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Abstract

The snowball sampling procedure is considered to estimate the size
of small hidden populations. Previous work in this area have been
based on models where the probability of relations is the same across
all pairs of members in the network. Here, we use a more general block-
model which allows a richer probabilistic structure. Bayesian methods
are employed and the posterior distribution of the size of the popula-
tion is easily computed analytically if the block labels are known. If
the block labels are unknown or latent, the posterior distribution is
computed by the Gibbs sampler algorithm. The Gibbs sampler also
provides us with the posterior distributions of other model parameters
without any additional di¢culty.
Keywords: Bayesian analysis; Hidden population; Network sam-

pling; Random graphs; Stochastic blockmodels.

1 Introduction
In studies where the purpose is to estimate features in so called hidden human
populations, standard probability sampling designs will lead to ine¢cient es-
timates if the samples are of moderate size. Often however, contact patterns
between members of the population exists, which facilitates for more e¤ec-
tive procedures to collect data. Such procedures are link-tracing sampling
designs, which means that social links are followed from one respondent to
another to obtain a sample.
We shall consider a link-tracing procedure in which individuals in an

initial sample are asked to identify acquaintances, who in turn were asked
to identify acquaintances, and so on for a …xed number of stages or waves.
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The procedure was termed snowball sampling by Goodman (1961). Various
statistical methods for snowball samples are investigated by Frank (1979),
Snijders (1992), Frank and Snijders (1994), Thompson and Frank (2000) and
Spreen and Coumans (2001). Two papers addressing snowball sampling from
a Bayesian viewpoint are given by Chow and Thompson (1999) and Tallberg
(2003). An overview of link-tracing designs and further references to the
literature on the subject is provided in Spreen (1992).
The motivation for this paper is that the models proposed in those articles

fail to yield accurate inferences if members of the population have markedly
di¤erent contact patterns. For example, a non-representative large propor-
tion of members with particularly rich contact structure in the sample can
lead to serious overestimation of the population size. The goal of this paper is
to propose inference methods that consider di¤erent contact patterns among
the members, which should yield more e¤ective estimators.
The concept, where members with similar contact patterns and relational

features in a population are partitioned into the same groups or blocks, is
in the social network literature described as blockmodels. The members and
their relational structure can be represented by graphs, where the members
are referred to as vertices or actors and the relations are referred to as arcs.
By assuming a random graph, we shall consider stochastic blockmodels which
implies that members with the same probabilistic relational structures to the
other actors in the graph, are partitioned into the same blocks. Papers de-
scribing various aspects of blockmodels include White, Boorman and Breiger
(1976), Fienberg and Wasserman (1981), Holland, Laskey and Leinhardt
(1983) and Wasserman and Anderson (1987) to mention a few. Blockmodels
may also be used to model the important concept of centrality by de…ning
the block consisting of members with the largest probability to generate re-
lations as central. Contributions to the centrality concept, are works given
by Beauchamp (1965), Höivik and Gleditsch (1975), Freeman (1977, 1979),
Nieminen (1974), Snijders (1981) and Frank (2002) among others. For a
more basic clari…cation on blockmodels, centrality and other social network
concepts, the reader is referred to Wasserman and Faust (1994).
The Bayesian approach to analyze data has seen an upsurge in popularity

in recent years, including the …eld of social networks. Snijders and Nowicki
(1997) and Nowicki and Snijders (2001) use a Bayesian approach to block-
models, where the probability of a relation between two actors depends only
on the blocks to which the actors belong but is independent of the actors.
In their setting the population size is known and the aim is to predict block
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a¢liation, whereas here the size is unknown and the focus of attention.

2 Blockmodels and concepts of snowball sam-
pling

We shall follow the notation outlined in Frank and Snijders (1994). Consider
a directed graph on the vertex set V = f1; 2; :::; vg, and let V 2 denote the set
of all ordered pairs (u; w) from V . By denoting the adjacency matrix y, each
entry yuw; (u;w) 2 V 2 takes the value 1 if an arc is present from u to w and
0 otherwise. The diagonal entries of y are equal to 1. We assume that V is
partitioned into c mutually exclusive non-empty vertex subsets V1; V2; :::; Vc
called blocks, where jVjj = vj ; j = 1; :::; c and v = v1 + ::: + vc. Let zu be
the block label of actor u. Conditional on all z1; :::; zv, the elements yuw for
u 6= w are independent random variables with probability

Pr (yuw = 1 jz1; :::; zv ) = Pr (yuw = 1 jzu; zw ) = ¯zu;zw :
Thus, by conditioning on block a¢liations, the arcs occur independently,
and the probability of an arc from vertex u to vertex w depends on the block
labels zu and zw only.
The snowball sample S µ V consists of an initial sample S0 µ V selected

by some adequate design and q waves S1; :::; Sq µ V following the initial
sample. Here, we restrict ourselves to only one wave after the initial sample.
Since we assume a blockmodel, the initial sample is partitioned into c blocks
denoted by S01 = S0 \ V1; S02 = S0 \ V2; :::; S0c = S0 \ Vc, where jS0jj = nj
and n = jS0j = n1 + n2 + ::: + nc is the total size of the initial sample.
Further, the …rst wave S1 is analogously partitioned into c blocks denoted
by S11 = S1 \ V1; S12 = S1 \ V2; :::; S1c = S1 \ Vc, where jS1jj = mj and
m = jS1j = m1 +m2 + :::+mc is the total size of the …rst wave.
The subset of vertices that are adjacent from vertex w is denoted by

Aw = fu 2 V : ywu = 1g, and given by row w of y. The size of Aw, jAwj, is
called the out-degree and is denoted by aw. If we by

A (S) =
[
w2S

Aw

denote the subset of vertices adjacent from vertices in S, the …rst wave of
the snowball sample is given by S1 = A (S0) \ ¹S0. The one-wave snowball
initiated by S0 is then given by S0 [ S1.
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3 A Bernoulli snowball sampling design
Let V0 be a vertex subset constituting vertices known through some register
governed by some action of V0. In the context of estimating the number of
drug users in a city, the register is self-generated by members that are clients
at aid agencies.
The unknown process, not controlled by the investigator, performing the

selection of the registered clients is modeled by Bernoulli sampling, which
means that each client is drawn independently from the population with
equal but unknown probability ¼. Thus, the size of the registered part of the
population v0jv; ¼ » bin (v; ¼). Since a frame of V0 exists, random sampling
procedures can be designed exclusively on this set at the initial sampling
stage. Like in Tallberg (2003), we let the initial sample S0 be a simple
random sample of size n = jS0j drawn without replacement from V0. In the
sequel we shall for notational simplicity restrict ourselves to a model with
only two blocks.
We shall consider the population V as a realization of some super popula-

tion, and therefore incorporate a probability denoted by µ, where z1; :::; zv
iid»

Bernoulli (µ) and hence, v1 jv; µ »bin(v; µ).
We will assume that the arcs are independent identically distributed

Bernoulli variables with probability 1 on the diagonal (yuu) and with prob-
ability ¯zu;zw elsewhere, for zu; zw 2 f1; 2g. The blocks are labeled so that
¯11 > ¯22. Usually we assume ¯11 > ¯22. If ¯11 = ¯22, then we label the
blocks so that ¯12 > ¯21. Let y (S0i; S0j) = rij be the number of nonloop
arcs from block i to block j in the initial sample and y (S0i; S1j) = sij the
number of arcs from block i in the initial sample to block j in the …rst wave
of the snowball, where the total number of arcs in S0, and from S0 to S1 are
given by y (S0; S0) = r and y (S0; S1) = s, respectively. Hence, conditionally
on S0, each rij » bin

¡
nij ; ¯ij

¢
and each sij » bin

©
ni (vj ¡ nj) ; ¯ij

ª
, where

nij =

½
ni (ni ¡ 1) for i = j
ninj for i 6= j :

For j = 1; 2; k = 0; :::; n1 and l = 0; :::; n2, de…ne mjkl to be the number
of individuals in ¹S0 \Vj that are mentioned by exactly k members of S0 \V1
and l members in S0 \ V2. Then

n1X
k=0

n2X
l=0

mjkl = mj00 +mj;
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where mj = jS1jj and mj00 =
¯̄
¹S0 \ ¹S1 \ Vj

¯̄
= vj ¡ nj ¡mj. De…ne further

the (n1 + 1) (n2 + 1)¡ 1 vectors

mj=(mj01; :::;mj0n2 ;mj10; :::;mj1n2 ; :::;mjn10; :::;mjn1n2) , for j = 1; 2:

It is easy to see that m1 and m2 are independent and that

mj » multinomial (vj ¡ nj;pj) ;

where pj is a f(n1 + 1) (n2 + 1)¡ 1g-dimensional vector with elements

pjkl =

µ
n1
k

¶
¯k1j
¡
1¡ ¯1j

¢n1¡kµn2
l

¶
¯l2j
¡
1¡ ¯2j

¢n2¡l :
Let r = (r11; r12; r21; r22) be a vector of arc frequencies, ¯ =(¯11; ¯12; ¯21; ¯22)
a vector of arc probabilities and m =(m1;m2).
As r and m are independent conditional on¼; µ;¯;v1 and v the likelihood

function for the case of known blocks can be written

p (r;m; v0; z j¼; µ;¯;v1; v ) = p (r jm; v0; z;¼; µ;¯;v1; v ) p (m jv0; z;¼; µ;¯;v1; v )
£p (v0 jz;¼; µ;¯;v1; v ) p (z j¼; µ;¯;v1; v )

= p (rjv0;¯;v1; v) p (mjv0;¯;v1; v) p (v0j¼; v) p (zjv1; v) ;

where z is a n +m vector of known block labels for the vertices in S0 [ S1,
and we have used that ¼ and µ provides no additional information about r,
m and z conditional on v0; v1 and v. The distribution of z is computed with
the hypergeometric formula as

p (z jv1; v ) =
¡

v1
n1+m1

¢¡
v2

n2+m2

¢¡
v

n+m

¢¡
n+m
n1+m1

¢ =

¡
v¡n¡m
v1¡n1¡m1

¢¡
v
v1

¢ :

By inserting the proper conditional distributions given above, the likelihood
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is computed as

p (r;m; v0; z j¼; µ;¯;v1; v )

=
2Y
i=1

2Y
j=1

µ
nij
rij

¶
¯
rij
ij

¡
1¡ ¯ij

¢nij¡rij 2Y
j=1

"
(vj ¡ nj)!

n1Y
k=0

n2Y
l=0

p
mjkl

jkl

mjkl!

#

£
µ
v

v0

¶
¼v0 (1¡ ¼)v¡v0

¡
v¡n¡m

v1¡n1¡m1

¢¡
v
v1

¢
=

"
2Y
i=1

2Y
j=1

µ
nij
rij

¶
¯
rij
ij

¡
1¡ ¯ij

¢nij¡rij#µ v
v0

¶
¼v0 (1¡ ¼)v¡v0

¡
v¡n¡m

v1¡n1¡m1

¢¡
v
v1

¢
£

2Y
j=1

"
(vj ¡ nj)!

(vj ¡ nj ¡mj)!

"
n1Y
k=1

n2Y
l=1

¡
n1
k

¢mjkl

mjkl!

¡
n2
l

¢mjkl

mjkl!

#
2Y
i=1

¯
sij
ij

¡
1¡ ¯ij

¢ni(vj¡nj)¡sij#

=

µ
v

v0

¶
¼v0 (1¡ ¼)v¡v0

¡
v¡n¡m

v1¡n1¡m1

¢¡
v
v1

¢
£

2Y
j=1

"
(vj ¡ nj)!

(vj ¡ nj ¡mj)!

"
n1Y
k=1

n2Y
l=1

¡
n1
k

¢mjkl

mjkl!

¡
n2
l

¢mjkl

mjkl!

#
2Y
i=1

µ
nij
rij

¶
¯
tij
ij

¡
1¡ ¯ij

¢ni(vj¡±ij)¡tij#

where s1j =
Pn1

k=0

Pn2
l=0 kmjkl; s2j =

Pn1
k=0

Pn2
l=0 lmjkl; tij = rij + sij and

±ij =

½
1 for i = j
0 for i 6= j :

By discarding a multiplicative constant which does not depend on model
parameters, the essential part of the likelihood is given by

f (r;m; v0; z j¼; µ;¯;v1; v ) = (v ¡ v1) v1!
(v ¡ v0)! ¼

v0 (1¡ ¼)v¡v0
µ
v ¡ n¡m
v1 ¡ n1 ¡m1

¶
£

2Y
j=1

"
(vj ¡ nj)!

(vj ¡ nj ¡mj)!

2Y
i=1

¯
tij
ij

¡
1¡ ¯ij

¢ni(vj¡±ij)¡tij# :
Amore elaborate and perhaps more interesting case is when only the edge

structure y can be observed, i.e. the block labels are unobserved (latent).
The probability of observing edge pattern y after discarding a multiplicative
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constant which does not depend on model parameters, is then given by

g (r;m; v0 j¼; µ;¯;v1; v; z) = v!

(v ¡ v0)!¼
v0 (1¡ ¼)v¡v0

£
2Y
j=1

"
(vj ¡ nj)!

(vj ¡ nj ¡mj)!

2Y
i=1

¯
tij
ij

¡
1¡ ¯ij

¢ni(vj¡±ij)¡tij# :
4 Prior and posterior distributions
A Bayesian analysis requires the speci…cation of a prior of the parameters
¼; µ;¯;v1 and v, when the blocks are known, and the computation of the
posterior distribution given by

p (¼; µ;¯;v1; v jr;m; v0; z) / p (r;m; v0; z j¼; µ;¯;v1; v ) p (¼; µ;¯;v1; v)

according to Bayes theorem. The prior distribution can be written as

p (¼; µ;¯;v1; v) = p (v1 jv; µ ) p (v) p (µ) p (¯) p (¼)

if mutual independence is assumed between ¼;¯ and (v1; v; µ) and between
v and µ. The posterior distribution is then given by

p (¼; µ;¯;v1; v jr;m; v0; z)
/ p (r;m; v0; z j¼; µ;¯;v1; v ) p (v1 jv; µ ) p (v) p (µ) p (¯) p (¼)

In the case with unknown blocks, we will arrive at the same posterior dis-
tribution although z is now considered as an unknown parameter instead of
observed data.
We assume a priori that ¯ij »beta(aij ; bij), ¼ »beta(a¼; b¼) and µ »beta(aµ; bµ).

Further, as a discrete informative prior for v which only takes positive values,
we choose the zero truncated ”discretized” gamma distribution considered in
Tallberg (2003). The ”discretized” gamma distribution implies that we as-
sign a proportional functional value in a gamma distribution as a probability
to the associated discrete outcome; see Bernardo and Smith (1994). As a
non-informative alternative prior we consider Je¤reys’ (1961) prior given by
p (v) = 1=v; v = 1; 2; :::, which is also the leading term of Rissanen’s (1983)
prior based on information theory argument.
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4.1 With known blocks

In this paper v is the focus of attention, whereas ¼; µ;¯ and v1 are regarded as
nuisance parameters, or at least parameters of lesser interest. It is therefore
our desire to eliminate them from the analysis in order to concentrate on v.
In the simpler case with known blocks, this is achieved by computing the
marginal posterior distribution of v in the following way

p (v jr;m; v0; z) / p (r;m; v0; z jv ) p (v)
=

X
v12V1

Z 1

0

Z 1

0

Z 1

0

p (r;m; v0; z j¼;¯;µ;v1; v ) p (¼) p (¯) p (µ)

£p (v1 jv; µ ) p (v) d¼d¯dµ;
By inserting the priors given above, the marginal posterior is computed as

p (v jr;m; v0; z) /
X
v12V1

(v1 ¡ n1)!
(v1 ¡ n1 ¡m1)!

¡ (n1 (v1 ¡ 1) + b11 ¡ t11)
¡ (a11 + b11 + n1 (v1 ¡ 1))

£¡ (n2v1 + b21 ¡ t21)
¡ (a21 + b21 + n2v1)

(v ¡ v1 ¡ n2)!
(v ¡ v1 ¡ n2 ¡m2)!

¡ (n1 (v ¡ v1) + b12 ¡ t12)
¡ (a12 + b12 + n1 (v ¡ v1))

£¡ (n2 (v ¡ v1 ¡ 1) + b22 ¡ t22)
¡ (a22 + b22 + n2 (v ¡ v1 ¡ 1))

v!

(v ¡ v0)!
¡ (v ¡ v0 + b¼)
¡ (v + a¼ + b¼)

£¡ (v1 + aµ) ¡ (v ¡ v1 + bµ)
¡ (v + aµ + bµ)

µ
v ¡ n¡m
v1 ¡ n1 ¡m1

¶
p (v) :

4.2 With unknown blocks

Obviously, when the block structure is unknown an extra component of un-
certainty is added to the estimation procedure. With unknown blocks it
is di¢cult to derive an explicit analytical expression for the posterior of v.
Since the full conditional posterior distribution of each involved parameter
is easy to compute, a feasible approach is to implement the Gibbs sampler
algorithm. It is a computer-intensive statistical method which allows us to
simulate from the exact posterior distributions. The Gibbs sampler works by
iteratively drawing values from each of the full conditional distributions, each
conditionally on the last updated values of all the other unknown parameters.
As the number of draws approaches in…nity, the Gibbs sampler generates ac-
curate samples from the joint posterior distributions. For a more extensive
review of the Gibbs sampler algorithm; see Gelman et al (1995) and Gilks,
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Richardson and Spiegelhalter (1996). Note that by using Gibbs sampling, we
obtain the posterior distributions not only of v but also of the nuisance pa-
rameters ¼;¯; v1; z and µ without any additional di¢culty. In the case with
known blocks, one could implement the Gibbs sampler instead of computing
the posterior of v analytically, since both methods will yield the same result,
and as a spin-o¤ obtain posterior distributions of ¼;¯; v1 and µ as well.

² The full conditional distribution of v1

p (v1 jr;m;¯; v; z;µ ) / v!

(v ¡ v0)!¼
v0 (1¡ ¼)v¡v0

£
µ
v

v1

¶
µv1 (1¡ µ)v¡v1

¡
v¡n¡m

v1¡n1¡m1

¢¡
v
v1

¢
£

2Y
j=1

(vj ¡ nj)!
(vj ¡ nj ¡mj)!

2Y
i=1

¯
tij
ij

¡
1¡ ¯ij

¢ni(vj¡±ij)¡tij
/

µ
µ

1¡ µ
¶v1 µ v ¡ n¡m

v1 ¡ n1 ¡m1

¶
£ (v1 ¡ n1)!
(v1 ¡ n1 ¡m1)!

(1¡ ¯11)n1v1 (1¡ ¯21)n2v1

£ (v ¡ v1 ¡ n2)!
(v ¡ v1 ¡ n2 ¡m2)!

(1¡ ¯12)¡n1v1 (1¡ ¯22)¡n2v1 :

² The full conditional distribution of v

p (v jr;m; v0; ¼;¯; v1; z;µ ) / v!

(v ¡ v0)!¼
v0 (1¡ ¼)v¡v0

£
µ
v

v1

¶
µv1 (1¡ µ)v¡v1

¡
v¡n¡m

v1¡n1¡m1

¢¡
v
v1

¢ p (v)

£
2Y
j=1

(vj ¡ nj)!
(vj ¡ nj ¡mj)!

2Y
i=1

¯
tij
ij

¡
1¡ ¯ij

¢ni(vj¡±ij)¡tij
/ v!

(v ¡ v0)! (1¡ ¼)
v (1¡ µ)v

µ
v ¡ n¡m
v1 ¡ n1 ¡m1

¶
p (v)

£ (v ¡ v1 ¡ n2)!
(v ¡ v1 ¡ n2 ¡m2)!

(1¡ ¯12)n1v (1¡ ¯22)n2v :
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² The full conditional distribution of µ

µ jv1; v » beta (v1 + aµ; v + bµ ¡ v1) :

² The full conditional distribution of ¯ij
¯ij jr;m; v1; v » beta (tij + aij ; ni (vj ¡ ±ij)¡ tij) :

² The full conditional distribution of ¼

¼ jv0; v » beta (v0 + a¼; v + b¼ ¡ v0) :

² The full conditional distribution of z

Pr
³
zu = 1

¯̄̄
fzwgw 6=u ; r;m;¯; v1; v

´
/
µ
v ¡ n¡m
v1 ¡ n1 ¡m1

¶
£

2Y
j=1

(vj ¡ nj)!
(vj ¡ nj ¡mj)!

2Y
i=1

¯
tij
ij

¡
1¡ ¯ij

¢ni(vj¡±ij)¡tij :
5 Concluding remarks
We employ a Bayesian blockmodel approach to estimate the size of small
populations with rare properties by using snowball sampling. If contact
patterns varies between actors, the estimators can seriously overestimate
or underestimate the size of the population, if not taken into account in
the model. Therefore we propose a blockmodel approach which ought to
improve on the estimators.
Posterior distributions of model parameters are computed when the num-

ber of blocks are known. A natural extension would be to generalize the anal-
ysis to an unknown number of blocks, and compute the posterior distribution
for the number of blocks.
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