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Abstract

We consider the problem of partitioning members in random graphs
with similar relational structure into subsets called blocks when the
block labels are unobserved or latent. Most statistical research on
this topic called blockmodels have been approached from a classical
point of view. Recently, a Bayesian approach to blockmodels has been
presented by Snijders and Nowicki (1997), and Nowicki and Snijders
(2001), where the probability of a relation between two actors depends
only on the blocks to which the actors belong but is independent of
the actors. In this paper, we extend their model to include covariates
on actor level, and the block a¢liation probabilities are modeled con-
ditional on the covariates via a multinomial probit model. Posterior
distributions of the model parameters, and predictive posterior distri-
butions of the block a¢liation probabilities are computed by using a
straight forward Gibbs sampling algorithm. The proposed model is
illustrated on both real and simulated data.
Keywords: Bayesian analysis; Blockmodels; Gibbs sampling; Multi-

nomial probit; Random graphs;.

1 Introduction
We are in our daily social environment involved in relationships of many sorts:
economic, political, biological, sociological, criminological and a¤ective, to
mention a few. Relationships among social actors (which besides individuals
can be organizations, countries etc.) and the patterns and implications of
these relationships give rise to structures. The actors and their relational
structure are usually represented by graphs, where the actors are referred to
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as vertices and the relations are referred to as edges (undirected graphs) or
arcs (directed graphs).
Most methods in a …eld referred to as social network analysis are con-

cerned with the description of network structural properties. One such formal
property is structural equivalence. A de…nition is given in Lorrain and White
(1971) which, brie‡y stated, says that two actors with identical attribute
values, and thus with the same relational features are structural equivalent.
We can then de…ne a deterministic approach to blockmodels, …rst given by
White, Boorman and Breiger (1976), as a partition of actors into discrete
subsets, where actors in the same subset are structurally equivalent.
Fienberg and Wasserman (1981) and Holland, Laskey and Leinhardt

(1983) generalized the deterministic blockmodel by using the concept stochas-
tic equivalence; in a random directed graph model two actors are de…ned
as stochastically equivalent if their probabilistic relational structures to the
other actors in the graph are the same. Under an additional assumption
of independent dyads and permutation invariance of actors, Fienberg and
Wasserman (1981) and Holland, Laskey and Leinhardt (1983) called models
with such probabilistic relational structures stochastic blockmodels. In the
case where the block labels are known, this approach is called a priori block-
modeling. When the block labels are unknown, Wasserman and Anderson
(1987) proposed a blockmodeling procedure where block labels are identi…ed
a posteriori based on the observed relational data within the framework of
log-linear models. This speci…c log-linear model, the p1 model, introduced
by Holland and Leinhardt (1981) includes two parameters for each vertex
related to the number of outgoing relations and the number of ingoing rela-
tions, as well as the reciprocity parameter. Due to the nature of their model,
the range of the parameter space of the two former parameters is limited. For
a more basic clari…cation on blockmodels and other social network concepts,
the reader is referred to Wasserman and Faust (1994).
Most statistical research on blockmodels has been done from a classical

point of view. During recent years, the interest of developing methods within
the Bayesian paradigm has increased. In a paper by Snijders and Nowicki
(1997), a Bayesian approach to blockmodeling of graphs is presented, where
the number of blocks is restricted to two, and the probability of an edge
between two actors depends only on the blocks to which the actors belong
but is independent of the actors. They considered an a posteriori model that
is more general than the p1 model in the sense that the restrictions on the
parameter space are not required. In a sequel paper by Nowicki and Snijders
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(2001), the model is extended to include valued directed graphs where the
number of blocks is allowed to be arbitrary.
The motivation for this paper is that the a posteriori blockmodels pro-

posed in those articles completely ignore available information on actor level.
In their settings the block a¢liation probabilities are the same for all actors.
In this paper, we extend the model outlined by Nowicki and Snijders (2001)
to include observable covariates on actor level, and let the block a¢liation
probabilities depend on those covariate values. Using available information
from covariates on actor level, should improve the prediction of the block
a¢liation of each actor.
In our proposed model, the number of blocks is predetermined and …xed.

The relationship between the block a¢liation probabilities and the covariates
is modeled with a probit model. Using the simulation based approach for the
multinomial probit with observable response variables, developed by Albert
and Chib (1993), McCulloch and Rossi (1994) and McCulloch et al (2000), we
compute the posterior distributions of the model parameters and predictive
posterior distributions of the block a¢liation of each actor.
The present paper is structured as follows. In Section 2 the notation is

outlined, and the stochastic blockmodel considered is de…ned. In Section
3, we review the multinomial probit model. Prior distributions and poste-
rior distributions are discussed in Section 4. Section 5 provides empirical
examples, and some concluding remarks are given in the …nal section.

2 Notation and de…nition of the considered
stochastic blockmodel

To a certain extent we will follow the notation of Nowicki and Snijders (2001).
Let V = f1; :::; ng be the vertex set, where n is the known order of the graph
and N the set of all distinct ordered pairs of vertices (i; j). We assume a
general relational structure on this set of vertices which is represented by
its adjacency matrix x = (xij) ; (i; j) 2 N , where the element xij is an
observed value of a relation from vertex i to vertex j. Let xij 2 R; where
R = f0; 1; :::; R¡ 1g is the range space, i.e. the set of possible values of a
relation from vertex i to vertex j. Self-loops are not allowed which implies
that xij = 0 for i = j. In the special cases of graphs and digraphs we have
that R = f0; 1g. Pairwise relations from i to j and from j to i, takes values
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in the set R2 = fr =(ru; rv) jru; rv 2 Rg. Since it is not necessary that all
elements of R2 can occur, we de…ne S as a subset of R2 containing potential
values of pairwise relations. Thus, for every pair (i; j) 2 N , there is an
(ru; rv) 2 S such that the relation from i to j is ru and the relation from j
to i is rv. Symmetry assumptions about the pairwise relations implies that
for each (ru; rv) 2 S it holds that (rv; ru) 2 S.
We assume that V is partitioned into b mutually exclusive non-empty

vertex subsets called blocks denoted by B = f0; :::; b¡ 1g. Let yi 2 B be a
block label where yi = k if vertex i belongs to block k; i 2 V and k 2 B.
The dyad involving i and j is characterized by (xij; xji; yi; yj; zi; zj), where

z0i = (zi1; :::; zip) and z
0
j = (zj1; :::; zjp) are vectors of known covariate values

of actors i and j, respectively. Conditional on the block labels (yi; yj), (i; j) 2
N , the pairs (xij; xji), (i; j) 2 N , are assumed to be independent random
vectors with distribution

Pr [(xij ; xji) = r jy1; :::; yn ]
= Pr [(xij ; xji) = r jyi; yj ] = ´r (yi; yj) ;

where the array

´ =´r (k; h) for r 2S; k; h 2 B

of block dependent dyad probabilities satis…es the restrictionX
r2S

´r (k; h) = 1 for all k; h 2 B:

Due to the assumed symmetry in the relations, the restriction

´(ru;rv) (k; h) = ´(rv;ru) (h; k)

holds and the model is over-parametrized. This is easily remedied by remov-
ing the excess parameters from ´ so that the elements of ´ are ´(ru;rv) (k; h) =
´r (k; h) for (u; v) 2 S; k 6 h.
To de…ne our stochastic blockmodel, we assume that the block labels are

unobserved (latent) iid where the probability that vertex i belongs to block
yi is given by

Pr (yi jzi ) = µ (yi jzi ) :
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for block yi 2 B. Hence, the joint distribution of the 1£n vector of unknown
block labels y =(y1; :::; yn) is given by

Pr (y1; :::; yn jz1; :::; zn ) =
nY
i=1

Pr (yi jzi ) =
nY
i=1

µ (yi jzi ) :

Since the conditional distribution of relations x given y and ´ is given by

Pr (x jy;´ ) =
Y
r2S

Y
06k6h6b¡1

f´r (k; h)ger(k;h);

where er (k; h) are the edge frequencies between block k and block h, the
stochastic blockmodel given by the joint distribution of (x;y), can be written
as

Pr (x;y j´;µ (y1 jz1 ) ; :::µ (yn jzn ) ; z1; :::; zn )

=

Ã
nY
i=1

µ (yi jzi )
!ÃY

r2S

Y
06k6h6b¡1

f´r (k; h)ger(k;h)
!
: (1)

Various properties of the stochastic blockmodel have been studied by, for
example, Frank and Harary (1982), Frank (1988a, 1988b) and Janson and
Nowicki (1991).
To ease the notation we will denote the probability that vertex i belongs

to block k with µk (zi).
The model given by (1), which is an extension of the model presented by

Nowicki and Snijders (2001), includes observable covariates on actor level,
such as gender, age, income and so on. The block a¢liation probabilities
depend on those covariate values which should improve the prediction of y.
Thus, unlike the simpler model of Nowicki and Snijders (2001), where the
probability to belong to block k, µk, is the same for all actors, our proposed
model is richer since it allows the block a¢liation probabilities, µk (zi), to
vary between the actors.
The relationship between the block a¢liation probabilities and the covari-

ates is modeled with the multinomial probit model introduced by Aitchison
and Bennet (1970). In the special case of two blocks, the multinomial probit
model reduces to the binary probit model. A brief discussion of the binary
probit model and its generalized version is provided in the next section.
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3 The multinomial probit model
We open this section with a short review of the special case b = 2, which in
the graph setting means that we have two blocks, block 0 and block 1. Then
yi is Bernoulli distributed with probability µ1 (zi) that actor i belongs to
block 1. Assuming a binary probit model implies that the µ1 (zi) are related
to the set of covariates through

µ1 (zi) = Pr (yi = 1 jzi;¯ ) = © (z0i¯) ; (2)

where ¯ is a p £ 1 vector of unknown parameters and © is the standard-
ized normal distribution function. The posterior density of ¯ is largely in-
tractable but Albert and Chib (1993) presented a simulation-based approach
for computing the posterior of ¯. They considered a standard latent variable
interpretation of the probit model. Thus, (2) may be written in terms of n
independent latent variables W1; :::;Wn, where Wi is N (z0i¯;1) distributed,
by de…ning yi = 1 if Wi > 0 and yi = 0 if Wi 6 0. Given yi, the distribu-
tion of Wi follows a truncated normal distribution, and therefore simulating
from the full conditional posterior distributions of ¯ and Wi is easy by using
Gibbs sampling. Note that in our analysis we are not concerned with the
characteristics ofWi. They are only introduced to facilitate the computation
of the posterior of ¯.
We now proceed to brie‡y review the generalized case with b > 2. Each

yi is now a multiple choice block label. Like in the two choice case, the key
idea is to introduce a latent vector, here given by V0

i =
¡
Vi0; Vi1; :::; Vi(b¡1)

¢
,

for each actor. Let u0i = (ui1; :::;uip) be a b £ p matrix of known covariates
for actor i, and ¯ a p £ 1 vector of unknown parameters. The structural
equations of the multinomial probit model are then given by

Vi = u
0
i¯ + »i;

where each »i is Nb (0;ª) and ª is of dimension b £ b. Each yi is then a
function of Vi given by

yi (Vi) = argmax
k2B

Vik:

We shall follow the procedure of McCulloch and Rossi (1994), and express
each vik relative to vi0 in terms of wik = vik ¡ vi0. By letting W0

i =
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¡
Wi1;Wi2; :::;Wi(b¡1)

¢
, the (b¡ 1) dimensional latent variable can be ex-

pressed as

Wi = z
0
i¯ + "i; (3)

where each "i is N (0;§). The covariance matrix § is of dimension (b¡ 1)£
(b¡ 1), and z0i is a (b¡ 1) £ p matrix transformed from the original matrix
u0i by subtracting the …rst row from the last (b¡ 1) rows. Each yi is then a
function ofWi given by

yi (Wi) =

(
0 if max

k
Wik 6 0

argmax
k
Wik if max

k
Wik > 0:

Thus, yi = 0 if all the wik are non-positive, otherwise yi equals the index
of the biggest positive wik. Since Wi is a continuous random vector, the
probability that at least two elements are equal is zero.
Besides the block labels yi, the random graph setting includes an unknown

set of relational probabilities ´. Our immediate concern is therefore the
computation of the posterior distributions of yi;´; ¯ and §. As mentioned
earlier, the introduction of Wi is only to facilitate the computation of the
posterior distributions of the probit parameters ¯ and §.
The conditional distribution, now given by yi jzi;x;¯;§;´ , depends on

data and the unknown model parameters ¯, § and ´. The parameters ¯
and § are not fully identi…ed, since the distribution of yi (Wi) equals the
distribution of yi (aWi) for all a > 0. This means that given an observation,
the likelihood is such that L (¯;§;´) = L (a¯; a2§;´). One way to solve
the identi…cation problem is to assign a value to one of the parameters.
Since we are only making relative comparisons, one of the diagonal elements
in § may be normalized to unity. In this paper we adopt the approach
described in detail in McCulloch et al (2000), where the …rst element in
the covariance matrix, ¾11, is set to 1. Thus, Wi is a latent vector with
a truncated multivariate normal distribution N (z0i¯;§ j¾11 = 1). It is now
easy to see how the multinomial probit model reduces to the binary probit
model, and the probability (2) arrives at ©(z0i¯).
The main obstacle in implementation of the multinomial probit model

has been to compute the multivariate normal probabilities for any dimension
higher than 2. However, vast improvements of computer based methods in
recent years, such as Gibbs sampling, have made estimation of the multino-
mial probit model feasible. An alternative to the multinomial probit model
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would be the multinomial logit model with uncorrelated choices; see Koop
and Poirier (1993).

4 Prior assignments and computation of pos-
terior distributions

A Bayesian analysis requires the speci…cation of a prior over the parameters
(y;´;¯;§), and the computation of the posterior distribution given by

p (y;´;¯;§ jx; z) / p (x; z jy;´;¯;§) p (y;´;¯;§) (4)

according to Bayes theorem, where z is a p £ n matrix of known covari-
ate values. Since mutual independence between y;´;¯ and § is a realistic
assumption here, the prior distribution can be written as

p (y;´;¯;§) = p (y) p (´) p (¯) p (§) :

The posterior joint distribution given by (4) is highly intractable, but by
using conjugate priors on the parameters, the full conditional posterior dis-
tribution of each parameter is possible to compute. By implementing the
Gibbs sampler, which is a computer-intensive method based on properties
of Markov chains, we are provided with an alternative method that allows
us to generate random samples from the marginal distributions indirectly by
iteratively sampling from the full conditional distributions.
A short review of the Gibbs sampling technique is as follows. Specify

starting values for the parameters of interest. Then updated values of the
parameters are obtained iteratively by alternately generating values from the
conditional distributions. As the number of iterations approaches in…nity, the
Gibbs sampler generates accurate samples from the marginal distributions.
For details and further references, see Gilks, Richardson and Spiegelhalter
(1996).
To implement the algorithm, the following four full conditional posterior

distributions are required:

² p (y j´;¯;§;x; z)
² p (´ jy;¯;§;x; z)
² p (¯ jy;´;§;x; z)
² p (§ jy;´;¯;x; z)
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4.1 Full conditional posterior of y

By following the notation of Nowicki and Snijders (2001), we …rst de…ne
dr (i; k) to be the number of relations r 2 S, between i 2 V and all j 2 V
that belongs to block k 2 B, which can be expressed more formally as

dr (i; k) =
X

j:(i;j)2N
I fxij = rg I fyj = kg :

The full conditional posterior distribution of each yi is then given by

Pr
³
yi = k

¯̄̄
fyjgj 6=i ;´;¯;§;x; z

´
/ µk (zi)

Y
r2S

b¡1Y
h=0

f´r (k; h)gdr(i;k):

4.2 Full conditional posterior of ´

To determine the full conditional posterior distribution of each vector ´r (k; h),
we …rst note that the edge frequencies is multinomially distributed data.
If the prior distribution of ´r (k; h) is conjugate Dirichlet with parameters
ar (k; h), the full conditional posterior distribution of each ´r (k; h) will have
the form

p f´r (k; h) jy;¯;§;x; zg = pf´r (k; h) jy;xg (5)

/ pfy;x j´r (k; h)gpf´r (k; h)g
= pfx jy;´r (k; h)gpfy j´ (k; h)gpf´r (k; h)g
/

Y
r2S
f´r (k; h)ger(k;h)+ar(k;h)¡1;

which is a Dirichlet distribution with parameters er (k; h)+ar (k; h) ; 0 6 k 6
h 6 b¡ 1.
Note that under vague priors, our model is invariant to permutation of

the block labels and is therefore unidenti…ed, see e.g. Richardson and Green
(1997). In the literature, this phenomenon is called label switching, and it
causes di¢culties to assess accurate posterior distributions. This problem is
discussed in Nowicki and Snijders (1997), who suggests that identi…ability
restrictions are imposed on the elements in ´.
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4.3 Full conditional posterior of Wi

To be able to compute the exact posterior distributions of ¯ and §, we
introduce n independent latent vectors Wi as discussed in Section 3. The
full conditional posterior of each Wi is equal to the Nb¡1 (z0i¯;§ j¾11 = 1)
distribution, i = 1; :::; n, truncated to the region

Wi 2 Rp¡1 : max
k
Wik 6 0;

if yi = 0, and

Wi 2 Rp¡1 : argmax
k
Wik = yi;

otherwise. There are various algorithms suggested that can draw a sample
of Wi from this truncated distribution. A simple algorithm is to perform
repetitive draws ofWi from Nb¡1 (z0i¯;§) until the condition is satis…ed (re-
ject/accept algorithm). A more e¤ective alternative, outlined in McCulloch
and Rossi (1994), is to draw each element, Wik, from a truncated univariate
normal distribution. For a detailed description of simulation from a trun-
cated multivariate normal distribution; see also Geweke (1991). As noted in
Section 3, the draws of Wi are of no interest per se and need not be saved
after the termination of the iteration.

4.4 Full conditional posterior of ¯

By selecting a proper conjugate N (¯¤;B¤) prior for ¯, we have according

to Bayes theorem that the full conditional posterior of ¯ is N
³
~̄; ~B

´
, where

the mean and covariance matrix are given by

~̄ =
¡
B¤¡1 + z0§¡1z

¢¡1 ¡
B¤¡1¯¤ + z0W

¢
and

~B =
¡
B¤¡1 + z0§¡1z

¢¡1
;

respectively, where z =(z1; :::; zn)
0 is a n£ p matrix of known covariates.
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4.5 Full conditional posterior of §

Due to various solutions of the identi…cation problem that arises in the multi-
nomial probit model, there are di¤erent approaches how to set priors on §
and derive full conditional posteriors, see for example McCulloch and Rossi
(1994). We shall adopt the approach suggested by McCulloch et al (2000),
where it is suitable to reparametrize § …rst. As mentioned in Section 3,
the …rst diagonal element in § is set to 1. First we denote "i in Equation
(3) by

¡
"i1; :::; "i(b¡1)

¢0
. Then we let U = "i1 and V =

¡
"i2; :::; "i(b¡1)

¢0
, i.e.

"
0
i = (U; V ). By letting °

0 = E (UV 0) and Á = E (V V 0)¡ °°0, we can rewrite
§ as

§ =E ("i"
0
i) =

½
E (U2) E (UV 0)
E (V U) E (V V 0)

¾
=

½
1 °0

° Á+ °°0

¾
:

Now, by choosing the following priors

° » N (¹°; C)

Á¡1 » Wishart (m;D) ;

we will obtain the following conditional posteriors

° » NfA°[vec
¡
Á¡1V 0U

¢
+ C¡1¹°]; A°g (6)

Á¡1 » Wishartfm+ n; [D + (V ¡ U°0)0 (V ¡ U°0)]¡1g; (7)

where A° =
¡
U 0UÁ¡1 + C¡1

¢¡1
, and vec is the vec operator. The vec opera-

tor transforms a matrix into a vector by stacking the columns of the matrix
one underneath the other. We parametrize the Wishart distribution so that
E
¡
Á¡1

¢
= mD.

Note that in each iteration of the Gibbs sampler, we have to perform an
embedded Gibbs sampling in order to obtain the posterior distribution of
the probit parameters from which we sample the last updated values of ¯;°
and Á¡1. However, simulation results show that we obtain the same poste-
rior distributions by performing just one iteration in the embedded Gibbs
sampler. A probable explanation is that the Gibbs sampler typically moves
rather slowly in y-space.
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5 Inference and model assessment illustrated
with numerical examples

We now illustrate the methodology presented in the previous sections using
one data set generated by computer simulation and one real data set from
the social network modeling literature. For simplicity, we will in the given
examples consider posterior blockmodeling for undirected graphs. Then the
set containing potential relational values of pairwise relations is reduced to
S = f(0; 0) ; (1; 1)g, and ´r (k; h) is denoted by ´ (k; h) ; k; h = 0; 1; k 6 h.
Since the relation between any two vertices now is a binary variable, the
multinomial data model and its conjugated Dirichlet prior reduces to the
binomial data model and its conjugated beta prior. In accordance with (5),
the posterior distribution of each ´ (k; h) is given by

p (´ (k; h) jx;y; z;¯ ) = p (´ (k; h) jx;y )
/ f´ (k; h)ge(1;1)(k;h)+a(1;1)(k;h)¡1f1¡ ´ (k; h)ge(0;0)(k;h)+a(0;0)(k;h)¡1;

which is a beta distribution with parameters e(1;1) (k; h) + a(1;1) (k; h) and
e(0;0) (k; h) + a(0;0) (k; h).
In all analysis, we have used Markov chains of length 10,000 after a burn-

in period of 20,000 observations. The numerical computation package Matlab
was used for all computations on a standard PC.
As previously mentioned, we have predetermined the number of blocks.

The simulated data set is generated so that the graph is composed of two
blocks, whereas the real data set is analyzed under the assumption that the
number of blocks is two and three.

5.1 Simulated example with two blocks

In this example we will use a model including one predictor and no inter-
cept. Data was simulated as follows. A vector-valued observation of pre-
dictor values z was generated where each element was drawn iid from a
uniform distribution on the interval (¡0:5; 0:5). The value of the single ¯-
coe¢cient equals -2. The number of actors was determined to n = 30 of
which 19 were allocated to block 0 and 11 to block 1 through the following
procedure. Given the values of z and ¯, a vector of 30 observations was gen-
erated, where each observation was drawn iid from a N (zi¯; 1)-distribution.
If element i; i = 1; :::; 30, was positive, actor i belonged to block 1, whereas
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Figure 1: Plot of the actor degrees against actor covariate values for the
simulated data set. Actors a¢liated to block 0 and block 1 are represented
with circles and stars, respectively.

if element i was negative, actor i belonged to block 0. Of the 30 gener-
ated observations constituting our population, 19 were negative and 11 were
positive. Given the vector of block labels y and a vector of probabilities
´ =(´ (0; 0) ; ´ (0; 1) ; ´ (1; 1)) = (0:7; 0:3; 0:5), an adjacency matrix of or-
der 30 was generated where the elements were drawn independently from
Bernoulli distributions with probability ´ (k; h). The columns and rows in
the adjacency matrix were rearranged so that the …rst 19 actors belonged
to block 0 and the last 11 belonged to block 1. Figure 1 shows the actor
covariate values plotted against the actor degree.
To proceed with the Bayesian approach, we need to specify prior distri-

butions of the model parameters. With two blocks, § is a scalar that takes
the value 1 with probability 1, and therefore we are only concerned to deter-
mine priors on ¯ and ´. As mentioned in Section 4.4, we consider normally
distributed priors on ¯. They are all centered on 0 with various precisions
expressing various degree of uncertainty about ¯.
For ´ we consider the following four sets of beta priors, representing

di¤erent initial beliefs:

1. ´ (0; 0) » beta (15; 5), ´ (0; 1) » beta (3; 3) and ´ (1; 1) » beta (1; 10) :
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Figure 2: Prior (dashed curves) and posterior (solid curves) distributions of
¯ and ´. The prior distribution of ¯ is N (0; 100) in all cases, whereas the
sets of priors on ´ are prior 1 (top row), prior 2 (second row), prior 3 (third
row) and prior 4 (bottom row). A solid line is drawn at the true parameter
value.

2. ´ (0; 0) » beta (5; 5), ´ (0; 1) » beta (15; 5) and ´ (1; 1) » beta (3; 9) :
3. ´ (0; 0) » beta (20; 20), ´ (0; 1) » beta (20; 3) and ´ (1; 1) » beta
(3; 30) :

4. A uniform distribution over the restricted domain 0 < ´ (1; 1) < ´ (0; 0) <
1: Note that the problem of label switching discussed in the previous
section is avoided by restricting the domain of ´.

The prior distributions and computed posterior distributions are dis-
played in Figure 2. We see that the posterior distributions are rather in-
sensitive to the choices of priors, since they are quite similar although the
priors of ´ are not.
Before we continue the analysis, we note that in order to obtain valid

inference of the parameters of interest, the Gibbs sampler must converge
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Figure 3: Posterior mean evolution of ¯ under a) prior 1; b) prior 2; c) prior
3; d) prior 4 on ´, and a N (0; 100) distributed prior on ¯.

which is the case according to the posterior means of ¯ plotted in Figure 3.
The posterior probability to belong to the correct block for the model

with covariates is plotted against the posterior probability to belong to the
correct block for the model without covariates in Figure 4. Our immediate
concern are the actors located o¤ the diagonal, since their probabilities to
belong to the correct block di¤ers between the models. Since actors 1, 2, 5,
11, 12, 14, 15, 16 and 18 belong to block 0, it follows from the negativity
of ¯ that the posterior probabilities to belong to the correct block increase
for actors 1, 2, 5 and 16 due to relatively high covariate values, and decrease
for actors 11, 12, 14, 15 and 18 due to relatively low covariate values under
prior 4. Analogously, it follows from the negativity of ¯ that the posterior
probabilities increase for actors 2, 5, 8, 13, 14, 19, 23, 24, 25, 27 and 29
due to ”right” covariate values, whereas they decrease for actors 4, 9, 11, 12,
18, 26 and 28 due to ”wrong” covariate values under prior 3. The obtained
results seem to con…rm that using available covariate information e¤ectively
via a probit model can improve prediction of block a¢liation.
Figure 5 displays posterior distributions of ¯ under four prior precisions,

and prior 1 on ´. Although it looks as though the posterior means are
robust to the choices of priors, except under the extremely informative prior
where V ar (¯) = 0:01, we see that the root mean square error decreases
with Bayesian methods if conceivable prior information on the parameters of
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Figure 5: Posterior distributions of ¯ computed on the simulated data set
under normal distributed priors with mean 0 and various variances, and prior
1 on ´. A solid line is drawn at the true parameter value.

interest is implemented.

5.2 A data example

We now apply the suggested approach to the countries trade network data
described in Wasserman and Faust (1994), pp. 64-65. The data set includes
…ve dichotomous and directional relations measured on a selection of twenty-
four countries, and four attribute variables re‡ecting the economic and social
characteristics of the countries. The countries are, with vertex labels between
parenthesis, Algeria (1), Argentina (2), Brazil (3), China (4), Czechoslovakia
(5), Ecuador (6), Egypt (7), Ethiopia (8), Finland (9), Honduras (10), In-
donesia (11), Israel (12), Japan (13), Liberia (14), Madagascar (15), New
Zealand (16), Pakistan (17), Spain (18), Switzerland (19), Syria (20), Thai-
land (21), United Kingdom (22), United States (23) and Yugoslavia (24). In
our example we chose one of the relations, imports of food and live animals,
and two of the attribute variables, secondary school enrollment ratio in 1980
and energy consumption per capita in 1980. In a dichotomous directed graph
partitioned into b blocks, we need to estimate b2 edge probabilities. In our
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example we will reduce the number of probabilities to b (b+ 1) =2 by sym-
metrizing the relational variable in the following way: let xij = xji = 1 if
at least one of the following restrictions, xij = 1 or xji = 1, are satis…ed.
Otherwise xij = xji = 0.

5.2.1 With two blocks

To ease the subjectivity in our analysis, the following three sets of priors for
´ are entertained expressing various initial beliefs:

1. A uniform distribution over the restricted domain 0 < ´ (1; 1) < ´ (0; 0) <
1.

2. ´ (0; 1) » beta(6; 3), ´ (0; 0) » beta(6; 3) and ´ (1; 1) is uniformly dis-
tributed. Repetitive draws of ´ (0; 0) and ´ (1; 1) are performed until
the restriction 0 < ´ (1; 1) < ´ (0; 0) < 1 is satis…ed.

3. ´ (0; 1) » beta (3; 15), ´ (0; 0) » beta(6; 3) and ´ (1; 1) is uniformly
distributed. Repetitive draws of ´ (0; 0) and ´ (1; 1) are performed until
the restriction 0 < ´ (1; 1) < ´ (0; 0) < 1 is satis…ed.

Our prime concern is to vary the location of the prior distribution of the
edge probabilities between the blocks. Prior 1 represents a prior belief of
a person with little knowledge of the trading activity between the blocks.
Prior 2 corresponds to a prior belief of a person that assumes a rather high
trading activity between the blocks, whereas prior 3 corresponds to a prior
belief of a person that assumes a low trading activity between the blocks.
Under all three sets of priors ´ (0; 0) and ´ (1; 1) are dependent, and the
vector (´ (0; 0) ; ´ (1; 1)) is de…ned in the region 0 < ´ (1; 1) < ´ (0; 0) < 1
independently of ´ (0; 1).
The vector of unknown probit parameters is now given by ¯ =(¯0; ¯1; ¯2).

The hyperparameters in our assumed normally distributed prior is set to
¯¤=(0; 0; 0) and B¤ = (z0z)¡1 ±I, where I is the identity matrix, and ± is a
parameter that re‡ects our prior uncertainty of ¯. As ± increases, the Gibbs
sampler will fail to converge; see Figure 6 which shows posterior mean evolu-
tion of ¯0 for three values of ±. A cause of concern is that an increase of the
number of probit model parameters requires an increase of prior information
in order to implement this approach. This is due to the nature of the prop-
erties of the Markov chain. In the remainder of the analysis in this paper,
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Figure 6: Posterior mean evolution of ¯0 for a) ± = 10, b) ± = 100 and c)
± = 1000 based on a Gibbs sampling with 30; 000 iterations.

we assume that our a priori uncertainty regarding ¯ corresponds to a value
of ± equal to 10.
Note that a standardizing factor (z0z)¡1 is included in the covariance

matrix to revoke excessive in‡uence of the intercept on the actor block prob-
abilities ©(z0i¯). Without considering the scale of the predictors we can
obtain large positive or negative values of the intercept that will govern the
values of ©(z0i¯) to a large extent. This can, in some extreme cases, lead to
the deceptive result that all actors have high posterior probabilities to belong
to the same block.
The posterior distributions of ¯ and ´ are exhibited in Figure 7. It is

encouraging to see that the posterior of ¯ is insensitive to the choice of the
´-prior. The posteriors of ´ are of course somewhat dependent on the chosen
´-prior as the data set is not large enough to reconciliate the rather disparate
prior options.
In Figure 8 the posterior probabilities to belong to block 1 under the

model with covariates are plotted against the posterior probabilities to be-
long to block 1 under the model without covariates. Our prime concern is
addressed to the actors located o¤ the diagonal. Since they are mainly lo-
cated below the diagonal we would expect them to have high covariate values
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Figure 8: Posterior probabilities to belong to block 1 without covariates (x-
axis) and with covariates (y-axis), with our assumed normally distributed
prior on ¯ and a) prior 1, b) prior 2 and c) prior 3 on ´.

due to the negativity of the posterior means of ¯1 and ¯2; see Table 1. This
is certainly true for actors 2, 12 and 24, but not for actors 1, 4, 11, 17 and
20 according to Figure 9. This may be explained by the fact that although
the posterior means of ¯1 and ¯2 are negative, their probabilities to attain
positive values are quite large according to their posterior distributions in
Figure 7. However, by assuming three blocks instead of two, the impact of
available covariate information on the posterior block probabilities are more
in line with what one would expect.

Parameter Mean Std 95% prob. inter.
¯0 1.004 0.791 (¡0:427; 2:719)
¯1 -0.021 0.019 (¡0:060; 0:016)
¯2 -1.423£10¡4 2.131£10¡4 (¡6:098£ 10¡4; 2:333£ 10¡4)

Table 1: MCMC results for the parameters ¯
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Figure 9: Plot of actor covariates energy against schools.

5.2.2 With three blocks

When the number of blocks is larger than two, besides setting priors on ¯
and ´, the Bayesian approach involves an additional determination of a set
of priors on the covariance matrix §. With three blocks, § consists of just
one unconstrained variance, Á + °°0, and one covariance, °. Since we in
our simulated data set example and real data set example with two blocks,
evaluated our proposed model for di¤erent prior beliefs of ¯ and ´, we are
satis…ed in the sequel to present results for various prior information of Á
and °. Two sets of priors are considered for Á and °, of which both sets are
roughly centered on § = I. The tightness of the prior is controlled by C and
m, small values of C and large values of m give tighter priors; see Equation
(6) and Equation (7). Our …rst prior is non-informative with C = 100 and
m = 1, whereas the second is more informative with C = 3=4 and m = 6.
With three blocks the array of edge probabilities is given by

´ = [´ (0; 0) ; ´ (1; 1) ; ´ (2; 2) ; ´ (0; 1) ; ´ (0; 2) ; ´ (1; 2)] :

We assume a priori that ´ (0; 0) ; ´ (0; 1) and ´ (0; 2) are beta (6; 3) dis-
tributed; ´ (1; 1) ; ´ (2; 2) and ´ (1; 2) are beta (5; 5) distributed, beta (3; 6)
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Figure 10: Posterior mean evolution of °; Á and ¯0, respectively for two sets
of priors of ° and Á. In the top row C = 100 and m = 1, in the bottom row
C = 3=4 and m = 6.

distributed and beta (2; 8) distributed, respectively. Hence, we assume prior
to looking at our data a high trading activity within block 0, and between
block 0 and the other two blocks. Furthermore, we assume a di¤erent degree
of low trading activity within block 1, within block 2, and between block 1
and block 2.
Figure 10 exhibits the posterior mean evolution of °; Á and ¯0 for the

two sets of priors on §. Although the Gibbs sequence of ° converges to
a value close to 0 under the non-informative set of priors, we see that it
is not immediately obvious that the sequences of the other parameters will
converge as well. Lack of convergence of Á, results in lack of convergence
of the parameters ¯ and ´ too, here represented by ¯0. Under our more
informative prior, the Gibbs sampler converges for all the model parameters.

To evaluate the impact on the predictive posterior distributions of block
probabilities by including information from actor covariates in the model, we
examine Figures 9 and 12. Our immediate concern are those actors whose
posterior block probabilities di¤er between the models, i.e. are located o¤
the diagonal. For example, since ¯1 and ¯2 are more likely to be negative
than positive, see Figure 11 displaying the posterior distributions of ¯ and
§, the probability Pr (yi = 0 jz) decreases for actors 3 and 21 due to rela-
tively low covariate values and increases for actors 5 and 16 due to relatively
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Figure 11: Posterior distributions of ¯ and § for the informative prior.

high covariate values. Analogously, it follows that Pr (yi = 2 jz) increases for
actors 6 and 10 due to low covariate values. The impact of covariates on the
predictive posterior probability to belong to block 1, Pr (yi = 1 jz), seems a
bit more erratic. Obviously, a decrease in Pr (yi = 1 jz) is explained by an
increase in Pr (yi = 0 jz) for actors 5 and 16, whereas it is explained by an
increase in Pr (yi = 2 jz) for actors 6 and 10.
The entropy provides a natural measure of uncertainty when a desirable

property is that a dominating probability of a discrete random variable yields
a low value, whereas equal values yields the maximum value. The entropy of
a discrete random variable Y is de…ned by

H = ¡
X

py log py

where py = Pr (y), and the base of the logarithm is optional. A small value in
H implies less uncertainty in the distribution of y. Since the block a¢liation
probabilities take three values, the normalized values H= log(3) ranges from
zero to unity. The entropies of all actors under both models are listed in Table
2. The domination of one probability to belong to a speci…c block seem to
increase when covariates are considered. The mean and standard deviation
of the di¤erence between Hnocov and Hcov is 0.182 and 0.164, respectively.
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Actor Hnocov Hcov Hnocov=Hcov
1 0.276 0.035 7.89
2 0.410 0.087 4.71
3 0.736 0.323 2.28
4 0.370 0.018 20.56
5 0.537 0.582 0.92
6 0.627 0.450 1.39
7 0.420 0.059 7.12
8 0.268 0.005 53.60
9 0.092 0.033 2.79
10 0.626 0.389 1.61
11 0.348 0.018 19.33
12 0.562 0.643 0.87
13 0.023 0.013 1.77
14 0.243 0.013 18.69
15 0.237 0.001 237.00
16 0.502 0.481 1.04
17 0.296 0.062 4.77
18 0.029 0.036 0.81
19 0.005 0.007 0.71
20 0.323 0.021 15.38
21 0.665 0.167 3.98
22 0.019 0.010 1.90
23 0.008 0.003 2.67
24 0.443 0.231 1.92

Table 2: Entropies of the block a¢liation probabilities under both models ¯

By examining Figures 8 and 12, we see that actors 6, 8, 10, 14 and 15 are
likely to belong to block 1 when the number of blocks are …xed to two and to
block 2 when the number of blocks are …xed to three. Actors 9,13, 18, 19, 22,
and 23 are likely to belong to block 0 both when the number of blocks are two
and three. Actors 1-5, 7, 11, 16, 17, 20, 21 and 24, whose block allocations
are not as obvious when the number of blocks are …xed to two, are likely to
belong to block 1 when three blocks are considered. Finally, actor 12 has
about equal probability to belong to block 0 or block 1 when the number
of blocks are two, and block 1 or block 2 when the number of blocks are
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three. A blockmodel analysis is performed by Wasserman and Faust (1994),
pp. 403-406 on this data set, where they measured structural equivalence by
using the Pearson product moment correlation coe¢cient on three relations:
manufactured goods, rawmaterials, and diplomatic ties. All of these relations
are directional and dichotomous. They identi…ed the following six positions
(blocks) by using complete link hierarchical clustering:

² b0 : 13; 22; 23
² b1 : 4; 5; 11; 18; 24
² b2 : 2; 3; 9; 16; 17; 19; 21
² b3 : 1; 7; 20
² b4 : 6; 10; 12
² b5 : 8; 14; 15

The constellation of block 0 roughly agrees with b0, whereas the constella-
tion of block 1 roughly agrees with b1; b2 and b3. Finally, we see by excluding
actor 12 from b4, that the constellation of block 2 equals b4 and b5.
We performed our analysis for a predetermined number of blocks, b = 2

and b = 3. A rather natural extension would be to generalize the analysis
to an arbitrary number of blocks. A proper Bayesian analysis would then
include the computation of the posterior distribution of the number of blocks.

6 Discussion
An extension to Nowicki and Snijders (2001) Bayesian approach to poste-
rior blockmodeling is presented in this paper. It involves a possibility to use
information from covariates on actor level in order to predict the block a¢lia-
tion of the actors. The block a¢liation probabilities are modeled conditional
on the covariates via a multinomial probit model. This approach provides
computational tractable methods, e.g. Gibbs sampling, to compute posterior
distributions of the model parameters and predictive posterior distributions
of the block a¢liation of each actor, since simulation is only required from
standard distributions.
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Figure 12: Posterior probabilities to belong to a) block 0; b) block 1; c)
block 2, without covariates (x-axis) and with covariates (y-axis), when the
hyperparameters are C = 3=4 and º = 6.

Although the predictive posterior distributions of block a¢liation of ac-
tors is partly governed by prior information on the relational structure, we
show in this paper by performing a simulation study, that inclusion of co-
variate information on actor level in the model can considerably improve the
prediction of block a¢liation.
The number of parameters increases with the number of covariates and

the number of blocks. A cause of concern is requirement of more informative
priors on some of the parameters in order to force the Gibbs sampling to
converge.
Assumptions of independence and conditional independence between the

units of analysis are common in social networks. In the introduced model, we
assume that the probability distribution of the relation between two vertices
depends on the block a¢liation and the covariate values of the two vertices.
By conditioning on the block a¢liation and covariate values of the vertices,
the relations are independent. A challenge would be development of more
elaborate probabilistic models that consider more complex conditional depen-
dence assumptions. Computational obstacles have prevented such consider-
ations in the past, but developments of computer intensive analysis methods
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in the last decade facilitate for such modeling. Frank and Strauss (1986) gen-
eralized the dyad independence models by introducing the notion of Markov
dependency between dyads.
Finally, the predictive posterior distributions of block a¢liation is com-

puted for a predetermined and …xed number of blocks. As mentioned earlier,
an extension would be to generalize the analysis to an arbitrary number of
blocks which would include the computation of the posterior distribution of
the number of blocks.
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