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Abstract 
A simple measurement error model is introduced for continuous data collected by 

interviewers. The model makes a clear distinction between three different sources of 

randomness, namely, sample selection, interviewer assignment, and interviewing. The 

concept of interviewer variance is defined in the context of this measurement error 

model, and the problem of estimating the interviewer variance is considered, 

assuming simple random sampling. A simulation study indicates that estimates of the 

interviewer variance are unstable, especially when the interviewer variance is small 

(in which case the effect of interviewer variability on the main survey results may 

still be severe). 
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1. Introduction 

 

Sample survey data is usually more or less affected by measurement errors. This 

paper deals with measurement errors in surveys of individuals or households, and it is 

assumed that data is collected by interviewers, for example, via telephone. Our 

interest will be focused on the particular part of the measurement error that is due to 

the behavior of the interviewers.  The problem we consider is how to estimate the 

interviewer variance, a quantity which in some meaning measure the amount of 

variability ascribable to the interviewers. 

  

To be able to discuss the statistical aspects of measurement errors, we need a 

statistical model describing how measurement errors arise. Two main types of 

measurement error models for sample survey data are found in the literature.  One is 

the analysis-of-variance (ANOVA) type of model used by Kish (1962) and further 

developed by Hartley and Rao (1978) and others.  The other type of model is the 

Census Bureau Model, introduced by Hansen, Hurwitz and Bershad (1961) and 

extended by Fellegi (1964, 1974) and others.  In the present paper we will use an 

ANOVA type of model, and our terminology will closely follow Wolter (1985), and 

Särndal, Swensson and Wretman (1992). 

 

This paper is of an introductory character.  We make the simplifying assumptions 

that the sampling design is simple random sampling without replacement, and that 

there is no nonresponse.  In other reports to follow, we will make less restrictive 

assumptions. 

 

The main purpose of this paper is to introduce an estimator of the interviewer 

variance.  In Section 2, a simple measurement error model is specified, and the 

concept of interviewer variance is introduced.  Basic assumptions about the 

interviewer assignment are also made.  In Section 3, we look at the problem of 

estimating a population mean under the assumed measurement error model.  In 

Section 4, we discuss how to estimate the variance of an estimator of the population 

mean.  In Section 5, we suggest an estimator of the interviewer variance. In 

Section 6, the results of a simulation study are presented.  The paper concludes with 

a discussion in Section 7. 
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2. Sampling design, interviewer assignment, and measurement 

error model  

 

We will describe how a sample of elements is selected from the population, how the 

sampled elements are assigned to interviewers, and how measurement errors arise.  

We start by introducing some notation.  We consider a finite population U  with N 

elements labeled k = 1, 2, �, N;  let  U = {1, �, k, �, N}.  Let  k be the unknown 

true value for element k with respect to the actual study variable. The purpose of the 

survey is to estimate the true population mean 
 

1
kUN
 

 

(For short, A  will be used for k A,  where  A  U  is any subset of U.) 
 

Let s be a sample (that is, a subset of U ) consisting of n elements drawn from U  by 

simple random sampling without replacement.  Ideally, we would like to observe the 

true value k for each element k  s, but what we will really observe is a value yk 

affected by measurement error, that is, 
 

yk = k + dk = true value + measurement error 
 

The problem now is to estimate  using observed data yk for k  s. After we have 

described the interviewer assignment, we will specify a model for the measurement 

errors dk, k  s. 
 

We assume that there is a set of I  interviewers available for the survey.  Sampled 

elements are assigned to these interviewers in the following way:  Each interviewer is 

given a randomly chosen subset of elements from the sample s, under the restriction 

that the subsets should be nonoverlapping and of equal size. 
 

The following notation will be used.  Let the interviewers be labeled i = 1, 2, �, I.  

Let the sample s be partitioned at random into I  nonoverlapping groups of equal size 

m = n/I. (We assume that m is an integer.) These groups are denoted s1, �, si, �, 
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sI.  Now, the rule is that interviewer i is to make all the interviews in group si,  i = 1, 

2, �, I. 
 

The groups s1, s2, �, sI  could be called a set of �interpenetrating subsamples� from 

the population  U,  since each  si  is  a simple random sample from the same 

population  U.  (The subsamples are not independent, however, because of the 

restriction that they should be non-overlapping.)  As for the concept of 

interpenetration, reference is given to Mahalanobis (1946) and Bailar (1983).  

Following the terminology of Wolter (1985) groups s1, s2, �, sI  could be called a set 

of �dependent random groups�. 
 

We now introduce the measurement error model, denoted  M.  The model is specified 

conditionally on a given sample s and given interviewer assignments s1, s2, �, sI.   

Following Biemer and Trewin (1997) we assume that the measurement error is the 

sum of two components, an �interviewer error� due to the interviewer, and a 

�response error� which depends on the respondent (and possibly other remaining 

sources of error).  Thus, the measurement error model says that when element k  si 

is interviewed by interviewer  i,  the observed value  yk  can be written as 
 

yk = k + bi + k 
 

where 
 

k  is the �true value�, assumed to be an unknown constant associated with 

respondent  k. 
 

bi  is the interviewer error, or interviewer effect, ascribed to interviewer  i.  It is 

assumed to be a random variable with expected value Bb  and variance 2
b , the 

same for all interviewers  i.  By definition, the interviewer effect bi  is the same for 

all interviews made by the same interviewer  i,  in the same survey.  The variance 
2
b  will be called the interviewer variance. 

 

k  is the response error, ascribed to respondent  k.  The response error k  is 

assumed to be a random variable with expected value  B   and variance  2 ,  

assumed to be the same for all  k  s. 
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All the I +n random variables  b1, �, bI, and k,  k  s,  in the measurement 

model  M  are assumed to be independent of each other. 
 

In the present set-up, the survey is thus viewed as a three-stage process, where 

randomness is involved in each stage: 
 

      Stage 1:  A sample  s  is drawn from  the population  U. 

      Stage 2:  The sample  s  is partitioned into subsamples  s1, s2, �, sI. 

      Stage 3:  Observed values  yk  are obtained for  k  si,  i = 1, 2, �, I. 
 

The randomness in the first stage comes from the sampling design, denoted p, which 

in the actual case means simple random sampling without replacement of  n  

elements.  The randomness in the second stage comes from the random division of 

the sample into subsets assigned to the interviewers.  The randomness in the third 

stage comes from the measurement error model  M  just described.  Sometimes it will 

be found convenient to consider the first two stages jointly as constituting one 

coherent stage, which will then be denoted p*. 
 

In what follows, estimators will usually be judged by their bias and variance with 

respect to the joint distribution induced by the three stages above, which will be 

called the p*M-distribution.  It will sometimes be found convenient to express 

expected values and variances using conditional probabilities in the following way:  
 

Ep*M( . ) = Ep*[EM( . | s; s1, �, sI)] 

and 

Varp*M( . ) = Ep*[VarM( . | s; s1, �, sI)] + Varp*[EM( . | s; s1, �, sI)] 
 

where  Ep*M( . )  denotes expectation with respect to the stochastic mechanisms in 

stage 1, 2, and 3 simultaneously,  Ep* ( . ) denotes expectation with respect to stage 1 

and 2 only,  and  EM( . | s; s1, �, sI)  denotes conditional expectation with respect to 

stage 3, given the outcome of stage 1 and 2.  Analogous principles of notation hold 

for the variances. Note, this set-up implies that the order of *pE  and ME  are not 

interchangeable. In the rest of this paper we will, for the sake of simplicity, write 

EM( . ) instead of the longer and more exact expression 

EM( . | s; s1, �, sI).  Thus, in what follows, 
 

EM( . ) = EM( . | s; s1, �, sI) 
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The assumptions of the measurement error model can now be expressed formally. 
 

Model assumptions: 

 

For a given sample  s  and given subsamples  s1, s2, �, sI, 

 

yk = k + bi + k  for  k  si,  i = 1, �, I 

 

EM(bi) = Bb and   VarM(bi) = 2
b  for  i = 1, �, I 

 

EM( k) = B  and   VarM( k) = 2  for  k  si,  i = 1, �, I 

 

b1, b2, �, bI, k  (k  s)  are independent random variables 

 
 

 

The following result follows immediately from the model assumptions. 
 

Result 2.1:  Under Model M, it holds that 

 

EM(yk) = k + Bb + B   for k  si,  i = 1, �, I 

 

VarM(yk) = 2 2
b     for k  si,  i = 1, �, I 

 
2 for    ,  1, ,

( , )
0 for     1, . ,  1, , ,  

b i i

M k l
i j

k l, k s , l s i I
Cov y y

k l, k s , l s , i I j I i j

 
 

 

Thus, conditionally on the sample s and on the interviewer assignments  s1, s2, �, sI,  

observed values for different elements obtained by different interviewers are 

uncorrelated, while values for different elements obtained by the same interviewer are 

correlated. The block diagonal covariance structure is illustrated in the Appendix. 
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It follows from the structure of the covariances that two respondents interviewed by 

the same interviewer have a constant model correlation, denoted M , of the y-values, 

namely, 
 

2

2 2( , ) b
M M k l

b

y y  

 

Note that this is a conditional correlation, for a given sample s  and given subsamples  

s1, s2, �, sI.  For two respondents interviewed by different interviewers, the model 

correlation is zero. Another measure of how two observations made by the same 

interviewer are both influenced by the same interviewer effect, is the intra-

interviewer correlation, W , which is defined as 
 

2

2 2 2
b

W
b S

 

 

The intra-interviewer correlation may be interpreted as the correlation of the 

measurements made on two elements, which are drawn at random from the 

population and then interviewed by the same interviewer. 
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3. Estimating the population mean 

 

We will now discuss the problem of estimating the population mean, when 

measurement errors are present. The sampling design, interviewer allocation, and 

measurement error model are assumed to be as specified in Section 2. 
 

The population characteristic to be estimated is the true mean 
 

1
kUN
 

 

If, hypothetically, we had sample data, k  for k  s, without measurement errors, the 

true population mean would, under simple random sampling and in the absence of 

auxiliary information, usually be estimated by the sample mean 
 

1
s ksn

 

 

The estimator that we are going to consider is the sample mean based on data with 

measurement errors, namely, 
 

1
s ks

y y
n

    (3.1) 

 

We will now find expressions for the expected value and the variance of the estimator  

(3.1). The kind of expectation and variance that we are interested in is with respect 

to all the three stages, introduced in Section 2, jointly. 

 

The main result on expectation is the following: 
 

Result 3.1: Under the sampling design, interviewer assignment, and model 

 assumptions of Section 2, 

 

* ( )p M s bE y B B    (3.2) 
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Thus, the estimator is biased  
 

* *( ) ( )p M s p M s bBias y E y B B   (3.3) 

 

Result 3.1 can be obtained as follows, using the tool of conditional probabilities: 
 

  * ( )p M sE y  *
1[ ( )]p M ks

E E y
n

 

 

 *
1

1[ ( )]
i

I

p M ks
i

E E y
n

 

 

                *
1

1[ ( )]
i

I

p k bs
i

E B B
n

 

 

 *( )p s bE B B  
 

 bB B  
 

because, under simple random sampling, s  would be unbiased for . (Note that s  

is not affected by the interviewer assignment due to the simple random sampling 

design.) 

 

The main result on the variance of sy  is: 
 

Result 3.2: Under the sampling design, interviewer assignment, and model 

 assumptions of Section 2, 

 

n

S

N

n

nI
yVar b

sMp

222

* )1()()(   (3.4) 

 

where 
 

 
U kN

S 22 )(
1

1  

 



 10 

The variance of the estimator sy  can thus be seen as made up of two components.  

The first one, 
 

2 2
b

I n
 

 

is a measurement error component which depends on the variability of the 

measurement error components, and on the number of interviewers (and the sample 

size). We call this component the measurement variance. 

 

The second component, which we call the sampling variance, 

 

2

(1 )
Sn

N n
 

 

is a pure sampling component which depends on the variability of the true values in 

the population, and on the sample size.  

 

Result 3.2 is also obtained using conditional probabilities. We first write 

 

1 2

* * * 1 2( ) [ ( )] [ ( )]p M s p M s p M s

V V

Var y E Var y Var E y V V  

 

Looking at the component V1, we first see that 

 

 2

1( ) ( )M s M ks
Var y Var y

n
 

 

      2 , ;

1 [ ( ) ( , )]M k M k ls k l s k l
Var y Cov y y

n
 

 

      2 2 2
2

1 [ ( ) ( 1) ]b bn n m
n

 

 

      
2 2
b

I n
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and it follows that 

 

  
2 2

1
bV
I n

 

 

The second variance component, V2, is found in a similar way. We first find that 
 

 1( ) ( )M s k b s bs
E y B B B B

n
 

 

and because the sampling design is simple random sampling ( s  is unaffected by the 

interviewer assignment), it follows that 
 

  
2

2 *( ) (1 )p s

SnV Var
N n

 

 

 

Remark 1. The variance (3.4) can be rewritten in different ways. One way is to 

write it as 

 

  
22 2

* ( ) [1 ( 1) ] (1 )b
p M s M

SnVar y m
n N n

 

 

where 2 2 2/( )M b b  is the model correlation between two measurements made 

by the same interviewer, defined in Section 2. If the sampling fraction is negligible, 

that is, if we let n/N = 0, we can write the variance (3.4) as 

 

  
2 2 2

* ( ) [1 ( 1) ] b
p M s w

S
Var y m

n
 

 

where 2 2 2 2/( )w b b S is defined in Section 2 as the intra-interviewer 

correlation. 
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4. Estimating the variance of sy  

 

Suppose that we want to estimate the variance of the sample mean, sy , which was 

given by equation (3.4) as 

 

22 2

* ( ) (1 )b
p M s

SnVar y
I n N n

 

 

We will consider two different estimators of this variance. One is the traditional 

estimator, given in textbooks, for the case of simple random sampling without 

replacement and no measurement errors. This variance estimator is 

 

2
� (1 ) ysSnV

N n
   (4.1) 

where 

 

2 21 ( )
1ys k ss

S y y
n

 

 

The other variance estimator to be considered is based on the means of the 

subsamples assigned to the different interviewers: 

 

2

1

1� ( )
( 1) i

I

B s s
i

V y y
I I

   (4.2) 

 

It will be found that both of these two estimators are biased. The bias that we are 

talking of here is with respect to sampling design, interviewer allocation design, and 

measurement error model jointly. From the bias point of view, however, we will 

prefer the second estimator, (4,2). 

 

The main result on the bias of the variance estimator (4.1) is the following. 
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Result 4.1: Under the sampling design, interviewer assignment, and model 

 assumptions of Section 2, 

 

22
2

*
1�( ) (1 )[ ]

( 1)p M b

Sn IE V
N I n n n

 

 
2

2
*

1 ( 1)( ) [ ]
1 ( 1)p M s b

m m IVar y
n N n N

 (4.3) 

 

 

Although this variance estimator would be unbiased in a situation without 

measurement errors, it is now seen to have a negative bias when measurement errors 

are present. That is, it will tend to underestimate the true variance. Even when the 

population size, N, is large, this tendency could be disturbing. 

 

The main result on the bias of the second variance estimator, (4.2), is: 

 

Result 4.2: Under the sampling design, interviewer assignment, and model 

 assumptions of Section 2, 

 

2 22 2

* *
�( ) ( )b

p M B p M s

S S
E V Var y

I n n N
 (4.4) 

 

 

This second variance estimator has a positive bias (which would remain even in a 

situation without measurement errors). The bias is small, however, in most situations 

when N  is large. Since we prefer a variance estimator with a small positive bias to 

one with a possibly large negative bias, the conclusion is that we prefer the variance 

estimator �BV  to �V . 

 

We will now prove Results 4.1 and 4.2.  In doing so, we first prove a slightly more 

general result, Result 4.3 below, from which the results above will easily follow, and 
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which will also be useful later on. We first introduce some new notation. For a fixed 

set of subsamples,  s1, s2, �, sI,  the  total sum of squares (SSTy) of the observed  yk-

values can then be thought of as a sum of squares beween subsamples (SSBy), and a 

sum of squares within subsamples (SSWy), in the same way as in analysis of variance: 

 

2 2 2

1 1

( ) ( ) ( )
i ii

y
y y

I I

k s s s k ss s
i iSST

SSB SSW

y y m y y y y  

 

We also define the analogous sums of squares based on the  k-values: 

 

2 2 2

1 1

( ) ( ) ( )
i ii

I I

k s s s k ss s
i iSST

SSB SSW

m  

 

Finally, we define 

 

1
y

y

SSB
MSB

I
      and 

( 1)
y

y

SSW
MSW

I m
 

 

Result 4.3: Under the sampling design, interviewer assignment, and model 

 assumptions of Section 2, 

 

2 2 2
*

( 1)
1 1
y

p M b

SST m IE S
n n

  (4.5) 

2 2 2
* ( )p M y bE MSB m S   (4.6) 

2 2
* ( )p M yE MSW S   (4.7) 

 

 

In proving this result, we will make use of the following auxiliary result (which will 

not be proved here). 
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Auxiliary Result: For jointly distributed random variables 1, 2, �, n, with 

 expected values  1, 2, �, n, variances 2 2 2
1 2, , , n , and 

 covariances ij  (for i j), it holds that 

 

 2 2 2

1 1 1

1 1( ) ( )
n n n

i i ij i
i i i j i

nE
n n

 

 

 where  
1

(1/ )
n

ii
n   and  

1
(1/ )

n
ii

n . 

 

 

Let us first prove (4.5). Inserting yk for i in the Auxiliary Result and using the model 

assumptions from Section 2, we have 

 

2( ) ( )M y M k ss
E SST E y y  

  2 2 2 21 1( )  ( 1) ( )b b k b s bs

n n I m m B B B B
n n

 

 2 2( 1) ( 1)bm I n SST  

 

which makes 

 

2 2( 1)
1 1 1
y

M b

SSTSST m IE
n n n

 

 

and finally, since we have simple random sampling, 

 

2 2 2
* *

( 1)
1 1 1
y y

p M p M b

SST SST m IE E E S
n n n

 

 

Next we want to prove (4.7). Using the Auxiliary Result separately within each 

subsample we have 
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2 2

1 1

( ) ( ) ( )
i ii i

I I

M y M k s M k ss s
i i

E SSW E y y E y y  

 2 2 2 2

1

1 1( ) ( 1) ( )
ii

I

b b k b s bs
i

m m m m B B B B
m m

 

 2 2

1

( 1) ( )
ii

I

k ss
i

m  

 2( 1)I m SSW  

 

Thus, 

 

2
* * *( )

( 1) ( 1)
y

p M y p M p

SSWSSW
E MSW E E E

I m I m
 

 

Since each subsample si is a simple random sample from the population of  N  

elements,  

 

2

2 2
* *

1

1 1
( )

( 1) 1 ii

I

p p k ss
i

S

SSW
E E S

I m I m
 

and equation (4.7) is derived. 

 

Equation (4,6), finally, is easily obtained from the relation 

 

SSBy = SSTy � SSWy 

 

Results  4.1 and 4.2  are now easily obtained from Result 4.3, using the fact that 

 

� (1 )
( 1)

ySSTnV
N n n

 

and 

� y
B

MSB
V

n  
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5. Estimating the interviewer variance and the interviewer 

correlation 

 

Suppose that we want to estimate the interviewer variance 2
b . The estimator that 

we suggest is 

2
��� ( )W

b B
VI V
n

   (5.1) 

where 

2

1

1� ( )
( 1) ii

I

W k s ys
i

V y y MSW
I m

  (5.2) 

 

Using Result 4.3 and the fact that 

 

2� y y
b

MSB MSW
m

 

 

it is easy to see that the variance estimator (5.1) is an unbiased estimator of the 

interviewer variance (that is, unbiased with respect to the  p*M distribution). 

 

 

Result 5.1: Under the sampling design, interviewer assignment, and model 

assumptions of Section 2, 

 

2 2
* �( )p M b bE     (5.3) 

 

 

We conclude this section by giving an estimator of the intra-interviewer correlation 
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2 2

2 2 2 2
b b

W
b totS

 

 

introduced in Section 2. We have already seen that a p*M-unbiased estimator of 2
b  

was given by  (5.1). It also follows from Result 4.3 that a p*M-unbiased estimator of  
2
tot  is given by 

 

 2 ( 1)1� ��  y y
tot B W

MSB m MSWmI V V
m m

  (5.4) 

 

The intra-interviewer correlation can then be estimated by taking the ratio  
 

2

2

� ��� � �� ( 1)( 1)
y yb B W

W
tot y yB W

MSB MSWnV V
MSB m MSWnV m V

 (5.5) 

 

This estimator will produce the same estimates as the estimator suggested by 

Kish (1962), also presented in Groves (1989, p.318). 
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6. Simulation study 

 

It was seen in the preceding section that the interviewer variance estimator 2�b , given 

by (5.1), is an unbiased estimator of the interviewer variance 2
b .  The variance of 

this interviewer variance estimator will now be studied by means of Monte Carlo 

simulation.  The behavior of the estimated intra-interviewer correlation will also be 

studied. 

 

These results, especially how the variance of the estimators depend on the sample size 

n and the number of interviewers I, will be of interest when an interviewer variance 

study is being planned and we have to choose n and I so that the interviewer 

variance, or the intra-interviewer correlation, can be estimated with reasonable 

accuracy. 

 

The simulation study is done in the following way. 

 

An artificial finite population of size N = 100,000 is used.  �True values�, k  (k = 

1, �, 100,000), are created by generating 100,000 independent random numbers 

from a standard normal distribution, N(0, 1).  For this finite population we found 
 

0.00175458    and    2 0.99674963S  
 

From the finite population 5,000 samples of the same size are drawn by simple 

random sampling without replacement.  Each sample is replaced before the next 

sample is drawn, so that all the samples are drawn from the same population.  

Two different sample sizes are used, n = 2,000 and n = 10,000. 
 

For each sample, the sampled elements are assigned at random to I fictitious 

interviewers, in conformity with the assumptions made in Section 2, so that every 

interviewer gets the same number, m = n/I, of respondents.  Nine different values 

of I are used for n = 10,000 and eight values for n = 2,000. 
 

For each sample, with given I, and given interviewer assignments, interviewer 

effects, bi  (i = 1,�, I) are obtained by generating I independent random numbers 
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from an N(0, 2
b ) distribution. Different values of 2

b  were chosen as described 

below. 
  

For each sample, response errors, k (k  s), are obtained by generating n 

independent random numbers from an N(0, 2 ) distribution. Different values of 
2  were chosen as described below. 

 

The following three different combinations of values were used for 2
b  and 2 :  

 

 2
b / 2  2

b  2  
Combination 1 0.1 0.0255571 0.2555771 

Combination 2 1.0 0.0207656 0.0207656 

Combination 3 10.0 0.0203834 0.0020383 
 

These combinations of values were chosen in order to illustrate various relations 

between the two variances involved, while at the same time, together with the 

actual value of 2 0.99674963S , giving a constant intra-interviewer correlation of 

w = 0,02 in all the three cases. The value w = 0,02 could be considered realistic 

for a centralized group of telephone interviewers; see Biemer and Trewin (1997, p. 

611). 
 

Finally, for each sample s we obtain realized values yk (= k + bi + k) for all 

k  s.  Using these values, we then calculate, for each sample, sy  (3.1), �BV  (4.2), 
�
WV  (5.2), 2�b   (5.1), and �w  (5.5). 

 

The numerical results from the simulation study are used to obtain approximations 

to the expected value and the variance of the estimators under consideration.  

Calculations will be made in accordance with the following pattern.  Let ts denote 

some sample quantity calculated from observed data in a sample s, and let tsj be the 

realized value of ts for the jth simulation sample  (j = 1, �, 5,000).  (For example, if 

ts is the sample mean sy , then sj sjt y  is the observed sample mean in the jth 

simulation sample.)  We then calculate the simulation mean 

 
5,000

1

1
5, 000s sj

j

t t  

 



 21 

which is the simulation estimate of the expected value * ( )p M sE t . We also calculate the 

simulation variance 

 
5,000

2 2

1

1 ( )
5, 000 1st sj s

j

S t t  

 

which is the simulation estimate of the variance * ( )p M sVar t . 

 

 

Let us first look at the simulation results for the sample mean and the sample 

variance of the true values, 

 
1

s ksn
      and 2 21 ( )

1s k ss
S

n
 

 

We already know from elementary sampling theory that (because the sampling design 

is simple random sampling without replacement): 

 
2( ) 0.175458 10p sE  

 
42

4

4.88407319 10 when 2,000
( ) (1 )

0.89707467 10 when 10,000p s

nSnVar
N n n

 

 
2 2( ) 0.99674963p sE S S  

 

Since the true values are fixed constants, the measurement error model is not 

considered here. 

 

The results of the simulation study are given in Table 6.1 below. The simulation 

estimates are seen to be rather close to the exact values of the quantities that they 

are supposed to approximate. 
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Table 6.1. Results from the simulation study on sample mean and 

 sample variance of the true values.  5,000 repeated samples. 

  Sample size 

n=2,000 

 

n=10,000 

( )p sE  Exact value 

Simulation estimate 

0.175 10-2 

0.142 10-2 

0.175 10-2 

0.158 10-2 

( )p sVar  Exact value 

Simulation estimate 

4.88 10-4 

4.95 10-4 

0.897 10-4 

0.861 10-4 

2( )p sE S  Exact value 

Simulation estimate 

99.7 10-2 

99.7 10-2 

99.7 10-2 

99.7 10-2 
2( )p sVar S  Exact value 

Simulation estimate 

Not computed 

9.82 10-4 

Not computed 

1.74 10-4 

 

 

Simulation mean and simulation variance for each of 2� � � �, , , ,  ands B W b wy V V  are given 

in Tables 6.2 � 6.7 below, for sample size n = 2,000 and 10,000; for various values of 

I  (and m =n/I); and for 2 2/b = 0.1, 1, and 10. Some comments on these simulation 

results follow here. 

 

It seems that the relation between the interviewer variance 2
b  and the response 

error variance 2  is not of great importance in this simulation example.  If the 

interviewer variance is a tenth of, equal to, or ten times the elementary error 

variance does not affect the results very much. 
 

We note that the simulation variance of sy  increases when the number of 

interviewers, I, decreases (that is, when the subsample size, m, increases). This is 

a fact that has been commented on in the literature (see for example Biemer and 

Trewin 1997), and it is also what we expect when we look at equation (3.4) or 

Remark 1. 
 

We also note that in most cases the simulation mean of the variance estimator �BV  

is slightly larger than the simulation variance of sy . This is in accordance with 

equation (4.4) which says that �BV  (considered as an estimator of * ( )p M sVar y ) has a 

positive bias equal to 2 /S N  which in the actual simulation example is 

approximately equal to 1/100,000 = 0.00001. 
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(From equations 4.7) and (5.2) we have that 2 2
*
�( ) .p M WE V S  The simulations 

verify this result. The simulation mean of �WV  is about the same for n = 2,000 and 

n = 10,000, for the different values on I, and for the different values on 2 2/b . 
 

The simulation variance of �WV  is smaller for n = 10,000 than for n = 2,000. For 

given sample size n, it decreases slightly when the number of interviewers, I, 

increases (that is, when the subsample size, m, decreases). 
 

For the interviewer variance estimator, 2�b , the simulations indicate that the 

choice of I and m  (for given sample size n) will affect the variance of 2�b . For 

both large and small values on I, the simulation variance of 2�b  increases, and it 

thus seems that the simulation variance has its minimum for some I value in 

between. 
 

The findings for �w  in the simulation study are similar to what we found for 2�b .  

Thus, it seems that the sample size n as well as the combination of I and m are of 

importance for �w  to have a small variance. 
 

 

Table 6.2.  Simulation means, simE , and variances, simV , of 2� � � �, , , , and s B W b wy V V  from 5,000 

repeated simple random samples. Sample size n = 10,000, 2 2/b = 0.1, and w = 0.02.  

( 2
b = 0.025557683) 

I = 

m = 

500  

20 

250 

40 

200  

50 

125  

80 

100  

100 

80  

125 

50  

200 

40  

250 

20  

500 

sy  
210simE  

 

0.13 

 

0.13 

 

0.15 

 

0.19 

 

0.13 

 

0.15 

 

0.22 

 

0.16 

 

0.11 
410simV  1.65 2.14 2.36 3.07 3.58 4.28 6.21 7.27 14.0 

�
BV  

410simE  

 

1.77 

 

2.27 

 

2.53 

 

3.30 

 

3.80 

 

4.42 

 

6.37 

 

7.68 

 

14.0 
810simV  0.01 0.04 0.07 0.17 0.29 0.49 1.62 3.02 20.0 

�
WV  

simE  

 

1.25 

 

1.25 

 

1.25 

 

1.25 

 

1.25 

 

1.25 

 

1.25 

 

1.25 

 

1.25 
410simV  3.06 2.95 2.94 2.92 2.91 2.91 2.90 2.89 2.89 

2�b  
210simE  

 

2.57 

 

2.55 

 

2.56 

 

2.56 

 

2.55 

 

2.53 

 

2.56 

 

2.57 

 

2.54 
410simV  0.32 0.27 0.26 0.27 0.29 0.32 0.41 0.48 0.80 

�w  
210simE  

 

2.01 

 

1.99 

 

2.01 

 

2.00 

 

2.00 

 

1.98 

 

2.00 

 

2.01 

 

1.99 
410simV  0.19 0.16 0.16 0.16 0.17 0.19 0.24 0.28 0.47 
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Table 6.3.  Simulation means, simE , and variances, simV , of 2� � � �, , , , and s B W b wy V V  from 5,000 

repeated simple random samples. Sample size n = 10,000, 2 2/b = 1, and w = 0.02.  

( 2
b = 0.020765617) 

I = 

m = 

500  

20 

250 

40 

200  

50 

125  

80 

100  

100 

80  

125 

50  

200 

40  

250 

20  

500 

sy  
210simE  

 

0.13 

 

0.13 

 

0.15 

 

0.18 

 

0.14 

 

0.15 

 

0.22 

 

0.17 

 

0.11 
410simV  1.32 1.73 1.90 2.46 2.90 3.45 5.01 5.87 11.3 

�
BV  

410simE  

 

1.43 

 

1.85 

 

2.06 

 

2.68 

 

3.09 

 

3.59 

 

5.18 

 

6.24 

 

11.4 
810simV  0.01 0.03 0.04 0.12 0.17 0.32 1.06 2.00 13.2 

�
WV  

simE  

 

1.02 

 

1.02 

 

1.02 

 

1.02 

 

1.02 

 

1.02 

 

1.02 

 

1.02 

 

1.02 
410simV  1.94 1.87 1.86 1.85 1.84 1.84 1.83 1.83 1.82 

2�b  
210simE  

 

2.08 

 

2.07 

 

2.08 

 

2.08 

 

2.07 

 

2.06 

 

2.08 

 

2.09 

 

2.07 
410simV  0.21 0.18 0.18 0.18 0.20 0.21 0.27 0.32 0.53 

�w  
210simE  

 

2.01 

 

1.99 

 

2.01 

 

2.00 

 

1.99 

 

1.98 

 

2.00 

 

2.01 

 

1.99 
410simV  0.19 0.16 0.16 0.16 0.18 0.19 0.24 0.29 0.47 

 

 

Table 6.4.  Simulation means, simE , and variances, simV , of 2� � � �, , , , and s B W b wy V V  from 5,000 

repeated simple random samples. Sample size n = 10,000, 2 2/b = 10 and w = 0.02.  

( 2
b = 0.020383428) 

I = 

m = 

500  

20 

250 

40 

200  

50 

125  

80 

100  

100 

80  

125 

50  

200 

40  

250 

20  

500 

sy  
210simE  

 

0.14 

 

0.13 

 

0.15 

 

0.18 

 

0.14 

 

0.15 

 

0.22 

 

0.17 

 

0.12 
410simV  1.29 1.70 1.87 2.41 2.85 3.39 4.92 5.76 11.0 

�
BV  

410simE  

 

1.41 

 

1.81 

 

2.02 

 

2.63 

 

3.03 

 

3.52 

 

5.08 

 

6.13 

 

11.1 
810simV  0.01 0.03 0.04 0.11 0.19 0.31 1.02 1.93 12.7 

�
WV  

simE  

 

1.00 

 

1.00 

 

1.00 

 

1.00 

 

1.00 

 

1.00 

 

1.00 

 

1.00 

 

1.00 
410simV  1.86 1.80 1.78 1.77 1.76 1.77 1.76 1.75 1.75 

2�b  
210simE  

 

2.05 

 

2.03 

 

2.04 

 

2.04 

 

2.03 

 

2.02 

 

2.04 

 

2.05 

 

2.03 
410simV  0.20 0.17 0.17 0.17 0.19 0.20 0.26 0.31 0.51 

�w  
210simE  

 

2.01 

 

1.99 

 

2.01 

 

2.00 

 

1.99 

 

1.98 

 

2.00 

 

2.01 

 

1.99 
410simV  0.19 0.16 0.16 0.16 0.18 0.19 0.24 0.29 0.47 
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Table 6.5.  Simulation means, simE , and variances, simV , of 2� � � �, , , , and s B W b wy V V  from 5,000 

repeated simple random samples. Sample size n = 2,000, 2 2/b = 0.1, and w = 0.02.  

( 2
b = 0.025557683) 

I = 

m = 

125  

16 

100 

20 

 80  

25 

 50  

40 

 40  

 50 

25  

 80 

20  

100 

16  

125 

sy  
210simE  

 

0.13 

 

0.13 

 

0.09 

 

0.12 

 

0.16 

 

0.19 

 

0.20 

 

0.11 
410simV  8.31 8.59 9.41 11.3 12.6 16.2 18.4 22.6 

�
BV  

410simE  

 

8.30 

 

8.81 

 

9.46 

 

11.4 

 

12.7 

 

16.6 

 

19.2 

 

22.2 
810simV  1.10 1.59 2.27 5.16 8.11 24.1 38.3 67.9 

�
WV  

simE  

 

1.25 

 

1.25 

 

1.25 

 

1.25 

 

1.25 

 

1.25 

 

1.25 

 

1.25 
410simV  16.7 16.4 16.3 16.0 16.0 15.8 15.8 15.8 

2�b  
210simE  

 

2.54 

 

2.55 

 

2.56 

 

2.56 

 

2.56 

 

2.59 

 

2.58 

 

2.56 
410simV  1.79 1.62 1.47 1.30 1.30 1.51 1.53 1.74 

�w  
210simE  

 

1.99 

 

1.99 

 

2.00 

 

2.00 

 

2.00 

 

2.02 

 

2.01 

 

1.99 
410simV  1.08 0.97 0.88 0.77 0.77 0.89 0.90 1.02 

 

 

Table 6.6.  Simulation means, simE , and variances, simV , of 2� � � �, , , , and s B W b wy V V  from 5,000 

repeated simple random samples. Sample size n = 2,000, 2 2/b = 1, and w = 0.02.  

( 2
b = 0.020765617) 

I = 

m = 

125  

16 

100 

20 

 80  

25 

 50  

40 

 40  

 50 

25  

 80 

20  

100 

16  

125 

sy  
210simE  

 

0.14 

 

0.14 

 

0.10 

 

0.13 

 

0.17 

 

0.19 

 

0.20 

 

0.12 
410simV  6.75 7.02 7.70 9.23 10.3 13.3 14.9 18.4 

�
BV  

410simE  

 

6.75 

 

7.16 

 

7.68 

 

9.25 

 

10.3 

 

13.5 

 

15.5 

 

18.1 
810simV  0.73 1.04 1.50 3.37 5.37 15.7 25.1 44.8 

�
WV  

simE  

 

1.02 

 

1.02 

 

1.02 

 

1.02 

 

1.02 

 

1.02 

 

1.02 

 

1.02 
410simV  11.0 10.8 10.7 10.5 10.5 10.4 10.4 10.3 

2�b  
210simE  

 

2.07 

 

2.07 

 

2.07 

 

2.08 

 

2.07 

 

2.10 

 

2.09 

 

2.08 
410simV  1.20 1.07 0.98 0.85 0.86 0.99 1.00 1.15 

�w  
210simE  

 

2.00 

 

1.99 

 

1.99 

 

2.00 

 

1.99 

 

2.02 

 

2.01 

 

1.99 
410simV  1.10 0.97 0.89 0.76 0.78 0.88 0.89 1.01 
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Table 6.7.  Simulation means, simE , and variances, simV , of 2� � � �, , , , and s B W b wy V V  from 5,000 

repeated simple random samples. Sample size n = 2,000, 2 2/b = 10, and w = 0.02.  

( 2
b = 0.020383428) 

I = 

m = 

125  

16 

100 

20 

 80  

25 

 50  

40 

 40  

 50 

25  

 80 

20  

100 

16  

125 

sy  
210simE  

 

0.14 

 

0.14 

 

0.11 

 

0.13 

 

0.17 

 

0.19 

 

0.20 

 

0.12 
410simV  6.63 6.91 7.58 9.07 10.1 13.1 14.7 18.0 

�
BV  

410simE  

 

6.63 

 

7.03 

 

7.53 

 

9.08 

 

10.1 

 

13.3 

 

15.3 

 

17.7 
810simV  0.71 1.00 1.45 3.24 5.19 15.1 24.1 43.1 

�
WV  

simE  

 

0.99 

 

0.99 

 

0.99 

 

0.99 

 

0.99 

 

0.99 

 

0.99 

 

0.99 
410simV  10.5 10.4 10.3 10.1 10.1 9.95 9.95 9.92 

2�b  
210simE  

 

2.04 

 

2.04 

 

2.03 

 

2.04 

 

2.04 

 

2.07 

 

2.05 

 

2.04 
410simV  1.16 1.03 0.95 0.82 0.83 0.95 0.97 1.11 

�w  
210simE  

 

2.00 

 

2.00 

 

1.99 

 

2.00 

 

1.99 

 

2.02 

 

2.01 

 

1.99 
410simV  1.10 0.97 0.89 0.76 0.78 0.87 0.89 1.01 
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7. Discussion 

 

We have in this paper tried to introduce a theoretical framework for interviewer 

variance studies for continuous data. Our goal is to provide a framework for a survey 

organization that wants to conduct a study on interviewer variance and intra-

interviewer correlation. The present paper is of an introductory nature, and more 

specific problems will be addressed in forthcoming papers. 

 

The theory in this paper is not new; already Kish (1962) used an ANOVA model. 

During the years several models of similar kind have been employed in this field.  As 

witnessed by Lessler and Kalsbeek (1992), it is not always easy to understand the 

difference between different measurement error models found in the literature, 

because the meaning of basic terms seems to vary somewhat among different authors.  

That is why we have spent some effort in this paper defining the basic concepts that 

we are using. Our terminology and notation is to a large extent the same as in 

Särndal et al. (1992). 

 

The interviewer variance (and the intra-interviewer correlation) is often numerically 

small.  But even if it is small, it may have a severe effect on the precision of survey 

estimates.  One of the problems in designing an interviewer variance study is that 

one often has to detect and estimate a quantity that is near zero.  A large number of 

observations are then needed which may be practically inconvenient or impossible.  

This fact was already noted by Groves (1989, page 380) who wrote: �It is clear that 

the instability of estimates from most single surveys is an impediment to 

understanding interviewer variability.� 
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Appendix    Covariance matrix with elements CovM(yk, yl) 

 

 
1 2

2 2 2 2
1

2 2 2 2

2 2 2 2

2 2 2 2
2

2 2 2 2

2 2 2 2

0 0 0 . . . 0 0 0

0 0 0 . . . 0 0 0

0 0 0 . . . 0 0 0

0 0 0 . . . 0 0 0

0 0 0 . . . 0 0 0

0 0 0 . . . 0 0 0
. . . . . . . . . .
. . . . . . . . . .
.

I

b b b

b b b

b b b

b b b

b b b

b b b

s s s

s

s

2 2 2 2

2 2 2 2

2 2 2 2

.

. . . . . . . . .

0 0 0 0 0 0 . . .

0 0 0 0 0 0 . . .

0 0 0 0 0 0 . . .

I b b b

b b b

b b b

s



 


