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Abstract

Centrality is an important concept in social network analysis which
involves identi…cation of important or prominent actors. Three com-
mon de…nitions of centrality are degree centrality, closeness centrality
and betwenness centrality. These de…nitions yield actor indices which
can be aggregated across actors to obtain a single group-level index.
In this paper we consider how eight of these group-level indices can be
used for graph centrality tests. Two of the tests are based on degree,
whereas the remaining six tests are based on closeness. Our null hy-
pothesis model, showing no centrality structure, is the Bernoulli graph
model which we test against a block model re‡ecting graph central-
ity. We perform a simulation study where the power of the tests are
compared.
Keywords: Bernoulli graphs; Closeness centrality; Degree cen-

trality; Power of centrality tests; Random graphs; Stochastic block-
models.

1 Introduction
Data that involve relationships representing the interactions between mem-
bers in a social network arise in a wide variety of settings, including eco-
nomics, psychology, sociology and criminology. The development of stochas-
tic models and statistical methods appropriate for analyzing this kind of data
is therefore of considerable importance. The members and their relational
structure are usually represented by graphs, where the members are referred
to as vertices or actors and the relations are referred to as edges.
A substantial amount of research has been devoted to a concept usually

referred to as blockmodels, which involves partitioning of actors with sim-
ilar contact patterns and relational features into subsets called blocks. A
de…nition of a deterministic approach to blockmodels was given by White,
Boorman and Breiger (1976), which states that actors with the same adja-
cency structure are partitioned into the same block. Fienberg andWasserman

1



(1981) and Holland, Laskey and Leinhardt (1983) generalized the determin-
istic blockmodels by using the concept stochastic equivalence; in a random
directed graph model two actors are de…ned as stochastic equivalent if their
probabilistic relational structures to the other actors in the graph are the
same. Under an additional assumption of independent dyads and permuta-
tion invariance of actors, they called models with such probabilistic relational
structures stochastic blockmodels.
Blockmodels may also be used to model the important concept of central-

ity by de…ning the block consisting of members with the largest probability to
generate relations as central. A variety of indices measuring actor centrality
has been proposed in the literature. By aggregating an actor centrality index
over all actors, we obtain a graph centrality index, measuring how ”central-
ized” the set of actors is as a whole. Three centrality de…nitions frequently
discussed are those based on degree, closeness and betweenness. The de…ni-
tion of centrality was …rst developed by Bavelas (1948 , 1950). Many graph
theoretic concepts are discussed in Hage and Harare (1983), and various as-
pects of centrality in graphs has been published by, for instance, Beauchamp
(1965), Nieminen (1974), Höivik and Gleditsch (1975), Freeman (1977, 1979)
and Snijders (1981a, 1981b). Recent publications include work by Hagberg
(2000) and Frank (2002). The licentiate thesis Tallberg (2000a) included two
papers, Tallberg (2000b, 2000c). In Tallberg (2000b), a likelihood ratio test
procedure for testing centrality was considered, where centrality was de…ned
by a stochastic blockmodel described above. The idea was abandoned be-
cause of the di¢culties with obtaining the maximum likelihood estimators
which includes identifying the blocks. In Tallberg (2000c) some preliminary
comparisons between various centrality tests based on degree-centrality and
closeness-centrality are made. Similar comparisons are continued here.
In this paper, we present test statistics based on well-known graph cen-

trality indices for testing whether the observed data is likely to have come
from a stochastic blockmodel, indicating centrality, or some non-central ran-
dom model. By considering the Bernoulli model as our non-central random
null hypothesis model, the performance of the tests are evaluated by com-
paring their power functions.
We now outline the content of this paper. In Section 2 basic notation is

given that will be used throughout the remainder of this paper. In Section
3, the graph models considered are described, and in Section 4 the graph
centrality tests are presented. A simulation study where the power functions
are compared is covered in Section 5. In Section 6, we develop a model where
critical values of the tests are expressed as functions of graph parameters.
In Section 7, we illustrate the results on Kapferer’s tailor shop data. Some
concluding remarks are given in Section 8.
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2 Notation
Consider an undirected graph of known order n on the vertex set V =
f1; :::; ng, and let V 2 denote the set of all distinct ordered pairs of vertices
(i; j) from V . By denoting the corresponding n£ n adjacency matrix of the
graph A, each entry aij = aji; (i; j) 2 V 2 takes the value 1 if an edge is
present between i and j. By convention, the diagonal entries of A are equal
to 0. The number of edges, often referred to as the size of the graph, is here
denoted by R and given by

R =
n¡1X
i=1

nX
j=i+1

aij:

The degree of any vertex i is de…ned as the number of edges incident to
vertex i and is denoted by ai, thus

ai =
nX
j=1

aij =
nX
j=1

aji:

The maximum degree is denoted by max
i
ai and the mean degree is denoted

by ¹a and given by

¹a =
1

n

nX
i=1

ai =
1

n

nX
i=1

nX
j=1

aij :

Finally the variance of the degrees is denoted by s2a and given by

s2a =
1

n

nX
i=1

(ai ¡ ¹a)2 :

A walk in a graph is an alternating sequence of vertices and edges, start-
ing and ending with vertices, in which each edge is incident with the vertices
following and preceding it in the sequence. Vertices and edges may be re-
peated. A path is a walk in which all vertices and edges are distinct. The
length of a path is the number of edges used. The geodesic is the shortest
path between two vertices. If any two vertices are connected by a walk the
graph is said to be connected. The maximal connected subgraphs of a dis-
connected graph are called the connected components of the graph. Let D
be an n£n distance matrix where the element dij is de…ned as the length of
the geodesic between vertex i and vertex j. Then, the average distance in a
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connected graph is denoted by ¹d and given by

¹d =
1¡
n
2

¢ n¡1X
i=1

nX
j=i+1

dij :

If a geodesic does not exist between vertex i and vertex j, i.e. they are
located in two di¤erent components, dij is set to in…nity which only allows
computation of the average distance in connected components. For a more
detailed description of concepts in graph theory; see Palmer (1985) or the
extensive work on social networks by Wasserman and Faust (1994).

3 Models

3.1 The Bernoulli model

As our stochastic null hypothesis model H0, showing no centrality structure,
we will use the Bernoulli graph model. That is, the edges are generated
independently with an unknown common edge probability p = Pr(aij = 1);
i 6= j. The probability of a graph G is given by

Pr (G) =

(
pr (1¡ p)(n2)¡r if G is of order n with r edges
0 otherwise.

This model is commonly used to study random graph properties; see for
instance Palmer (1985).

3.2 Blockmodels

To be able to estimate the powers of the tests, we need an alternative random
graph model that captures centrality against which we can test the Bernoulli
graph model. For this purpose, we de…ne a block model in the following way:
Assume that we have a graph of …xed order n where V is partitioned

into b mutually exclusive non-empty vertex blocks labeled 1; :::; b. The dyad
involving i and j is characterized by (aij; yi; yj), where yi and yj; (i; j) 2 N ,
are block labels of actors i and j. Conditional on all y1; :::; yn, the elements
aij for i < j are independent random variables with probability

Pr (aij = 1 jy1; :::; yn )
= Pr (aij = 1 jyi; yj ) = p (yi; yj) :

Set p (k; l) = pk;l. The blocks are labeled so that pkk > pll for k < l. Usually
we assume pkk > pll for k < l. If pkk = pll, then we require pkl 6= pkk in order
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to be able to separate the blocks k and l 6= k. The edge set between any
vertex i in block k and any vertex j in block l is denoted by Ekl.
To simplify, we will impose constraints on the parameter space and carry

out our analysis for the simplest case, b = 2. Then, the …rst block is regarded
as the central block which we assume contain only one vertex, and the second
block is regarded as the non-central block consisting of the remaining vertices.
When the number of edge probabilities are reduced to two, p12 and p22, such
that

p12 ¡ p22 > 0;

we conveniently reparametrize so that p22 is denoted by p. By introducing a
new parameter explicitly denoted by ¢ and given by

¢ = p12 ¡ p > 0;

the block model is reformulated with the two unknown parameters, p and
¢. Hence, the edge probability between b1 and b2 is now given by p+¢. We
denote by H¢ this blockmodel with parameters p and ¢, and for ¢ = 0, H0
is the Bernoulli model.

4 Tests of centrality

4.1 Introduction

Three centrality de…nitions are usually mentioned in the literature, degree
centrality, closeness centrality and betweenness centrality. All three are in
di¤erent ways trying to capture the popularity, in‡uence or importance of
actors in a social network. The choice of an appropriate centrality de…ni-
tion and its associated measure depends on the context of the application.
According to Freeman (1979), degree-based centrality measures the actors’
communication activity, betweenness-based centrality measures the actors’
control of communication, and closeness-based centrality measures the ac-
tors’ interference or e¢ciency.
Centrality indices are evaluated for all n actors indicating the status of

each actor according to popularity, in‡uence etc.. To obtain a centrality index
at group level the centrality indices are aggregated across all actors. There are
di¤erent measures at group level such as the maximum, the average, or the
variance of the actor level indices. According to many network researchers
interested in centrality, for example Leavitt (1951), Nieminen (1974) and
Freeman (1977), a group level index should have the property to increase if
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the di¤erence between a single actor’s centrality status and the remaining
actors’ centrality status increases. Thus, an appropriate group level index
should measure the variability or heterogeneity of the actor centrality indices.
We shall employ this view of graph centralization and consider eight graph
centrality indices, measuring the variability of the actor centralities, as test
statistics. Six of the tests are based on closeness and two are based on degree.
The numerical computation package Matlab was used to simulate prop-

erties of the tests for various values of the model parameters.

4.2 Tests based on degree.

The simplest and most prominent de…nition of actor centrality is that based
on degree. It focuses only on direct or adjacent choices. Actors that have the
most edges to other actors in the network are considered as central. As our
test statistics, we will use two standard group level centrality measures which
are frequently suggested in the literature. The …rst test is the di¤erence of
the maximum actor degree and the mean actor degree,

T1 = max
i

ai ¡ ¹a;

proposed by Freeman (1979). The second test is the variance of the actor
degrees,

T2 = s
2
a:

Properties of the distribution of T2 have been investigated in detail by for
example Snijders (1981a, 1981b) and Hagberg (2000) to mention a few.

4.3 Tests based on closeness

The second view of actor centrality is based on closeness or distance, which
is more dependent on indirect ties compared to centrality based on degree
which only involves direct ties. The idea is that an actor will be considered
as central if he can interact directly or indirectly with many others, implying
that centrality is inversely related to distance. Since a desirable property of
an actor’s centrality index should be that it decreases when its distance to
another actor grows, Sabidussi (1966) proposed the following index"

nX
j=1

dij

#¡1
;
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where the length of the geodesic distances are inversely weighted. The disad-
vantage with Sabidussi’s index is that it can only be evaluated for connected
graphs, since the distance between two disconnected vertices is set to in…n-
ity. In this paper we present two modi…ed versions of Sabidussi’s index with
weights, which allow us to compute centrality indices based on distances in
disconnected graphs.
In the …rst version we simply evaluate Sabidussi’s index in connected

components. Let ni be the number of vertices in the component of vertex i.
The average distance from vertex i to its other connected vertices is denoted
by ¹di. Since the minimum value of ¹di is unity for ni > 1, we set ¹di = 1 if
vertex i is isolated. To obtain a centrality index that increases as the length
of the geodesics decrease, we use the reciprocal of ¹di rather than ¹di itself
as a centrality index on actor level. The range of ¹d¡1i is between zero and
unity, and its maximum is obtained for any vertex i that is adjacent to all the
other vertices in the same component. If the underlying model is a Bernoulli
graph model generating edges with a small common edge probability p, the
realized graphs will consist of a large fraction of small order components.
The vertices in those components will obtain large centrality values and will
consequently to a large extent dominate the group level centrality index. In
the extreme case, for a su¢ciently small p, a large amount of vertices will
be isolated with the maximum centrality index value one. To revoke this
excessive in‡uence of small order components, the actor centrality index is
weighted with a factor of size ni=n. Thus, the centrality index for vertex i is
given by

ci =
ni
n ¹di
; for ni > 1: (1)

Note that if G is connected we arrive at Sabidussi’s index multiplied by the
constant (n¡ 1).
In the second version of Sabidussi’s index, we set d¡1ij = 0 if dij = 1,

which allows us to calculate an actor centrality index without considering
connected components. Thus, a second centrality index based on closeness
for any vertex i is given by

c0i =
1

n¡ 1
X
j 6=i

1

dij
:

This index also possesses the desirable property of a centrality index of having
a range between zero and unity, where its maximum value is reached when
the actor is adjacent to all other n¡ 1 actors. Note that ci and c0i are closely
related since they both are inverted means; ci is the inverse of the arithmetic
mean and c0i is the inverse of the harmonic mean.
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In order to de…ne graph centralities from the actor centralities we use
Freeman’s (1979) index and the variance of the actor centralities like we did
for degree based actor centralities. In addition, as an alternative to those two
indices we also consider the maximum of the actor centralities as a graph
centrality index. Thus, we consider six tests of graph centrality based on
distances given by

² T3 = max
i
ci

² T4 = max
i
ci ¡ ¹c, where ¹c = 1

n

nP
i

ci

² T5 = s2c = 1
n

P
i

(ci ¡ ¹c)2

² T6 = max
i
c0i

² T7 = max
i
c0i ¡ ¹c0, where ¹c0 = 1

n

nP
i

c0i

² T8 = s2c0 = 1
n

P
i

(c0i ¡ ¹c0)2

Note that none of the eight tests are standardized with their theoretical
maximum value, since such a standardization would not a¤ect the following
analysis.

5 Power against centrality
Hypothesis tests are evaluated and compared through their probabilities of
making mistakes. There are two types of error probabilities, 1) Pr (rejecting H0 jH0 is true)
and 2) Pr (not rejecting H0 jH0 is not true). Since it is impossible to make
both types of error probabilities small, it is common to control the …rst prob-
ability at a speci…ed level. Within a given class of tests, we then search for
tests that have the second probability that is as small as possible. Thus, in
this section we examine 1¡ Pr (not rejecting H0 jH¢ is true), i.e. the power
functions of the tests. Since the power functions will depend on n; p and ¢,
they are compared for all combinations of the parameter values n = 10; 20; 50,
p = 0:1; 0:3; 0:5 and ¢ = 0:0; 0:2; 0:4; 0:6; 0:8. Note that for the combinations
n = 20; 50 and p = 0:3; 0:5, the probability that G is connected is large. The
index given in (1) then equals Sabidussi’s index.
As previously mentioned, a simulation study was conducted in order

to compare the power functions. For each combination of n and p, the
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test statistics were computed in 20,000 generated Bernoulli graphs (when
¢ = 0:0) in order to estimate the distributions of the tests under the null
hypothesis. Then, the critical values, C, were determined such that we could
obtain signi…cance levels of approximately the same size for all the tests.
Since the test statistics are discrete we may, particularly in graphs of small
order, …nd it di¢cult to obtain critical values at the desired signi…cance level
®.
We are now able to estimate the powers of the tests against centrality,

using the blockmodel described in Section 3.2 as our centrality model. For
each combination of n; p and ¢ > 0, we generated 20,000 block model
graphs. We then estimated the tests’ powers by computing the proportion of
test statistics exceeding the critical values. Since the power is a function of
n; p and ¢, we denote this explicitly by writing K (n; p;¢) or simpler K (¢)
for …xed n and p.
All tests presented in this paper have been considered in the simulations,

but we only present results for some of them. Figure ?? exhibits the simulated
power functions for …xed n = 10 and p = 0:3, and various values of ¢. Not
surprisingly, the power functions of T3, T4 and T5 are almost equal to their
closely related tests T6, T7 and T8, respectively. The tests T5 and T8 perform
very poorly; for su¢ciently large ¢ and small p, K (¢) is even a decreasing
function. The simulation results also demonstrate that both of the degree-
based tests, T1 and T2, perform well and that T3 and T4 were consistently
better than T6 and T7. Therefore, the remaining results are presented only
for the tests T1, T2, T3 and T4.
By examining the simulated power functions in Figure ?? for each consid-

ered combination of n, p and ¢, we see that none of the tests are uniformly
most powerful, although a general tendency is that T1 and T3 are more pow-
erful than the other tests. A bit surprising is that the frequently proposed
graph centrality index T2, the variance of the actor centralities based on de-
gree, shows relatively poor power, especially for large values of p. Notable
also is that K (¢) increases faster for small p and large n, and that the power
functions of T1, T3 and T4 are approximately equal for large values of n.

6 Critical values
Although some rather tight constraints are imposed on the parameter space
for the block model, such as assuming two blocks and only one vertex in the
central block, we will now provide some convenient results to increase the
applicability of the test procedures given in the previous section. As in the
previous section, we only present results for the tests T1; T2; T3 and T4.
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Figure 1: Power functions for some of the tests for p = 0:3 and n = 10.

We now provide the modeling and …tting details. Let G be generated by
a Bernoulli graph model. Then, we assume that for any test T , T ¡ ¹ is
exponentially distributed with parameter µ, where the signi…cance level of T
is given by

® = Pr (T > C) = Pr (T ¡ ¹ > C ¡ ¹)
= exp [¡ (C ¡ ¹) =µ] ; C > ¹; µ > 0.

so that

C = ¹¡ µ log®: (2)

Since T is not exactly exponentially distributed, an approximation is consid-
ered by assuming an ordinary least squares regression model with C consid-
ered as a continuous response taking values on the real line. Let C, besides
depending on ®, also depend on the graph parameters n and p through ¹
and µ in the following way

C (®; n; p) = ¹ (n; p)¡ µ (n; p) log® = ° 01x¡ (log®)° 02x; (3)

where x0 = (1; n; p; n2; p2; np) is a vector of known covariates, and ° 01 =
(°10; °11; :::; °15) and °

0
2 = (°20; °21; :::; °25) are two vectors of unknown re-

gression coe¢cients.
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Figure 2: The simulated power functions of T1 (solid line); T2 (dotted line);
T3 (dashed dotted line) and T4 (dashed line) for n = 10 (…rst row), n = 20
(second row) and n = 50 (bottom row), p = 0:1; 0:3; 0:5 and various ¢.

To evaluate the model a simulation study was conducted, where distri-
butions of the tests were simulated for various combinations of n and p as
described in previous section. Model (3) were …tted to the simulated data,
and the vectors ° 01 and °

0
2 estimated for each combination of n and p. Ordi-

nary least squares estimates of ° 01 and °
0
2 and their corresponding standard

errors are given in Table 1.
To evaluate the …t of the models, we report adjusted R2, the maximum

absolute deviation and the mean absolute deviation of the residuals which
seem reasonably adequate for all four …tted models according to Table 1.
Furthermore, critical values obtained from the simulated distributions of the
tests and critical values computed from (3) are plotted against ® for various
combinations of n and p in Figures ?? and ??. Although the …t of (3) is not
satisfactory for all combinations of n and p, the di¤erences in general are not
very large. Unfortunately, there is no obvious rule for which combinations
of n, p and ®, the critical values computed from (3) are almost equal to the
simulated critical values.

11



CT1 CT2 CT3 CT4
°10 -1.0 ( 0.3) -10.7 (0.8) 0.44 (0.01) 0.13 (0.01)
°11 0.090 (0.006) 0.18 (0.01) -80 (15)* -80 (23)*
°12 15.6 (2.3) 57.4 (3.0) 0.95 (0.04) -
°13 - - - -
°14 -16.4 (2.6) -56.9 (3.0) -0.33 (0.04) -
°15 - - - -
°20 - - 0.022 (0.002) 0.031 (0.004)
°21 0.011 (0.002) 0.026 (0.005) -20.0 (5.1)* -30.0 (7.7)*
°22 2.1 (0.5) - - -0.019 (0.004)
°23 - -10.0 (5.1)* - -
°24 -2.3 (0.6) - - -
°25 -0.005 (0.002) - - 30.0 (7.7)*
R2(adj) 96% 92% 94% 75%
meanjresj 0.17 0.10 0.02 0.01
maxjresj 0.49 0.21 0.09 0.03

Table 1: OLS estimators of the regression parameters. Standard errors are
given in parenthesis. A star implies that the coe¢cient and associated stan-
dard error should be multiplied by a factor 10¡5.

7 An empirical example
We apply the results discussed in the preceding sections to Kapferer’s tailor
shop data from a study concerning the observed interactions among workers
in a tailor shop in Zambia. A description of the data, as well as the data itself,
is presented in Kapferer (1973). The part of the data used here, consists of
a symmetric binary matrix of order n = 39 and size R = 446 representing
social relations among 39 of the families.
In the testing procedure proposed, it is assumed that p is known un-

der the null hypothesis. Since this is not the case, we computed the max-
imum likelihood (M.L.) estimate, p̂ = 0:602, for the considered data set.
In Table 2, computed values of C, are given together with the probabilities
Pr (T > C jn = 39; p = 0:602) for the estimated model (3) as well as for the
simulated distributions. The probability values computed with the model
seem to agree with the probability values obtained from the simulated distri-
butions for T1 and T2; they are less than 0:0001 for both the simulated and
modeled critical values. For T4, the modeled critical values are almost twice
the simulated which is quite unsatisfactory. Although T1, T2 and T4 yield
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Figure 3: Simulated (solid curve) and approximated (dotted curve) critical
values plotted against ® for n = 30 and p = 0:1 (top row); p = 0:3 (second
row) and p = 0:6 (bottom row), respectively.

di¤erent probability values, the decision taken is the same. That is, the null
hypothesis is rejected and we assume graph centrality, whereas for T3, the
null hypothesis cannot be rejected and we assume that the observed network
is non-central. This result indicates that either T1, T2 and T4 or T3 are not
appropriate test statistics for testing graph centrality. Without any further
investigation we assume that T3 yields results that will lead to making the
wrong decision, and therefore continue the analysis with T1, T2 and T4.
Since p is unknown and estimated from data, there are several other plau-

sible values of p apart from p̂. Depending on which value of p is considered
under the null hypothesis, di¤erent decisions can be made. It is easily veri…ed
that the …rst two moments of the M.L. estimator are given by

E
³
P̂
´
= p

V ar
³
P̂
´
=

2p(1¡ p)
n (n¡ 1) :

If n (n¡ 1) p (1¡ p) is su¢ciently large, P̂ is approximately normally dis-
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Figure 4: Simulated (solid curve) and approximated (dotted curve) critical
values plotted against ® for n = 50 and p = 0:1 (top row); p = 0:3 (second
row) and p = 0:6 (bottom row), respectively.

tributed. Thus, an approximate 95% con…dence interval for p is given by

p̂§ 2
s
p̂ (1¡ p̂)¡

n
2

¢ :

The computed approximate 95% con…dence interval for p is (0:584; 0:620).
Which of these possible values should be considered as a natural candidate
to p̂? A joint property of the distributions for the centrality tests considered
in this paper is that the probability Pr (T > C jn) increases if p > 0:5 de-
creases. Hence, because we reject the null hypothesis of no centrality when
p is replaced with p̂, it is su¢cient to carry out the test procedure with p
equal to the lower bound of the con…dence interval, p̂lb. If we make the same
decision, then the test is consistent for any other p in the con…dence interval.
However, if we cannot reject the null hypothesis, the test is inconclusive. In
Table 2, we see by comparing the probability values for the simulated distri-
butions of the tests, that the null hypothesis is still rejected for T1, T2 and
T4 at 5% signi…cance level. Hence, by applying any of the three tests, we
would conclude that there is strong evidence of graph centrality both when
the critical values are simulated and computed with the proposed model. In
Figure ??, the simulated critical values and critical values obtained from (3)
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are plotted against ® for this combination of n and p. The accuracy is rather
poor for T2 for su¢ciently large ®, whereas it is satisfactory for T1 and T4
for any of the ® considered here.

T1 T2 T3 T4
T (observed) 13.6 29.6 0.7451 0.1722
P (T > C jn = 39; p = p̂ = 0:602) (s) <0.0001 <0.0001 >0.15 <0.0027
P (T > C jn = 39; p = p̂ = 0:602) (m) <0.0001 <0.0001 >0.15 <0.0046
P (T > C jn = 39; p = p̂lb = 0:584) (s) <0.0001 <0.0001 - <0.0026
P (T > C jn = 39; p = p̂lb = 0:584) (m) <0.0001 <0.0001 - <0.0046

Table 2: Probability values of the four test statistics for Padgett’s family
data. The probability values are calculated from simulated distributions (s)
as well as from distributions obtained by model (2) (m).
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Figure 5: Simulated (solid curve) and approximated (dotted curve) critical
values plotted against ® for Kapferer’s tailor shop data. In top row p = p̂ =
0:602, in bottom row p = p̂lb = 0:584.

8 Concluding remarks
Well-known graph centrality measures are used as tests of graph centrality.
The Bernoulli graph model is considered as our null hypothesis model. As
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our alternative random graph model against which we can test centrality,
we use a blockmodel. Some rather tight constraints are imposed on the
parameter space for the blockmodel. The number of blocks are restricted
to two, and allowing only one actor in the central block. By performing
computer simulations, the power of the tests are compared in graphs of order
10, 20 and 50 for various values of model parameters. Although none of the
tests is uniformly most powerful, Freeman’s index when centrality is based on
degree and the maximum of the actor centralities when centrality is based on
closeness are more powerful in general. The variance of the actor centralities
when centrality is based on degree performs rather well, whereas the variance
of the actor level indices when centrality is based on closeness performs very
poorly.
Besides comparing the power of the tests, we provide a regression model

with critical values as functions of the order of the graph, the edge probability
in the Bernoulli graph and signi…cance level for four of the tests which show
strong power. Although the predictions of critical values are quite similar to
the simulated values, caution has to be taken when predicting for su¢ciently
large values of the edge probability for three of the tests.
Obvious extensions to the centrality blockmodels considered here, is to

revoke the impose of restrictions on the number of the blocks and the order
of the blocks.
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