable and the smaller the domain, the 
worse the coverage probability will be. But for the more rare offences as robbery and sexual offences 
the coverage proportions are quite low, just around 90%, in the domains that are smaller than 100. But 
still the Wilson interval is much better than the Wald interval in these situations as well. 
One main problem with the Wilson interval is that when the true value in the domain is zero, the 
Wilson interval gets very erratic convergence probability. This is not a huge problem for the estimating 
intervals in practical situations if the population is sufficiently large, but for smaller population it can 
be a problem. On the other hand, though, if you suspect that the population value may be zero you 
may consider a one-sided interval instead. This has not been examined in this study. 
Since the difference between the Wald interval and the Wilson interval gets smaller as the domain size 
gets larger, the interval estimator that should be used in all situations should be the Wilson interval. 

3.4. Suggestions for the SCS 
The results from this study can be divided into four different conclusions regarding production and 
dissemination of statistics for the Swedish crime survey. 

3.4.1. Using reported crime at the unit level should be investigated further 
The study clearly shows that using the variable whether a person has reported a crime or not can 
improve the estimates. The two main benefits are the reduction of negative GREG estimates as well as 
the reduction in interval width for some variables. Together with the possibility to study the 
measurement errors created by telescoping effects this is an area that should be investigated further. 

3.4.2. The ad hoc Wilson interval should be used as interval estimator 
The ad hoc Wilson interval outperforms the Wald interval estimator in all situations studied here. If the 
Wilson interval estimator is used credible estimates can be produced for all domains with n > 100 as 
well as for all domains when it comes to the variable “Any crime against persons”. This would 
considerable improve the number of regional estimates from the SCS. But to be able to produce 
intervals for the more rare crime types it is more crucial that variable setup 4 is used. 

3.4.3. Disseminating statistics on different crime types can be done – but 
is it interesting? 
This study shows that it is possible to produce interval estimates even for small domains. The question 
is if it is interesting to disseminate intervals that are very wide. Comparisons are not possible and the 
estimates as such may be too wide to be of any practical use. In the smallest domain the interval can 
be as wide as 30 percent. The question is then if it is interesting to disseminate such estimates, 
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especially if the point estimates of the domains are negative at the same time. 

3.4.4. Point estimates or interval estimates 
Today both point estimates and interval estimates are produced for county estimates of the variable 
“Any crime against persons”. In this situation the confidence interval is calculated together with the 
point estimate but as domains get smaller the interval estimates get wider and at some point the 
question arises if the point estimates should be disseminated at all for some domains. When the 
intervals are sufficiently wide the point estimates are not very probable as an estimate at all. 

3.4.5. Including municipalities in the sampling plan 
If it is interesting to estimate smaller domains, such as domains in the size less than 100 the 
probability that the domain will not have a large enough sample in all strata is quite substantial. The 
only way to see to that domain estimation will be possible for all domains would be to include the 
municipalities in the sampling plan. But even then the non-response can introduce the situation that the 
variance cannot be estimated. 
 

3.6. Further research 
This study has answered some questions but at the same time additional question have arisen on how 
to improve and develop small area estimates regarding victimization and other rare binomial 
proportions in sample surveys. 

One of the results of the study is the conclusion that a by adding the auxiliary information on whether 
the person has reported the crime or not the estimates are improved considerably. The question then 
arises if there are other variables that can be used from registers that are highly correlated with 
victimizations.  
A second area of research is to find ways to reduce the proportion of negative GREG estimates for 
smaller proportions and areas. 
A third area of research is to theoretically derive a Wilson interval for sample surveys or another 
similar interval based on the hypergeometric distribution. 
The last area of research would be to use a different approach by using the Bayesian or the model-
based framework to produce small area estimates in victimization surveys. 
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Appendix 1. Clustering of counties and municipalities 
 
The counties were clustered together into seven different counties of different size and the 
municipalities were clustered together into 97 different artificial municipalities. 
 

CODE COUNTY NAME 
1 1  Stockholms län 
3 1  Uppsala län 
4 1  Södermanlands län 
5 1  Östergötlands län 
6 2  Jönköpings län 
7 2  Kronobergs län 
8 3  Kalmar län 
9 3  Gotlands län 

10 3  Blekinge län 
12 4  Skåne län 
13 4  Hallands län 
14 4  Västra Götalands län 
17 4  Värmlands län 
18 5  Örebro län 
19 5  Västmanlands län 
20 6  Dalarnas län 
21 6  Gävleborgs län 
22 6  Västernorrlands län 
23 7  Jämtlands län 
24 7 Västerbottens län 
25 7  Norrbottens län 

 

CODE MUNICIPALITY NAME 
0114 1  Upplands-Väsby  
0115 1  Vallentuna  
0117 1  Österåker  
0120 2  Värmdö  
0123 2  Järfälla  
0125 2  Ekerö  
0126 3  Huddinge  
0127 3  Botkyrka  
0128 3  Salem  
0136 4  Haninge  
0138 4  Tyresö  
0139 4  Upplands-Bro  
0140 5  Nykvarn  
0160 5  Täby  
0162 5  Danderyd  
0163 6  Sollentuna  
0180 6  Stockholm  
0181 6  Södertälje  
0182 7  Nacka  
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0183 7  Sundbyberg  
0184 7  Solna  
0186 8  Lidingö  
0187 8  Vaxholm  
0188 8  Norrtälje  
0191 9  Sigtuna  
0192 9  Nynäshamn  
0305 9  Håbo  
0319 10  Älvkarleby  
0330 10  Knivsta  
0331 10  Heby  
0360 11  Tierp  
0380 11 Uppsala  
0381 11  Enköping  
0382 12  Östhammar  
0428 12  Vingåker  
0461 12  Gnesta  
0480 13  Nyköping  
0481 13  Oxelösund  
0482 13  Flen  
0483 14  Katrineholm  
0484 14  Eskilstuna  
0486 14  Strängnäs  
0488 15  Trosa  
0509 15  Ödeshög  
0512 15  Ydre  
0513 16  Kinda  
0560 16  Boxholm  
0561 16  Åtvidaberg  
0562 17  Finspång  
0563 17  Valdemarsvik  
0580 17  Linköping  
0581 18  Norrköping  
0582 18  Söderköping  
0583 18  Motala  
0584 19  Vadstena  
0586 19  Mjölby  
0604 19  Aneby  
0617 20  Gnosjö  
0642 20  Mullsjö  
0643 20  Habo  
0662 21  Gislaved  
0665 21  Vaggeryd  
0680 21  Jönköping  
0682 22  Nässjö  
0683 22  Värnamo  
0684 22  Sävsjö  
0685 23  Vetlanda  
0686 23  Eksjö  
0687 23  Tranås  
0760 24  Uppvidinge  



 36

0761 24  Lessebo  
0763 24  Tingsryd  
0764 25  Alvesta  
0765 25  Älmhult  
0767 25  Markaryd  
0780 26  Växjö  
0781 26  Ljungby  
0821 26  Högsby  
0834 27  Torsås  
0840 27  Mörbylånga  
0860 27  Hultsfred  
0861 28  Mönsterås  
0862 28  Emmaboda  
0880 28  Kalmar  
0881 29  Nybro  
0882 29  Oskarshamn  
0883 29  Västervik  
0884 30  Vimmerby  
0885 30  Borgholm  
0980 30  Gotland  
1060 31  Olofström  
1080 31  Karlskrona  
1081 31  Ronneby  
1082 32  Karlshamn  
1083 32 Sölvesborg  
1214 32  Svalöv  
1230 33  Staffanstorp  
1231 33  Burlöv  
1233 33  Vellinge  
1256 34  Östra Göinge  
1257 34  Örkelljunga  
1260 34  Bjuv  
1261 35  Kävlinge  
1262 35  Lomma  
1263 35  Svedala  
1264 36  Skurup  
1265 36  Sjöbo  
1266 36  Hörby  
1267 37  Höör  
1270 37  Tomelilla  
1272 37  Bromölla  
1273 38  Osby  
1275 38  Perstorp  
1276 38  Klippan  
1277 39  Åstorp  
1278 39  Båstad  
1280 39  Malmö  
1281 40  Lund  
1282 40  Landskrona  
1283 40  Helsingborg  
1284 41  Höganäs  
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1285 41  Eslöv  
1286 41  Ystad  
1287 42  Trelleborg  
1290 42  Kristianstad  
1291 42  Simrishamn  
1292 43  Ängelholm  
1293 43  Hässleholm  
1315 43  Hylte  
1380 44  Halmstad  
1381 44  Laholm  
1382 44  Falkenberg  
1383 45  Varberg  
1384 45  Kungsbacka  
1401 45  Härryda  
1402 46  Partille  
1407 46  Öckerö  
1415 46  Stenungsund  
1419 47  Tjörn  
1421 47  Orust  
1427 47  Sotenäs  
1430 48  Munkedal  
1435 48  Tanum  
1438 48  Dals-Ed  
1439 49  Färgelanda  
1440 49  Ale  
1441 49  Lerum  
1442 50  Vårgårda  
1443 50  Bollebygd  
1444 50  Grästorp  
1445 51  Essunga  
1446 51  Karlsborg  
1447 51  Gullspång  
1452 52  Tranemo  
1460 52  Bengtsfors  
1461 52  Mellerud  
1462 53  Lilla Edet  
1463 53  Mark  
1465 53  Svenljunga  
1466 54  Herrljunga  
1470 54  Vara  
1471 54  Götene  
1472 55  Tibro  
1473 55  Töreboda  
1480 55  Göteborg  
1481 56  Mölndal  
1482 56  Kungälv  
1484 56  Lysekil  
1485 57  Uddevalla  
1486 57  Strömstad  
1487 57  Vänersborg  
1488 58  Trollhättan  
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1489 58  Alingsås  
1490 58  Borås  
1491 59  Ulricehamn  
1492 59  Åmål  
1493 59  Mariestad  
1494 60  Lidköping  
1495 60  Skara  
1496 60  Skövde  
1497 61  Hjo  
1498 61  Tidaholm  
1499 61  Falköping  
1715 62  Kil  
1730 62  Eda  
1737 62  Torsby  
1760 63  Storfors  
1761 63  Hammarö  
1762 63  Munkfors  
1763 64  Forshaga  
1764 64  Grums  
1765 64  Årjäng  
1766 65  Sunne  
1780 65  Karlstad  
1781 65  Kristinehamn  
1782 66  Filipstad  
1783 66  Hagfors  
1784 66  Arvika  
1785 67  Säffle  
1814 67  Lekeberg  
1860 67  Laxå  
1861 68  Hallsberg  
1862 68  Degerfors  
1863 68  Hällefors  
1864 69  Ljusnarsberg  
1880 69  Örebro  
1881 69  Kumla  
1882 70  Askersund  
1883 70  Karlskoga  
1884 70  Nora  
1885 71  Lindesberg  
1904 71  Skinnskatteberg  
1907 71  Surahammar  
1917 72  Heby  
1960 72  Kungsör  
1961 72  Hallstahammar  
1962 73  Norberg  
1980 73  Västerås  
1981 73  Sala  
1982 74  Fagersta  
1983 74  Köping  
1984 74  Arboga  
2021 75  Vansbro  
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2023 75  Malung  
2026 75  Gagnef  
2029 76  Leksand  
2031 76  Rättvik  
2034 76  Orsa  
2039 77  Älvdalen  
2061 77  Smedjebacken  
2062 77  Mora  
2080 78  Falun  
2081 78  Borlänge  
2082 78  Säter  
2083 79  Hedemora  
2084 79  Avesta  
2085 79  Ludvika  
2101 80  Ockelbo  
2104 80  Hofors  
2121 80  Ovanåker  
2132 81  Nordanstig  
2161 81  Ljusdal  
2180 81  Gävle  
2181 82  Sandviken  
2182 82  Söderhamn  
2183 82  Bollnäs  
2184 83  Hudiksvall  
2260 83  Ånge  
2262 83  Timrå  
2280 84  Härnösand  
2281 84  Sundsvall  
2282 84  Kramfors  
2283 85  Sollefteå  
2284 85  Örnsköldsvik  
2303 85  Ragunda  
2305 86  Bräcke  
2309 86  Krokom  
2313 86  Strömsund  
2321 87  Åre  
2326 87  Berg  
2361 87  Härjedalen  
2380 88  Östersund  
2401 88  Nordmaling  
2403 88  Bjurholm  
2404 89  Vindeln  
2409 89  Robertsfors  
2417 89  Norsjö  
2418 90  Malå  
2421 90  Storuman  
2422 90  Sorsele  
2425 91  Dorotea  
2460 91  Vännäs  
2462 91  Vilhelmina  
2463 92  Åsele  
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2480 92  Umeå  
2481 92  Lycksele  
2482 93  Skellefteå  
2505 93  Arvidsjuar  
2506 93  Arjeplog  
2510 94  Jokkmokk  
2513 94  Överkalix  
2514 94  Kalix  
2518 95  Övertorneå  
2521 95  Pajala  
2523 95  Gällivare  
2560 96  Älvsbyn  
2580 96  Luleå  
2581 96  Piteå  
2582 97  Boden  
2583 97  Haparanda  
2584 97  Kiruna  
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Appendix 2. Simulation program code (SAS) 
 
The simulation made in SAS was done by running the program MASTER16.sas that includes 
the other SAS programs and the ANALYZE9.sas for the analysis of the simulation results. 
 
MASTER16.sas 
 
/* ========== LIBNAMES ========== */ 
libname DATA 'H:\Måns\SAE\DATA'; 
libname RESULTAT 'H:\Måns\SAE\RESULTAT'; 
 
/* ============================== */ 
/* PARAMETERS IN SIMULATION STUDY */ 
/* ============================== */ 
 
/* SIMULATION STARTS AT */ 
%let simu_start = 1; 
/* NUMBER OF SIMULATIONS */ 
%let simu = 1000; 
/* THE CURRENT SIMULATION */ 
%let simu_nr = &simu_start; 
 
/* WHICH VARIABLE INDICATES STRATA */ 
%let INDIKATOR_STRATA = COUNTY; 
 
/* INDICATES WHICH VARIABLES THAT ARE CLASS VARIABLES */ 
%let CLASSVAR = CIVIL_STATUS NON_NORDIC SEX MUNICIPALITY COUNTY URBAN AGECLASS INCOMECLASS; 
 
/* SETUPS OF INDEPENDENT VARIABLES IN THE GREG-MODELS */ 
%LET INDEPVAR = SEX AGECLASS NON_NORDIC CIVIL_STATUS INCOMECLASS URBAN; 
%LET DEPENDENT1 = COUNTY SEX AGECLASS NON_NORDIC CIVIL_STATUS INCOMECLASS URBAN; 
%LET DEPENDENT2 = COUNTY SEX AGECLASS NON_NORDIC CIVIL_STATUS INCOMECLASS URBAN;  
%LET DEPENDENT3 = MUNICIPALITY SEX AGECLASS NON_NORDIC CIVIL_STATUS INCOMECLASS URBAN; 
%LET DEPENDENT4 = COUNTY SEX AGECLASS NON_NORDIC CIVIL_STATUS INCOMECLASS URBAN;  
 
/* THE SEVEN TYPES OF Y-VARIABLES */ 
%LET RESPONSE1 = ROBBERY; 
%LET RESPONSE2 = ASSAULT; 
%LET RESPONSE3 = SEVERE_ASSAULT; 
%LET RESPONSE4 = SEXUAL; 
%LET RESPONSE5 = THREAT; 
%LET RESPONSE6 = FRAUD; 
%LET RESPONSE7 = HARASS; 
%LET RESPONSE8 = ANY; 
 
/* INDICATES THE NUMBER OF SETUPS OF INDEPENDENT VARIABLES (STARTS AT 1) AND Y-VARIABLES */ 
%let DEPNR = 4;  
%let RESPONSENR = 8;  
%LET DEPENDENTNR = &DEPNR; 
%let LEVELNR = 2; /* MUNICIPALITY AND COUNTY */  
%let LINKNR = 2; /* MUNICIPALITY AND COUNTY */  
%let VARIABLENR = 2; 
 
/* NUMBER OF MODELS USED IN GREG ESTIMATION */ 
%LET MODELNR = %eval(&DEPNR * &RESPONSENR * 2);  
%LET TOT_MODELS = %eval(&DEPNR * &RESPONSENR * 2);  
 
/* POPULATIONS SIZE, LARGE AND SMALL N*/ 
%LET POPSIZE = 51173;   
%LET SAMPLESIZE = 5000; 
 
/* INDICATES WHETHER THE LOG SHOULD BE CLEARED (LARGE SIMULATIONS) 1 = YES */ 
%LET CLEARLOG=0; 
 
/* ============================== */ 
/* =========== STUDY ============ */ 
/* ============================== */ 
 
 
/* CREATING POPULATION */ 
%include 'H:\Måns\SAE\KOD\POPULATION9.sas'; 
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/* CREATING DATASET TO STORE RESULTS FROM THE STUDY */ 
%include 'H:\Måns\SAE\KOD\STARTSETS5.sas'; 
 
/* READING MACROS FOR THE SIMULATION STUDY */ 
%include 'H:\Måns\SAE\KOD\MACROS33.sas'; 
 
%SIMULATION 
 
 

MACRO33.sas 
 
%MACRO SIMULATION; 
/* =========== SIMULATION START ============ */ 
%DO k_sim=&simu_start %TO &simu; 
 %let starttid=%sysfunc(datetime(),best.); 
 %let simu_nr = &k_sim; 
 
 /* DRAWING SAMPLES */ 
 %include 'H:\Måns\SAE\KOD\SAMPLE3.sas'; 
 
 /* FITTING MODELS  */ 
 %let MODELNR = 1; 
 %MODELFIT 
 
 /* ESTIMATION  */ 
 %LET LEVEL = COUNTY; 
 %LET STRATA = COUNT_STR; 
 %LET TOT_STRATA=21; 
 %ESTIMATE_HT 
 %ESTIMATE_GREG 
 %ESTIMATE_ALL 
 %LET LEVEL = MUNICIPALITY; 
 %LET STRATA = MUNICIP_STR; 
 %LET TOT_STRATA=291; 
 %ESTIMATE_HT 
 %ESTIMATE_GREG 
 %ESTIMATE_ALL 
 
 /* SAVING THE RESULTS  */ 
 %SAVE_EST_RESULTS 
 
 /* CLEANING LOG WINDOW  */ 
 %IF &CLEARLOG=1 %THEN %DO; 
 DM LOG 'CLEAR'; 
 %END; 
 
 /* MEASURING SIMULATION TIME */ 
 %let sluttid=%sysfunc(datetime(),best.); 
 DATA SIMULINFO; 
  SET SIMULINFO_BLANK; 
  SIMULERING=&simu_nr; 
  STARTTID=&starttid; 
  SLUTTID=&sluttid; 
  SIMULERINGSTID=&sluttid - &starttid; 
 RUN;  
 DATA RESULTAT.SIMULINFO; 
  SET RESULTAT.SIMULINFO SIMULINFO; 
 RUN; 
 
%END; 
 
/* ADDING TRUE VALUES TO ESTIMATES - AFTER SIMULATION */ 
PROC SORT DATA=RESULTAT.ESTIMATES_COUNTY_&simu_start._&simu; 
 BY COUNTY; 
PROC SORT DATA=RESULTAT.ESTIMATES_MUNICIP_&simu_start._&simu; 
 BY MUNICIPALITY; 
RUN; 
 
DATA RESULTAT.ESTIMATES_COUNTY_&simu_start._&simu; 
 MERGE 
 True_tot_values_county 
 RESULTAT.ESTIMATES_COUNTY_&simu_start._&simu; 
 BY COUNTY; 
 IF SMALL_d_str_N = . THEN DELETE; 
RUN; 
DATA RESULTAT.ESTIMATES_MUNICIP_&simu_start._&simu; 
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 MERGE 
 True_tot_values_MUNICIPALITY 
 RESULTAT.ESTIMATES_MUNICIP_&simu_start._&simu; 
 BY MUNICIPALITY; 
 IF SMALL_d_str_N = . THEN DELETE; 
RUN; 
 
/* =========== SIMULATION END ============ */ 
 
%MEND; 
%MACRO MODELFIT; /* FITTING MODELS TO THE SAMPLED DATA */ 
%DO i=1 %TO &RESPONSENR; 
 %DO j=1 %TO &DEPNR; 
  %IF &i=1 %THEN %LET RESPONSE = &RESPONSE1; 
  %IF &i=2 %THEN %LET RESPONSE = &RESPONSE2; 
  %IF &i=3 %THEN %LET RESPONSE = &RESPONSE3; 
  %IF &i=4 %THEN %LET RESPONSE = &RESPONSE4; 
  %IF &i=5 %THEN %LET RESPONSE = &RESPONSE5; 
  %IF &i=6 %THEN %LET RESPONSE = &RESPONSE6; 
  %IF &i=7 %THEN %LET RESPONSE = &RESPONSE7; 
  %IF &i=8 %THEN %LET RESPONSE = &RESPONSE8; 
 
  %LET REPORTED = &RESPONSE; 
  %IF &RESPONSE = SEVERE_ASSAULT %THEN %LET REPORTED = ASSAULT; 
 
  %IF &j=1 %THEN %LET DEPENDENT = &DEPENDENT1; 
  %IF &j=2 %THEN %LET DEPENDENT = &DEPENDENT2 
&REPORTED._REP_MUNICIPALITY; 
  %IF &j=3 %THEN %LET DEPENDENT = &DEPENDENT3; 
  %IF &j=4 %THEN %LET DEPENDENT = &DEPENDENT4 &REPORTED._REPORT; 
 
  ods exclude /* EXLUDE ALL OUTPUT */ 
  ModelInfo  
  VarianceEstimation  
  NObs  
  ResponseProfile 
  ClassLevelInfo 
  ConvergenceStatus 
  FitStatistics 
  GlobalTests 
  Type3 
  ParameterEstimates 
  OddsRatios 
  Association 
  ; 
 
  PROC SURVEYLOGISTIC DATA=SIMULPOP_MODELFIT; 
   STRATA STRATA_IND;  
   ODS OUTPUT ConvergenceStatus=CONV_TEMP; 
   OUTPUT OUT=TEMP1 PREDICTED=PRED_&MODELNR;  
   CLASS &CLASSVAR; 
   model &RESPONSE (DESCENDING) = &DEPENDENT;  
   weight SamplingWeight; 
  RUN;  
  DATA SIMULPOP_MODELFIT; 
   set TEMP1 (DROP = _LEVEL_); 
   if SamplingIndicator = 1 then 
   RES_&MODELNR = &RESPONSE - PRED_&MODELNR; 
  RUN; 
  DATA CONV_TEMP; 
   set CONV_TEMP; 
   MODEL = &MODELNR; 
   SIMULATION = &simu_nr; 
  RUN; 
  DATA RESULTAT.CONVERGENCE; 
   set RESULTAT.CONVERGENCE CONV_TEMP; 
  RUN; 
 
  %IF &simu_nr=1 %THEN %DO; 
  DATA MODELS2; 
   set MODELS1; 
   MODELNR="&MODELNR"; 
   TYPE='LOG'; 
   RESPONSE="&RESPONSE"; 
   DEPENDENT="&DEPENDENT"; 
  RUN; 
  DATA RESULTAT.MODELS; 
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   set RESULTAT.MODELS MODELS2; 
   if MODELNR="0" then DELETE; 
  RUN; 
  %END; 
 
  %let MODELNR = %eval(&MODELNR + 1); 
   
  ods exclude /* EXLUDE ALL OUTPUT */ 
  DataSummary 
  DesignSummary 
  FitStatistics 
  ClassVarInfo 
  Effects 
  ; 
 
  PROC SURVEYREG DATA=SIMULPOP_MODELFIT; 
   STRATA STRATA_IND;  
   OUTPUT OUT=TEMP1 PREDICTED=PRED_&MODELNR;  
   CLASS &CLASSVAR; 
   model &RESPONSE = &DEPENDENT;  
   weight SamplingWeight; 
  RUN;  
  DATA SIMULPOP_MODELFIT; 
   set TEMP1; 
   if SamplingIndicator = 1 then 
   RES_&MODELNR = &RESPONSE - PRED_&MODELNR; 
  RUN; 
 
  %IF &simu_nr=1 %THEN %DO; 
  DATA MODELS2; 
   set MODELS1; 
   MODELNR="&MODELNR"; 
   TYPE='LIN'; 
   RESPONSE="&RESPONSE"; 
   DEPENDENT="&DEPENDENT"; 
  RUN; 
  DATA RESULTAT.MODELS; 
   set RESULTAT.MODELS MODELS2; 
   if MODELNR="0" then DELETE; 
  RUN; 
  %END; 
 
  %let MODELNR = %eval(&MODELNR + 1); 
 %END; 
%END; 
%MEND; 
%MACRO ESTIMATE_HT;  
PROC SORT DATA=SIMULPOP_MODELFIT OUT=SPOP_MF_&LEVEL; 
 BY &STRATA; 
RUN; 
 
DATA SSAMP_MF_&LEVEL; 
 set SPOP_MF_&LEVEL; 
 if SamplingIndicator=1; 
RUN; 
 
PROC MEANS DATA=SSAMP_MF_&LEVEL NOPRINT; /* WEIGHTED SAMPLE */ 
 BY &STRATA; 
 VAR &LEVEL ROBBERY -- ANY; 
 OUTPUT  
 OUT = EST_HT_2_&LEVEL 
 MEAN(&LEVEL) = &LEVEL 
 %DO j=1 %TO &RESPONSENR; 
  %IF &j=1 %THEN %LET RESPONSE = &RESPONSE1; 
  %IF &j=2 %THEN %LET RESPONSE = &RESPONSE2; 
  %IF &j=3 %THEN %LET RESPONSE = &RESPONSE3; 
  %IF &j=4 %THEN %LET RESPONSE = &RESPONSE4; 
  %IF &j=5 %THEN %LET RESPONSE = &RESPONSE5; 
  %IF &j=6 %THEN %LET RESPONSE = &RESPONSE6; 
  %IF &j=7 %THEN %LET RESPONSE = &RESPONSE7; 
  %IF &j=8 %THEN %LET RESPONSE = &RESPONSE8; 
  SUM(&RESPONSE) = HT_TOT_&RESPONSE 
 %END; 
 ; 
 WEIGHT SamplingWeight; 
RUN; 
PROC MEANS DATA=SSAMP_MF_&LEVEL NOPRINT VARDEF=DF; /* SAMPLE WITHOUT WEIGHTS*/ 
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 BY &STRATA; 
 VAR &LEVEL ROBBERY -- ANY; 
 OUTPUT  
 OUT = EST_HT_3_&LEVEL 
 MEAN(&LEVEL) = &LEVEL 
 %DO j=1 %TO &RESPONSENR; 
  %IF &j=1 %THEN %LET RESPONSE = &RESPONSE1; 
  %IF &j=2 %THEN %LET RESPONSE = &RESPONSE2; 
  %IF &j=3 %THEN %LET RESPONSE = &RESPONSE3; 
  %IF &j=4 %THEN %LET RESPONSE = &RESPONSE4; 
  %IF &j=5 %THEN %LET RESPONSE = &RESPONSE5; 
  %IF &j=6 %THEN %LET RESPONSE = &RESPONSE6; 
  %IF &j=7 %THEN %LET RESPONSE = &RESPONSE7; 
  %IF &j=8 %THEN %LET RESPONSE = &RESPONSE8; 
  VAR(&RESPONSE) = HT_S2_&RESPONSE 
 %END; 
 ; 
RUN; 
DATA Est_ht_2_&LEVEL (DROP = _FREQ_ _TYPE_); 
 SET Est_ht_2_&LEVEL; 
 SMALL_d_N = _FREQ_; 
RUN; 
%MEND; 
%MACRO ESTIMATE_GREG; 
/* WHOLE POPULATION */ 
/* CALC SUM_(over U_d) y_hat */ 
PROC MEANS DATA=SPOP_MF_&LEVEL NOPRINT;  
 BY &STRATA; 
 VAR &LEVEL PRED_1 -- PRED_&TOT_MODELS; 
 OUTPUT  
 OUT = EST_GREG_1_&LEVEL 
 MEAN(&LEVEL) = &LEVEL 
 %DO i=1 %TO &TOT_MODELS; 
  SUM(PRED_&i) = TOT_YHAT_GREG&i 
 %END; 
 ; 
RUN; 
 
/* WEIGHTED SAMPLE */ 
/* CALC SUM_(over s_d) w*e - Summation of all weighted residuals */ 
PROC MEANS DATA=SSAMP_MF_&LEVEL NOPRINT;  
 BY &STRATA; 
 VAR &LEVEL RES_1 -- RES_&TOT_MODELS; 
 OUTPUT  
 OUT = EST_GREG_2_&LEVEL 
 MEAN(&LEVEL) = &LEVEL 
 %DO i=1 %TO &TOT_MODELS; 
  SUM(RES_&i) = TOT_WRES_GREG&i 
 %END; 
 ; 
 WEIGHT SamplingWeight; 
RUN; 
 
/* CALC  
Sum (e_dk - e_bar_d)^2  
GREGi_SUM_SQ_RES 
*/ 
%EDK 
 
/* SAMPLE WITHOUT WEIGHTS*/ 
/* CALC E_S2_VAR(RES_i) = Sum((E_k - E_bar)^2/(n_d-1)) */ 
PROC MEANS DATA=SSAMP_MF_&LEVEL NOPRINT VARDEF=DF;  
 BY &STRATA; 
 VAR &LEVEL RES_1 -- RES_&TOT_MODELS; 
 OUTPUT  
 OUT = EST_GREG_4_&LEVEL 
 MEAN(&LEVEL) = &LEVEL 
 %DO i=1 %TO &TOT_MODELS; 
  VAR(RES_&i) = E_S2_GREG&i 
 %END; 
 ; 
RUN; 
 
%MEND; 
%MACRO EDK; 
/* SAMPLE WITHOUT WEIGHTS*/ 
/* CALC e_bar for all strata */ 
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PROC MEANS DATA=SSAMP_MF_&LEVEL NOPRINT VARDEF=DF;  
 BY &STRATA; 
 VAR &LEVEL RES_1 -- RES_&TOT_MODELS; 
 OUTPUT  
 OUT = EST_E_BAR_&LEVEL 
 MEAN(&LEVEL) = &LEVEL 
 %DO i=1 %TO &TOT_MODELS; 
  MEAN(RES_&i) = E_bar_GREG&i 
 %END; 
 ; 
RUN; 
 
%DO j=1 %TO &TOT_STRATA; 
DATA TEMP (DROP = SelectionProb -- RES_&TOT_MODELS); 
 SET SSAMP_MF_&LEVEL (KEEP = &STRATA SelectionProb -- RES_&TOT_MODELS); 
  IF &STRATA = &j THEN DO; 
   %DO i=1 %TO &TOT_MODELS; 
   GREG_&i._E_dk = RES_&i;  
   GREG_&i._E2_dk = (RES_&i)*(RES_&i);  
   %END; 
   END; 
  ELSE IF &STRATA ~= &j THEN DO; 
   %DO i=1 %TO &TOT_MODELS; 
   GREG_&i._E_dk = 0 - PRED_&i; 
   GREG_&i._E2_dk = (0 - PRED_&i)*(0 - PRED_&i); 
   %END; 
  END; 
  &STRATA=&j; 
RUN; 
PROC MEANS DATA=TEMP NOPRINT VARDEF=DF;  
 VAR &STRATA GREG_1_E_dk -- GREG_&TOT_MODELS._E_dk; 
 OUTPUT  
 OUT = SUM_E_dk 
  MEAN(&STRATA) = &STRATA 
  %DO i=1 %TO &TOT_MODELS; 
   SUM(GREG_&i._E_dk) = SUM_GREG_&i._E_dk 
   SUM(GREG_&i._E2_dk) = SUM_GREG_&i._E2_dk 
  %END; 
 ; 
RUN; 
%IF &j = 1 %THEN %DO; 
DATA EDK_ALL_D; 
 SET SUM_E_dk; 
RUN; 
%END; 
%ELSE %IF &j > 1 %THEN %DO; 
DATA EDK_ALL_D; 
 SET EDK_ALL_D SUM_E_dk; 
RUN; 
%END; 
%END; 
 
/* CALC  
Sum (e_dk - e_bar_d)^2  
as  
Sum (e_dk)^2 - 2 * e_bar_d * Sum(e_dk) + k*e_bar_d^2 
See 6.61 in Lehtonen and Pahktinen (2004) p. 202 
*/ 
DATA Est_GREG_3_&LEVEL 
 (DROP = _TYPE_ _FREQ_ E_bar_GREG1 -- SUM_GREG_&TOT_MODELS._E2_dk) 
 ; 
 MERGE  
 EST_E_BAR_&LEVEL  
 EDK_ALL_D; 
 BY &STRATA; 
 if E_bar_GREG1 = . THEN DELETE; 
 %DO i=1 %TO &TOT_MODELS; 
  GREG_&i._SUM_SQ_RES =  
  (SUM_GREG_&i._E2_dk) -  
  (2 * E_bar_GREG&i * SUM_GREG_&i._E_dk) +  
  (_FREQ_ * E_bar_GREG&i * E_bar_GREG&i) 
  ; 
 %END; 
RUN; 
%MEND; 
%MACRO ESTIMATE_ALL; 
DATA ESTIMATES_&STRATA  
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 (DROP = _FREQ_  
 TOT_YHAT_GREG1 -- TOT_YHAT_GREG&TOT_MODELS 
 TOT_WRES_GREG1 -- TOT_WRES_GREG&TOT_MODELS 
 GREG_1_SUM_SQ_RES -- GREG_&TOT_MODELS._SUM_SQ_RES 
 HT_S2_&RESPONSE1 -- HT_S2_&RESPONSE8 
 E_S2_GREG1 -- E_S2_GREG&TOT_MODELS 
 ); 
 MERGE  
 Est_GREG_1_&LEVEL (DROP = _TYPE_ ) 
 Est_GREG_2_&LEVEL (DROP = _TYPE_ _FREQ_) 
 Est_GREG_3_&LEVEL  
 Est_GREG_4_&LEVEL (DROP = _TYPE_ _FREQ_) 
 Est_ht_2_&LEVEL  
 Est_ht_3_&LEVEL (DROP = _TYPE_ _FREQ_); 
 
 BY &STRATA; 
 LARGE_d_N = _FREQ_; 
 SMALL_N = %EVAL(&SAMPLESIZE); 
 LARGE_N = %EVAL(&POPSIZE); 
 
 
 /* DELETE STRATA WITH n<2 */ 
 if SMALL_d_N = 1 OR SMALL_d_N = . THEN DELETE; 
 
 %DO j=1 %TO &RESPONSENR; 
  %IF &j=1 %THEN %LET RESPONSE = &RESPONSE1; 
  %IF &j=2 %THEN %LET RESPONSE = &RESPONSE2; 
  %IF &j=3 %THEN %LET RESPONSE = &RESPONSE3; 
  %IF &j=4 %THEN %LET RESPONSE = &RESPONSE4; 
  %IF &j=5 %THEN %LET RESPONSE = &RESPONSE5; 
  %IF &j=6 %THEN %LET RESPONSE = &RESPONSE6; 
  %IF &j=7 %THEN %LET RESPONSE = &RESPONSE7; 
  %IF &j=8 %THEN %LET RESPONSE = &RESPONSE8; 
 
  VAR_HT_&RESPONSE = LARGE_d_N*LARGE_d_N*(1-(SMALL_d_N/LARGE_d_N))* 
(HT_S2_&RESPONSE / SMALL_d_N); 
 %END; 
 
 %DO i=1 %TO &TOT_MODELS; 
  GREG_&i = TOT_YHAT_GREG&i + TOT_WRES_GREG&i; 
 %END; 
 
 %DO i=1 %TO &TOT_MODELS; 
  /* CALCULATED AS 6.15 p. 202 in Lehtonen and Pahktinen (2004) */ 
  VAR_P_GREG_&i = LARGE_d_N*LARGE_d_N*(1-
(SMALL_d_N/LARGE_d_N))*(1/SMALL_d_N)*E_S2_GREG&i; 
  /* CALCULATED AS 6.16 p. 202 in Lehtonen and Pahktinen (2004) */ 
  VAR_U_GREG_&i = LARGE_N*LARGE_N*(1-(SMALL_N/LARGE_N))*(1/SMALL_N) * 
(1/(SMALL_N-1))* GREG_&i._SUM_SQ_RES; 
 %END; 
RUN; 
 
/* SUMMING UP VAR AND POINT ESTIMATES IN EACH STRATA IN EACH DOMAIN */ 
PROC SORT DATA=ESTIMATES_&STRATA; 
 BY &LEVEL; 
RUN; 
 
PROC MEANS DATA=ESTIMATES_&STRATA NOPRINT;  
 BY &LEVEL; 
 VAR HT_TOT_&RESPONSE1 -- VAR_U_GREG_&TOT_MODELS; 
 OUTPUT  
 OUT = EST_TEMP_&LEVEL 
  SUM(SMALL_d_N) = SMALL_d_str_N 
  SUM(LARGE_d_N) = LARGE_d_str_N 
 %DO j=1 %TO &RESPONSENR; 
  %IF &j=1 %THEN %LET RESPONSE = &RESPONSE1; 
  %IF &j=2 %THEN %LET RESPONSE = &RESPONSE2; 
  %IF &j=3 %THEN %LET RESPONSE = &RESPONSE3; 
  %IF &j=4 %THEN %LET RESPONSE = &RESPONSE4; 
  %IF &j=5 %THEN %LET RESPONSE = &RESPONSE5; 
  %IF &j=6 %THEN %LET RESPONSE = &RESPONSE6; 
  %IF &j=7 %THEN %LET RESPONSE = &RESPONSE7; 
  %IF &j=8 %THEN %LET RESPONSE = &RESPONSE8; 
  SUM(HT_TOT_&RESPONSE) = HT_TOT_&RESPONSE 
  SUM(VAR_HT_&RESPONSE) = VAR_HT_&RESPONSE  
  
 %END; 
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 %DO i=1 %TO &TOT_MODELS; 
  SUM(GREG_&i) = GREG_&i   
  SUM(VAR_P_GREG_&i) = VAR_P_GREG_&i 
  SUM(VAR_U_GREG_&i) = VAR_U_GREG_&i 
 %END; 
 ; 
RUN; 
 
DATA ESTIMATES_&LEVEL (DROP = _FREQ_ _TYPE_); 
 SET EST_TEMP_&LEVEL; 
 if _FREQ_ < 3 THEN DELETE; 
RUN; 
 
%MEND; 
/*%MACRO ESTIMATE_RESULTS_HT; 
DATA EST_TEMP_&LEVEL; 
 SET EST_&LEVEL; 
 %DO j=1 %TO &RESPONSENR; 
  %IF &j=1 %THEN %LET RESPONSE = &RESPONSE1; 
  %IF &j=2 %THEN %LET RESPONSE = &RESPONSE2; 
  %IF &j=3 %THEN %LET RESPONSE = &RESPONSE3; 
  %IF &j=4 %THEN %LET RESPONSE = &RESPONSE4; 
  %IF &j=5 %THEN %LET RESPONSE = &RESPONSE5; 
  %IF &j=6 %THEN %LET RESPONSE = &RESPONSE6; 
  %IF &j=7 %THEN %LET RESPONSE = &RESPONSE7; 
  %IF &j=8 %THEN %LET RESPONSE = &RESPONSE8; 
 
   if TRUE_TOT_&RESPONSE < HT_TOT_&RESPONSE + &Z_alpha * 
sqrt(VAR_PLANNED_HT_&RESPONSE) 
   AND TRUE_TOT_&RESPONSE > HT_TOT_&RESPONSE - &Z_alpha 
* sqrt(VAR_PLANNED_HT_&RESPONSE) 
   then 
   HT_INT_PL_&RESPONSE = 1; 
   else 
   HT_INT_PL_&RESPONSE = 0; 
 
   if VAR_PLANNED_HT_&RESPONSE <= 0 then 
   HT_PL_BRK_&RESPONSE = 1; 
   else 
   HT_PL_BRK_&RESPONSE = 0; 
 
   if HT_TOT_&RESPONSE - &Z_alpha * 
sqrt(VAR_PLANNED_HT_&RESPONSE) < 0 
   then 
   HT_INC_PL_&RESPONSE = 1; 
   else 
   HT_INC_PL_&RESPONSE = 0; 
 %END; 
 
RUN; 
%MEND;*/ 
/*%MACRO ESTIMATE_RESULTS_GREG; 
DATA ESTIMATES_&LEVEL; 
 SET EST_TEMP_&LEVEL; 
 %DO i=1 %TO &TOT_MODELS; 
  %IF &i>=1 AND &i <= %eval(&DEPENDENTNR*2*1)  
     %THEN %LET RESPONSE = 
&RESPONSE1; 
  %IF &i>=%eval(&DEPENDENTNR*2*1+1) AND &i<=%eval(&DEPENDENTNR*2*2) 
 %THEN %LET RESPONSE = &RESPONSE2; 
  %IF &i>=%eval(&DEPENDENTNR*2*2+1) AND &i<=%eval(&DEPENDENTNR*2*3) 
 %THEN %LET RESPONSE = &RESPONSE3; 
  %IF &i>=%eval(&DEPENDENTNR*2*3+1) AND &i<=%eval(&DEPENDENTNR*2*4) 
 %THEN %LET RESPONSE = &RESPONSE4; 
  %IF &i>=%eval(&DEPENDENTNR*2*4+1) AND &i<=%eval(&DEPENDENTNR*2*5) 
 %THEN %LET RESPONSE = &RESPONSE5; 
  %IF &i>=%eval(&DEPENDENTNR*2*5+1) AND &i<=%eval(&DEPENDENTNR*2*6) 
 %THEN %LET RESPONSE = &RESPONSE6; 
  %IF &i>=%eval(&DEPENDENTNR*2*6+1) AND &i<=%eval(&DEPENDENTNR*2*7) 
 %THEN %LET RESPONSE = &RESPONSE7; 
  %IF &i>=%eval(&DEPENDENTNR*2*7+1) AND &i<=%eval(&DEPENDENTNR*2*8) 
 %THEN %LET RESPONSE = &RESPONSE8; 
 
   if TRUE_TOT_&RESPONSE < GREG_&i + &Z_alpha * 
sqrt(VAR_PLANNED_GREG_&i) 
   AND TRUE_TOT_&RESPONSE > GREG_&i - &Z_alpha * 
sqrt(VAR_PLANNED_GREG_&i) 
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   then 
   GREG_INT_PL_&i = 1; 
   else 
   GREG_INT_PL_&i = 0; 
 
   if VAR_PLANNED_GREG_&i <= 0 then 
   GREG_PL_BRK_&i = 1; 
   else 
   GREG_PL_BRK_&i = 0; 
 
   if GREG_&i < 0 then 
   GREG_PL_NEG_&i = 1; 
   else 
   GREG_PL_NEG_&i = 0; 
 
   if GREG_&i - &Z_alpha * sqrt(VAR_PLANNED_GREG_&i) < 0 
   then 
   GREG_INC_PL_&i = 1; 
   else 
   GREG_INC_PL_&i = 0; 
  %END; 
  SIMULATION = &simu_nr; 
 RUN; 
%MEND;*/ 
%MACRO SAVE_EST_RESULTS; 
 %IF &simu_nr = &simu_start %THEN  
  %DO; 
  DATA RESULTAT.ESTIMATES_COUNTY_&simu_start._&simu; 
   SET ESTIMATES_COUNTY; 
  RUN; 
  %END; 
 %ELSE  
  %DO; 
  DATA RESULTAT.ESTIMATES_COUNTY_&simu_start._&simu; 
   SET RESULTAT.ESTIMATES_COUNTY_&simu_start._&simu 
ESTIMATES_COUNTY; 
  RUN; 
  %END; 
 
 %IF &simu_nr = &simu_start %THEN  
  %DO; 
  DATA RESULTAT.ESTIMATES_MUNICIP_&simu_start._&simu; 
   SET ESTIMATES_MUNICIPALITY; 
  RUN; 
  %END; 
 %ELSE  
  %DO; 
  DATA RESULTAT.ESTIMATES_MUNICIP_&simu_start._&simu; 
   SET RESULTAT.ESTIMATES_MUNICIP_&simu_start._&simu 
ESTIMATES_MUNICIPALITY; 
  RUN; 
  %END; 
%MEND; 
%MACRO RRMSEARB; 
DATA ESTIMATES_&LEVEL._ALL; 
 set RESULTAT.ESTIMATES_&LEVEL._ALL; 
 %DO j=1 %TO &RESPONSENR; 
  %IF &j=1 %THEN %LET RESPONSE = &RESPONSE1; 
  %IF &j=2 %THEN %LET RESPONSE = &RESPONSE2; 
  %IF &j=3 %THEN %LET RESPONSE = &RESPONSE3; 
  %IF &j=4 %THEN %LET RESPONSE = &RESPONSE4; 
  %IF &j=5 %THEN %LET RESPONSE = &RESPONSE5; 
  %IF &j=6 %THEN %LET RESPONSE = &RESPONSE6; 
  %IF &j=7 %THEN %LET RESPONSE = &RESPONSE7; 
  %IF &j=8 %THEN %LET RESPONSE = &RESPONSE8; 
 
  DIFF_HT_TOT_&RESPONSE = HT_TOT_&RESPONSE - TRUE_TOT_&RESPONSE; 
  DIFFSQ_HT_TOT_&RESPONSE = (HT_TOT_&RESPONSE - 
TRUE_TOT_&RESPONSE)**2; 
 
 %END; 
 
 %DO i=1 %TO &TOT_MODELS; 
  %IF &i>=1 AND &i <= %eval(&DEPENDENTNR*2*1)  
     %THEN %LET RESPONSE = 
&RESPONSE1; 
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  %IF &i>=%eval(&DEPENDENTNR*2*1+1) AND &i<=%eval(&DEPENDENTNR*2*2) 
 %THEN %LET RESPONSE = &RESPONSE2; 
  %IF &i>=%eval(&DEPENDENTNR*2*2+1) AND &i<=%eval(&DEPENDENTNR*2*3) 
 %THEN %LET RESPONSE = &RESPONSE3; 
  %IF &i>=%eval(&DEPENDENTNR*2*3+1) AND &i<=%eval(&DEPENDENTNR*2*4) 
 %THEN %LET RESPONSE = &RESPONSE4; 
  %IF &i>=%eval(&DEPENDENTNR*2*4+1) AND &i<=%eval(&DEPENDENTNR*2*5) 
 %THEN %LET RESPONSE = &RESPONSE5; 
  %IF &i>=%eval(&DEPENDENTNR*2*5+1) AND &i<=%eval(&DEPENDENTNR*2*6) 
 %THEN %LET RESPONSE = &RESPONSE6; 
  %IF &i>=%eval(&DEPENDENTNR*2*6+1) AND &i<=%eval(&DEPENDENTNR*2*7) 
 %THEN %LET RESPONSE = &RESPONSE7; 
  %IF &i>=%eval(&DEPENDENTNR*2*7+1) AND &i<=%eval(&DEPENDENTNR*2*8) 
 %THEN %LET RESPONSE = &RESPONSE8; 
 
  DIFF_GREG_&i = GREG_&i - TRUE_TOT_&RESPONSE; 
  DIFFSQ_GREG_&i = (GREG_&i - TRUE_TOT_&RESPONSE)**2; 
 
 %END; 
 
RUN; 
%MEND; 
%MACRO AGGREGATE; 
PROC SORT DATA=ESTIMATES_&LEVEL._ALL; 
 BY &LEVEL; 
RUN; 
PROC MEANS  NOPRINT DATA=ESTIMATES_&LEVEL._ALL; 
 BY &LEVEL; 
 VAR TRUE_TOT_ROBBERY -- WALD_Bra_INC_64; 
 OUTPUT OUT=SUMMARY_&LEVEL 
 MEAN(LARGE_N)=LARGE_N 
 MEAN(SMALL_N)=SMALL_N_MEAN 
 
 %DO j=1 %TO &RESPONSENR; 
  %IF &j=1 %THEN %LET RESPONSE = &RESPONSE1; 
  %IF &j=2 %THEN %LET RESPONSE = &RESPONSE2; 
  %IF &j=3 %THEN %LET RESPONSE = &RESPONSE3; 
  %IF &j=4 %THEN %LET RESPONSE = &RESPONSE4; 
  %IF &j=5 %THEN %LET RESPONSE = &RESPONSE5; 
  %IF &j=6 %THEN %LET RESPONSE = &RESPONSE6; 
  %IF &j=7 %THEN %LET RESPONSE = &RESPONSE7; 
  %IF &j=8 %THEN %LET RESPONSE = &RESPONSE8; 
 
  MEAN(TRUE_TOT_&RESPONSE) = TRUE_TOT_&RESPONSE 
 
  MEAN(HT_INT_PL_&RESPONSE) = HT_INT_PL_&RESPONSE 
 
  MEAN(HT_PL_BRK_&RESPONSE) = HT_PL_BRK_&RESPONSE 
  MEAN(HT_INC_PL_&RESPONSE) = HT_INC_PL_&RESPONSE 
 
  MEAN(DIFF_HT_TOT_&RESPONSE) = DIFF_HT_TOT_&RESPONSE 
  MEAN(DIFFSQ_HT_TOT_&RESPONSE) = DIFFSQ_HT_TOT_&RESPONSE 
 %END; 
 
 %DO i=1 %TO &TOT_MODELS; 
  MEAN(GREG_INT_PL_&i) = GREG_INT_PL_&i 
 
  MEAN(GREG_PL_BRK_&i) = GREG_PL_BRK_&i 
 
  MEAN(GREG_PL_NEG_&i) = GREG_PL_NEG_&i 
 
  MEAN(WILSON_BASIC_COV_&i) = WILSON_BASIC_COV_&i 
  MEAN(WALD_GREG_COV_&i) = WALD_GREG_COV_&i 
  MEAN(WALD_Bra_COV_&i) = WALD_Bra_COV_&i 
  MEAN(WILSON_WIDTH_BASIC_&i) = WILSON_WIDTH_MEAN_&i 
  MEAN(WALD_GREG_WIDTH_&i) = WALD_GREG_WIDTH_MEAN_&i 
  MEAN(WALD_Bra_WIDTH_&i) = WALD_Bra_WIDTH_MEAN_&i 
  MEAN(WILSON_BASIC_INC_&i) = WILSON_BASIC_INC_&i 
  MEAN(WALD_GREG_INC_&i) = WALD_GREG_INC_&i 
  MEAN(WALD_Bra_INC_&i) = WALD_Bra_INC_&i 
 
  MEAN(DIFF_GREG_&i) = DIFF_GREG_&i 
  MEAN(DIFFSQ_GREG_&i) = DIFFSQ_GREG_&i  
 %END; 
 ; 
RUN; 
DATA RESULTS_&LEVEL (DROP =  
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 %DO j=1 %TO &RESPONSENR; 
  %IF &j=1 %THEN %LET RESPONSE = &RESPONSE1; 
  %IF &j=2 %THEN %LET RESPONSE = &RESPONSE2; 
  %IF &j=3 %THEN %LET RESPONSE = &RESPONSE3; 
  %IF &j=4 %THEN %LET RESPONSE = &RESPONSE4; 
  %IF &j=5 %THEN %LET RESPONSE = &RESPONSE5; 
  %IF &j=6 %THEN %LET RESPONSE = &RESPONSE6; 
  %IF &j=7 %THEN %LET RESPONSE = &RESPONSE7; 
  %IF &j=8 %THEN %LET RESPONSE = &RESPONSE8; 
  DIFF_HT_TOT_&RESPONSE  
  DIFFSQ_HT_TOT_&RESPONSE  
 %END; 
 %DO i=1 %TO &TOT_MODELS; 
  DIFF_GREG_&i  
  DIFFSQ_GREG_&i 
 %END; 
); 
 set SUMMARY_&LEVEL; 
 
 %DO j=1 %TO &RESPONSENR; 
  %IF &j=1 %THEN %LET RESPONSE = &RESPONSE1; 
  %IF &j=2 %THEN %LET RESPONSE = &RESPONSE2; 
  %IF &j=3 %THEN %LET RESPONSE = &RESPONSE3; 
  %IF &j=4 %THEN %LET RESPONSE = &RESPONSE4; 
  %IF &j=5 %THEN %LET RESPONSE = &RESPONSE5; 
  %IF &j=6 %THEN %LET RESPONSE = &RESPONSE6; 
  %IF &j=7 %THEN %LET RESPONSE = &RESPONSE7; 
  %IF &j=8 %THEN %LET RESPONSE = &RESPONSE8; 
  if TRUE_TOT_&RESPONSE = 0 then TRUE_TOT_NOZERO_&RESPONSE = 1; 
  else TRUE_TOT_NOZERO_&RESPONSE = TRUE_TOT_&RESPONSE; 
  ARB_HT_TOT_&RESPONSE = abs(DIFF_HT_TOT_&RESPONSE) / 
(TRUE_TOT_NOZERO_&RESPONSE); 
  RRMSE_HT_TOT_&RESPONSE = sqrt(DIFFSQ_HT_TOT_&RESPONSE) / 
(TRUE_TOT_NOZERO_&RESPONSE); 
 %END; 
 
 %DO i=1 %TO &TOT_MODELS; 
  %IF &i>=1 AND &i <= %eval(&DEPENDENTNR*2*1)  
     %THEN %LET RESPONSE = 
&RESPONSE1; 
  %IF &i>=%eval(&DEPENDENTNR*2*1+1) AND &i<=%eval(&DEPENDENTNR*2*2) 
 %THEN %LET RESPONSE = &RESPONSE2; 
  %IF &i>=%eval(&DEPENDENTNR*2*2+1) AND &i<=%eval(&DEPENDENTNR*2*3) 
 %THEN %LET RESPONSE = &RESPONSE3; 
  %IF &i>=%eval(&DEPENDENTNR*2*3+1) AND &i<=%eval(&DEPENDENTNR*2*4) 
 %THEN %LET RESPONSE = &RESPONSE4; 
  %IF &i>=%eval(&DEPENDENTNR*2*4+1) AND &i<=%eval(&DEPENDENTNR*2*5) 
 %THEN %LET RESPONSE = &RESPONSE5; 
  %IF &i>=%eval(&DEPENDENTNR*2*5+1) AND &i<=%eval(&DEPENDENTNR*2*6) 
 %THEN %LET RESPONSE = &RESPONSE6; 
  %IF &i>=%eval(&DEPENDENTNR*2*6+1) AND &i<=%eval(&DEPENDENTNR*2*7) 
 %THEN %LET RESPONSE = &RESPONSE7; 
  %IF &i>=%eval(&DEPENDENTNR*2*7+1) AND &i<=%eval(&DEPENDENTNR*2*8) 
 %THEN %LET RESPONSE = &RESPONSE8; 
  ARB_GREG_&i = abs(DIFF_GREG_&i) / TRUE_TOT_NOZERO_&RESPONSE; 
  RRMSE_GREG_&i = sqrt(DIFFSQ_GREG_&i) / TRUE_TOT_NOZERO_&RESPONSE; 
 %END; 
RUN; 
%MEND; 
%MACRO INCORRECT_VALUES; 
PROC MEANS DATA=RESULTAT.RESULTS; 
 CLASS DOMAINCLASS; 
 VAR  
 %DO i=1 %TO &TOT_MODELS; 
 GREG_PL_NEG_&i 
 %END; 
 ; 
RUN; 
PROC MEANS DATA=RESULTAT.RESULTS; 
 CLASS DOMAINCLASS; 
 VAR  
 %DO i=1 %TO &TOT_MODELS; 
 GREG_INC_PL_&i 
 %END; 
 ; 
RUN; 
%MEND; 
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%MACRO INTERVAL_COVERAGE; 
PROC MEANS DATA=RESULTAT.RESULTS; 
 CLASS DOMAINCLASS; 
 VAR  
 %DO i=1 %TO &TOT_MODELS; 
 GREG_INT_PL_&i 
 %END; 
 ; 
RUN; 
%MEND; 
%MACRO ARB_AND_RRMSE; 
PROC MEANS DATA=RESULTAT.RESULTS; 
 CLASS DOMAINCLASS; 
 VAR  
 %DO i=1 %TO &TOT_MODELS; 
 RRMSE_GREG_&i 
 %END; 
 ; 
RUN; 
PROC MEANS DATA=RESULTAT.RESULTS; 
 CLASS DOMAINCLASS; 
 VAR  
 %DO i=1 %TO &TOT_MODELS; 
 ARB_GREG_&i 
 %END; 
 ; 
RUN; 
DATA RESULT_TEMP; 
   SET RESULTAT.RESULTS; 
   IF RRMSE_HT_TOT_ROBBERY = 0 THEN RRMSE_HT_TOT_ROBBERY = . ; 
   IF RRMSE_HT_TOT_ASSAULT = 0 THEN RRMSE_HT_TOT_ASSAULT = . ; 
   IF RRMSE_HT_TOT_SEVERE_ASSAULT = 0 THEN RRMSE_HT_TOT_SEVERE_ASSAULT = . ; 
   IF RRMSE_HT_TOT_SEXUAL = 0 THEN RRMSE_HT_TOT_SEXUAL = . ; 
   IF RRMSE_HT_TOT_THREAT = 0 THEN RRMSE_HT_TOT_THREAT = . ; 
   IF RRMSE_HT_TOT_FRAUD = 0 THEN RRMSE_HT_TOT_FRAUD = . ; 
   IF RRMSE_HT_TOT_HARASS = 0 THEN RRMSE_HT_TOT_HARASS = . ; 
   IF RRMSE_HT_TOT_ANY = 0 THEN RRMSE_HT_TOT_ANY = . ; 
   IF ARB_HT_TOT_ROBBERY = 0 THEN ARB_HT_TOT_ROBBERY = . ; 
   IF ARB_HT_TOT_ASSAULT = 0 THEN ARB_HT_TOT_ASSAULT = . ; 
   IF ARB_HT_TOT_SEVERE_ASSAULT = 0 THEN ARB_HT_TOT_SEVERE_ASSAULT = . ; 
   IF ARB_HT_TOT_SEXUAL = 0 THEN ARB_HT_TOT_SEXUAL = . ; 
   IF ARB_HT_TOT_THREAT = 0 THEN ARB_HT_TOT_THREAT = . ; 
   IF ARB_HT_TOT_FRAUD = 0 THEN ARB_HT_TOT_FRAUD = . ; 
   IF ARB_HT_TOT_HARASS = 0 THEN ARB_HT_TOT_HARASS = . ; 
   IF ARB_HT_TOT_ANY = 0 THEN ARB_HT_TOT_ANY = . ; 
RUN; 
 
PROC MEANS DATA=RESULT_TEMP; 
 CLASS DOMAINCLASS; 
 VAR  
    RRMSE_HT_TOT_ROBBERY 
    RRMSE_HT_TOT_ASSAULT 
    RRMSE_HT_TOT_SEVERE_ASSAULT 
    RRMSE_HT_TOT_SEXUAL 
    RRMSE_HT_TOT_THREAT 
    RRMSE_HT_TOT_FRAUD 
    RRMSE_HT_TOT_HARASS 
    RRMSE_HT_TOT_ANY 
 ; 
RUN; 
PROC MEANS DATA=RESULT_TEMP; 
 CLASS DOMAINCLASS; 
 VAR  
    ARB_HT_TOT_ROBBERY 
    ARB_HT_TOT_ASSAULT 
    ARB_HT_TOT_SEVERE_ASSAULT 
    ARB_HT_TOT_SEXUAL 
    ARB_HT_TOT_THREAT 
    ARB_HT_TOT_FRAUD 
    ARB_HT_TOT_HARASS 
    ARB_HT_TOT_ANY 
 ; 
RUN; 
%MEND; 
%MACRO MODEL_CHECK; /* FITTING MODELS TO THE SAMPLED DATA */ 
%LET MODELNR = 1; 
DATA TEMP_POP; 
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 SET DATA.POPULATION; 
 W=1; 
RUN; 
DATA RESULTAT.Association; 
RUN; 
DATA RESULTAT.FitStatistics; 
RUN; 
%DO i=1 %TO &RESPONSENR; 
 %DO j=1 %TO &DEPNR; 
  %IF &i=1 %THEN %LET RESPONSE = &RESPONSE1; 
  %IF &i=2 %THEN %LET RESPONSE = &RESPONSE2; 
  %IF &i=3 %THEN %LET RESPONSE = &RESPONSE3; 
  %IF &i=4 %THEN %LET RESPONSE = &RESPONSE4; 
  %IF &i=5 %THEN %LET RESPONSE = &RESPONSE5; 
  %IF &i=6 %THEN %LET RESPONSE = &RESPONSE6; 
  %IF &i=7 %THEN %LET RESPONSE = &RESPONSE7; 
  %IF &i=8 %THEN %LET RESPONSE = &RESPONSE8; 
 
  %LET REPORTED = &RESPONSE; 
  %IF &RESPONSE = SEVERE_ASSAULT %THEN %LET REPORTED = ASSAULT; 
 
  %IF &j=1 %THEN %LET DEPENDENT = &DEPENDENT1; 
  %IF &j=2 %THEN %LET DEPENDENT = &DEPENDENT2 
&REPORTED._REP_MUNICIPALITY; 
  %IF &j=3 %THEN %LET DEPENDENT = &DEPENDENT3; 
  %IF &j=4 %THEN %LET DEPENDENT = &DEPENDENT4 &REPORTED._REPORT; 
 
  PROC SURVEYLOGISTIC DATA=TEMP_POP; 
   CLASS &CLASSVAR; 
   ODS OUTPUT Association=ASSO_TEMP; 
   model &RESPONSE (DESCENDING) = &DEPENDENT; 
   Weight W; 
  RUN;  
  DATA ASSO_TEMP; 
   set ASSO_TEMP; 
   MODEL = &MODELNR; 
  RUN; 
  DATA RESULTAT.Association; 
   set RESULTAT.Association ASSO_TEMP; 
  RUN; 
 
  %let MODELNR = %eval(&MODELNR + 1); 
   
  PROC SURVEYREG DATA=TEMP_POP; 
   CLASS &CLASSVAR; 
   ODS OUTPUT FitStatistics=FIT_TEMP; 
   model &RESPONSE = &DEPENDENT; 
   Weight W;  
  RUN;  
  DATA FIT_TEMP; 
   set FIT_TEMP; 
   MODEL = &MODELNR; 
  RUN; 
  DATA RESULTAT.FitStatistics; 
   set RESULTAT.FitStatistics FIT_TEMP; 
  RUN; 
 
  %let MODELNR = %eval(&MODELNR + 1); 
 %END; 
%END; 
%MEND; 
%MACRO INTERVAL_COVERAGE_2; 
PROC MEANS DATA=RESULTAT.RESULTS; 
 CLASS DOMAINCLASS; 
 VAR  
 %DO i=1 %TO &TOT_MODELS; 
 WILSON_BASIC_COV_&i 
 %END; 
 %DO i=1 %TO &TOT_MODELS; 
 WALD_GREG_COV_&i 
 %END; 
 %DO i=1 %TO &TOT_MODELS; 
 WALD_Bra_COV_&i 
 %END; 
 ; 
RUN; 
%MEND; 
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%MACRO WILSON_COVERAGE_NOZERO; 
%DO j=1 %TO 8; 
 %IF &j=1 %THEN %LET RESPONSE = &RESPONSE1; 
 %IF &j=2 %THEN %LET RESPONSE = &RESPONSE2; 
 %IF &j=3 %THEN %LET RESPONSE = &RESPONSE3; 
 %IF &j=4 %THEN %LET RESPONSE = &RESPONSE4; 
 %IF &j=5 %THEN %LET RESPONSE = &RESPONSE5; 
 %IF &j=6 %THEN %LET RESPONSE = &RESPONSE6; 
 %IF &j=7 %THEN %LET RESPONSE = &RESPONSE7; 
 %IF &j=8 %THEN %LET RESPONSE = &RESPONSE8; 
  PROC MEANS DATA=TEMP; 
   CLASS &RESPONSE._ZERO; 
   VAR  
   %DO i=(((%EVAL(&j)-1)*8)+1)%TO (%EVAL(&j)*8); 
   WILSON_BASIC_COV_&i 
   %END; 
   ; 
  RUN; 
%END; 
%MEND; 
 
 
%MACRO INCORRECT_INTERVALS; 
PROC MEANS DATA=RESULTAT.RESULTS; 
 CLASS DOMAINCLASS; 
 VAR  
 %DO i=1 %TO &TOT_MODELS; 
 WILSON_BASIC_INC_&i 
 %END; 
 %DO i=1 %TO &TOT_MODELS; 
 WALD_GREG_INC_&i 
 %END; 
 %DO i=1 %TO &TOT_MODELS; 
 WALD_Bra_INC_&i 
 %END; 
 ; 
RUN; 
%MEND; 
%MACRO INTERVAL_WIDTH; 
PROC MEANS DATA=RESULTAT.RESULTS; 
 CLASS DOMAINCLASS; 
 VAR  
 %DO i=1 %TO &TOT_MODELS; 
 WILSON_WIDTH_MEAN_&i 
 %END; 
 %DO i=1 %TO &TOT_MODELS; 
 WALD_GREG_WIDTH_MEAN_&i 
 %END; 
 %DO i=1 %TO &TOT_MODELS; 
 WALD_Bra_WIDTH_MEAN_&i 
 %END; 
 ; 
RUN; 
%MEND; 
%MACRO INTERVAL_GREG; 
DATA ESTIMATES_&LEVEL._ALL (DROP = var_p -- Wald_Bra_low); 
 SET ESTIMATES_&LEVEL._ALL; 
 %DO i=1 %TO &TOT_MODELS; 
  %IF &i>=1 AND &i <= %eval(&DEPENDENTNR*2*1)  
     %THEN %LET RESPONSE = 
&RESPONSE1; 
  %IF &i>=%eval(&DEPENDENTNR*2*1+1) AND &i<=%eval(&DEPENDENTNR*2*2) 
 %THEN %LET RESPONSE = &RESPONSE2; 
  %IF &i>=%eval(&DEPENDENTNR*2*2+1) AND &i<=%eval(&DEPENDENTNR*2*3) 
 %THEN %LET RESPONSE = &RESPONSE3; 
  %IF &i>=%eval(&DEPENDENTNR*2*3+1) AND &i<=%eval(&DEPENDENTNR*2*4) 
 %THEN %LET RESPONSE = &RESPONSE4; 
  %IF &i>=%eval(&DEPENDENTNR*2*4+1) AND &i<=%eval(&DEPENDENTNR*2*5) 
 %THEN %LET RESPONSE = &RESPONSE5; 
  %IF &i>=%eval(&DEPENDENTNR*2*5+1) AND &i<=%eval(&DEPENDENTNR*2*6) 
 %THEN %LET RESPONSE = &RESPONSE6; 
  %IF &i>=%eval(&DEPENDENTNR*2*6+1) AND &i<=%eval(&DEPENDENTNR*2*7) 
 %THEN %LET RESPONSE = &RESPONSE7; 
  %IF &i>=%eval(&DEPENDENTNR*2*7+1) AND &i<=%eval(&DEPENDENTNR*2*8) 
 %THEN %LET RESPONSE = &RESPONSE8; 
 
 var_p = VAR_PLANNED_GREG_&i/(LARGE_N*LARGE_N); 
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 z = &Z_alpha; 
 n = SMALL_N; 
 IF GREG_PL_NEG_&i = 0 THEN p = (GREG_&i / LARGE_N); 
 IF GREG_PL_NEG_&i = 1 THEN p = 0; 
 Wilson_BASIC_up = round((p + ((z*z)/(2*n)) + z*Sqrt((p*(1-p))/n + 
(z*z)/(4*n*n)))/(1+(z*z)/n),.000001); 
 Wilson_BASIC_low = round((p + ((z*z)/(2*n)) - z*Sqrt((p*(1-p))/n + 
(z*z)/(4*n*n)))/(1+(z*z)/n),.000001);  
 Wald_GREG_up= round(p + z * Sqrt(var_p),.000001); 
 Wald_GREG_low= round(p - z * Sqrt(var_p),.000001); 
 Wald_Bra_up= round(p + z * Sqrt(p*(1-p)/n),.000001); 
 Wald_Bra_low= round(p - z * Sqrt(p*(1-p)/n),.000001); 
 IF (TRUE_TOT_&RESPONSE / LARGE_N) <= Wilson_BASIC_up AND (TRUE_TOT_&RESPONSE / 
LARGE_N) >= Wilson_BASIC_low 
 THEN WILSON_BASIC_COV_&i = 1; 
 ELSE WILSON_BASIC_COV_&i = 0; 
 IF (TRUE_TOT_&RESPONSE / LARGE_N) <= Wald_GREG_up AND (TRUE_TOT_&RESPONSE / 
LARGE_N) >= Wald_GREG_low 
 THEN WALD_GREG_COV_&i = 1; 
 ELSE WALD_GREG_COV_&i = 0; 
 IF (TRUE_TOT_&RESPONSE / LARGE_N) <= Wald_Bra_up AND (TRUE_TOT_&RESPONSE / 
LARGE_N) >= Wald_Bra_low 
 THEN WALD_Bra_COV_&i = 1; 
 ELSE WALD_Bra_COV_&i = 0; 
 WILSON_WIDTH_BASIC_&i = Wilson_BASIC_up - Wilson_BASIC_low; 
 WALD_GREG_WIDTH_&i = Wald_GREG_up - Wald_GREG_low; 
 WALD_Bra_WIDTH_&i = Wald_Bra_up - Wald_Bra_low; 
 IF Wilson_BASIC_low < 0 THEN WILSON_BASIC_INC_&i = 1; 
 ELSE WILSON_BASIC_INC_&i = 0; 
 IF Wald_GREG_low < 0 THEN WALD_GREG_INC_&i = 1; 
 ELSE WALD_GREG_INC_&i = 0; 
 IF Wald_Bra_low < 0 THEN WALD_Bra_INC_&i = 1; 
 ELSE WALD_Bra_INC_&i = 0; 
 %END; 
 
RUN; 
%MEND; 
 

POPULATION9.sas 
DATA POP1 (KEEP = L_pnr_UNIK ROBBERY -- INCOMECLASS); 
 set DATA.NTU (keep=L_pnr_UNIK Insamlings_r C9 -- BB46_3 Kommun2 -- L_n 
v_rldsdelnamnUP vlder CSFVI); 
 
 if C9=2 then 
 ROBBERY = 0; 
 else if C9=1 then 
 ROBBERY = 1; 
 
 if C10=2 then 
 ASSAULT = 0; 
 else if C10=1 then 
 ASSAULT = 1; 
 
 if C10=2 then 
 SEVERE_ASSAULT = 0; 
 else if C10=1 AND (BB46_1=1 OR BB46_2=1 OR BB46_3=1) then 
 SEVERE_ASSAULT = 1; 
 else 
 SEVERE_ASSAULT = 0; 
 
 if C11=2 then 
 SEXUAL = 0; 
 else if C11=1 then 
 SEXUAL = 1; 
 
 if C12=2 then 
 THREAT = 0; 
 else if C12=1 then 
 THREAT = 1; 
 
 if C13=2 then 
 FRAUD = 0; 
 else if C13=1 then 
 FRAUD = 1; 
 
 if C14=2 then 
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 HARASS = 0; 
 else if C14=1 then 
 HARASS = 1; 
 
 IF ROBBERY = 1 OR ASSAULT = 1 OR SEXUAL = 1 OR THREAT = 1 OR FRAUD = 1 OR HARASS 
= 1 THEN 
 ANY = 1; 
 ELSE  
 ANY = 0; 
 
 if B210A_1=1 OR B210A_2=1 OR B210A_3=1 then 
 ROBBERY_REPORT=1; 
 else  
 ROBBERY_REPORT=0; 
 
 if B412A_1=1 OR B412A_2=1 OR B412A_3=1 then 
 ASSAULT_REPORT=1; 
 else  
 ASSAULT_REPORT=0; 
 
 if (B412A_1=1 AND BB46_1=1) OR (B412A_2=1 AND BB46_2=1) OR (B412A_2=1 AND 
BB46_2=1) then 
 SEVERE_ASSAULT_REPORT=1; 
 else  
 SEVERE_ASSAULT_REPORT=0; 
 
 if B37A_1=1 OR B37A_2=1 OR B37A_3=1 then 
 SEXUAL_REPORT=1; 
 else  
 SEXUAL_REPORT=0; 
 
 if B510A_1=1 OR B510A_2=1 OR B510A_3=1 then 
 THREAT_REPORT=1; 
 else  
 THREAT_REPORT=0; 
 
 if B76A_1=1 OR B76A_1=1 OR B76A_1=1 then 
 FRAUD_REPORT=1; 
 else  
 FRAUD_REPORT=0; 
 
 if B66A=1 OR B66A=2 then 
 HARASS_REPORT=1; 
 else  
 HARASS_REPORT=0; 
 
 IF  
 ROBBERY_REPORT = 1 OR  
 ASSAULT_REPORT = 1 OR  
 SEXUAL_REPORT = 1 OR  
 THREAT_REPORT = 1 OR  
 FRAUD_REPORT = 1 OR  
 HARASS_REPORT = 1 THEN 
 ANY_REPORT = 1; 
 ELSE  
 ANY_REPORT = 0; 
 
 if Civil='G' OR Civil='RP' then 
 CIVIL_STATUS=1; 
 else  
 CIVIL_STATUS=0; 
 
    if  v_rldsdelnamnUP = 'Afrika' then NON_NORDIC = 1; 
    if  v_rldsdelnamnUP = 'Asien' then NON_NORDIC = 1; 
    if  v_rldsdelnamnUP = 'EU25 utom Norden' then NON_NORDIC = 1; 
    if  v_rldsdelnamnUP = 'EU27 utom Norden' then NON_NORDIC = 1; 
    if  v_rldsdelnamnUP = 'Europa utom EU25 och Norden' then NON_NORDIC = 1; 
    if  v_rldsdelnamnUP = 'Europa utom EU27 och Norden' then NON_NORDIC = 1; 
    if  v_rldsdelnamnUP = 'Nordamerika' then NON_NORDIC = 1; 
    if  v_rldsdelnamnUP = 'Norden utom Sverige' then NON_NORDIC = 0; 
    if  v_rldsdelnamnUP = 'Oceanien' then NON_NORDIC = 1; 
    if  v_rldsdelnamnUP = 'Sovjetunionen' then NON_NORDIC = 1; 
    if  v_rldsdelnamnUP = 'Sverige' then NON_NORDIC = 0; 
    if  v_rldsdelnamnUP = 'Sydamerika' then NON_NORDIC = 1; 
 
 if K_n='1' then 
 SEX=0; 
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 else if K_n='2' then 
 SEX=1; 
  
 KOMMUN = INPUT(kommun2, 4.); 
 LAN = L_n; 
 
 AGE = vlder; 
 
 if vlder<30 then 
 AGECLASS=1; 
 else if vlder>29 AND vlder<41 then 
 AGECLASS=2; 
 else if vlder>40 AND vlder<51 then 
 AGECLASS=3; 
 else if vlder>50 AND vlder<66 then 
 AGECLASS=4; 
 else if vlder>65 AND vlder<75 then 
 AGECLASS=5; 
 else if vlder>74 then 
 AGECLASS=6; 
 
 if vlder<30 then 
 AGESTRATA = 1; 
 else if vlder>29 AND vlder<75 then 
 AGESTRATA=2; 
 else if vlder>74 then 
 AGESTRATA=3; 
 
 INCOME = CSFVI; 
 
 if CSFVI<150000 then 
 INCOMECLASS=1; 
 else if CSFVI>149999 AND CSFVI<300000 then 
 INCOMECLASS=2; 
 else if CSFVI>299999 then 
 INCOMECLASS=3; 
 
RUN; 
PROC IMPORT  
 DATAFILE =  
 'H:\Måns\SAE\DATA\KOMMUNDATA.txt'  
 OUT = DATA.KOMMUN 
 DBMS=TAB 
 REPLACE; 
RUN; 
PROC IMPORT  
 DATAFILE =  
 'H:\Måns\SAE\DATA\LANSDATA2.txt'  
 OUT = DATA.LAN 
 DBMS=TAB 
 REPLACE; 
RUN; 
%MACRO ANMBROTT; 
PROC SORT DATA=POP1; 
 BY &NIVA; 
RUN; 
DATA TEMP1 (drop = NAMN -- _BEFOLKNING_ANTAL_AR);  
 set DATA.&NIVA; 
 ALLA_BROTT = MEAN(ALLA_2005,ALLA_2006,ALLA_2007,ALLA_2008); 
 MISSHANDEL = 
MEAN(MISSHANDEL_2005,MISSHANDEL_2006,MISSHANDEL_2007,MISSHANDEL_2008); 
 HOT = MEAN(HOT_2005,HOT_2006,HOT_2007,HOT_2008); 
 OFREDANDE = MEAN(OFREDANDE_2005,OFREDANDE_2006,OFREDANDE_2007,OFREDANDE_2008); 
 SEXUALBROTT = 
MEAN(SEXUALBROTT_2005,SEXUALBROTT_2006,SEXUALBROTT_2007,SEXUALBROTT_2008); 
 PERSONRAN = MEAN(PERSONRAN_2005,PERSONRAN_2006,PERSONRAN_2007,PERSONRAN_2008); 
 BEDRAGERI = MEAN(BEDRAGERI_2005,BEDRAGERI_2006,BEDRAGERI_2007,BEDRAGERI_2008); 
 BEFOLKN_1NOV = 
MEAN(BEFOLKN_1NOV_2005,BEFOLKN_1NOV_2006,BEFOLKN_1NOV_2007,BEFOLKN_1NOV_2008); 
RUN; 
PROC MEANS NOPRINT DATA=TEMP1; 
 VAR ALLA_BROTT MISSHANDEL HOT OFREDANDE SEXUALBROTT PERSONRAN BEDRAGERI 
BEFOLKN_1NOV; 
 BY &NIVA_ART; 
 OUTPUT OUT = TEMP2  
 MEAN(ALLA_BROTT) = ALL_OFF_REPORTED_&NIVA_ART 
 MEAN(PERSONRAN) = ROBBERY_REPORTED_&NIVA_ART 
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 MEAN(MISSHANDEL) = ASSAULT_REPORTED_&NIVA_ART 
 MEAN(SEXUALBROTT) = SEXUAL_REPORTED_&NIVA_ART  
 MEAN(HOT) = THREAT_REPORTED_&NIVA_ART 
 MEAN(BEDRAGERI) = FRAUD_REPORTED_&NIVA_ART 
 MEAN(OFREDANDE) = HARASS_REPORTED_&NIVA_ART 
 MEAN(BEFOLKN_1NOV) = POPUL_1NOV_&NIVA_ART 
 ; 
RUN; 
DATA TEMP3 (DROP = ALLA_BROTT -- POPUL_1NOV_&NIVA_ART); 
 MERGE TEMP1 TEMP2; 
 BY &NIVA_ART; 
 ALL_OFF_REP_&NIVA_ART = 
(100000/POPUL_1NOV_&NIVA_ART)*ALL_OFF_REPORTED_&NIVA_ART; 
 ROBBERY_REP_&NIVA_ART = 
(100000/POPUL_1NOV_&NIVA_ART)*ROBBERY_REPORTED_&NIVA_ART; 
 ASSAULT_REP_&NIVA_ART = 
(100000/POPUL_1NOV_&NIVA_ART)*ASSAULT_REPORTED_&NIVA_ART; 
 SEVERE_ASSAULT_REP_&NIVA_ART = ASSAULT_REP_&NIVA_ART; 
 SEXUAL_REP_&NIVA_ART = (100000/POPUL_1NOV_&NIVA_ART)*SEXUAL_REPORTED_&NIVA_ART; 
 THREAT_REP_&NIVA_ART = (100000/POPUL_1NOV_&NIVA_ART)*THREAT_REPORTED_&NIVA_ART; 
 FRAUD_REP_&NIVA_ART = (100000/POPUL_1NOV_&NIVA_ART)*FRAUD_REPORTED_&NIVA_ART; 
 HARASS_REP_&NIVA_ART = (100000/POPUL_1NOV_&NIVA_ART)*HARASS_REPORTED_&NIVA_ART; 
 ANY_REP_&NIVA_ART =  
 ( 
 ROBBERY_REP_&NIVA_ART +  
 ASSAULT_REP_&NIVA_ART +  
 SEXUAL_REP_&NIVA_ART + 
 THREAT_REP_&NIVA_ART + 
 FRAUD_REP_&NIVA_ART + 
 HARASS_REP_&NIVA_ART 
 ); 
 
RUN; 
DATA TEMP4; 
 merge POP1 TEMP3; 
 BY &NIVA; 
RUN; 
DATA POP1; 
 set TEMP4; 
RUN; 
%MEND; 
/* CREATING REPORTED CRIMES PER 100 000 INHABITANTS */ 
%let NIVA = KOMMUN; 
%let NIVA_ART = MUNICIPALITY; 
%anmbrott; 
%let NIVA = LAN; 
%let NIVA_ART = COUNTY; 
%anmbrott; 
DATA DATA.POPULATION (DROP = OVRIGT);  
 set POP1; 
 /* DEFINING STRATA IN SAMPLING DESIGN */ 
 if AGESTRATA=1 then 
 STRATA_IND = COUNTY;  
 else if AGESTRATA=2 then 
 STRATA_IND = COUNTY+7;  
 else if AGESTRATA=3 then 
 STRATA_IND = COUNTY+14;  
 
 /* DELETING PARTIAL NONRESPONSE */ 
 if MISSING(ROBBERY) then DELETE; 
 if MISSING(ASSAULT) then DELETE; 
 if MISSING(SEXUAL) then DELETE; 
 if MISSING(THREAT) then DELETE; 
 if MISSING(FRAUD) then DELETE; 
 if MISSING(HARASS) then DELETE; 
 if MISSING(ROBBERY_REPORT) then DELETE; 
 if MISSING(ASSAULT_REPORT) then DELETE; 
 if MISSING(SEXUAL_REPORT) then DELETE; 
 if MISSING(THREAT_REPORT) then DELETE; 
 if MISSING(FRAUD_REPORT) then DELETE; 
 if MISSING(HARASS_REPORT) then DELETE; 
 if MISSING(NON_NORDIC) then DELETE; 
 
 COUNT_STR = STRATA_IND; 
 if AGESTRATA=1 then 
 MUNICIP_STR = MUNICIPALITY;  
 else if AGESTRATA=2 then 
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 MUNICIP_STR = MUNICIPALITY+97;  
 else if AGESTRATA=3 then 
 MUNICIP_STR = MUNICIPALITY+194;  
RUN; 
PROC SORT DATA=DATA.POPULATION OUT=DATA.POP_SORT_STRATA; /* COPYING AND SORTING THE POPULATION 
FILE TO FASTEN THE SIMULATION */ 
by STRATA_IND; 
RUN; 
PROC SORT DATA=DATA.POPULATION OUT=DATA.POP_SORT_NR; /* COPYING AND SORTING THE POPULATION 
FILE TO FASTEN THE SIMULATION */ 
by L_pnr_UNIK; 
RUN; 
 

SAMPLE3.sas 
PROC SURVEYSELECT DATA=DATA.POP_SORT_STRATA NOPRINT  
 method=SRS  
 n=(479 125 143 563 119 143 149 828 198 253 917 203 264 244 90 27 33 120 28 40 
34) 
    seed=&simu_nr 
 out=SampleData; 
 strata STRATA_IND; 
RUN; 
PROC SORT DATA=SampleData (KEEP = L_pnr_UNIK SelectionProb SamplingWeight) OUT=SampleData_min; 
BY L_pnr_UNIK; 
RUN; 
DATA SIMULPOP_MODELFIT; 
 merge DATA.POP_SORT_NR SampleData_min; 
 BY L_pnr_UNIK; 
 if MISSING(SamplingWeight) then 
 SamplingWeight = 0; 
 if SamplingWeight = 0 then 
 SamplingIndicator = 0; 
 else if SamplingWeight > 0 then 
 SamplingIndicator = 1; 
RUN; 
 

STARTSETS5.sas 
DATA RESULTAT.MODELS; 
 length MODELNR $2. TYPE $6. RESPONSE $15. DEPENDENT $200.; 
 INPUT MODELNR $ TYPE $ RESPONSE $ DEPENDENT $; 
    datalines; 
0 0 0 0 
; 
RUN; 
DATA MODELS1; 
 set RESULTAT.MODELS; 
RUN; 
DATA RESULTAT.CONVERGENCE; 
RUN; 
DATA SIMULINFO_BLANK; 
 length SIMULERING 3. STARTTID 8. SLUTTID 8. SIMULERINGSTID 5.; 
 INPUT SIMULERING STARTTID SLUTTID SIMULERINGSTID; 
 format SIMULERINGSTID mmss5.0; 
    datalines; 
0 0 0 0 
; 
RUN; 
DATA RESULTAT.SIMULINFO; 
 SET SIMULINFO_BLANK; 
RUN; 
PROC SORT DATA=DATA.POPULATION OUT=POP_SORT_COUNTY;  
by COUNTY; 
RUN; 
PROC MEANS DATA=POP_SORT_COUNTY NOPRINT; /* CALCULATING TRUE VALUES IN POPULATION */ 
 BY COUNTY; 
 VAR ROBBERY -- ANY; 
 OUTPUT  
 OUT = TRUE_TOT_VALUES_COUNTY 
 SUM(ROBBERY) = TRUE_TOT_ROBBERY 
 SUM(ASSAULT) = TRUE_TOT_ASSAULT 
 SUM(SEVERE_ASSAULT) = TRUE_TOT_SEVERE_ASSAULT 
 SUM(SEXUAL) = TRUE_TOT_SEXUAL 
 SUM(THREAT) = TRUE_TOT_THREAT 
 SUM(FRAUD) = TRUE_TOT_FRAUD 
 SUM(HARASS) = TRUE_TOT_HARASS 
 SUM(ANY) = TRUE_TOT_ANY 
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 ; 
RUN; 
PROC SORT DATA=DATA.POPULATION OUT=POP_SORT_MUNICIPALITY; 
by MUNICIPALITY; 
RUN; 
PROC MEANS DATA=POP_SORT_MUNICIPALITY NOPRINT; /* CALCULATING TRUE VALUES IN POPULATION */ 
 BY MUNICIPALITY; 
 VAR ROBBERY -- ANY; 
 OUTPUT  
 OUT = TRUE_TOT_VALUES_MUNICIPALITY 
 SUM(ROBBERY) = TRUE_TOT_ROBBERY 
 SUM(ASSAULT) = TRUE_TOT_ASSAULT 
 SUM(SEVERE_ASSAULT) = TRUE_TOT_SEVERE_ASSAULT 
 SUM(SEXUAL) = TRUE_TOT_SEXUAL 
 SUM(THREAT) = TRUE_TOT_THREAT 
 SUM(FRAUD) = TRUE_TOT_FRAUD 
 SUM(HARASS) = TRUE_TOT_HARASS 
 SUM(ANY) = TRUE_TOT_ANY 
 ; 
RUN; 
DATA TRUE_TOT_VALUES_MUNICIPALITY; 
 SET TRUE_TOT_VALUES_MUNICIPALITY; 
 LARGE_N = _FREQ_; 
RUN; 
DATA TRUE_TOT_VALUES_COUNTY; 
 SET TRUE_TOT_VALUES_COUNTY; 
 LARGE_N = _FREQ_; 
RUN; 
 

MACROANALYZE5.sas 
 
%MACRO PROP; 
PROC SORT DATA=RESULTAT.RESULTS_ALL; 
 BY DOMAIN; 
PROC MEANS DATA=RESULTAT.RESULTS_ALL NOPRINT; 
 VAR SMALL_d_str_N; 
 BY DOMAIN; 
 OUTPUT OUT=TEMP N=FREQ MEAN(SMALL_d_str_N) = SMALL_d_str_N; 
RUN; 
DATA TEMP; 
 SET TEMP; 
 if SMALL_d_str_N <21 then DOMAINCLASS=1; 
 else if SMALL_d_str_N <41 then DOMAINCLASS=2; 
 else if SMALL_d_str_N <101 then DOMAINCLASS=3; 
 else if SMALL_d_str_N <350 then DOMAINCLASS=4; 
 else DOMAINCLASS=5; 
 Proportion = FREQ/10; 
RUN; 
%MEND; 
 
%MACRO VAR_HT_ZERO; 
DATA TEMP (KEEP = DOMAIN SMALL_d_str_N DOMAINCLASS VAR_HT_&RESPONSE1._ZERO -- 
VAR_HT_&RESPONSE8._ZERO); 
 SET RESULTAT.RESULTS_ALL; 
 %DO j=1 %TO &RESPONSENR; 
  %IF &j=1 %THEN %LET RESPONSE = &RESPONSE1; 
  %IF &j=2 %THEN %LET RESPONSE = &RESPONSE2; 
  %IF &j=3 %THEN %LET RESPONSE = &RESPONSE3; 
  %IF &j=4 %THEN %LET RESPONSE = &RESPONSE4; 
  %IF &j=5 %THEN %LET RESPONSE = &RESPONSE5; 
  %IF &j=6 %THEN %LET RESPONSE = &RESPONSE6; 
  %IF &j=7 %THEN %LET RESPONSE = &RESPONSE7; 
  %IF &j=8 %THEN %LET RESPONSE = &RESPONSE8; 
  IF VAR_HT_&RESPONSE > 0 THEN VAR_HT_&RESPONSE._ZERO = 0; 
  ELSE VAR_HT_&RESPONSE._ZERO = 1; 
 %END; 
RUN; 
 
PROC SORT DATA=TEMP; 
 BY DOMAIN; 
RUN; 
 
%DO j=1 %TO &RESPONSENR; 
 %IF &j=1 %THEN %LET RESPONSE = &RESPONSE1; 
 %IF &j=2 %THEN %LET RESPONSE = &RESPONSE2; 
 %IF &j=3 %THEN %LET RESPONSE = &RESPONSE3; 
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 %IF &j=4 %THEN %LET RESPONSE = &RESPONSE4; 
 %IF &j=5 %THEN %LET RESPONSE = &RESPONSE5; 
 %IF &j=6 %THEN %LET RESPONSE = &RESPONSE6; 
 %IF &j=7 %THEN %LET RESPONSE = &RESPONSE7; 
 %IF &j=8 %THEN %LET RESPONSE = &RESPONSE8; 
 PROC MEANS DATA=TEMP NOPRINT; 
  VAR SMALL_d_str_N VAR_HT_&RESPONSE._ZERO; 
  BY DOMAIN; 
  OUTPUT OUT=TEMP_&RESPONSE 
  MEAN(SMALL_d_str_N) = SMALL_d_str_N 
  MEAN(VAR_HT_&RESPONSE._ZERO) = ZERO 
  ; 
 RUN; 
 DATA TEMP_&RESPONSE; 
  SET TEMP_&RESPONSE; 
  if SMALL_d_str_N <21 then DOMAINCLASS=1; 
  else if SMALL_d_str_N <41 then DOMAINCLASS=2; 
  else if SMALL_d_str_N <101 then DOMAINCLASS=3; 
  else if SMALL_d_str_N <350 then DOMAINCLASS=4; 
  else DOMAINCLASS=5; 
  CRIME="                  "; 
  CRIME="&RESPONSE"; 
 RUN; 
%END; 
 
DATA TEMP2 (KEEP = HT_VAR_ZERO DOMAIN DOMAINCLASS CRIME); 
 SET  
 %DO j=1 %TO &RESPONSENR; 
 %IF &j=1 %THEN %LET RESPONSE = &RESPONSE1; 
 %IF &j=2 %THEN %LET RESPONSE = &RESPONSE2; 
 %IF &j=3 %THEN %LET RESPONSE = &RESPONSE3; 
 %IF &j=4 %THEN %LET RESPONSE = &RESPONSE4; 
 %IF &j=5 %THEN %LET RESPONSE = &RESPONSE5; 
 %IF &j=6 %THEN %LET RESPONSE = &RESPONSE6; 
 %IF &j=7 %THEN %LET RESPONSE = &RESPONSE7; 
 %IF &j=8 %THEN %LET RESPONSE = &RESPONSE8; 
 TEMP_&RESPONSE 
 %END; 
 ; 
 HT_VAR_ZERO=ZERO*100; 
RUN; 
%MEND; 
 
%MACRO GREG_NEGATIVE; 
DATA TEMP (KEEP = DOMAIN SMALL_d_str_N DOMAINCLASS GREG_1_NEG -- GREG_&TOT_MODELS._NEG); 
 SET RESULTAT.RESULTS_ALL; 
 %DO i=1 %TO &TOT_MODELS; 
 IF GREG_&i < 0 THEN GREG_&i._NEG = 1; 
 ELSE GREG_&i._NEG = 0; 
 %END; 
RUN; 
 
PROC SORT DATA=TEMP; 
 BY DOMAIN; 
RUN; 
 
%DO i=1 %TO &TOT_MODELS; 
 PROC MEANS DATA=TEMP NOPRINT; 
  VAR SMALL_d_str_N GREG_&i._NEG; 
  BY DOMAIN; 
  OUTPUT OUT=TEMP_&i 
  MEAN(SMALL_d_str_N) = SMALL_d_str_N 
  MEAN(GREG_&i._NEG) = GREG_NEG 
  ; 
 RUN; 
 DATA TEMP_&i; 
  SET TEMP_&i; 
  if SMALL_d_str_N <21 then DOMAINCLASS=1; 
  else if SMALL_d_str_N <41 then DOMAINCLASS=2; 
  else if SMALL_d_str_N <101 then DOMAINCLASS=3; 
  else if SMALL_d_str_N <350 then DOMAINCLASS=4; 
  else DOMAINCLASS=5; 
  MODELNR="  "; 
  MODELNR="&i"; 
 RUN; 
%END; 
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DATA TEMP2 (KEEP = NEGATIVE_GREG DOMAIN DOMAINCLASS MODELNR); 
 SET  
 %DO i=1 %TO &TOT_MODELS; 
 TEMP_&i 
 %END; 
 ; 
 NEGATIVE_GREG=GREG_NEG*100; 
RUN; 
 
PROC SORT DATA=TEMP2; 
 BY MODELNR; 
RUN; 
 
PROC SORT DATA=RESULTAT.MODELS; 
 BY MODELNR; 
RUN; 
 
DATA TEMP3 (DROP = DEPENDENT);  
 MERGE TEMP2 RESULTAT.MODELS; 
 BY MODELNR; 
RUN; 
%MEND; 
 
%MACRO AB_RMSE; 
DATA TEMP (KEEP = DOMAIN SMALL_d_str_N DIFF_P_HT_&RESPONSE1 -- DIFFSQ_P_GREG_&TOT_MODELS); 
 SET RESULTAT.RESULTS_ALL; 
 %DO j=1 %TO &RESPONSENR; 
 %IF &j=1 %THEN %LET RESPONSE = &RESPONSE1; 
 %IF &j=2 %THEN %LET RESPONSE = &RESPONSE2; 
 %IF &j=3 %THEN %LET RESPONSE = &RESPONSE3; 
 %IF &j=4 %THEN %LET RESPONSE = &RESPONSE4; 
 %IF &j=5 %THEN %LET RESPONSE = &RESPONSE5; 
 %IF &j=6 %THEN %LET RESPONSE = &RESPONSE6; 
 %IF &j=7 %THEN %LET RESPONSE = &RESPONSE7; 
 %IF &j=8 %THEN %LET RESPONSE = &RESPONSE8; 
 DIFF_P_HT_&RESPONSE = (HT_TOT_&RESPONSE/LARGE_N)-(TRUE_TOT_&RESPONSE/LARGE_N ); 
 DIFFSQ_P_HT_&RESPONSE = ((HT_TOT_&RESPONSE/LARGE_N)-(TRUE_TOT_&RESPONSE/LARGE_N 
)) ** 2; 
 %END; 
 
 %DO i=1 %TO &TOT_MODELS; 
  %IF &i>=1 AND &i <= %eval(&DEPENDENTNR*2*1)  
     %THEN %LET RESPONSE = 
&RESPONSE1; 
  %IF &i>=%eval(&DEPENDENTNR*2*1+1) AND &i<=%eval(&DEPENDENTNR*2*2) 
 %THEN %LET RESPONSE = &RESPONSE2; 
  %IF &i>=%eval(&DEPENDENTNR*2*2+1) AND &i<=%eval(&DEPENDENTNR*2*3) 
 %THEN %LET RESPONSE = &RESPONSE3; 
  %IF &i>=%eval(&DEPENDENTNR*2*3+1) AND &i<=%eval(&DEPENDENTNR*2*4) 
 %THEN %LET RESPONSE = &RESPONSE4; 
  %IF &i>=%eval(&DEPENDENTNR*2*4+1) AND &i<=%eval(&DEPENDENTNR*2*5) 
 %THEN %LET RESPONSE = &RESPONSE5; 
  %IF &i>=%eval(&DEPENDENTNR*2*5+1) AND &i<=%eval(&DEPENDENTNR*2*6) 
 %THEN %LET RESPONSE = &RESPONSE6; 
  %IF &i>=%eval(&DEPENDENTNR*2*6+1) AND &i<=%eval(&DEPENDENTNR*2*7) 
 %THEN %LET RESPONSE = &RESPONSE7; 
  %IF &i>=%eval(&DEPENDENTNR*2*7+1) AND &i<=%eval(&DEPENDENTNR*2*8) 
 %THEN %LET RESPONSE = &RESPONSE8; 
 
  DIFF_P_GREG_&i = (GREG_&i/LARGE_N) - (TRUE_TOT_&RESPONSE/LARGE_N); 
  DIFFSQ_P_GREG_&i = ((GREG_&i/LARGE_N) - 
(TRUE_TOT_&RESPONSE/LARGE_N))**2; 
 
 %END; 
RUN; 
 
PROC SORT DATA=TEMP; 
 BY DOMAIN; 
RUN; 
 
%DO j=1 %TO &RESPONSENR; 
 %IF &j=1 %THEN %LET RESPONSE = &RESPONSE1; 
 %IF &j=2 %THEN %LET RESPONSE = &RESPONSE2; 
 %IF &j=3 %THEN %LET RESPONSE = &RESPONSE3; 
 %IF &j=4 %THEN %LET RESPONSE = &RESPONSE4; 
 %IF &j=5 %THEN %LET RESPONSE = &RESPONSE5; 
 %IF &j=6 %THEN %LET RESPONSE = &RESPONSE6; 
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 %IF &j=7 %THEN %LET RESPONSE = &RESPONSE7; 
 %IF &j=8 %THEN %LET RESPONSE = &RESPONSE8; 
 PROC MEANS DATA=TEMP NOPRINT; 
  VAR SMALL_d_str_N DIFF_P_HT_&RESPONSE DIFFSQ_P_HT_&RESPONSE; 
  BY DOMAIN; 
  OUTPUT OUT=TEMP_&RESPONSE 
  MEAN(SMALL_d_str_N) = SMALL_d_str_N 
  SUM(DIFF_P_HT_&RESPONSE) = SUM_DIFF_P_HT 
  SUM(DIFFSQ_P_HT_&RESPONSE) = SUM_DIFFSQ_P_HT 
  ; 
 RUN; 
 DATA TEMP_&RESPONSE; 
  SET TEMP_&RESPONSE; 
  if SMALL_d_str_N <21 then DOMAINCLASS=1; 
  else if SMALL_d_str_N <41 then DOMAINCLASS=2; 
  else if SMALL_d_str_N <101 then DOMAINCLASS=3; 
  else if SMALL_d_str_N <350 then DOMAINCLASS=4; 
  else DOMAINCLASS=5; 
  RESPONSE="                  "; 
  RESPONSE="&RESPONSE"; 
  DEP=0; 
  TYPE="   "; 
  TYPE="HT"; 
 RUN; 
%END; 
 
DATA TEMP2 (KEEP = DOMAIN DOMAINCLASS RESPONSE DEP TYPE AB RMSE); 
 SET  
 %DO j=1 %TO &RESPONSENR; 
 %IF &j=1 %THEN %LET RESPONSE = &RESPONSE1; 
 %IF &j=2 %THEN %LET RESPONSE = &RESPONSE2; 
 %IF &j=3 %THEN %LET RESPONSE = &RESPONSE3; 
 %IF &j=4 %THEN %LET RESPONSE = &RESPONSE4; 
 %IF &j=5 %THEN %LET RESPONSE = &RESPONSE5; 
 %IF &j=6 %THEN %LET RESPONSE = &RESPONSE6; 
 %IF &j=7 %THEN %LET RESPONSE = &RESPONSE7; 
 %IF &j=8 %THEN %LET RESPONSE = &RESPONSE8; 
 TEMP_&RESPONSE 
 %END; 
 ; 
 AB=abs(SUM_DIFF_P_HT/_FREQ_); 
 RMSE=sqrt(SUM_DIFFSQ_P_HT/_FREQ_); 
RUN; 
 
%DO i=1 %TO &TOT_MODELS; 
 PROC MEANS DATA=TEMP NOPRINT; 
  VAR SMALL_d_str_N DIFF_P_GREG_&i DIFFSQ_P_GREG_&i; 
  BY DOMAIN; 
  OUTPUT OUT=TEMP_&i 
  MEAN(SMALL_d_str_N) = SMALL_d_str_N 
  SUM(DIFF_P_GREG_&i) = SUM_DIFF_P_GREG 
  SUM(DIFFSQ_P_GREG_&i) = SUM_DIFFSQ_P_GREG 
  ; 
 RUN; 
 DATA TEMP_&i; 
  SET TEMP_&i; 
  if SMALL_d_str_N <21 then DOMAINCLASS=1; 
  else if SMALL_d_str_N <41 then DOMAINCLASS=2; 
  else if SMALL_d_str_N <101 then DOMAINCLASS=3; 
  else if SMALL_d_str_N <350 then DOMAINCLASS=4; 
  else DOMAINCLASS=5; 
  MODELNR="  "; 
  MODELNR="&i"; 
 RUN; 
%END; 
 
DATA TEMP3 (KEEP = DOMAIN DOMAINCLASS MODELNR AB RMSE); 
 SET  
 %DO i=1 %TO &TOT_MODELS; 
 TEMP_&i 
 %END; 
 ; 
 AB=abs(SUM_DIFF_P_GREG/_FREQ_); 
 RMSE=sqrt(SUM_DIFFSQ_P_GREG/_FREQ_); 
RUN; 
 
PROC SORT DATA=TEMP3; 
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 BY MODELNR; 
RUN; 
 
PROC SORT DATA=RESULTAT.MODELS; 
 BY MODELNR; 
RUN; 
 
DATA TEMP4 (DROP = DEPENDENT MODELNR);  
 MERGE TEMP3 RESULTAT.MODELS; 
 BY MODELNR; 
RUN; 
 
DATA TEMP5;  
 SET TEMP4 TEMP2; 
RUN; 
 
DATA TEMP_DEP1 (KEEP = DOMAIN RESPONSE DOMAINCLASS RMSE1);  
 SET TEMP5; 
 IF DEP=1 AND TYPE='LIN'; 
 RMSE1=RMSE; 
RUN; 
 
DATA TEMP_DEP4 (KEEP = DOMAIN RESPONSE RMSE4);  
 SET TEMP5; 
 IF DEP=4 AND TYPE='LIN'; 
 RMSE4=RMSE; 
RUN; 
 
PROC SORT DATA=TEMP_DEP1; 
 BY DOMAIN RESPONSE; 
PROC SORT DATA=TEMP_DEP4; 
 BY DOMAIN RESPONSE; 
RUN; 
 
DATA TEMP_DEP; 
 MERGE TEMP_DEP1 TEMP_DEP4; 
 BY DOMAIN RESPONSE; 
RUN; 
 
PROC SORT DATA=TEMP_DEP; 
 BY DOMAINCLASS RESPONSE; 
RUN; 
PROC MEANS DATA=TEMP_DEP NOPRINT; 
 VAR RMSE1 RMSE4; 
 BY DOMAINCLASS RESPONSE; 
 OUTPUT OUT=TEMP_DEP2 
 MEAN(RMSE1) = RMSE1 
 MEAN(RMSE4) = RMSE4 
  ; 
RUN; 
 
DATA TEMP_DEP3 (DROP = _TYPE_ _FREQ_ RMSE1 RMSE4); 
 SET TEMP_DEP2; 
 PROP_DIFF=RMSE4/RMSE1; 
RUN; 
 
%MEND; 
%MACRO VAR_P_U; 
DATA TEMP (KEEP = DOMAIN SMALL_d_str_N DOMAINCLASS DIFF_VAR_1 -- DIFF_VAR_&TOT_MODELS); 
 SET RESULTAT.RESULTS_ALL; 
 %DO i=1 %TO &TOT_MODELS; 
 DIFF_VAR_&i = VAR_U_GREG_&i / VAR_P_GREG_&i; 
 %END; 
RUN; 
 
PROC SORT DATA=TEMP; 
 BY DOMAIN; 
RUN; 
 
%DO i=1 %TO &TOT_MODELS; 
 PROC MEANS DATA=TEMP NOPRINT; 
  VAR SMALL_d_str_N DIFF_VAR_&i; 
  BY DOMAIN; 
  OUTPUT OUT=TEMP_&i 
  MEAN(SMALL_d_str_N) = SMALL_d_str_N 
  MEAN(DIFF_VAR_&i) = DIFF_VAR 
  ; 
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 RUN; 
 DATA TEMP_&i; 
  SET TEMP_&i; 
  if SMALL_d_str_N <21 then DOMAINCLASS=1; 
  else if SMALL_d_str_N <41 then DOMAINCLASS=2; 
  else if SMALL_d_str_N <101 then DOMAINCLASS=3; 
  else if SMALL_d_str_N <350 then DOMAINCLASS=4; 
  else DOMAINCLASS=5; 
  MODELNR="  "; 
  MODELNR="&i"; 
 RUN; 
%END; 
 
DATA TEMP2 (KEEP = NEGATIVE_GREG DOMAIN DOMAINCLASS MODELNR DIFF_VAR); 
 SET  
 %DO i=1 %TO &TOT_MODELS; 
 TEMP_&i 
 %END; 
 ; 
RUN; 
 
PROC SORT DATA=TEMP2; 
 BY MODELNR; 
RUN; 
 
PROC SORT DATA=RESULTAT.MODELS; 
 BY MODELNR; 
RUN; 
 
DATA TEMP3 (DROP = DEPENDENT);  
 MERGE TEMP2 RESULTAT.MODELS; 
 BY MODELNR; 
RUN; 
%MEND; 
%MACRO INTERVAL; 
DATA TEMP (KEEP = TRUE_TOT_ROBBERY -- TRUE_TOT_ANY DOMAIN SMALL_d_str_N LARGE_d_str_N 
WALD_HT_COV_&RESPONSE1 -- WILSON_GREG_LEN_&TOT_MODELS); 
 SET RESULTAT.RESULTS_ALL; 
 %DO j=1 %TO &RESPONSENR; 
 %IF &j=1 %THEN %LET RESPONSE = &RESPONSE1; 
 %IF &j=2 %THEN %LET RESPONSE = &RESPONSE2; 
 %IF &j=3 %THEN %LET RESPONSE = &RESPONSE3; 
 %IF &j=4 %THEN %LET RESPONSE = &RESPONSE4; 
 %IF &j=5 %THEN %LET RESPONSE = &RESPONSE5; 
 %IF &j=6 %THEN %LET RESPONSE = &RESPONSE6; 
 %IF &j=7 %THEN %LET RESPONSE = &RESPONSE7; 
 %IF &j=8 %THEN %LET RESPONSE = &RESPONSE8; 
 IF  
 TRUE_TOT_&RESPONSE < HT_TOT_&RESPONSE + &ALPHA * sqrt(VAR_HT_&RESPONSE) 
 AND 
 TRUE_TOT_&RESPONSE > HT_TOT_&RESPONSE - &ALPHA * sqrt(VAR_HT_&RESPONSE) 
 THEN WALD_HT_COV_&RESPONSE = 1; 
 ELSE WALD_HT_COV_&RESPONSE = 0; 
 
 WALD_HT_LEN_&RESPONSE = 
 ( 
 (HT_TOT_&RESPONSE/LARGE_N + &ALPHA * sqrt(VAR_HT_&RESPONSE/(LARGE_N**2))) 
 - 
 (HT_TOT_&RESPONSE/LARGE_N - &ALPHA * sqrt(VAR_HT_&RESPONSE/(LARGE_N**2))) 
 )*100; 
 
 IF  
 HT_TOT_&RESPONSE + &ALPHA * sqrt(VAR_HT_&RESPONSE) > LARGE_d_str_N 
 OR 
 HT_TOT_&RESPONSE - &ALPHA * sqrt(VAR_HT_&RESPONSE) < 0 
 THEN WALD_HT_INC_&RESPONSE = 1; 
 ELSE WALD_HT_INC_&RESPONSE = 0; 
 
 IF  
 (TRUE_TOT_&RESPONSE/LARGE_N) <  
 ( 
 (HT_TOT_&RESPONSE/LARGE_N) + (&ALPHA**2)/(2*SMALL_d_str_N)  
 +  
 &ALPHA * sqrt( 
 ((HT_TOT_&RESPONSE/LARGE_N)*(1-
(HT_TOT_&RESPONSE/LARGE_N))/SMALL_d_str_N)+(&ALPHA**2)/(4*(SMALL_d_str_N**2)) 
 ) 
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 ) 
 / 
 (1+(&ALPHA**2)/SMALL_d_str_N) 
 AND 
 (TRUE_TOT_&RESPONSE/LARGE_N) >  
 ( 
 (HT_TOT_&RESPONSE/LARGE_N) + (&ALPHA**2)/(2*SMALL_d_str_N)  
 -  
 &ALPHA * sqrt( 
 ((HT_TOT_&RESPONSE/LARGE_N)*(1-
(HT_TOT_&RESPONSE/LARGE_N))/SMALL_d_str_N)+(&ALPHA**2)/(4*(SMALL_d_str_N**2)) 
 ) 
 ) 
 / 
 (1+(&ALPHA**2)/SMALL_d_str_N) 
 THEN WILSON_HT_COV_&RESPONSE = 1; 
 ELSE WILSON_HT_COV_&RESPONSE = 0; 
 
 WILSON_HT_LEN_&RESPONSE = 
 ( 
 ( 
 (HT_TOT_&RESPONSE/LARGE_N) + (&ALPHA**2)/(2*SMALL_d_str_N)  
 +  
 &ALPHA * sqrt( 
 ((HT_TOT_&RESPONSE/LARGE_N)*(1-
(HT_TOT_&RESPONSE/LARGE_N))/SMALL_d_str_N)+(&ALPHA**2)/(4*(SMALL_d_str_N**2)) 
 ) 
 ) 
 / 
 (1+(&ALPHA**2)/SMALL_d_str_N) 
 - 
 ( 
 (HT_TOT_&RESPONSE/LARGE_N) + (&ALPHA**2)/(2*SMALL_d_str_N)  
 -  
 &ALPHA * sqrt( 
 ((HT_TOT_&RESPONSE/LARGE_N)*(1-
(HT_TOT_&RESPONSE/LARGE_N))/SMALL_d_str_N)+(&ALPHA**2)/(4*(SMALL_d_str_N**2)) 
 ) 
 ) 
 / 
 (1+(&ALPHA**2)/SMALL_d_str_N) 
 )*100 
 ; 
 
 P_TRUE_&RESPONSE=(TRUE_TOT_&RESPONSE/LARGE_N); 
 %END; 
 
 %DO i=1 %TO &TOT_MODELS; 
  %IF &i>=1 AND &i <= %eval(&DEPENDENTNR*2*1)  
     %THEN %LET RESPONSE = 
&RESPONSE1; 
  %IF &i>=%eval(&DEPENDENTNR*2*1+1) AND &i<=%eval(&DEPENDENTNR*2*2) 
 %THEN %LET RESPONSE = &RESPONSE2; 
  %IF &i>=%eval(&DEPENDENTNR*2*2+1) AND &i<=%eval(&DEPENDENTNR*2*3) 
 %THEN %LET RESPONSE = &RESPONSE3; 
  %IF &i>=%eval(&DEPENDENTNR*2*3+1) AND &i<=%eval(&DEPENDENTNR*2*4) 
 %THEN %LET RESPONSE = &RESPONSE4; 
  %IF &i>=%eval(&DEPENDENTNR*2*4+1) AND &i<=%eval(&DEPENDENTNR*2*5) 
 %THEN %LET RESPONSE = &RESPONSE5; 
  %IF &i>=%eval(&DEPENDENTNR*2*5+1) AND &i<=%eval(&DEPENDENTNR*2*6) 
 %THEN %LET RESPONSE = &RESPONSE6; 
  %IF &i>=%eval(&DEPENDENTNR*2*6+1) AND &i<=%eval(&DEPENDENTNR*2*7) 
 %THEN %LET RESPONSE = &RESPONSE7; 
  %IF &i>=%eval(&DEPENDENTNR*2*7+1) AND &i<=%eval(&DEPENDENTNR*2*8) 
 %THEN %LET RESPONSE = &RESPONSE8; 
 
 %IF &NEG_CORRECT=1 %THEN 
 %DO; 
  IF GREG_&i<0 THEN GREG_&i=0; 
 %END; 
 
 IF  
 TRUE_TOT_&RESPONSE < GREG_&i + &ALPHA * sqrt(VAR_&VAR_TYPE._GREG_&i) 
 AND 
 TRUE_TOT_&RESPONSE > GREG_&i - &ALPHA * sqrt(VAR_&VAR_TYPE._GREG_&i) 
 THEN WALD_GREG_COV_&i = 1; 
 ELSE WALD_GREG_COV_&i = 0; 
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 IF  
 GREG_&i + &ALPHA * sqrt(VAR_&VAR_TYPE._GREG_&i) > LARGE_d_str_N 
 OR 
 GREG_&i - &ALPHA * sqrt(VAR_&VAR_TYPE._GREG_&i) < 0 
 THEN WALD_GREG_INC_&i = 1; 
 ELSE WALD_GREG_INC_&i = 0; 
 
 WALD_GREG_LEN_&i = 
 ( 
 ((GREG_&i/LARGE_N) + &ALPHA * sqrt(VAR_&VAR_TYPE._GREG_&i/(LARGE_N**2))) 
 - 
 ((GREG_&i/LARGE_N) - &ALPHA * sqrt(VAR_&VAR_TYPE._GREG_&i/(LARGE_N**2))) 
 )*100 
 ; 
 
 IF  
 (TRUE_TOT_&RESPONSE/LARGE_N) <  
 ( 
 (GREG_&i/LARGE_N) + (&ALPHA**2)/(2*SMALL_d_str_N)  
 +  
 &ALPHA * sqrt( 
 (VAR_&VAR_TYPE._GREG_&i / LARGE_N**2) +(&ALPHA**2)/(4*(SMALL_d_str_N**2)) 
 ) 
 ) 
 / 
 (1+(&ALPHA**2)/SMALL_d_str_N) 
 AND 
 (TRUE_TOT_&RESPONSE/LARGE_N) >  
 ( 
 (GREG_&i/LARGE_N) + (&ALPHA**2)/(2*SMALL_d_str_N)  
 -  
 &ALPHA * sqrt( 
 (VAR_&VAR_TYPE._GREG_&i / LARGE_N**2) +(&ALPHA**2)/(4*(SMALL_d_str_N**2)) 
 ) 
 ) 
 / 
 (1+(&ALPHA**2)/SMALL_d_str_N) 
 THEN WILSON_GREG_COV_&i = 1; 
 ELSE WILSON_GREG_COV_&i = 0; 
 
 WILSON_GREG_LEN_&i =  
 ( 
 ( 
 (GREG_&i/LARGE_N) + (&ALPHA**2)/(2*SMALL_d_str_N)  
 +  
 &ALPHA * sqrt( 
 (VAR_&VAR_TYPE._GREG_&i / LARGE_N**2) +(&ALPHA**2)/(4*(SMALL_d_str_N**2)) 
 ) 
 ) 
 / 
 (1+(&ALPHA**2)/SMALL_d_str_N) 
 - 
 ( 
 (GREG_&i/LARGE_N) + (&ALPHA**2)/(2*SMALL_d_str_N)  
 -  
 &ALPHA * sqrt( 
 (VAR_&VAR_TYPE._GREG_&i / LARGE_N**2) +(&ALPHA**2)/(4*(SMALL_d_str_N**2)) 
 ) 
 ) 
 / 
 (1+(&ALPHA**2)/SMALL_d_str_N) 
 )*100 
 ; 
 
 %END; 
RUN; 
 
PROC SORT DATA=TEMP; 
 BY DOMAIN; 
RUN; 
 
%DO j=1 %TO &RESPONSENR; 
 %IF &j=1 %THEN %LET RESPONSE = &RESPONSE1; 
 %IF &j=2 %THEN %LET RESPONSE = &RESPONSE2; 
 %IF &j=3 %THEN %LET RESPONSE = &RESPONSE3; 
 %IF &j=4 %THEN %LET RESPONSE = &RESPONSE4; 
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 %IF &j=5 %THEN %LET RESPONSE = &RESPONSE5; 
 %IF &j=6 %THEN %LET RESPONSE = &RESPONSE6; 
 %IF &j=7 %THEN %LET RESPONSE = &RESPONSE7; 
 %IF &j=8 %THEN %LET RESPONSE = &RESPONSE8; 
 PROC MEANS DATA=TEMP NOPRINT; 
  VAR SMALL_d_str_N WALD_HT_COV_&RESPONSE WALD_HT_INC_&RESPONSE  
   WILSON_HT_COV_&RESPONSE TRUE_TOT_&RESPONSE 
P_TRUE_&RESPONSE; 
  BY DOMAIN; 
  OUTPUT OUT=TEMP_&RESPONSE 
  MEAN(SMALL_d_str_N) = SMALL_d_str_N 
  MEAN(WALD_HT_COV_&RESPONSE) = WALD_COV 
  MEAN(WALD_HT_INC_&RESPONSE) = WALD_INC 
  MEAN(WALD_HT_LEN_&RESPONSE) = WALD_LEN 
  MEAN(WILSON_HT_COV_&RESPONSE) = WILSON_COV 
  MEAN(WILSON_HT_LEN_&RESPONSE) = WILSON_LEN 
  MEAN(TRUE_TOT_&RESPONSE) = TRUE_TOT_VALUE 
  MEAN(P_TRUE_&RESPONSE) = TRUE_P_VALUE 
  ; 
 RUN; 
 DATA TEMP_&RESPONSE; 
  SET TEMP_&RESPONSE; 
  if SMALL_d_str_N <21 then DOMAINCLASS=1; 
  else if SMALL_d_str_N <41 then DOMAINCLASS=2; 
  else if SMALL_d_str_N <101 then DOMAINCLASS=3; 
  else if SMALL_d_str_N <350 then DOMAINCLASS=4; 
  else DOMAINCLASS=5; 
  RESPONSE="                  "; 
  RESPONSE="&RESPONSE"; 
  DEP=0; 
  TYPE="   "; 
  TYPE="HT"; 
 RUN; 
%END; 
 
DATA TEMP2 (KEEP = DOMAIN DOMAINCLASS RESPONSE DEP TYPE WALD_COV WALD_LEN 
   WALD_INC WILSON_COV WILSON_LEN TRUE_TOT_VALUE 
TRUE_P_VALUE); 
 SET  
 %DO j=1 %TO &RESPONSENR; 
 %IF &j=1 %THEN %LET RESPONSE = &RESPONSE1; 
 %IF &j=2 %THEN %LET RESPONSE = &RESPONSE2; 
 %IF &j=3 %THEN %LET RESPONSE = &RESPONSE3; 
 %IF &j=4 %THEN %LET RESPONSE = &RESPONSE4; 
 %IF &j=5 %THEN %LET RESPONSE = &RESPONSE5; 
 %IF &j=6 %THEN %LET RESPONSE = &RESPONSE6; 
 %IF &j=7 %THEN %LET RESPONSE = &RESPONSE7; 
 %IF &j=8 %THEN %LET RESPONSE = &RESPONSE8; 
 TEMP_&RESPONSE 
 %END; 
 ; 
RUN; 
 
%DO i=1 %TO &TOT_MODELS; 
 %IF &i>=1 AND &i <= %eval(&DEPENDENTNR*2*1)   
    %THEN %LET RESPONSE = &RESPONSE1; 
 %IF &i>=%eval(&DEPENDENTNR*2*1+1) AND &i<=%eval(&DEPENDENTNR*2*2)  %THEN %LET 
RESPONSE = &RESPONSE2; 
 %IF &i>=%eval(&DEPENDENTNR*2*2+1) AND &i<=%eval(&DEPENDENTNR*2*3)  %THEN %LET 
RESPONSE = &RESPONSE3; 
 %IF &i>=%eval(&DEPENDENTNR*2*3+1) AND &i<=%eval(&DEPENDENTNR*2*4)  %THEN %LET 
RESPONSE = &RESPONSE4; 
 %IF &i>=%eval(&DEPENDENTNR*2*4+1) AND &i<=%eval(&DEPENDENTNR*2*5)  %THEN %LET 
RESPONSE = &RESPONSE5; 
 %IF &i>=%eval(&DEPENDENTNR*2*5+1) AND &i<=%eval(&DEPENDENTNR*2*6)  %THEN %LET 
RESPONSE = &RESPONSE6; 
 %IF &i>=%eval(&DEPENDENTNR*2*6+1) AND &i<=%eval(&DEPENDENTNR*2*7)  %THEN %LET 
RESPONSE = &RESPONSE7; 
 %IF &i>=%eval(&DEPENDENTNR*2*7+1) AND &i<=%eval(&DEPENDENTNR*2*8)  %THEN %LET 
RESPONSE = &RESPONSE8; 
 PROC MEANS DATA=TEMP NOPRINT; 
  VAR SMALL_d_str_N WALD_GREG_COV_&i WALD_GREG_INC_&i 
WILSON_GREG_COV_&i  
   WALD_GREG_LEN_&i WILSON_GREG_LEN_&i 
TRUE_TOT_&RESPONSE P_TRUE_&RESPONSE; 
  BY DOMAIN; 
  OUTPUT OUT=TEMP_&i 
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  MEAN(SMALL_d_str_N) = SMALL_d_str_N 
  MEAN(WALD_GREG_COV_&i) = WALD_COV 
  MEAN(WALD_GREG_INC_&i) = WALD_INC 
  MEAN(WALD_GREG_LEN_&i) = WALD_LEN 
  MEAN(WILSON_GREG_COV_&i) = WILSON_COV 
  MEAN(WILSON_GREG_LEN_&i) = WILSON_LEN 
  MEAN(TRUE_TOT_&RESPONSE) = TRUE_TOT_VALUE 
  MEAN(P_TRUE_&RESPONSE) = TRUE_P_VALUE 
  ; 
 RUN; 
 DATA TEMP_&i; 
  SET TEMP_&i; 
  if SMALL_d_str_N <21 then DOMAINCLASS=1; 
  else if SMALL_d_str_N <41 then DOMAINCLASS=2; 
  else if SMALL_d_str_N <101 then DOMAINCLASS=3; 
  else if SMALL_d_str_N <350 then DOMAINCLASS=4; 
  else DOMAINCLASS=5; 
  MODELNR="  "; 
  MODELNR="&i"; 
 RUN; 
%END; 
 
DATA TEMP3 (KEEP = DOMAIN DOMAINCLASS MODELNR WALD_COV WALD_LEN WALD_INC  
   WILSON_COV WILSON_LEN TRUE_TOT_VALUE TRUE_P_VALUE); 
 SET  
 %DO i=1 %TO &TOT_MODELS; 
 TEMP_&i 
 %END; 
 ; 
RUN; 
 
PROC SORT DATA=TEMP3; 
 BY MODELNR; 
RUN; 
 
PROC SORT DATA=RESULTAT.MODELS; 
 BY MODELNR; 
RUN; 
 
DATA TEMP4 (DROP = DEPENDENT MODELNR);  
 MERGE TEMP3 RESULTAT.MODELS; 
 BY MODELNR; 
RUN; 
 
DATA TEMP5 ;  
 SET TEMP4 TEMP2; 
 IF TRUE_P_VALUE=0 THEN ZEROVALUE=1; 
 ELSE ZEROVALUE=0; 
 IF TRUE_P_VALUE=0 THEN TOTVALUE=0; 
 IF TRUE_P_VALUE<3 AND TRUE_P_VALUE>0 THEN TOTVALUE=1; 
 IF TRUE_P_VALUE>2 THEN TOTVALUE=2; 
RUN; 
 
DATA TEMP6 ;  
 SET TEMP5; 
 IF DOMAINCLASS>3 THEN DELETE; 
 IF RESPONSE='ROBBERY' OR RESPONSE='SEXUAL'; 
RUN; 
DATA TEMP7 ;  
 SET TEMP5; 
 IF DEP=2 OR DEP=3 THEN DELETE; 
 IF TYPE='LOG' THEN DELETE; 
RUN; 
 
%MEND; 
 

ANALYZE9.sas 
* ========== LIBNAMES ========== */ 
libname DATA 'H:\Måns\SAE\DATA'; 
libname RESULT1 'H:\Måns\SAE\RESULTAT_1_50'; 
libname RESULT2 'H:\Måns\SAE\RESULTAT_51_100'; 
libname RESULT3 'H:\Måns\SAE\RESULTAT_101_150'; 
libname RESULT4 'H:\Måns\SAE\RESULTAT_151_200'; 
libname RESULT5 'H:\Måns\SAE\RESULTAT_201_300'; 
libname RESULT6 'H:\Måns\SAE\RESULTAT_301_600'; 
libname RESULT7 'H:\Måns\SAE\RESULTAT_601_650'; 
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libname RESULT8 'H:\Måns\SAE\RESULTAT_651_750'; 
libname RESULT9 'H:\Måns\SAE\RESULTAT_751_850'; 
libname RESULT10 'H:\Måns\SAE\RESULTAT_851_1000'; 
libname RESULTAT 'H:\Måns\SAE\RESULTAT_ALL'; 
 
/* READING MACROS */ 
%include 'H:\Måns\SAE\KOD\MACROSANALYZE5.sas'; 
/* PUTTING ALL SIMULATION RESULTS TOGETHER AS ONE FILE */ 
DATA RESULTAT.ESTIMATES_COUNTY_ALL; 
 SET  
 RESULT1.Estimates_county_1_50 
 RESULT2.Estimates_county_51_100 
 RESULT3.Estimates_county_101_150 
 RESULT4.Estimates_county_151_200 
 RESULT5.Estimates_county_201_300 
 RESULT6.Estimates_county_301_600 
 RESULT7.Estimates_county_601_650 
 RESULT8.Estimates_county_651_750 
 RESULT9.Estimates_county_751_850 
 RESULT10.Estimates_county_851_1000 
 ; 
RUN; 
DATA RESULTAT.ESTIMATES_MUNICIPALITY_ALL; 
 SET  
 RESULT1.Estimates_municip_1_50 
 RESULT2.Estimates_municip_51_100 
 RESULT3.Estimates_municip_101_150 
 RESULT4.Estimates_municip_151_200 
 RESULT5.Estimates_municip_201_300 
 RESULT6.Estimates_municip_301_600 
 RESULT7.Estimates_municip_601_650 
 RESULT8.Estimates_municip_651_750 
 RESULT9.Estimates_municip_751_850 
 RESULT10.Estimates_municip_851_1000 
 ; 
RUN; 
DATA RESULTAT.Convergence_ALL; 
 SET  
 RESULT1.convergence 
 RESULT2.convergence 
 RESULT3.convergence 
 RESULT4.convergence 
 RESULT5.convergence 
 RESULT6.convergence 
 RESULT7.convergence 
 RESULT8.convergence 
 RESULT9.convergence 
 RESULT10.convergence 
 ; 
 IF Status=. THEN DELETE; 
RUN; 
DATA RESULTAT.SIMULINFO_ALL; 
 SET  
 RESULT1.SIMULINFO 
 RESULT2.SIMULINFO 
 RESULT3.SIMULINFO 
 RESULT4.SIMULINFO 
 RESULT5.SIMULINFO 
 RESULT6.SIMULINFO 
 RESULT7.SIMULINFO 
 RESULT8.SIMULINFO 
 RESULT9.SIMULINFO 
 RESULT10.SIMULINFO 
 ; 
 IF SIMULERING=0 THEN DELETE; 
RUN; 
DATA RESULTAT.MODELS; 
 SET  
 RESULT1.MODELS 
 ; 
 IF DEPENDENT =  
 'COUNTY SEX AGECLASS NON_NORDIC CIVIL_STATUS INCOMECLASS URBAN'  
 THEN DEP = 1; 
 ELSE IF DEPENDENT =  
 'MUNICIPALITY SEX AGECLASS NON_NORDIC CIVIL_STATUS INCOMECLASS URBAN'  
 THEN DEP = 3; 
 ELSE IF LENGTH(DEPENDENT) > 80 THEN DEP = 2; 
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 ELSE IF LENGTH(DEPENDENT) < 80 THEN DEP = 4; 
RUN; 
DATA RESULTAT.RESULTS_ALL (DROP = _TYPE_ _FREQ_); 
 set RESULTAT.ESTIMATES_COUNTY_ALL RESULTAT.ESTIMATES_MUNICIPALITY_ALL; 
 IF COUNTY =. THEN DOMAIN=MUNICIPALITY; 
 ELSE DOMAIN = COUNTY * 100; 
 if SMALL_d_str_N <21 then DOMAINCLASS=1; 
 else if SMALL_d_str_N <41 then DOMAINCLASS=2; 
 else if SMALL_d_str_N <101 then DOMAINCLASS=3; 
 else if SMALL_d_str_N <350 then DOMAINCLASS=4; 
 else DOMAINCLASS=5; 
 T=quantile('T',.975,SMALL_d_str_N); 
 Z=quantile('NORMAL',.975); 
RUN; 
PROC SORT DATA=RESULTAT.RESULTS_ALL; 
 BY DOMAIN; 
RUN; 
 
PROC FORMAT; 
 VALUE DOMAINCLASS  1 = '    -  20' 
      2 = ' 21 -  
40' 
      3 = ' 41 - 
100' 
      4 = '101 - 
349' 
      5 = '350 -    
' 
      ; 
 VALUE $TYPE  'LOG' = 'Logistic GREG' 
     'LIN' = 'Linear GREG' 
     'HT' = 'HT estimator' 
     ; 
 VALUE $RESPONSE 'ROBBERY' = 'Robbery' 
     'ASSAULT' = 'Assault' 
     'SEVERE_ASSAULT' = 'Severe 
assault' 
     'SEXUAL' = 'Sexual 
offences' 
     'THREAT' = 'Threat' 
     'FRAUD' = 'Fraud' 
     'HARASS' = 'Harassment' 
     'ANY' = 'Any crime against 
person' 
     ; 
 VALUE DEP  0 = 'None' 
     1 = 'Setup 1' 
     2 = 'Setup 2' 
     3 = 'Setup 3' 
     4 = 'Setup 4' 
     ; 
 VALUE ZEROVALUE  1 = '  0' 
      0 = '> 0' 
      ; 
RUN; 
/* ANALYZE THE PROPORTION OF DOMAINS THAT CAN BE ESTIMATED */ 
/* CREATES A DATASET PROP*/ 
%PROP 
PROC TABULATE DATA=TEMP; 
 CLASS DOMAINCLASS; 
 FORMAT DOMAINCLASS DOMAINCLASS.; 
 VAR Proportion; 
 TABLE DOMAINCLASS=''*Proportion='',(N='Number of domains'*FORMAT=2.0 
MEAN='Percent (%)'*FORMAT=5.1) 
 /BOX='Mean sample size in domain' ROW=FLOAT; 
 TITLE 'Percentage of domains where all strata have a sample size greater than 
1'; 
RUN; 
/* ANALYZE ZERO VAR HT-ESTIMATES */ 
/* TABULATE RESULTS*/ 
%VAR_HT_ZERO 
PROC TABULATE DATA=TEMP2; 
 CLASS CRIME DOMAINCLASS; 
 FORMAT DOMAINCLASS DOMAINCLASS. CRIME $RESPONSE.; 
 VAR HT_VAR_ZERO; 
 TABLE CRIME='', DOMAINCLASS='Mean sample size in 
domain'*HT_VAR_ZERO=''*MEAN=''*FORMAT=5.1 
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 /BOX='Type of experienced offence' ROW=FLOAT; 
 TITLE 'Percentage of Horwitz-Thompson variance estimate of zero'; 
RUN; 
PROC TABULATE DATA=RESULTAT.Convergence_all; 
 CLASS Status Model; 
 TABLE Model, Status 
 /BOX='Type of experienced offence' ROW=FLOAT; 
 TITLE 'Test'; 
RUN; 
/* ANALYZE NEGATIVE GREG-ESTIMATES */ 
%GREG_NEGATIVE 
 
PROC TABULATE DATA=TEMP3; 
 CLASS TYPE RESPONSE DEP DOMAINCLASS; 
 FORMAT  
  DOMAINCLASS DOMAINCLASS.  
  RESPONSE $RESPONSE. 
  DEP DEP. 
  TYPE $TYPE. 
  ; 
 VAR NEGATIVE_GREG; 
 TABLE DOMAINCLASS='Mean sample size in domain'*DEP='Auxiliary 
variables'*TYPE='Estimator type',  
 MEAN=''*NEGATIVE_GREG=''*RESPONSE=''*FORMAT=5.1 
 /ROW=FLOAT; 
 TITLE 'Percentage of Negative GREG estimates'; 
RUN; 
 
/* ANALYZE AVERAGE BIAS AND RMSE */ 
%AB_RMSE 
PROC TABULATE DATA=TEMP5; 
 CLASS TYPE RESPONSE DEP DOMAINCLASS; 
 FORMAT  
  DOMAINCLASS DOMAINCLASS.  
  RESPONSE $RESPONSE. 
  DEP DEP. 
  TYPE $TYPE. 
  ; 
 VAR AB; 
 TABLE DOMAINCLASS='Mean sample size in domain'*DEP='Auxiliary 
variables'*TYPE='Estimator type',  
 MEAN=''*AB=''*RESPONSE=''*FORMAT=5.3 
 /ROW=FLOAT; 
 TITLE 'Average Bias (AB)'; 
RUN; 
PROC TABULATE DATA=TEMP5; 
 CLASS TYPE RESPONSE DEP DOMAINCLASS; 
 FORMAT  
  DOMAINCLASS DOMAINCLASS.  
  RESPONSE $RESPONSE. 
  DEP DEP. 
  TYPE $TYPE. 
  ; 
 VAR RMSE; 
 TABLE DOMAINCLASS='Mean sample size in domain'*DEP='Auxiliary 
variables'*TYPE='Estimator type',  
 MEAN=''*RMSE=''*RESPONSE=''*FORMAT=5.3 
 /ROW=FLOAT; 
 TITLE 'Root mean squared error (RMSE)'; 
RUN; 
PROC TABULATE DATA=TEMP_DEP3; 
 CLASS RESPONSE DOMAINCLASS; 
 FORMAT  
  DOMAINCLASS DOMAINCLASS.  
  RESPONSE $RESPONSE. 
  ; 
 VAR PROP_DIFF; 
 TABLE DOMAINCLASS='Mean sample size in domain' ALL,  
 MEAN=''*PROP_DIFF=''*RESPONSE=''*FORMAT=5.3  
 /ROW=FLOAT; 
 TITLE 'Proportional difference in RMSE between GREG (linear) Setup 1 and GREG 
(linear) Setup 4'; 
RUN; 
 
/* ANALYZE DIFFERENCE BETWEEN VAR_P AND VAR_U */ 
%VAR_P_U 
PROC TABULATE DATA=TEMP3; 
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 CLASS TYPE RESPONSE DEP DOMAINCLASS; 
 FORMAT  
  DOMAINCLASS DOMAINCLASS.  
  RESPONSE $RESPONSE. 
  DEP DEP. 
  TYPE $TYPE. 
  ; 
 VAR DIFF_VAR; 
 TABLE DOMAINCLASS='Mean sample size in domain'*DEP='Auxiliary 
variables'*TYPE='Estimator type',  
 MEAN=''*DIFF_VAR=''*RESPONSE=''*FORMAT=5.1 
 /ROW=FLOAT; 
 TITLE 'Proportional difference between planned domain variance and unplanned 
domain variance'; 
RUN; 
 
 
/* ANALYZE INTERVAL COVERAGE AND INCORRECT INTERVALS */ 
/* WHICH VARIANCE TO USE IN CALCULATIONS P=Planned U=Unplanned:*/ 
%include 'H:\Måns\SAE\KOD\MACROSANALYZE5.sas'; 
%LET VAR_TYPE=P; 
/* Correct negative GREG estimates to zero 1=YES, 0=No:*/ 
%LET NEG_CORRECT=1; 
/* DISTRIBUTION IN INTERVAL ESTIMATES: T o (T) or Z (Normal)*/ 
%LET ALPHA=T; 
 
%INTERVAL 
PROC TABULATE DATA=TEMP5; 
 CLASS TYPE RESPONSE DEP DOMAINCLASS; 
 FORMAT  
  DOMAINCLASS DOMAINCLASS.  
  RESPONSE $RESPONSE. 
  DEP DEP. 
  TYPE $TYPE. 
  ; 
 VAR WALD_COV; 
 TABLE DOMAINCLASS='Mean sample size in domain'*DEP='Auxiliary 
variables'*TYPE='Estimator type',  
 MEAN=''*WALD_COV=''*RESPONSE=''*FORMAT=5.3 
 /ROW=FLOAT; 
 TITLE 'Wald interval coverage percentage (95%, z=1.96)'; 
RUN; 
PROC TABULATE DATA=TEMP5; 
 CLASS TYPE RESPONSE DEP DOMAINCLASS; 
 FORMAT  
  DOMAINCLASS DOMAINCLASS.  
  RESPONSE $RESPONSE. 
  DEP DEP. 
  TYPE $TYPE. 
  ; 
 VAR WALD_INC; 
 TABLE DOMAINCLASS='Mean sample size in domain'*DEP='Auxiliary 
variables'*TYPE='Estimator type',  
 MEAN=''*WALD_INC=''*RESPONSE=''*FORMAT=5.3 
 /ROW=FLOAT; 
 TITLE 'Wald incorrect interval percentage (incudes negative values)'; 
RUN; 
PROC TABULATE DATA=TEMP5; 
 CLASS TYPE RESPONSE DEP DOMAINCLASS; 
 FORMAT  
  DOMAINCLASS DOMAINCLASS.  
  RESPONSE $RESPONSE. 
  DEP DEP. 
  TYPE $TYPE. 
  ; 
 VAR WILSON_COV; 
 TABLE DOMAINCLASS='Mean sample size in domain'*DEP='Auxiliary 
variables'*TYPE='Estimator type',  
 MEAN=''*WILSON_COV=''*RESPONSE=''*FORMAT=5.3 
 /ROW=FLOAT; 
 TITLE 'Wilson coverage percentage (95%)'; 
RUN; 
PROC TABULATE DATA=TEMP6; 
 CLASS TYPE RESPONSE DEP DOMAINCLASS TOT_VALUE; 
 FORMAT  
  DOMAINCLASS DOMAINCLASS.  
  RESPONSE $RESPONSE. 



 74

  DEP DEP. 
  TYPE $TYPE. 
  ; 
 VAR WILSON_COV; 
 TABLE DOMAINCLASS='Mean sample size in domain'*DEP='Auxiliary 
variables'*TYPE='Estimator type',  
 MEAN=''*WILSON_COV=''*RESPONSE=''*TOT_VALUE='True value in 
population'*FORMAT=5.3 
 /ROW=FLOAT MISSTEXT='*'; 
 TITLE 'Wilson coverage for more rare events (95%)'; 
RUN; 
PROC TABULATE DATA=TEMP7; 
 CLASS TYPE RESPONSE DEP DOMAINCLASS ; 
 FORMAT  
  DOMAINCLASS DOMAINCLASS.  
  RESPONSE $RESPONSE. 
  DEP DEP. 
  TYPE $TYPE. 
  ZEROVALUE ZEROVALUE. 
  ; 
 VAR WILSON_LEN WALD_LEN; 
 TABLE DOMAINCLASS='Mean sample size in domain'*DEP='Auxiliary 
variables'*TYPE='Estimator type',  
 MEAN=''*RESPONSE=''*(WILSON_LEN='Wilson' WALD_LEN='Wald')*FORMAT=5.1 
 /ROW=FLOAT MISSTEXT='*'; 
 TITLE 'Interval lengths'; 
RUN; 
 
 
/* FREQUENCIES IN POPULATION */ 
PROC SORT DATA=DATA.POPULATION; 
 BY COUNTY; 
RUN; 
PROC MEANS DATA=DATA.POPULATION NOPRINT; 
 VAR  
 ALL_OFF_REP_COUNTY  
 ROBBERY_REP_COUNTY 
 ASSAULT_REP_COUNTY 
 SEXUAL_REP_COUNTY 
  THREAT_REP_COUNTY 
  FRAUD_REP_COUNTY 
  HARASS_REP_COUNTY 
  ANY_REP_COUNTY 
 ROBBERY  
 ASSAULT 
 SEVERE_ASSAULT 
 SEXUAL 
 THREAT 
 FRAUD 
 HARASS 
 ANY 
 SEX  
 CIVIL_STATUS 
 AGECLASS  
 INCOMECLASS  
 COUNTY; 
 BY COUNTY; 
 OUTPUT OUT=DATA.COUNTY_TRUE_VALUES 
 MEAN(ALL_OFF_REP_COUNTY ) = ALL_OFF_REP_COUNTY  
 MEAN(ROBBERY_REP_COUNTY) = ROBBERY_REP_COUNTY 
 MEAN(ASSAULT_REP_COUNTY) = ASSAULT_REP_COUNTY 
 MEAN(SEXUAL_REP_COUNTY) = SEXUAL_REP_COUNTY 
 MEAN(THREAT_REP_COUNTY) = THREAT_REP_COUNTY 
 MEAN(FRAUD_REP_COUNTY) = FRAUD_REP_COUNTY 
 MEAN(HARASS_REP_COUNTY) = HARASS_REP_COUNTY 
 MEAN(ANY_REP_COUNTY) = ANY_REP_COUNTY 
 MEAN(ROBBERY ) = ROBBERY  
 MEAN(ASSAULT) = ASSAULT 
 MEAN(SEVERE_ASSAULT) = SEVERE_ASSAULT 
 MEAN(SEXUAL) = SEXUAL 
 MEAN(THREAT) = THREAT 
 MEAN(FRAUD) = FRAUD 
 MEAN(HARASS) = HARASS 
 MEAN(ANY) = ANY 
 ; 
RUN; 
PROC MEANS DATA=DATA.COUNTY_TRUE_VALUES; 
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 VAR  
 ALL_OFF_REP_COUNTY  
 ROBBERY_REP_COUNTY 
 ASSAULT_REP_COUNTY 
 SEXUAL_REP_COUNTY 
  THREAT_REP_COUNTY 
  FRAUD_REP_COUNTY 
  HARASS_REP_COUNTY 
  ANY_REP_COUNTY 
 ROBBERY  
 ASSAULT 
 SEVERE_ASSAULT 
 SEXUAL 
 THREAT 
 FRAUD 
 HARASS 
 ANY; 
RUN; 
PROC SORT DATA=DATA.POPULATION; 
 BY MUNICIPALITY; 
RUN; 
PROC MEANS DATA=DATA.POPULATION NOPRINT; 
 VAR  
 ALL_OFF_REP_MUNICIPALITY  
 ROBBERY_REP_MUNICIPALITY 
 ASSAULT_REP_MUNICIPALITY 
 SEXUAL_REP_MUNICIPALITY 
  THREAT_REP_MUNICIPALITY 
  FRAUD_REP_MUNICIPALITY 
  HARASS_REP_MUNICIPALITY 
  ANY_REP_MUNICIPALITY 
 ROBBERY  
 ASSAULT 
 SEVERE_ASSAULT 
 SEXUAL 
 THREAT 
 FRAUD 
 HARASS 
 ANY 
 SEX  
 CIVIL_STATUS 
 AGECLASS  
 INCOMECLASS  
 MUNICIPALITY; 
 BY MUNICIPALITY; 
 OUTPUT OUT=DATA.MUNICIPALITY_TRUE_VALUES 
 MEAN(ALL_OFF_REP_MUNICIPALITY ) = ALL_OFF_REP_MUNICIPALITY  
 MEAN(ROBBERY_REP_MUNICIPALITY) = ROBBERY_REP_MUNICIPALITY 
 MEAN(ASSAULT_REP_MUNICIPALITY) = ASSAULT_REP_MUNICIPALITY 
 MEAN(SEXUAL_REP_MUNICIPALITY) = SEXUAL_REP_MUNICIPALITY 
 MEAN(THREAT_REP_MUNICIPALITY) = THREAT_REP_MUNICIPALITY 
 MEAN(FRAUD_REP_MUNICIPALITY) = FRAUD_REP_MUNICIPALITY 
 MEAN(HARASS_REP_MUNICIPALITY) = HARASS_REP_MUNICIPALITY 
 MEAN(ANY_REP_MUNICIPALITY) = ANY_REP_MUNICIPALITY 
 MEAN(ROBBERY ) = ROBBERY  
 MEAN(ASSAULT) = ASSAULT 
 MEAN(SEVERE_ASSAULT) = SEVERE_ASSAULT 
 MEAN(SEXUAL) = SEXUAL 
 MEAN(THREAT) = THREAT 
 MEAN(FRAUD) = FRAUD 
 MEAN(HARASS) = HARASS 
 MEAN(ANY) = ANY 
 ; 
RUN; 
PROC MEANS DATA=DATA.MUNICIPALITY_TRUE_VALUES; 
 VAR  
 ALL_OFF_REP_MUNICIPALITY  
 ROBBERY_REP_MUNICIPALITY 
 ASSAULT_REP_MUNICIPALITY 
 SEXUAL_REP_MUNICIPALITY 
  THREAT_REP_MUNICIPALITY 
  FRAUD_REP_MUNICIPALITY 
  HARASS_REP_MUNICIPALITY 
  ANY_REP_MUNICIPALITY 
 ROBBERY  
 ASSAULT 
 SEVERE_ASSAULT 
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 SEXUAL 
 THREAT 
 FRAUD 
 HARASS 
 ANY; 
RUN; 
PROC MEANS DATA=DATA.POPULATION; 
 VAR  
 ROBBERY_REPORT 
 ASSAULT_REPORT 
 SEVERE_ASSAULT_REPORT 
 SEXUAL_REPORT 
  THREAT_REPORT 
  FRAUD_REPORT 
  HARASS_REPORT 
  ANY_REPORT 
 ROBBERY  
 ASSAULT 
 SEVERE_ASSAULT 
 SEXUAL 
 THREAT 
 FRAUD 
 HARASS 
 ANY; 
RUN; 
PROC FREQ DATA=DATA.POPULATION; 
 table (SEX CIVIL_STATUS AGECLASS INCOMECLASS NON_NORDIC URBAN) / NOCOL NOCUM; 
RUN; 


