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Abstract

Per-record measures of disclosure risk have potential uses in statis-
tical disclosure control programs as a means of identifying sensitive or
atypical records in public-use microdata …les. A measure intended for
sample data based on the Poisson-inverse Gaussian distribution and
overdispersed log-linear modeling is presented. An empirical example
indicates that the proposed model performs approximately as well as
the Poisson-lognormal model of Skinner and Holmes (1998) and may
be a tractable alternative as the required computational e¤ort is signif-
icantly smaller. It is also demonstrated how to extend the application
to take into account population level information. The empirical re-
sults indicate that using population level information sharpens the
risk measure.
Keywords: Disclosure control; Log-linear models; Poisson-inverse

Gaussian; Risk-per-record; Uniqueness.

1 Introduction
A growing amount of literature dealing with various aspects of statistical
disclosure control (SDC) has been published in the last decades of which
we may refer the interested reader to e.g. Dalenius (1977), Duncan and
Lambert (1989), Duncan and Pearson (1991), Fienberg (1994), Frank (1976,
1988), Lambert (1993), Skinner et al. (1994), Willenborg and deWaal, (1996,
2000). Recent publications include Doyle et al. (2001) and Domingo-Ferrer
(2002).
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A special case concerns public-use microdata …les which are often released
to researchers so that they may conduct their own analysis. A microdata
…le is de…ned as consisting of records corresponding to individual units in a
sample from a …nite population. If the data originates from e.g. a census or
large database, only a subset of the complete set is sometimes considered for
release so we will only consider cases where a sample is available. Each record
consists of a number of attributes pertaining to the individual scores of the
corresponding unit. Clearly there are potential risks involved concerning the
possibility of disclosing individual information about the respondents from
which the data is derived. Even when the …le has been anonymized by the
removal of direct identi…ers such as names and personal ID-numbers etc., the
risk remains since a perceived intruder may use a set of matchable attributes,
or key attributes, included in the data to establish a link between a given
record and some individual in the population.
The disclosure risk may be conceived of as the evidence in support of a

correct link between a record in the …le and a unit in the population. Methods
that assign each record an individual measure of disclosure risk, based on
the characteristics of the record, have a number of potential uses. As with
any SDC technique it is desirable that the amount of alterations made to the
original data is small enough to ensure that the e¤ect on subsequent analyses
is within reasonable limits. The agency releasing the data could for example
focus on the highest ranking records and apply disclosure control methods to
these separately, e.g. by local suppression, rather than modifying the whole
data set, e.g. by global recoding. Such a practice would be analogous to, and
easily incorporated with, other data processing procedures, such as editing.
See also the discussion in Willenborg and de Waal (1996 p. 137).
The framework considered in the present paper is basically identical to

the method proposed in Skinner and Holmes (1998) who based their risk-
per-record measure on the concept of uniqueness. A unique is simply de…ned
as an entity with a unique combination of scores on the set of key attributes.
A population unique is unique in the population and a sample unique is
accordingly unique in the sample. The idea is to assess the probability that
a unique record is also unique in the population. Skinner and Holmes do this
by taking into account the individual scores of the key attributes for each
record using simple overdispersed log-linear models. Skinner and Holmes
used the Poisson-lognormal distribution (PLN) as the basis for their model,
here we investigate the performance of the Poisson-inverse Gaussian (PiG).
The PiG introduced by Holla (1966) in studies of repeated accidents and

recurrent disease symptoms and has since been applied to sentence-length
and word frequency data and model repeat-buying behavior, (Sichel, 1974,
1975, 1982), species abundance (Ord and Whitmore, 1986) and insurance
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claim data (Willmot, 1987). It has been noted that the frequency distribution
in disclosure applications been tends to have an inverse J-shape with heavy
upper tail (cf. Chen and Keller-McNulty, 1998). Since the PiG distribution
is characterized by its positive skewness and heavy upper tail it appears to
be an appropriate distribution for modeling frequency counts in disclosure
applications. It was applied to the disclosure problem in Carlson (2002)
were it was shown to provide good estimates in an empirical example. A
disadvantage with the lognormal is that it is not available in closed form
and that numeric integration is required whereas the PiG is easily de…ned by
simple recursion formulas and the derived risk measure is in closed form. The
PLN on the other hand is supported by reasonable theoretical justi…cations
and strong empirical evidence, see Skinner and Holmes (1993, 1998) and
Marsh et al. (1994).
In the Nordic and many other countries detailed population statistics are

frequently being published from registers and population uniques can either
be inferred or excluded directly from the published tables or the published
tables can be used as auxiliary information along with the sample data.
Marginal distributions of potential key variables are often readily available
from public sources and even two-way tables would not necessarily be consid-
ered hard to come by if the variables are not to exotic. An extension of the
method which more or less suggests itself is to use population level margins
or two-way tables in the estimation of the model parameters.
Thus, the scope of the study is two-fold: to empirically evaluate the PiG

model as a simpler alternative to the PLN and to investigate if and to what
extent auxiliary information in the form of known population margins or
two-way tables improve the risk-per-record measure. The paper is organized
as follows. In the following section we introduce some basic notation and in
section 3 we brie‡y discuss re-identi…cation risks. In section 4 the basic PiG
model is developed. In section 5 we apply the method to microdata samples
using the sample information with and without population level information.
Some concluding remarks are given in section 6.

2 Basic Setup and Notation
Consider a …nite population U of size N from which a simple random sample
s µ U of size n 6 N is drawn. The sampling fraction is denoted by ¼s = n=N .
The sample units each correspond to a record in the microdata …le considered
for release. With each unit in the population is associated the values of a
set of discrete key variables, X1; : : : ; Xq with C1; : : : ; Cq categories, or levels,
respectively. The key is de…ned by the cross-classi…cation of the key variables
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and is denoted by X. There are ¦Ci = C possible combinations of values
of the key variables and for simplicity we let the di¤erent combinations, or
cells, be labeled by x, i.e. we let x = (x1; x2; : : : ; xq), where 1 6 xj 6 Cj for
j = 1; : : : ; q. Thus, the key partitions the population into C subpopulations
Ux µ U and by Fx we denote the number of units belonging to subpopulation
Ux, i.e. the population frequency or size of cell x for x = 1; : : : ; C. The
sample counterpart is denoted by fx and it is clear that

CX
i=1

Fx = N;
CX
i=1

fx = n:

Of these quantities, C; N and n are usually …xed by design, the fx are
observed and the Fx are assumed to be unknown. The aim is to model and
estimate the population frequency structure, with special attention to those
Fx which are of size one. The number of cells in the population with only
one unit, will be denoted by T1 and constitutes the number of population
uniques. The sample counterpart, is denoted by t1 which is the number of
sample uniques. Also, it is convenient to denote the number of population
uniques falling into the sample by t1;1 and we note that t1;1 6 t1.
In disclosure applications the number of combinations of key variable

scores C is usually quite large, and it is almost inevitable that a large number
of cells will not be observed simply by chance. It is also obvious in many
situations that certain combinations of the key variables may be impossible,
such as married 4-year olds or male primiparas, i.e. so-called structural
zeroes. Since the number of structural zeroes often is assumed unknown,
special considerations, for instance in estimation, may be called for. See e.g.
Skinner and Holmes (1993).

3 Re-identi…cation Risk
The basic de…nition of the disclosure problem considered here is the same
as that of many other authors, e.g. Bethlehem et al. (1990), Elliot et al.
(1998), and Skinner and Holmes (1998). Consider an intruder who attempts
to disclose information about a set of identi…able units in the population
termed targets. The intruder is assumed to have prior information about the
key values of the targets and attempts to establish a link between these and
individual records in the released microdata …le using the values of the key
attributes. We assume further that there is no measurement error, which
could lead to false matches, that the key variables are discrete and that units
are included in the …le with equal probability.
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Now assume that the intruder …nds that a speci…c record r in the mi-
crodata …le matches a target with respect to the key X. Now Fx is the
number of units belonging to subpopulation Ux and we let x (r) denote the
value of X for record r. If Fx(r) was known the intruder could infer that the
probability of a correct link is F¡1x(r) and if Fx(r) = 1 the link is correct with
absolute certainty under the assumption of no measurement error. Usually
the intruder will not know the true value of Fx(r) since the microdata set
contains only a sample but by introducing a superpopulation model he may
attach a probability distribution Pr (Fx = j) to the cell frequencies.
Furthermore, it could be argued that an intruder will be more inclined

to focus on records that are sample unique since it is only these that can
by de…nition be population uniques. An indicator of the identi…cation risk
is obviously the number or proportion of population uniques included in the
sample amongst the sample uniques. This type of measure is considered
by e.g. Elliot et al. (1998), Fienberg and Makov (1998), and Skinner and
Holmes (1998). A variety of methods based on superpopulation models, es-
pecially compound Poisson models, have been proposed in the literature.
Bethlehem et al. (1990) were perhaps the …rst to adapt the superpopula-
tion approach and have since been followed by among others Skinner and
Holmes (1993), Chen and Keller-McNulty (1998), Samuels (1998), Hoshino
(2001), and Carlson (2002). Under a superpopulation model it is assumed
that the population at hand, as de…ned by the frequency structure of the
key attributes, has been generated by some appropriate distribution. The
risk assessment, here in terms of uniqueness, is then reduced to a matter of
parameter estimation and prediction.
Now assume for example that the …le holds two 42-year old female physi-

cians amongst the records, one living in a large urban area, the other in a
small rural community (age, sex, occupation and geographical area are as-
sumed to be attributes included in the data). Assume further that both are
sample uniques. Because of the intuitive ”rareness” of the latter it seems
natural to assign a larger risk to this record than to former. The proportion
of population uniques amongst sample uniques is however constant for all
sample uniques and works only as an indicator of disclosure risk for the …le
as a whole or as a …le-level risk measure. To de…ne a record-level measure of
risk it seems desirable to condition on the values of the key variables de…ning
the key. Furthermore, from the intruders viewpoint it should be considered
optimal to utilize as much information as possible, such as the structure of
the data inherent from the variables de…ning the key. Ideally such a measure
should be close to one for records that are population unique and close to
zero for all other records. Thus, under some suitable model, it follows natu-
rally to de…ne the individual risk of a sample unique record as the conditional
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probability given the key, i.e.

Risk (x) = Pr (FX = 1 j fX = 1;X = x) : (1)

Some propositions in this direction have been published in recent years. In
Elliot (2002) a non-parametric method based on a bootstrap argument is
proposed. Fienberg and Makov (1998) and Skinner and Holmes (1998) both
use standard log-linear models to evaluate per-record risks and Takemura
(2001) considers …tting a Lancaster-type additive model of interaction terms.
Benedetti et al. (1999) presents a method which results in taking into consid-
eration instead the individual sampling weights and extends its application
to hierarchical data. In this paper we adopt, as already mentioned, the ap-
proach of Skinner and Holmes.

4 Modeling the Cell Frequencies

4.1 Basic Model

As a starting point we assume that the cell frequencies are generated inde-
pendently from Poisson distributions with individual rates ¸x; x = 1; : : : ; C:
The Poisson model is motivated by thinking of the N units in the population
as falling into the C di¤erent cells with probability of the ith cell denoted
by ¼x. Given the N , C and the ¼x the frequencies will follow a multinomial
distribution and if the number of cells is large enough the cell frequencies
are approximately independent binomial with parameters N and ¼x respec-
tively. Since the population size is usually quite large and the ¼x small due
to large C the Poisson distribution is used to approximate the binomial with
¸x = N¼x:
A further assumption is to view the ¸x as independent realizations of

independent continuous random variables ¤x with probability density func-
tions (pdf) gx (¸) which we de…ne to depend on the given combination of
key variable scores. The speci…cation of the mixing distribution gx (¸) is the
crucial step. Skinner and Holmes (1993, 1998) proposed the lognormal dis-
tribution and provided a theoretical justi…cation for the model. In Carlson
(2002) the Poisson-inverse Gaussian distribution was described as a possible
alternative for …le-level risk assessment and this model is extended in the
following subsection to provide a record-level risk measure.

4.2 Poisson-inverse Gaussian Regression Model

With each cell count Fx we associate a set of covariates x and a Poisson
regression model would stipulate that, given x, Fx is distributed as a Poisson
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with mean ¹x. One way of introducing random e¤ects or extra-Poisson vari-
ation into such a model is the common multiplicative Poisson random-e¤ects
model as described in Dean et al. (1989). The model is de…ned by

Pr (Fx = j) =

Z 1

0

(¹xº)
j e¡¹xº

j!
g (º) dº; j = 0; 1; : : : (2)

where g (º) is a probability density function and ¹x = ¹ (x; ¯) is a positive-
valued function of the covariates which depends on a vector ¯ of unknown
regression coe¢cients. Given the …xed values of the covariates x, and a
random e¤ect º with density g (º) ; º > 0; the cell frequency Fx has a Poisson
distribution with mean ¹xº. Furthermore, we may assume without loss of
generality that E (º) = 1. This parametrization has the property that when
¹x takes the common log-linear form

¹x = ¹ (x; ¯) = exp (x
0¯) (3)

random and …xed e¤ects are added on the same exponential scale. For a
general overview of log-linear models, see e.g. Christensen (1997). We will
consider only two log-linear models in the examples of section 5: a simple
main e¤ects only model, (ME), and an all two-way interactions model, (TW).
Specifying the distribution of the random e¤ect º is the next step and

using the parametrization of Dean et al. (1989) we consider the inverse-
Gaussian (iG) distribution with density

g (º) =
1p
2¼¿º3

exp

Ã
¡(º ¡ 1)

2

2¿º

!
; º > 0; (4)

where E (º) = 1 and V ar (º) = ¿ , and where the parameter ¿ is assumed
unknown. A review of the iG is given in Folks and Chhikara (1978). The dis-
tribution of Fx given x resulting from (2) is then a Poisson-inverse Gaussian
(PiG) regression model, with mean ¹x and variance ¹x (1 + ¹x¿) respectively.
A short review of the PiG model is given in Carlson (2002).
Given the …xed values of the covariates x, and a random e¤ect º with

density (4) it follows that

Fx j x; º » Po (º exp (x0¯)) :
Assuming Bernoulli sampling with sampling probability ¼s = n=N (cf. Särn-
dal et al., 1992, chapter 3) it follows that

fx j ¹xº » Po (¼s¹xº) and Fx ¡ fx j ¹xº » Po ((1¡ ¼s)¹xº) (5)
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independently and that

fx j Fx » Bin (Fx; ¼s) : (6)

It is then easily seen that the marginal distribution of the sample cell frequen-
cies fx is also distributed as PiG with mean ¼s¹x and variance ¼s¹x (1 + ¼s¹x¿ ).
See section 2 of Sichel (1982) and the discussion concerning sampling in Take-
mura (1999). In the following ¼s¹x is denoted by ¹xs.

4.3 A Per-record Risk of Disclosure

It is now a simple matter to express the risk measure in (1) in terms of the
model parameters. Given the present model the probabilities

Pr (Fx = 1) =
¹xp

1 + 2¹x¿
exp

µ
1

¿

³
1¡p1 + 2¹x¿´¶

and

Pr (fx = 1) =
¹xsp

1 + 2¹xs¿
exp

µ
1

¿

³
1¡p1 + 2¹xs¿´¶ :

are easily derived (see Carlson, 2002, for details). Given (6) and the above,
the individual risk-per-record measure is derived as

Risk (x) = Pr (Fx = 1 j fx = 1; x) = ¼s Pr (Fx = 1)

Pr (fx = 1)

=

p
1 + 2¹xs¿p
1 + 2¹x¿

exp

µ
1

¿

³p
1 + 2¹xs¿ ¡

p
1 + 2¹x¿

´¶
(7)

which is calculated for each unique record in the sample. The risk measure is
estimated by replacing the parameters for their respective estimates. When
¿ , or ¾2 for the PLN model, is taken to be zero, (2) is reduced to a simpler
Poisson regression model and a simpli…ed risk measure is derived from (5) as

Pr (Fx = 1 j fx = 1; x) = Pr (Fx ¡ fx = 0; x) = exp (¡ (1¡ ¼s)¹x) : (8)

4.4 Estimation

Dean et al. (1989) derived the maximum likelihood and quasi-likelihood
estimators for the PiG regression model in (2). However, the estimation
procedure that we use in the examples of section 5 is identical to the ad hoc
procedure described in Skinner and Holmes (1998). Rather than estimating

8



the regression coe¢cients in (3) and the PLN parameter ¾2 simultaneously
using e.g. maximum likelihood, they …rst estimated the expected means ¹xs
directly in the usual way for ordinary log-linear models. Once the ¹xs are
estimated, ¾2 is estimated by a simple moment estimator. The procedure is
an ad hoc approach as it does not fully account for the model speci…cation in
(2) but has the advantage of being easily implemented in standard software.
As before we let x correspond to the values x1; : : : ; xq of the respective key
variables X1; : : : ; Xq. Let f

(j)
xj denote the number of units in the sample

taking the value xj on the j th key variable Xj. For the main e¤ects only
log-linear model (ME), we then estimate the individual means ¹xs by n times
the product of the marginal proportions of the respective key variable scores,
i.e.

¹̂xs = n
f
(1)
x1

n
¢ ¢ ¢ f

(q)
xq

n
:

For the all two-way interactions (TW) log-linear model, iterative proportion-
ate …tting was used, see e.g. Christensen (1997, pp. 87-89). The procedure
requires the counts of all observed two-way combinations of the key variables,
i.e. we calculate f (j;k)xjxk de…ned as the number of units in the sample taking
the value xj on the j th key variable Xj and value xk on the kth key variable
Xk for all possible combinations xj; xk. Note also that ¹x is estimated by
¹̂xs=¼s.
An obvious way to incorporate known population level information is to

replace the corresponding sample counts for the population counts, e.g. for
the ME-model one would use instead

¹̂xs = n
F
(1)
x1

N
¢ ¢ ¢ F

(q)
xq

N

where F (j)xj is the population level analogue to f (j)xj . The modi…cation for
the TW-model is analogous by using the corresponding population two-way
counts.
As mentioned in section 2, a problem may be that the number of struc-

tural zeros is usually unknown. To allow for this, a moment estimator of ¿
is de…ned by noting that the …rst two conditional moments of fx are

E (fx j fx > 0) = ¹xs
1¡ p0x

and

E
¡
f2x j fx > 0

¢
=
¹xs (1 + ¹xs + ¹xs¿)

1¡ p0x :
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respectively and where p0x denotes the probability under the model that cell
x is empty in the sample. By combining these conditional moments it follows
that

E (f 2x j fx > 0)¡ E (fx j fx > 0)
¹xsE (fx j fx > 0)

¡ 1 = ¿ : (9)

Hence, once the expected sample means ¹xs have been estimated, a simple
estimator is obtained by substituting the ¹xs in (9) for their estimates yielding

¿̂ =

P
x>0 (f

2
x ¡ fx)P

x>0 fx¹̂xs
¡ 1 (10)

This is exactly the approach used by Skinner and Holmes (1998) for esti-
mating the corresponding PLN parameter ¾2. In both cases the sums may
be taken over all cells and not just those for which fx > 0, since the values
summed are both zero when fx = 0. With this simpli…ed approach it is
possible to obtain negative estimates of ¿ (and ¾2) and if this occurs, ¿ may
be taken to be zero. This is equivalent to reducing (2) to a simpler Poisson
regression model, since then º = 1 with probability equal to one.

5 An Example

5.1 Description of the Data

A population consisting of individuals of ages 18 - 65 residing in three counties
in the southern part of Sweden was compiled from the Store database, man-
aged by the Swedish National Social Insurance Board (Riksförsäkringsverket,
2002). After removing individuals for which the marital status was unknown
(code = 8), the total population size was N = 268; 607. Six categorical
variables were used: age in one year bands (48), sex (2), marital status (7),
children , yes or no, (2), county (3), and income in 50,000 SEK bands and
top-coded (20). The numbers in parenthesis indicate the number of observed
categories of the respective variables from which the total number of possible
combinations is given as C = 80; 640. Of these, T0 = 69; 185 were found to
be empty leaving a total of 11; 455 observed combinations. The number of
population uniques T1 was 2; 607 or approximately 0.97% of the population.
The largest cell contained 1; 426 units (one cell).1

1It was later found that a few individuals in the data actually were deceased or had
emigrated but for insurance reasons were still in the system. For our purposes this is
however of little or no consequence as we are mainly illustrating the method.
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From the data set two simple random samples without replacement were
drawn. The …rst was of size n = 5; 373 corresponding to ¼s = 0:02. The
largest observed cell size of the 2; 612 non-empty cells in the sample was
37 (one cell). The observed number of sample uniques was t1 = 1; 560 or
approximately 29% of the sample. Of these, t1;1 = 42 were found to be
population uniques or approximately 2.7% of the number of sample uniques.
This is a bit short of the expected number of population uniques expected to
fall in the sample, i.e. 2% of T1. The second sample was of size n = 26; 861
corresponding to ¼s = 0:10. The largest of the 5; 751 non-empty cells in this
sample was 154 (one cell) and the observed number of sample uniques was
t1 = 2; 304 or approximately 8.6% of the sample. Of these, t1;1 = 259 where
found to be population uniques which is a little closer to the expected number
given the sampling fraction, i.e. approximately 10% of T1. The population
and sample frequency distributions of the cell sizes are given in table 1.

5.2 Using Only Sample Information

We …rst …tted the ME model to each of the two samples as described in
the preceding section using only sample data. Two codes for marital status
and six for income were not observed at all in the 2% sample. This meant
that for this set, half of the possible combinations on the key variables were
assumed to be structural zeroes, leaving a total of 40; 320 means ¹̂xs to be
estimated. For the 10% sample the same two codes for marital status and one
for income were not observed in the sample, resulting in 54; 720 estimated
means ¹̂xs and the remaining 25; 920 combinations being taken as structural
zeroes. The moment estimates of ¿ and ¾2 are given in tables 2 and 5. For
each of the sample unique records, the risk measure (7) was then calculated.
We also calculated the PLN based risk measure of Skinner and Holmes

(1998) for comparison. The PLN based risk measure requires numerical
integration and we experimented with various variable substitutions of the
lognormal kernel and di¤erent numeric integration techniques and settled for
the transformation ¸ = (1¡ t) =t to obtain …nite integration limits and the
Matlab (2001) quadl routine which uses an adaptive quadrature technique.
The calculated probabilities were checked against and found to agree with the
tabulated values in Grundy (1951). A problem with the PLN based measure
for this data set was the occurrence of individual risk measures larger than
one. This is due to the numerical precision of the integration procedure used.
Upon inspection we found that these records all had the smallest estimated
means ¹̂xs amongst the sample uniques, approximately 2 £ 10¡4 for the 2%
sample and 5 £ 10¡4 for the 10% sample. As it is clear that both the PiG
and the PLN risk measures are monotonically decreasing functions of ¹ and
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that the limit as ¹ approaches zero is one, we simply set the measures for
these records to one.
Next we considered …tting the TW model. This involved using iterative

proportionate …tting to …t the ¹̂xs to agree with the 1; 977 possible two-way
combinations. Of these, 943 in the 2% sample and 781 in the 10% sample
turned out to have sample counts equal to zero. All combinations on the key
variables corresponding to these zero counts were taken as structural zero
cells which resulted in 13; 890 and 19; 255 estimated means ¹̂xs, respectively.
With the 2% sample, the estimates of ¿ and ¾2 both turned out to be nega-
tive suggesting the simpler Poisson regression model and the simpli…ed risk
measure (8). Thus the PiG and PLN risk measures are equal for this sample.
With the 10% sample, the estimate of ¿ was larger than zero whereas the
estimate of ¾2 turned out to be negative, again suggesting the simpli…ed risk
measure (8) for the PLN model.
Once the respective models were …tted we calculated the individual PiG

and PLN risk measures for each sample unique and these are plotted against
each other in …gure 1. When the ME model was used, we note that the PiG
based measure is slightly larger than the PLN measure for PLN values below
approximately 0:20-0:25 and slightly smaller for larger values. Generally, the
PLN measures are more stretched out towards the endpoints of the range,
whereas the PiG tends to gravitate slightly towards a point in the lower
quarter of the range relative the PLN. The reason for this may be that the
PLN measure is closer to the ideal measure (close to unity for population
uniques and close to zero for all others) but could also be that the PLN
overestimates the risks. Either way, the di¤erences appear to small to draw
any substantial conclusions from the present study. The similarity is however
striking as the ranking order of the PiG risk measures is identical to the
ranking order of the PLN based measures. This should not come as a surprise
as the main factor determining the individual risks are the estimated means
¹̂xs which are the same in both measures. Turning to the TW model there is
no need for further comment with respect to the 2% sample as the measures
are identical. As for the 10% sample the di¤erences between the PiG and
PLN are even smaller compared to the ME model. This is due to the estimate
of ¿ being so close to zero, resulting in a PiG measure that nearly coincides
with the simpli…ed measure (8).
We also divided the individual risk measures into groups according to the

ranges de…ned in tables 2 - 5 and recorded the number of sample uniques
falling into each range and the respective percentages of these which were
found to be either population uniques or one of a population pair, i.e. Fx = 2.
As reported by Skinner and Holmes (1998) a relatively strong relationship
between the risk measure and the proportion of population uniques within
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each range is seen although the results are not as clear cut for either measure
as in their study. This is the case for the smaller sample and the ME model
where the percentages increase only approximately monotonically. The TW
model, where the simpli…ed measure was used, displays an even worse corre-
spondence between the risk and the percentage of population uniques. We
note that very few records have fallen into the higher ranges resulting in a
large degree of instability. If for example only two observations fall into a
given range, the only possible outcomes are 0%, 50% and 100% population
uniques in this range. On the other hand this lack of relationship may from
a disclosure point of view be considered favorable since the intruder will not
…nd many high-risk records either, using the same framework. Turning to
the larger sample we note that the correspondence is improved for both the
ME and the TW models. As expected, more records have fallen into the
higher ranges and this would account for an increased stability. Another
problem with the examples considered here is the smaller sample sizes. In
Skinner and Holmes’ study a sample with approximately 45; 000 records was
used, compared to the 5; 373 and 26; 861 in our examples. Especially for
the smaller sample the amount of available information is not likely to be as
su¢cient when e.g. 1; 034 two-way proportions are being estimated.
In order to provide some more detail of the results, the PiG based risk

measures are plotted against the true population cell size in …gure (2). It is
seen that the correspondence between the risk measure and the population
cell size is quite strong. Records belonging to the largest population cell sizes
are all among the lowest ranking risk measures whereas those belonging to
smaller cell sizes are more evenly spread out across the entire range. The
highest ranking risks are on the other hand all associated with relatively small
cell sizes which is indicated also by the number of population pairs (Fx = 2)
falling into the di¤erent ranges as seen in tables 2 - 5. The interpretation is
that highest ranking records are most like likely either population uniques or
one observation of a population pair.

5.3 Using Known Population Margins

We next considered using population level marginal counts in the estimation
of the expected means ¹xs. There are of course many conceivable ways of
combining information from both population and sample but we restricted
the study to two settings: (1) all main population level margins are assumed
known and the ME model is used, and (2) all population level two-way tables
are assumed known and the TW model used. This was done with both the
2% and 10% samples.
In the …rst setting it was found that all levels of all the key variables were
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observed which resulted in all of the 80; 640 possible key combinations being
…tted. For the second setting is was found that 514 of the 1; 977 two-way
margins were unobserved in the population. As expected from the sample
data, these were mainly combinations involving marital status and higher
levels of income. This left a total of 29; 373 combinations that were used in
the iterative proportionate …tting procedure to …t the ¹̂xs. The estimates
of ¿ from (10) were all positive save the 10% sample with the TW setting,
where ¿̂ was found to be negative and accordingly set to zero, suggesting the
simpli…ed measure (8).
The PiG based risk measure was calculated for each sample unique and

the results of the study are given in tables 6 and 7. The main result is that
the risk measure appears signi…cantly improved. More records are falling
into higher ranges, giving stability to the correspondence between the risk
measure and the proportion of population uniques within each range. Fur-
thermore, low-risk records have dropped to lower ranges which is seen e.g. in
the increase of records in the lowest range. On the whole, the risk measure
appears much sharper as compared with using only sample information.

6 Remarks
From the results of the study we conclude that the PiG based model was
able to provide risk measures approximately equivalent to the PLN. However,
more research is warranted, both theoretical and empirical, as the conclusion
of equivalent measures is based on only one speci…c data set with one speci…ed
key. Larger di¤erences may very well occur and it is vital to investigate the
circumstances under which either of the two will work. On the other hand
such di¤erences can be accounted for by simply altering the threshold value
above which records are ‡agged as sensitive as the ranking order is the same
in both models.
It was noted that for smaller sample sizes both the PiG and PLN based

measures appeared to be unstable, especially when the TW model was used.
This shows that some further research with respect to model selection may
be called for. Skinner and Holmes argue that to elaborate modeling may
result in unstable estimates of the risks. There is also another consideration.
When a model is formulated within the present framework, we actually do
not want a perfect …t to the sample data since this would yield estimates
equal to the observed cell frequencies, ¹̂xs = fx and especially for sample
uniques, ¹̂xs = 1: It is easily seen that the estimate of ¿ (or ¾

2 if the PLN is
used) will always be negative, suggesting the simpli…ed risk measure which
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turns out to be constant over all sample uniques, i.e.

Pr (Fx = 1 j fx = 1; x) = exp (¡ (1¡ ¼s) ¹̂xs=¼s) = exp
µ
¡N ¡ n

n

¶
and does not depend on x. This type of result is of no use to us since all
sample uniques will be assigned equal risks.
Incorporating information from the population level here in terms of

marginal counts was seen to sharpen the individual risk measures and signi…-
cantly improve the stability. For an agency considering releasing a microdata
set it seems prudent to consider previous releases from the data when assess-
ing disclosure risks, e.g. in the form of marginal counts or simple two-way
tables, as a cunning intruder very well might do.
As for the computational e¤ort we found that the PiG based risk measure

on average required only approximately 1/1900 of the time used for calculat-
ing the PLN measures. Although we do not claim that the programming is
optimal, the di¤erence still provides an indication of the time saved by using
the PiG based measure or the simpli…ed risk measure in (8).
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A Figures and Tables

Figure 1: PiG based versus PLN based risk-per-record measures. The (*)
in the upper left corners of the main e¤ects only models indicate that the
corresponding unit’s PLN based risk measure is larger than one.
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Figure 2: Population cell size versus PiG based risk measure.
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Table 1: Distribution of population and sample cell sizes.

Population 2% sample 10% sample

Fx frequency fx frequency fx frequency

0 69,185 0 78,028 0 74,889
1 2,607 1 1,560 1 2,304
2 1,217 2 493 2 955
3 807 3 243 3 589
4 593 4 107 4 407
5 458 5 75 5 286
6 410 6 44 6 212
7 336 7 25 7 147
8 307 8 17 8 122
9 302 9 11 9 85
10 245 10 6 10 77
...

...
...

...
...

...
1,426 1 37 1 154 1
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Table 2: Percentage of population uniques by range of risk measures, main
e¤ects model, 2% sample. The (*) indicates the number of units with risk
measures larger than one.

Main e¤ects model, 2% sample
PiG, ¿̂ = 2.852 PLN, ¾̂2 = 1.154

Range of # sample % pop. % pop. # sample % pop. % pop.
risk measures uniques uniques pairs uniques uniques pairs
0 - 0.1 1,444 1.0 1.9 1,447 1.0 1.9
0.1 - 0.2 63 11.1 7.9 56 10.7 7.1
0.2 - 0.3 20 20.0 20.0 15 6.7 20.0
0.3 - 0.4 12 33.3 33.3 14 42.9 28.6
0.4 - 0.5 7 42.9 42.9 9 22.2 44.4
0.5 - 0.6 7 71.4 0 7 71.4 14.3
0.6 - 0.7 1 100.0 0 6 66.7 0
0.7 - 0.8 2 50.0 50.0 2 50.0 50.0
0.8 - 0.9 1 0 100.0 1 0 100.0
0.9 - 1.0 3 100.0 0 0 + 3* 100.0 0
Total 1,560 2.7% 2.9% 1,560 2.7% 2.9%

Table 3: Percentage of population uniques by range of risk measures, main
e¤ects model, 10% sample. The (*) indicates the number of units with risk
measures larger than one.

Main e¤ects model, 10% sample
PiG, ¿̂ = 2.844 PLN, ¾̂2 = 1.271

Range of # sample % pop. % pop. # sample % pop. % pop.
risk measures uniques uniques pairs uniques uniques pairs
0 - 0.1 1,524 3.0 5.7 1,614 3.7 5.9
0.1 - 0.2 381 14.4 12.1 299 14.0 13.4
0.2 - 0.3 173 24.9 9.8 153 24.8 9.8
0.3 - 0.4 83 37.4 20.5 75 38.7 17.3
0.4 - 0.5 52 42.3 19.2 59 33.9 17.0
0.5 - 0.6 25 56.0 16.0 24 54.2 20.8
0.6 - 0.7 27 51.8 33.3 33 51.5 30.3
0.7 - 0.8 15 86.7 6.7 20 80.0 15.0
0.8 - 0.9 13 76.9 23.1 16 81.2 18.8
0.9 - 1.0 11 100.0 0 10 + 1* 100.0 0
Total 2,304 11.2% 8.4% 2,304 11.2% 8.4%
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Table 4: Percentage of population uniques by range of risk measures, all two-
way interactions model, 2% sample. Simpli…ed indicates that the estimates
of ¿ and ¾2 were negative and the simpli…ed measure used.

All two-way interactions model, 2% sample
PiG, simpli…ed PLN, simpli…ed

Range of # sample % pop. % pop. # sample % pop. % pop.
risk measures uniques uniques pairs uniques uniques pairs
0 - 0.1 1,460 0.9 1.5 1,460 0.9 1.5
0.1 - 0.2 25 12.0 12.0 25 12.0 12.0
0.2 - 0.3 20 35.0 20.0 20 35.0 20.0
0.3 - 0.4 15 26.7 26.7 15 26.7 26.7
0.4 - 0.5 10 20.0 30.0 10 20.0 30.0
0.5 - 0.6 12 41.7 41.7 12 41.7 41.7
0.6 - 0.7 6 50.0 16.7 6 50.0 16.7
0.7 - 0.8 4 50.0 0 4 50.0 0
0.8 - 0.9 7 42.9 28.6 7 42.9 28.6
0.9 - 1.0 1 0 100.0 1 0 100.0
Total 1,560 2.7% 2.9% 1,560 2.7% 2.9%

Table 5: Percentage of population uniques by range of risk measures, all two-
way interactions model, 10% sample. Simpli…ed indicates that the estimate
of ¾2 was negative and the simpli…ed measure used.

All two-way interactions model, 10% sample
PiG, ¿̂ = 0.0118 PLN, simpli…ed

Range of # sample % pop. % pop. # sample % pop. % pop.
risk measures uniques uniques pairs uniques uniques pairs
0 - 0.1 1,737 2.3 4.5 1,740 2.3 4.5
0.1 - 0.2 153 15.0 17.0 150 15.3 17.3
0.2 - 0.3 90 31.1 20.0 87 29.9 20.7
0.3 - 0.4 60 30.0 23.3 61 32.8 19.7
0.4 - 0.5 66 42.4 22.7 66 40.9 25.8
0.5 - 0.6 52 46.2 30.8 53 45.3 30.2
0.6 - 0.7 39 43.6 25.6 40 45.0 25.0
0.7 - 0.8 29 55.2 20.7 28 53.6 21.4
0.8 - 0.9 35 80.0 14.3 35 80.0 14.3
0.9 - 1.0 43 86.1 13.9 44 86.4 13.6
Total 2,304 11.2% 8.4% 2,304 11.2% 8.4%
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Table 6: Percentage of population uniques by range of PiG based risk mea-
sure using known population level main marginal counts and the ME model.

Main e¤ects model using known population margins, PiG
2% sample, ¿̂ = 2.842 10% sample, ¿̂ = 2.852

Range of # sample % pop. % pop. # sample % pop. % pop.
risk measures uniques uniques pairs uniques uniques pairs
0 - 0.1 1,437 0.8 2.0 1,524 3.1 5.8
0.1 - 0.2 65 12.3 6.2 383 14.4 11.5
0.2 - 0.3 22 22.7 13.6 176 24.4 10.2
0.3 - 0.4 14 21.4 42.9 85 35.3 20.0
0.4 - 0.5 8 50.0 25.0 51 49.0 15.7
0.5 - 0.6 8 87.5 0 25 48.0 32.0
0.6 - 0.7 1 0 0 26 65.4 26.9
0.7 - 0.8 2 0 100.0 10 80.0 10.0
0.8 - 0.9 0 - - 9 88.9 11.1
0.9 - 1.0 3 100.0 0 15 93.3 6.7
Total 1,560 2.7% 2.9% 2,304 11.2% 8.4%

Table 7: Percentage of population uniques by range of PiG based risk mea-
sure using known population level two-way marginal counts and the TW
model. Simpli…ed indicates that the estimate of ¿ was negative and the
simpli…ed measure used.

Known two-way margins and all two-way interactions model, PiG
2% sample, ¿̂ = 0.0129 10% sample, simpli…ed

Range of # sample % pop. % pop. # sample % pop. % pop.
risk measures uniques uniques pairs uniques uniques pairs
0 - 0.1 1,439 0.3 0.8 1,709 1.4 3.5
0.1 - 0.2 36 8.3 16.7 146 13.7 19.9
0.2 - 0.3 18 16.7 33.3 84 20.2 25.0
0.3 - 0.4 15 20.0 33.3 66 30.3 25.8
0.4 - 0.5 10 40.0 40.0 59 28.8 35.6
0.5 - 0.6 8 37.5 50.0 56 46.4 28.6
0.6 - 0.7 11 45.4 27.3 43 60.5 18.6
0.7 - 0.8 8 62.5 25.0 43 62.8 23.3
0.8 - 0.9 7 71.4 28.6 42 76.2 16.7
0.9 - 1.0 8 87.5 12.5 56 91.1 8.9
Total 1,560 2.7% 2.9% 2,304 11.2% 8.4%
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