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Abstract

Parameter matrices which are only uniquely identi…ed up to arbitrary
linear combinations of their columns occur frequently in multivariate anal-
ysis, e.g. the matrix of factor loadings in the common factor model. This
note discusses how this special feature of the model a¤ects the choice of
summarizing measures for distributions of such matrices and new measures
of location and variation are proposed. Possible applications include the
reporting of a Bayesian posterior distribution of the loading matrix in fac-
tor analysis and the construction of new estimators based on the likelihood
function.
Keywords: Bayesian inference, Factor analysis, Cointegration, Infer-

ence reporting.

1. Introduction

Many models in multivariate analysis contain parameter matrices for which only
the space spanned by their columns, the column space, is identi…ed; that is, two
di¤erent parameter matrices with the same column space give identical prob-
ability distributions for the observed data. Two well-known examples of this
non-identi…cation are the matrix of loadings in factor analysis (Anderson, 1984)
and the matrix of long run relations in cointegration analysis in econometrics
(Johansen, 1995). This indeterminateness is resolved in the estimation phase by
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restricting some of the parameters so that every possible column space corresponds
to a unique set of parameter values.
Recent developments in computing technology and numerical algorithms have

made Bayesian inference in complex multivariate models practically feasible and
the bene…ts from such an approach are becoming widely acknowledged, see e.g.
Arminger and Muthén (1998) for a recent contribution. The basic output from
a Bayesian approach is the posterior distribution of all unknown parameters con-
ditional on the observed data. This distribution is often summarized by a few
low-dimensional quantities, e.g. the mean, mode or median for location, and the
variance or interquartile range for spread. This note discusses how the aforemen-
tioned non-identi…cation introduces special considerations for the summarizing
quantities of the posterior distribution and new measures of location and varia-
tion are proposed.
Although our results are likely to …nd most of their applications within the

realm of Bayesian statistics, non-Bayesians may …nd something of interest here
too, e.g. those who prefer to base their inferences directly on the likelihood
function, as the posterior distribution under uniform priors is simply the likelihood
normalized to a density. This opens up the possibility to use other summarizing
measures of the likelihood function than the usual mode and Hessian matrix.

2. The basic indeterminacy

As an example of a model where only the space spanned by parameter vectors is
determinable, consider the common factor model (Anderson, 1984)

x = ¤f + ²; (2.1)

where x is a p-dimensional (column) vector of observed measurements, f is a m-
dimensional vector of latent, unobservable, factors, ¤ is p £ m matrix of factor
loadings and ² is a p-dimensional vector of unique errors. The indeterminacy of
model (2.1) is easily demonstrated by introducing an arbitrary non-singularm£m
matrix C in the following manner

¤f = ¤CC¡1f = ¤¤f ¤; (2.2)

where ¤¤ = ¤C and f¤ = C¡1f . From the likelihood function of model (2.1), it is
easily seen that (2.2) implies that data are only informative regarding the column
space of ¤ (sp¤), i.e. we cannot distinguish between di¤erent matrices within
this subspace.
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Other examples of models where only spaces spanned by parameter matrices
can be determined are the reduced rank regression (Anderson, 1951), simultane-
ous equations models (Anderson, 1984) and the immensely popular cointegration
models in time series econometrics (Johansen, 1995).

3. The choice of metric

To get a clear picture of why the usual summarizing measures are doubtful to use if
only the column space of a matrix can be determined, consider the common factor
model with two observable variables (p = 2) as indicators of a single common
factor (m = 1). In this model, the matrix of factor loadings in (2.1) is a two-
dimensional vector ¤ = (¸1; ¸2)0 and the indeterminacy described in section 2
means that only the line spanned by¤ inR2 can be uniquely determined. Another
way of saying this is that only the ratio ¸1=¸2 is estimable, ¸1 and ¸2 cannot be
individually estimated from data. Let us use the restriction ¸1 = 1 to identify ¤,
any other restriction leads to similar results.
The usual way to obtain a location estimate for ¤ is by inserting the mean

or median of ¸2 into ¤ = (1; ¸2)0, see e.g. Arminger and Muthén (1998). This
practice ignores the fact that only the line spanned by ¤ is determinable. As
an example, the location estimate based on the two vectors (1; ·)0 and (1;¡·)0 is
(1; 0)0, for any value of ·, both when the mean and median are used (using the
usual convention for the median). But sp (1; ·)0 and sp (1;¡·)0 both approach
sp (0; 1)0, as · ! 1, and (0; 1)0 would therefore be a more acceptable measure
of location for large ·. In addition, if a uniform prior distribution is used for
¸2, the mean of ¸2 does not even exist for certain models, see Kleibergen and
van Dijk (1994) and Bauwens and Lubrano (1996) for proofs of this statement in
cointegration models.
The odd behavior of the mean and median estimator is caused by their implicit

reliance on the Euclidean metric, which is inappropriate as a distance measure be-
tween spaces. To this latter point clearly, consider the Euclidean distance between
the spaces spanned by two vectors of unit length, ¤1 and ¤2. Let µ (0 · µ < ¼)
denote the angle between ¤1 and ¤2. It is easily shown that

m2(¤1;¤2) = 2(1¡ cos µ);
where m(¤1;¤2) = (tr [(¤1¡¤2)0(¤1¡¤2)])1=2 is the usual Euclidean metric for
matrices. m(¤1;¤2) is thus strictly increasing in µ and attains its maximum as
µ ! ¼, which is absurd since then sp¤1 ! sp¤2.
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In order to de…ne sensible summaries of the posterior distribution, the struc-
ture of the set of allowable parameters must be carefully examined and a suitable
metric over this set chosen. Since only the column space of ¤ is unique, ¤ be-
longs to a smaller space than the space of all real p£m dimensional matrices. The
space of ¤ is the space of all m-dimensional subspaces of Rp, or the Grassman
manifold (James, 1954). The relevant aspect to measure is therefore the distance
between subspaces rather than the distance between the elements of the matrices
themselves.
A distance measure between two subspaces sp¤1 and sp¤2 is described in

Larsson and Villani (2000). This metric is the Frobenius norm (kAkF = tr(A0A)1=2)
of ¤01?¤2, i.e.

d(¤1;¤2) = tr(¤
0
2¤1?¤

0
1?¤2)

1=2; (3.1)

where all involved matrices have been made orthonormal and ¤1? denotes the
orthonormal complement of ¤1. The idea is that if the norm of ¤01?¤2 is large
then sp¤2 is close to sp¤1? and therefore far from sp¤1. In the special case
where ¤1 and ¤2 are vectors, it is easily seen (Larsson and Villani, 2000) that

d(¤1;¤2) = sin µ;

where µ is the angle between ¤1 and ¤2. Thus, d(¤1;¤2) approaches zero when
µ approaches either zero or ¼, i.e. when sp¤1 ! sp¤2.

4. Location and variation measures

4.1. Location measure

The metric in (3.1) can be used to de…ne an alternative location measure. For
this purpose, note the following characterization of the expected value of ¤

¹¤ =argmin
~¤
E
h
m2(¤; ~¤)

i
; (4.1)

where E(¢) refers to the distribution of ¤. By analogy with (4.1), we propose the
following location measure for sp¤.

De…nition 4.1. The span location measure is de…ned as

¤̂
def
= argmin

~¤
E
h
d2(¤; ~¤)

i
: (4.2)

4



Note that, as the metric in (3.1) is de…ned for orthonormal matrices, ¤̂ is
necessarily orthonormal. A more interpretable location measure can of course be
obtained by a simple rotation of ¤̂.
We have the following result.

Theorem 4.2.

¤̂ = (v1; :::;vm);

where vi is the eigenvector of E(¤¤0) corresponding to the ith largest eigenvalue.

Proof. Using that ¤¤0 +¤?¤0? = Ip (Johansen, 1995), we can write

d(¤; ~¤) =[m¡ tr(~¤0¤¤0~¤)]1=2:

Thus,

¤̂
def
= argmin

~¤
E
h
d2(¤; ~¤)

i
= argmax

~¤
E
h
tr(~¤0¤¤0~¤)

i
= argmax

~¤
tr
h
~¤0E(¤¤0)~¤

i
:

(4.3)
>From Lütkepohl (1991, Section A.14, Proposition A.4), the minimum is reached
for ¤̂ = (v1; :::;vm).

A closed form expression for E(¤¤0) may not be available, but a numerical
approximation may be used in its place. For example, importance sampling (Kloek
and van Dijk, 1978) or the Gibbs sampler (Tierney, 1994) can be used to generate
N draws from the distribution of ¤, denoted by ¤(1); :::;¤(N). These generated
matrices can subsequently be made orthonormal and the following well-known
result (Tierney, 1994) can be used to estimate E(¤¤0)

1

N

NX
i=1

¤(i)¤(i)0 a:s:! E(¤¤0);

where ¤(i) denotes the ith sampled matrix after the transformation to orthonor-
mality and a:s:! denotes almost sure convergence.
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4.2. Variation measures

Although the variances of the free coe¢cients in ¤ are often easily computed
numerically by sampling from the distribution of ¤, they may be of little help
in assessing the variation of sp¤, at least for weakly informative distributions of
sp¤.
A quite di¤erent measure of variation suggests itself from Theorem 4.2. Let

l1; :::; lp denote the eigenvalues of E(¤¤0) in descending order. Since li measures
the variation of sp¤ in the direction determined by vi, l1; :::; lm can be used to
assess the uncertainty regarding sp¤.
A natural suggestion for an overall measure of variation of sp¤ based on the

d(¢; ¢) metric is given in the following de…nition.

De…nition 4.3. The overall span variation measure is de…ned as

¿2sp¤
def
=
E
h
d2(¤; ¤̂)

i
m(p¡m)=p ;

where ¤̂ was de…ned in De…nition 4.1.

Theorem 4.4.

0 · ¿2sp¤ · 1.

Proof. The non-negativity of ¿2sp¤ follows directly from De…nition 4.3 and the
non-negativity of the d-metric. To obtain the upper bound of ¿ 2sp¤, Proposition
A.4 in Lütkepohl (1991, Section A.14) can be used to show that ¿2sp¤ can be
written

¿2sp¤ =
m¡Pm

i=1 li
m(p¡m)=p; (4.4)

where li is the ith largest eigenvalue of E(¤¤0). Note also that

pX
i=1

li = tr[E(¤¤
0)] = E[tr(¤¤0)] = E[tr(¤0¤)] = E[tr(Im)] = m:

It is easy to see that
li =

m

p
, for i = 1; :::;m:
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minimizes
Pm
i=1 li subject to the ordering constraint and the constraint

Pp
i=1 li =

m. Thus, from (4.4),

max ¿2sp¤ =
m¡Pm

i=1m=p

m(p¡m)=p = 1:

Note that (4.4) in the proof of Theorem 4.4 can be used to compute ¿ 2sp¤
e¢ciently.

5. Concluding remarks

This note has introduced summary measures for the distribution of matrices for
which only the column space is uniquely determined. We have shown that the
usual mean or median estimators of such matrices may behave badly.
The mode, on the other hand, does not su¤er from the same di¢culties. The

mean is usually preferred over the mode, however, and the location measure de-
…ned here can be seen as a mean estimator based on a more appropriate metric
than the Euclidean metric. Indeed, in a small simulation study in Villani (2000)
our location estimator (applied to the normalized likelihood) was up to 30-35%
more e¢cient than the maximum likelihood estimator for some parameter values
and never more than 5-6% less e¢cient for any parameter value.
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