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Abstract

Measurement accuracy is an inherent problem in social network
analysis. The issue of actor accuracy in the reporting of their in-
teractions with others, was raised by Bernard, Killworth and Sailer
(e.g. Bernard et al.,1980) and provoked extensive debate. Krackhardt
(1987) later introduced the concept of Cognitive Social Structures and
several methods for aggregating different actor reports on the network
into a single graph, with the aid of which for example the congruence of
reports could be gauged. A statistical model for aggregating separate
reports into a single consensus network, with the additional benefit
of allowing estimates of actor accuracy to be obtained in the process,
was proposed by Batchelder, Kumbasar and Boyd (1997). The pur-
pose here is to investigate this approach to the problem in a Bayesian
framework. The Bayesian analysis yields posterior estimates of net-
work characteristics and of perceiver "accuracy” as well as a measure
of the degree of evidence in data for different models. The procedures
are illustrated by an analysis of empirical data.

Keywords: Bayesian statistical modelling. Consensus analysis.
Cognitive social structures (CSS). Measurement reliability. Social net-
work analysis.

1 Introduction

In social network analysis it is customary to model social interaction between
actors by graphs. In a graph representing a social network nodes would
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typically represent actors and the edges would typically represent the status
of the interaction between the actors (see for example Wasserman and Faust,
1994, for an introduction). In a study of diffusion of an innovation among
physicians, for example, the nodes would be physicians and we could say that
there was an arc from one physician, A, to another physicians B, if A went
to B to receive information and advice (Coleman, Katz and Mentzel, 1957).

Whereas statistics has been a commonly used tool since the birth of social
network analysis it is only recently that Bayesian inference has been applied
to the field, for example Wong (1987), Snijders and Nowicki (1997), Nowicki
and Snijders (2001), Tallberg (2002), and Frank (2001). We believe that the
analysis of social networks would find Bayesian analysis beneficial since in
our view this type of inference is highly suited to dealing with small data sets
as well as situations where regular classical procedures are found wanting.

Consider first the network as described by the digraph G = (V) E),
where V' = {1,...,n} is the fix set of nodes and E C V) is the set
of arcs connecting distinct nodes in the graph. (In the following V() =
{(u,v) € VXV :u#wv}). The matrix Z = (2jk) ; ey 1S then the indica-
tor function such that z;, = 1 if (j,k) € E and nought otherwise.

Typically, the edge set F is taken to be the self-reports of the actors
in the network. In a series of articles Bernard, and Sailer (e.g. Bernard
et al. 1980, Killworth et al., 1979) questioned taking the actor reports of
their own interaction at face value. Their studies made it clear that what
the actors reported about their own social interaction had little to do with
with whom they actually interacted. So, assuming that there is one set F
which corresponds to the structure of social interaction between the actors
represented by the nodes in V', be it actual behaviour or something more
vaguely defined, how can we acquire information about this structure?

Say that we have fori = 1,... ,m reports X; = (z;jx) on Z where x;;, = 1
if informant ¢ states that z;, = 1. Since we consider Z a fix but unknown
parameter the slightest discrepancy between our m reports implies that the
notion that z;;;, = z;, for all 7,5 and k is not true. Even total unanimity is
not enough to convince us that x;;, = z;, for all 4,j and k since X; = X;
for all i,z € {1,... ,m} does not preclude that z;;; = 1 — z;; for some j,k
and all . Thus, any inference about G based on reports by actors must be
based upon some assumptions regarding the relationship between Z and the
reports X = (X;);", for us to be able to make use of our data. A probability
model that describes how data is generated might give us the double benefit



of describing this relationship as well as aiding us in estimating the edge set
in G.

The interest in studying perceptions of social networks is present from the
very beginning of social network analysis. Moreno (1934) studied different
perceptions of a classroom friendship network. The focus was on the differ-
ence between what teachers and pupils thought about the social interaction
amongst pupils.

What Batchelder et al. (1997) termed three-way social network data refers
to elicitation of the views of a network from each member of the network.
The idea of collecting social network data in this three-way manner was in-
troduced by Newcomb (1961) and has since been used by for example Krack-
hardt (1987), Kumbasar, Romney and Batchelder (1994), Casciaro (1998).
Krackhardt (1987) proposed the use of various aggregation rules for studying
this type of data, data that he termed Cognitive Social Structures (CSS). A
locally aggregated structure (LAS) could for example be obtained from the
actor reports by only letting arcs between actors who themselves had re-
ported an arc belong to the LAS - i.e. we say that there is an arc from j to k
iff both j and k report this to be present - (intersection rule), or alternatively,
an arc from j to k is said to belong to the LAS if either j or k report this to
be present (union rule). A consensus structure (CS) is a function of all the
m perceivers’ perception of the (7, k) status, e.g. zj, = 1if >, i > m/2.
Note that the reports in the case of the consensus structure no longer need
to be supplied by members of the network but might well come from exter-
nal informants. CS and both types of LAS are implemented in the software
program UCINET (Borgatti et al., 1999).

Such ad hoc methods are indeed intuitive and well suited for exploratory
analysis as used for example in Frank and Nowicki (1993), where longitudinal
data on a network were summarised through taking the union of the edge
sets from different points in time. For an extensive review of CSS see Pat-
tison (1994). For a presentation of cultural consensus (Romney, Weller and
Batchelder, 1986; Romney, Batchelder and Weller, 1987; Weller, 1984 and
1987) and a thorough account of the debate initiated by Bernard, Killworth,
and Sailer (see e.g. Bernard et al., 1980), see Johnson (1994).

Using the data collection paradigm outlined above, Batchelder et al.
(1997) specified a model based on the following conditional probabilities (the
general formulation of this model is sometimes referred to as the General



Condorcet Model, see Batchelder and Romney, 1988):

Pri{X,p=1Z4 =z} = A J ) 1
(KXo =112 =) = { o 11 220 m

These probabilities are called hit and false alarm probabilities respectively.
A similar parameterisation can be found in Frank (1978) but that analysis
was restricted to the case when the underlying structure was an equivalence
relation. Assuming that there was a fix but unknown digraph with corre-
sponding adjacency matrix Z, and assuming that all actors - for here the
study was restricted to the case when the informants were themselves mem-
bers of the network - report on each (j, k) € V) independently of each other
with probabilities (1), the likelihood function could easily be derived. In
order to be able to obtain any maximum likelihood estimates (MLE) of Z
and the probabilities (1) at all, Batchelder et al.(1997) reduced the number
of parameters by assuming H;;, = H,; and F;;, = Fj; for all k& # j, i.e.
the actor was assumed to be equally ”competent” in judging the presence
and absence of arcs from a particular actor to all others (they called this
restriction out-degree homogeneity).

As mentioned above, the framework of the model was provided by, in
the most current form, Batchelder et al (1997) and has some very attractive
features. There is however, much to recommend a Bayesian approach.

The MLE’s of Z, H;; and Fj; are not defined (Batchelder et al., 1997,
observation 4), with e.g. the out-degree homogeneity restriction, when ei-
ther of >, zj, or >, ;5 is 0 or n — 1, for an 4 or j, a situation which is
not wholly improbable (for example in Krackhardts (1987) high-tech man-
agement team). This not only limits what data can be used, but also places
heavy restrictions on the parameter space.

An additional unfortunate feature of the model based on (1) is that it is
not identified since a digraph and its complement give identical likelihoods.
To solve this dilemma one usually needs to implement some side constraint
to the effect that H,; > Fj;, for all ¢ and j. This is a fairly strong formulation
of prior belief that cannot be evaluated, i.e. its probabilistic consequences
cannot be properly assessed. By quantifying our prior belief, we make as-
sumptions such as these explicit and make it possible to compare the fit of
different prior beliefs to data.

Perhaps the strongest motivation for a Bayesian approach in the light
of the above is that we require less of data in order to make estimations.



Not only do we not exclude certain structures from the sample and param-
eter space but also allow for incomplete network data (which we will see in
section 4.2.). Finally, the Bayesian approach yields probabilistic statements
regarding our uncertainty about estimates.

There is no denying that introducing priors introduce new problems.
These are however not primarily of a technical nature in this case rather
it is the choice of priors that takes some efforts.

Krackhardt (1987) made a point of distinguishing between two concep-
tions of social structure, namely i) actual (behavioral) structure and i) cog-
nitive social structures (CSS). In other words, you could regard actor reports
i) as biased reports on an actual structure or i) as straightforward reports
of the social structure as it exists in the mind of each actor. An example
of the latter is Newcomb’s (1961) study of perceived perfect triads. When
modelling, i.e. setting priors etc., we need to think about Z as if i) is true
although we believe 7i) to be a more realistic approach. By this, we mean
that the competencies of the perceivers are defined in relation to a ”true”
structure.

There are clear parallels to item response theory (IRT) save that the
relation between the reports and the items cannot be directly observed. It
would be interesting to see whether the substantial body of work on IRT
could be applied here. For a comprehensive presentation of IRT see van der
Linden and Hambleton (1997).

The paper is structured as follows. In section 2 the notation and likeli-
hood function are introduced. Inference regarding model parameters is dis-
cussed in section 3 and in section 4 the details of the estimation procedures
are given along with a few related results. Model selection and model infer-
ence is discussed in the fifth section. Certain aspects of the Markov chain
Monte Carlo (MCMC) procedure particular to the present model framework
are dealt with in section 6. The results presented in this paper are finally
illustrated in section 7, using an empirical data set.

2 Model specification

Say that we are interested in a social network consisting of n actors and that
we have reports on this network from m informants. The informants could
also themselves be actors in this social network but they do not necessarily
have to. Although we in the following assume that the social structure can



be described by a directed graph with loops very little changes when the
structure is e.g. a loop less graph.

For actors V = {1,2,... ,n} and a relation R C V2, let Z = (2jk) ; pev
be a matrix with elements z;, = 1 if (j,k) € R, and z;, = 0 otherwise for
J,k € V. Let the matrix X;, for i € Z = {1,... ,m}, be defined in the same
way for relation R;. Further assume that conditional on Z, Xy,... ,X,, are
independent and their elements are independent and satisfy

PI‘ (X”k = (L'ijk| Z = Z) = PI‘ (ijk = mz’jk' ij = ij) . (2)
Define for the elements X;;;, in each X,
Pr(Xije = 8| Zj, = s) = 0y (5)

where s = 0, 1. The 7, (s)’s are in some respect the competencies of the in-
formants in judging the presence or absence of ties in the social network. Now
we can write the likelihood function for X = (X;),_; given the parameters
as a product of Bernoulli probability mass functions

r(x|z,n) = H H ik (ij>1{$ijkzzjk} (1 — Nk (ij))l{xi]-k;ézjk} (3)

€L j,keEV

where 7 is an array containing 7, (s), for i € Z, j,k € V and s = 0,1, and
where 1 {A} = 1 if A is true and nought otherwise.

An obvious detriment of the formulation in (3) is that the model re-
quires no less than n? (2m + 1) parameters if both n and Z are considered
parameters. For loop less digraphs and graphs the number of parameters are
n(n—1)(2m+1) and (}) (2m + 1) respectively. Not only would a reduc-
tion of the number of parameters facilitate estimation procedures but it is, we
suggest, not a reasonable assumption that each informant should have two
distinct probabilities for each (ordered) pair of actors. As mentioned earlier,
Batchelder et al (1997) suggested a couple of designs meant to reduce the
number of parameters. They assumed for example that an informant for each
actor was equally competent in judging the ties from that actor to others.
Another strategy was to assume that an informant for each actor was equally
competent in judging the ties from others. Both these restrictions reduced
the number of parameters from n(n — 1) (2m+ 1) to n(2m +n — 1).

Now, an obvious extension of this method of reducing the number of
parameters, which Batchelder et al (1997) hinted at, is to allow for arbitrary
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partitions of the perceiver-actor space. For example an informant could be
assumed to be equally competent in judging the ties to and from others no
matter which pair of actors is under consideration or, it could be that if the
informer is himself an actor he could be considered especially competent in
judging his owns ties to and from others. Should we have access to covariates,
say the informants were teachers and the actors were children in a school
class, these could be used to label the competencies. It could for example
be assumed that all male teachers report with the same probabilities and all
female teachers report with the same probabilities.

Introduce the labeling set C, |C| = ¢, that corresponds to different com-
petency categories. Let f be the function which maps Z x V2 onto C. We
want that 7, (s) should only depend on what image (i,j,k) have in C.
To achieve this relabel the parameters 7, (s), for v € C and introduce the
following counters

ny, (s) = Z 1{zk = 8,25 = s},
ijh: f(i,j,k)=v
and
ny(s) = Z 1{zjk = s,z # s}.
ijk: f(i,5,k)=v
Thus the likelihood can be written

r(xlzon) =[] T n (™ @ —=n, ()™, (4)

veC se{0,1}

The use of indicator functions in the counters point in a natural way to
extensions of binary relations to valued graphs.

3 Estimation

Based on observed data X and the generic model structure specified in (4) we
want to make inference about 1) as well as Z. Whereas the former assumes
the normal role of a parameter, the latter can either be viewed as a parameter
or be considered an unobserved variable. As parameter, when we estimate
Z we estimate every element of Z. Thus the number of parameters grows
rapidly with n.



Z, treated as a latent variable, allows for a significant reduction of the
parameter space provided a sufficiently rigid probability structure on V? is
defined. The inference then made about Z would be, apart from estimates
of its guiding parameters, a suitably chosen posterior prediction (note the
analogy between these considerations and similar ones in the case of mixture
models, e.g. Bock, 1996).

An additional strategy aimed at reducing the dimensions of the param-
eters could well be to treat 1 as an unobserved variable. Although the
difference might seem small, this distinction is of some importance when in-
terpreting the model. In the case where one treats 1 as a regular parameter
and expects there to be, at least in theory, a fix quantity that captures the
competency of the informant in a given region of the network, and further as-
sume that given enough information about it we could more or less pin-point
its exact value. As a variable vector m would vary and we would assume a
different realisation of this vector for every sample we take. An extension to
the model, to be treated elsewhere, is to let i be the response of covariate
variables.

In accordance with Bayesian inference, all inference concerning the pa-
rameters is based upon the posterior distribution of the parameters condi-
tioned on what we have actually observed, i.e. data. The uncertainty in our
model stems from our parameters and this we model, a priori, with prior
distributions.

In the current context it is important to remember that the posteriors
contain all the relevant information regarding our parameters given data.
While a distribution over the space of all digraphs might not seem all that
attractive, all the typical characteristics of a network, closeness (Freeman,
1979), reachability (Doreian, 1974), influence (Katz ,1953), structural holes
(Burt, 1992), etc., are easily obtained from the posterior distribution of Z.
Since the summary measures listed above are all functions of graphs or di-
graphs, the posterior distributions of these measures capture our uncertainty
about these parameters whose point predictions for example could be the
relevant expected values. Doing this one should keep in mind that the prior
represents our uncertainty, and is specified, in relation to Z.



4 Priors and posteriors

For inference about Z an uninformative or vague prior is the uniform distri-
bution over {0, 1}"2. This prior is vague in the sense that it does not favor
any particular configuration of the social network. It has to be kept in mind,
though, that this prior is only uninformative with respect to distinct relations
but not with respect to e.g. the number of elements in the relation.

For convenience, a prior on 1 could be chosen from a conjugate family of
distributions. The conjugate prior on 77 is a mixture of beta densities. If the
joint prior for n and Z is the product of beta densities and some probability
mass function for Z the marginal posterior of 1 is a mixture of beta densities
with the marginal posterior of Z as weights.

Let 5 (-] Ay 5) be a beta density with parameters A, s = (o, (s), 5, (),

(597 (1 =, (5))
Blon(9).5,()

(1, ()] Aps) = 2

where B (a,b) = f —t)""'dt, and for all v,/ € C and all 5,5 €
{0,1} let n, (s) and 7, ( ) be independent, and independently thereof let
the prior on Z be p (z) . We then have the joint prior distribution ¢ (1) p (z),
where

=11 II (. Ir)- (5)

veC s€{0,1}

Clearly the conditional distribution of 1 given data and a specific graph z
can be written

o (nlzx) =] I »(n ) As (@),

veC s€{0,1}

where A, 5 (z) = (o, (s) + 1, (s), 5, (s) +n (s)). The marginal likelihood of
z is obtained from

redn) = [ I]QCT(Xlz,n)cb(n)dn
- I I S

veC se{0,1}



This gives the marginal posterior distribution

r(x]2)p(2)
S ety " (<l wp (W

Ty = s

for Z given data and the marginal posterior

P(nlx)= >  m(nlzx), (6)

z€{0,1}"°

for 77 given data. The marginal posterior (6) is clearly a mixture of 2"° prod-
uct beta densities. Note that although each component consists of densities of
independent beta distributed variables the competencies are not necessarily
independent a posteriori .

With the same priors the marginal posterior distribution of z is 7,. Hence,
if we have a function g defined on directed graphs we can easily calculate the
expected value of this function given data, viz.

E(g(Z)x)= Y my(2).

ze{0,1}"°

FEvaluating the summand soon quite naturally becomes a rather painstaking
business as the number of terms grows rapidly with n. Whereas this is possi-
ble with small graphs or certain specifications of f, typically the evaluation
has to be done through simulation, as is common in Bayesian inference.

4.1 Relationship to other methods and models for ag-
gregation

It is interesting to note that a few of the aggregation methods in analysis of
cognitive social structures can be formulated within the framework out-lined
above as limiting cases of certain prior specifications of the model. These
connections might serve as references when setting priors.

Assume that we disallow reflexive pairs and thus Z is the adjacency matrix
of a directed loop less graph with vertex set V' = {1,2,...,n}. Assume
further that we have X;, for i € V, and let f : V x V(® — O, where

f(i,j,k):{ 1 if ie{jk}

2 otherwise
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Let zry = (Zj;) with elements z;, = max (z;;x, Zxjx) denote Krackhardts
(1987) locally aggregated structure (LAS) from the union rule. With conju-
gate prior on 7, independently thereof a vague prior on z, and oy (1), 3, (1),
as (s), and [, (s) finite and strictly positive for s = 0,1 we see that the pos-
terior 7 (zyy|x) tends to unity as a; (0) tends to infinity for every strictly
positive and finite 3, (0). In other words, a point mass prior on 7, (0) cen-
tered over 1 always yields a one point posterior on zyy;.

In a similar way we obtain the LAS from the intersection rule, zy;, with
elements zj, = min (xx, T ). With conjugate prior on 7, independently
thereof a vague prior on z, and a4 (0), 3, (0), as(s), and S, (s) finite and
strictly positive for s = 0,1 we see that m(z;;|x) tends to unity as a; (1)
tends to infinity for every strictly positive and finite 3, (1). In other words,
a one point mass prior on 7, (1) centered over 1 always yields a one point
posterior on zy;.

Although giving rise to degenerate priors these considerations can well be
used for comparison.

Krackhardt’s (1987) Consensus structure (CS) with majority rule can
be seen as the MLE of the modal graph g* of a metric model described in
Banks and Constantine (1998; se Eq. 7 below). The model, in the present
framework, corresponding to CS with majority rule is one where f maps
V x V® to the singleton set C' and we have, for example, the following
priors. Let (1) have density p(n (1)), say for example uniform, on the
interval (.5, 1), ¢ ~ Beta (a,b) and § ~ Bernoulli (1) and, with n (1), ¢ and
¢ independent,

p(n(0)n1)=10-p)n(1)+¢E+.5(1-F)).

If we let b tend to infinity and keep a finite we obtain a posterior for Z that is
unity for the CS and nought otherwise. The connection of the present model
to CS can seem tenuous as CS has a probabilistic interpretation which stems
from a model where 7 (1) =7 (0).

Let Z be the symmetric binary adjacency matrix of a loopless graph
with vertex set V' = {1,2,... ,n} and assume further that we have observed
adjacency matrices X;, on the same vertex set for i € Z = {1,... ,m}. Say
that f maps every element in 7 x (Z) to the singleton set C', and we set
n(1) =n(0) = n, then {X;} can be seen as the collection of m iid random
variables from the distribution

p(xilz) = (14 7)) eriem), ™)
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on G = {0, 1}(3), where 7 is the log odds, / (1 — 1), and d (z, x) is the sym-
metric class difference between z and x. The parameter 7 can be seen as
a measure of the dispersion around the ”central” element z, and it is inter-
esting to note that (7) has uniform measure on G iff n = .5. The natural
choice, perhaps, for a joint prior on z and 7 would be uniform on the first
and exponential on the latter. For a general presentation of the Gibbs fam-
ily of distributions over G and a Bayesian approach to (7) see Banks and

Constantine (1998).

4.2 Partial network data

Consider the case when we have partial network data, that is to say at least
one informant has not given a report for the entire network. While f is de-
fined on Zx V| for a directed loop less graph, we might have observations
X = (®ijh), jcq Where S C Ix V@, Inference regarding 1, would be unprob-
lematic should the intersection of the inverse image of v and S be empty for
some v € C, seeing as the prior is our best guess before we obtain data. At
least this holds true if the conjugate prior ¢ (n) is used. The parameters are
also a priori independent so that the prior of a ), for a v € C for which
there are no observations does not influence the analysis. If we let for a fix v,
A, ={a€IxV®: f(a) = v} and 4,NS is non-empty but has a cardinality
that is less than |A,| the analysis can be carried out nonetheless as long as
(x’ijk)ij rea,ng Can be seen as independent observations.

What impact partial information might have on the estimation of Z is not
entirely self evident. Again, the model is still well specified (define n, (s),
and n} (s) to null if there are no observations z;;, : f(i,7,k) = v), only
that we make inference conditioned on an event in a subspace of the sample
space, (X,),cq, rather than an event in the whole sample space, (Xq) ez @ -
Moreover, should A, NS € {0, A,} for all v € C' we have that

(2| (mijk)ijkes] X ”[(ij)jkes' | (mijk)ijkeS]’

where S’ is the set of all elements (j, k) in V) such that (,5,k) € S for
some 7 € 7.
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5 Model selection

Keeping with the framework outlined above it is clear that for most studies
we could think of many different ways to specify the partition of the perceiver-
actor space. It would seem like a very limited scope of investigation indeed if
we had to restrict ourselves to choosing only one partition of the perceiver-
actor space and with it only one specification of priors. The answer to this
dilemma is that we allow for analysis from a variety of perspectives - what
would our final analysis of data be if this was the case and what would it be
if that were the case. In other words, we want to analyse data from many
different angles simultaneously.

Henceforth, for the perceiver set 7 and the actor set V a model M is a
specification of a function f and priors ¢ (1) and p (z), and we let M be the
class of all such models. We are not interested in using all models in M, for
obvious reasons, but rather we select a subset of models M C M that we
find plausibly describes the data generating process. To each of these models
we associate a probability that represents our prior belief in the different
models, p (M;), M; € M. Assume that M consists of D distinct models and
that we denote priors on the competencies and the true structure conditional
on the model M;, ¢, (n) and p; (z) respectively, for i = 1,... , D. The latter
two, 7 and z, are independent conditional on M;.

The distribution of data given a model M; is

rx )= Y /[ (<) ), o)
0,1]°¢
ze{0,1}" "

where f is specified according to M;, and from this the posterior probabil-
ity of the model conditional on data can be obtained from straightforward
probability calculus as in the previous cases

7 (x| M;) p (M;)

5 .
> iz T (X[ M) p (M;)

A quantity that is often used in Bayesian statistics for model selection is
the Bayes factor between two competing models

p(Mi|x) =

R, — "M .y p
7 (x| M)
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where r (x| M;) is evaluated in the sample. The Bayes factor has the property
that for models M;, M; and M, if BF;; > 1 and BF}j; > 1 then BF;; > 1, so
that if we in the light cast by data prefer M; to M; and prefer M; to M; we
also prefer M; to M. Note also that the Bayes factor does not depend on
the prior belief in the different models (Kass and Raftery, 1995). While this
might be an advantage in some situations this also means that we don’t get
any measure on the uncertainty in our model selection procedure. That is to
say, we do not get any probabilistic, statements only ad-hoc rules of thumb
(see e.g. ibid. p.777) that say how strong evidence we have.

We think that it is useful to report the posterior distributions of different,
preferably all, models as computing them does not entail any burdensome
calculations should one have the marginal likelihoods 7 (x| M;). When com-
puting the posteriors of models it is important to keep in mind that these
quantities are reported conditional on the assumption that the true model is
contained in M - i.e. models outside M have null probability. Because of
this we might want to extend the class of models that have a strictly posi-
tive probability as much as possible. To determine the prior probability for
different models might not be all that hard but if as in this case, dimensions
vary between models we have to specify the priors for the parameters for
each and every model. A first attempt to simplify things could be to let the
probability of a given model be uniform given the dimensions of the compe-
tency vector, and have a discrete distribution to model the prior probability
of the dimensions. In addition, one could let all the prior competencies be
uniformly distributed. This way one only has to specify this last distribution
a priori. The model (4), however is not identified with uniform priors ev-
erywhere meaning that we always have to specify proper and ”informative”
priors. One alternative, with U (a, b) being the uniform distribution on the
interval (a, b), is letting

(n, (1)|m, (0)) ~ U (n, (0),1) (8)
and
n,(0) ~U(0,1) forallve C. 9)

This is however a fairly strong assumption and not ”uninformative” at all but
it does provide a way of automating the setting of priors. To complete this
discrete model extension one could let (¢ — 1) ~ Bin (p,n?m) a priori and
the prior on individual functions given the number of classes be p(f|c) =
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S (n*m, c)fl, where S is the Sterling number, i.e. the function that classify
elements in Z x V? is uniform over all functions with that number of classes.
Our view is that the prior (8) and (9) on 7 is far to restrictive.

We do not see any simple solution to this problem at the moment. Rather
we recommend choosing M so that the evaluation of the models is man-
ageable. A little variety can be added through testing a number of hyper
parameters for a conveniently chosen set of functions f.

If f differs for different models, the posterior distribution of the compe-
tencies has to be conditional on the models as well as data. The posterior
distribution of Z, on the other hand, can always be marginalised so that it
is conditioned only on data.

When comparing posterior distributions given (data and) different mod-
els we can compare the posterior distributions of functions of Z as well as
features of the posterior of Z itself. The usual Bayes estimate of a parameter,
the posterior expected value, can be defined as a matrix with the marginal
posterior probabilities of edges as elements, p;, = > zyp(z|x). Simi-
larly, the posterior covariance matrix is the n? x n? matrix of covariances
C'0?)z|x (ij, sz) = Zz ZjkZmP (Z| X) — DjkDim-

To describe the posterior uncertainty about Z a useful measure is the
entropy defined as

H (2] %) = By <log L) |

p(z|x)

6 Markov chain Monte Carlo sampling

Since the normalizing constants of our posteriors both include a sum taken
over {0, 1}”2 exact, evaluation of the summands is feasible only when n is
relatively small. For more realistic applications of the model one can either
resort to some sort of approximation of the posteriors or employ a Markov
chain Monte Carlo (MCMC) sampling scheme to get a sample from the exact
posterior distributions. The first approach will not be examined further here,
rather we prefer the latter.

When one does not have access to the analytic expression for a joint pos-
terior distribution but, as in this case, has a relatively simple expression for
the full conditional posteriors of each of the parameters of interest, one typ-
ically uses a Gibbs sampling scheme (see e.g. Gelfand and Smith, 1990). In
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our case however the expression (6) is a mixture of known pdf’s with the pos-
terior of Z as weights so that once we have obtained the posterior, or rather
a sample from the posterior of Z given data, it is relatively straightforward
to calculate the posterior of the competencies. Hence, we need only sample
from the posterior distribution of Z given data.

The Metropolis-Hastings sampling scheme (Metropolis et al.,1953) is used
here. The acceptance probabilities are in this case the ratio between the
kernels according to the posterior distribution between the current state and
the proposed state. Given, say, a directed graph G' with adjacency matrix
Z, the proposed change, Z, is the adjacency matrix of a directed graph
G chosen uniformly at random from the neighborhood of G, defined as all
directed graphs such that the symmetric class difference between their edge
sets and the edge set of GG is exactly one.

As always, convergence to the stationary distribution, i.e. the posterior
distribution of Z, is virtually impossible to check. This is made even more
difficult in the present application since there is no easy way of monitoring the
walk on the state space because of its high dimensionality. We recommend in
this case that one monitors for example the number of edges for each state as
well as marginal likelihoods and the acceptance rates. For these quantities
moving averages can be calculated and from plots of them one can get at
least an idea as to when the process seems to have settled down.

Reporting the posterior of Z is best done with a summary measure of the
distribution or the posterior distribution of some low dimensional function
of Z. All this can be obtained from the sampling scheme described above.
An alternative or complement is to report the modal point of the posterior
distribution. Finding the modal point is generally not feasible analytically
wherefor a numerical optimization routine has to be employed. We have
found simulated annealing to be a perfectly satisfactory algorithm. Details
and an introduction to the procedure can be found in e.g. van Laarhoven
and Aarts (1988) or Fishman (1999).

A technical detail we have to address is the issue of whether to take
a single run or have several restarts. The former alternative always gives
rise to dependence between observations but this is typically considered to
be of minor importance. In this case however, when a Metropolis-Hastings
algorithm is used with the said neighbourhood generator, the dependence
between consecutive states can be considerable since only one position in the
edge configuration is changed at a time. This does not imply that one has to
restart the algorithm after each produced value, rather it seems reasonable
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to adjust the interval i.e. the number of steps between each value that is
taken as out put. It could still be considerably smaller that the burn in time.

So, how do we choose the number of graphs to be discarded between each
graph that is taken as an output? Say that we from the MCMC run choose
every k' value. A heuristic argument for choosing k is that we should choose
k > n? since maxg eg {ming {k € N:Pr(Z; = G'|Zy = G) > 0}} = n”.
However, because of the formulation of the model we expect the posterior
to be concentrated around a certain point as long as we have specified ”in-
formative” priors. Hence if we at step ¢ have a graph with high posterior
probability the probabilities of graphs are expected to decrease with the dis-
tance from the present graph. We think that it suffices to choose k = cn for
some strictly positive ¢, positively a function of m, and check for multiple
high density regions in the parameter space by having a few different runs
with different staring points.

The posterior probability in different points of {0, 1}"2 is not very useful.

Because probability mass has to be allocated to every element of {0, 1}"2,
and since in our MCMC-output 7, € {0,1/N,2/N,... 1}, estimates of the
posterior probability of any one element are always flawed. The sampling
scheme is still simulation consistent and properties of the posterior distribu-
tion can be expected to be reasonably well mirrored in the MCMC-sample.
These properties might for example be the summary measures mentioned in
Section 3, posterior entropy and certain metrics on {0, 1}"2. The rationale
behind the latter is that the model itself can be seen as a metric model albeit
with several dimensions.

When calculating the marginal likelihood r; (x) an intuitive approach is
sampling simultaneously from 7; (x, z) and obtaining a sample and using the
relative frequency of occurrences of the sample. This is not something we
recommend since the number of visits to x in the sample space is likely to
be small as a consequence of the cardinality of the sample space.

One solution to the problem when analytical expressions are not available
and when sampling from the prior distributions is not feasible or in another
way not practical, is using an importance sampling scheme (Raftery, 1996).
Suppressing the notational dependency on the model and writing r (x) for a
generic r (x| M), a simulation consistent estimate of the marginal likelihood
of data is given by the harmonic mean of r(x|z) taken over the sample,
{z(“) }, the output from the Metropolis-Hastings sampling scheme. The like-
lihood r (x| z(“)) will most probably be very small for some z(® so that the
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estimate will be dominated by these and the estimator therefore tends to be
unstable.

An alternative is to use the fact that we have a good estimate of ¢ (1| x).
The marginal likelihood can be calculated using Bayes theorem

r(x) = r(x[n") ¢ (")
& (n*|x)

for an arbitrary n* € (0,1)*. However,

r(xln) =Y r(xlzn)p(),

2€{0,1}"

(10)

is hardly tractable. An identity equivalent to (10) of course holds for 7, but
as noted earlier, 7, is not a good estimate for individual z’s. As a parenthesis
though, we can mention that

r(xlgx)=Q) = > r(xlz),
z:9(2)=Q
would be a much more stable quantity to work with than r (x| z). Especially
so, if the sum is not too big and if we can easily compute g for {z(“)}. We
will not elaborate on this any further here but choose instead to carry on
with the initial idea.

Set n* = (3,...,3), then using the identity

SN (nls)+ny () =ntm,
veC se{0,1}
which does not depend on data or Z, we can write

1\ Svec e o () 4ns(5)
rxiz) = (3)
2

)"

r(xln) = ) r(xlzn)p(2)

2€{0,1}"°

277’)’“’22

and hence
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Now

logr (x) = log ¢(%,.“ ,%|x) ,

where the denominator can be estimated from the Metropolis-Hastings sam-
ple by

(l)au(8)+/3y(S)+n§a)(5)+n3(a)(8)*2
2

N
1OgZ%H 11 @ @y

= Vcoscon B (av (s) + 1 (5),8, (s) +ni (5))
taken over {z(a)}.

While this is a convenient formula in that we do not have to make ad-
ditional simulations, we could run into similar numerical problems as when
we take the harmonic mean of the marginal likelihood of z. Numerical prob-
lems in this case arise as a consequence of the fact that n* = (%, e ,%) is
typically not a high density region in the posterior (nor in the prior in most
instances). If the posteriors are concentrated away from n*, the estimate of
r (x) based on (11) could be unstable.

Once the marginal likelihood 7 (x) is calculated the entropy of the poste-
rior distribution of Z given data is obtained through

H (z|x) = logr (x) = Eyx (logr (x| 2) p(2)).

As in previous cases, the expected value of a function of Z with respect to
the posterior distribution can be simulation consistently estimated through
taking the average of the function in the MCMC output. When using the
Metropolis-Hastings algorithm and the probability of accepting a move to z
when in z is

exp {min (0, logr (x| z) — logr (x|z))},

the needed terms for the expectancy for the entropy are calculated from the
M-H sampler steps.

7 Empirical example

When assessing accuracy defined as the tendency of an informant to accu-
rately represent a ”true” structure of e.g. interaction, it is generally difficult
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to distinguish the actual accuracy from the accuracy that is an artefact of the
aggregation method that is used to construct the aggregate structure. When
using for example LAS with the intersection rule an actor, if he or she is part
of the dyad perceived, can never be wrong when stating that a tie does not
exist. Using CS with majority rule as the criteria for the "true” structure
we saw above that this in our interpretation corresponds to a model where
every informant is equally accurate and this accuracy does not depend on
the value in the true structure and further restricted to be between %and 1.
When looking at matches between respondents we get a measure of who is
most accurate in relation to what everyone else thinks but here the link to the
actual structure is vague. It is our hope here that by quantifying our prior
belief in different parameter values and models the results will be easier to in-
terpret since the relation between data, competencies and the true structure
is completely described by the generic model (4) and the only uncertainty
there is concerns our uncertainty about the values of the parameters and
what exact model is right.

7.1 Model specifications

To illustrate the Bayesian model for cognitive social structures we apply
it to Krackhardt’s high tech managers (1987). A graph that describes the
organisational structure is found in appendix A and the consensus structure
(with majority rule) is depicted in Figure 1. To help us formulate different
specifications of the model we consulted the literature on different hypotheses
regarding accuracy in perceiving social interaction. Here we focus on model
specifications where the accuracy, the competencies, and the hidden structure
Z are a priori independent. As a consequence of this we disregard hypotheses
such as the (in simplified versions): A perceiving actor has more knowledge
of who their own friends and their friends’ friends are than their non-friends’
friends are (Batchelder et al, 1997:48, Knowledge Hypothesis); Accuracy is
positively related to frequency of interaction (Romney and Weller, 1984,
Alternative Hypothesis 1 and 2).

Kumbasar, Romney and Batchelder (1994) in an introductory discussion
elaborate on theories and results that point to the tendencies of actors to
inflate their own role in a social network and overrate their estimates on
their own personal, positive traits. This would suggest a model specification
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Figure 1: Sociogram of the consensus structure of the advice network of the

21 high-tech managers.
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where we partition

o (v ifie {5k}
i 5.k) = { v,y otherwise ' for M,

and where we think that 7, (0) generally is lower than n,  (0), possibly
even an a prior expected value on the first that was below .57 This model
is related to the Bias Hypothesis of Batchelder et al (1997), which predicts
that an actor tends to exaggerate his or her own role in the network but
again it also predicts a similar mechanism to work for this informants friends
relations and this is related to the actual structure.

Another interpretation of the hypothesis above is to distinguish between
cases when an actor perceives dyads when he is himself the potential sender
from cases when he is the potential receiver. The prestige bias in this case
could be a mechanism that only concerns the giving of advice. In other
words, the perceiving actor tends to exaggerate the number of people that
come to this actor to get advice. This could serve as our second model

IZ31 'Lf ’L :j
f(Z,],k): Vi2 ZfZZk ,fOI‘ M.
vis if i #{j,k}

Casciaro (1998) hypothesises that the accuracy of a perceiver with regard
to an advice network is positively related to his or her hierarchial level. This
hypothesis could serve as the basis for a third and a fourth model

Fli g k) = { vy if i belongs to the top of the hierarchy for M,

vy otherwise

and
f(i7j7 k) = Vi, for M4-

In the first case all actors belonging to the same hierarchial level in an or-
ganization are assumed to have the same basic competency for judging who
exchanges information with whom whereas in the fourth model these com-
petencies are assumed to be individual. In the fourth model the hypothesis
is reflected in the choice of priors rather that in the partition of the actor
space. A priori we believe individuals in the top of the organisation to be
more competent in judging the advice network than individuals lower down
in the hierarchy.
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In Bondonio (1998, Hypothesis III) the accuracy of a perceiver i on the
dyad (j, k) is assumed to be positively related to the closeness of ¢ and j (in
Z), and how similar i and j are in terms of age and tenure. The first part
of this hypothesis is not investigated further here for reasons given above.
The second part can be formulated in the current framework. The accuracy
in this hypothesis was conceived as the accuracy of i relative to dyads (j, k)
for all k, for each k, where the true structure was the locally aggregated
structure from the intersection rule. To mimic this situation we can a priori
consider a perceiver ¢ to be fairly accurate when reporting on non-existing
ties from himself to others. An actor i reporting on (7, k) where i # j, we
assume a priori is more accurate if i and j are similar (with respect to age
and tenure) than if they are not similar. For the high-tech manager data we
have, there are three fairly distinct groups with respect to age and length of
tenure

e A;: Managers whose tenure exceeds 15 years,

e A,: Managers whose tenure does not exceed 15 years and whose age is
less than 45 years,

e Ajz: Managers whose tenure does not exceed 15 years and whose age
exceeds 45 years.

We can now formulate models number 5 and 6,

f(zajak): Vg ieAé,jeA(s’,Aé:Aé/ ,fOI‘ M5.
Vp i€A5,j€A5’,A57éA5’

Model 5, Ms5, forces the competencies to be equal for all actors in a certain
category and as in the previous specifications we can modify this by letting

Vil Z:j
f(l7j7k): Vio ieAé;jeAa’;AézAg’ ,fOI‘ MG-
viz 1€ As, jE Ay, As # Ay

It now remains to find suitable conjugate priors corresponding to each
model. First of all, when the underlying hypothesis behind a model specifi-
cation does not offer any guidance as to what our prior belief is for a certain
7, (s) we can assign to this particular parameter a uniform prior. We can
not however, as mentioned before, use uniform priors for all parameters. The
following section is only meant to illustrate a process of eliciting prior belief.
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7.2 Specification of hyper parameters

Thinking in terms of the first model we know that under this hypothesis we
have an idea about how accurate a perceiver is as a function of what dyad is
perceived in relation to the perceiver. If there is actually a tie to or from the
perceiver we are sure that this perceiver will pick up on this - perhaps not
with a probability of one but certainly with a probability between 0.5 and 1.
Perhaps we can go as far as to say that a priori we are 95% confident that the
perceiver perceiving present ties to and from himself is on average right, i.e.
we want 95% of the mass of the prior to be between 0.5 and 1. If we think
about it even harder we realise that this does not necessarily correspond to
a 95% box over (.5,1), rather we think that values halfway in-between 0.5
and 1 are more likely than values extremely close to 0.5 and 1. Then, if
we think that values between 0.5 and 0.75 are not quite as likely as values
between 0.75 and 1 we want a little skewness towards one. Let us decide on
an expected value a priori. Let us say that we a prior expect the perceiver
(perceiving present ties to and from himself) to accurately report present
ties 3 times out of 4. With «a,, (s) = 6 and (3, (s) = 2 the expected value
of n, (s) is 3/4 and the probability that it lies in the interval (.4727,.9867)
is .95 (this is the 95% interval which a priori has the shortest length given
these hyper parameters). With no additional information on the individuals
we let 1, (1) ~ Beta (6,2) a priori for all ¢ for the first model.

According to M; an actor tends to exaggerate his or hers own importance.
This translates into assuming that the actor reports that people seek his or
hers advice even if they in fact don’t. Using a similar line of reasoning as
when choosing the prior for 7, (1) we could arrive at the prior Beta (3,5).
This means that roughly once out of three the actor correctly reports that
someone does not come to him or her to seek advice and that we are 95%
sure that 7, (0) is between .081 and .685 and in which case 77% of the
probability mass is to the left of .5.

For the perception of others relation we perhaps don’t want it to be
completely haphazard nor do we think that it is extremely high or extremely
low. If we keep to the idea that this should be higher that for the perception
of own (non-existent) ties we can choose a prior that has most of its mass
to the right of 0.5. Not wanting to force ourselves to give specific priors for
these cases we can always choose uniform priors which means that we do not
favor any one interval of a given length. A uniform prior for both 7, (0) and
1,., (1) is still in accordance with the motivation behind the model since this
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means that the actor when perceiving others’ ties is still on average more
accurate than when an involved actor perceives non existing ties. Perhaps
one could question why an actor shouldn’t be accurate when judging absent
ties as one would wonder why someone would ”add” ties that ”are not there”.
Missing a present tie between ”distant” actors, on the other hand, is simply
a case of non-detection. To capture this distinction we could always choose
a fairly vague prior such as Beta (3,2). This prior penalizes values at the
extremes, i.e. values very close to 0 and 1 are deemed unlikely but not equally
so. The center of mass is slightly off-balance with slightly more mass to the
right of .5.

For M, we can use the same set of priors for v;5 as we had for v;; in M;
as we think that giving advice is considered more prestigious than receiving
advice and hence the former is more affected by bias. For want of better
we choose a uniform prior for v;; in M;. We keep the same set of hyper
parameters for v;3 as for v;, in Mj.

In M3 we want the priors to reflect the rather strong assumption of the
underlying hypothesis. Using the rationale behind the prior for 7, (1) in
M, we let 1, (1) and 7,, (0) both be Beta (6,2) for Ms. For actors in the
lower part of the hierarchy judging the absence or presence of ties we have
only specified that their competency should be lower but not by how much.
Although we could choose to penalize extreme values we think it better to
leave their priors uniform except for 7,, (0). Again we think it unlikely that
actors should report ties where there are no ties unless it is motivated by for
example prestige bias and again we opt for the Beta (3,2) prior. For M, we
choose basically the same priors as for M3 only that we here allow actors to
have competencies particular to themselves.

For the three types of regions in models 5 and 6 we choose a Beta (6, 2)
forn,, (1), mn,, (0), n,, (1) and n,, (0); Beta(5,3) for n,, (1), n,, (0), n,,, (1)
and 7, (0); and uniform for the rest.

With no prior information regarding the actual relational structure we
use a prior on Z that does not favor any particular graph. If we the prior
probability be constant we achieve this though the amount of information
can be discussed (c.p. the distribution of a function of Z according to this
prior as seen in e.g. Figure B.2.)
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7.3 Results

The results of the analysis can be found in Tables 1 and 2, and in the graphs
in the appendices B-G'. As this is only meant to illustrate the procedures,
details are left out and we leave to the reader to further interpret the re-
sults provided. The numerical specifics will be provided by the author upon
request.

Without going into too much detail we give a brief interpretation of the
posteriors for model 1 in Figure B.1. Actors 3-5, 9, 10, 18 and 21 seem
to have competencies in accordance with what was hypothesised. They are
accurate when perceiving existing ties to and from themselves but have a
tendency to report ties to and from themselves when there are no such ties
(even though these, latter, parameters are not decidedly separated from .5
- especially receivers 4, 5 and 9). When perceiving dyads in which they
are not themselves involved, they are approximately 70 to 80% accurate.
Perceivers 1, 15 and 20 also follow a similar pattern but 7,5, (0) is low as are
Ms2 (1), Mgz (1)- 1,1 (0) is a lot higher than expected under the hypothesis
for all other perceivers 7. Note that the uncertainty about the parameters is
generally greater for 7, ; (s) than for 7, 5 (s). This is a natural consequence of
the fact that we have more observations corresponding to the latter perceiver-
actor category, i.e. perception of others.

Point estimates of the probabilities in M, are given in Table C.1. Worth
mentioning is that when perceiving others’ interaction everyone, but actor
one, it is very unlikely that they falsely report a tie to exist (,,,(0)). When
it comes to detecting ties o themselves (7, (1)) they are also on the whole
accurate although the uncertainty about these estimates are high for certain
individuals. In addition these seems to be a positive association between
n,.,(1) and n, (1), and 7, (1) seems to be negatively associated to 7, (0).

With the above priors there is, according to Table 1, overwhelming evi-
dence for model 2. For example BFy = 1.3 x 10! and p(M;|x) ~ 1. The
model which data gives the least support is model 3. (The rations between
marginal likelihoods and the Bayes factors are equivalent with uniform priors
on models.) None of the specified models give a "significant” reduction of
our uncertainty about Z, judging by the posterior entropies. The maximum
entropy over Z is given by the uniform distribution over all (22120 di-) graphs

IFor each figure, three chains were run where every eleventh state was taken as a
sample point. Of the approximately 7000 sample points from each chain, the first 500
were discarded as burn in.
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and is equal to 291 and the posterior entropies lie in the range 249 to 260
2. This is not to say that there is no structure in data. It is informative to
study Figures B.2., C.2., D.2., E.2., F.3., and G.2. These figures give the
prior and posterior distributions of Z as represented by their respective de-
gree distributions. According to these projections of the prior and posterior
distributions of Z, the priors and posteriors are by no means identical.

Table 1.
Marginal likelihoods and posterior entropies of z

M, M, M; M, M; Mg
log (r; (x)) —3952 —3928 —4506 —4021 —4453 —3999
H; (z|x) 254.8 2527 257.5 259.6 2588  249.9

From Table 2., we see that the modal graphs in the posterior distributions
given different models are all fairly close to each other and that the first two
models have identical modes. As expected the two ad-hoc methods CS and
LAS from intersection rule agree most with the first two models. Perhaps
it is not surprising that C'S lies closer to the model posteriors than the two
types of LAS since the first is a function of "all” data (c.p. Eq. 7) whereas
the latter two only use certain observations. The sociogram of the modal
graph according to M,, which could serve as our point prediction of Z, is
given in Figure 2.

2Figures in the table are based on MCMC samples. For each model 3 (Mg only one
chain each and for My two ) times 500000 iterations were performed, each time started in
their respective modal graphs. Every 7" value was taken as a sample point and the first
500 sample points for each of the three runs were discarded as burn-in values.
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Figure 2: Sociogram of the modal graph according to M,. Dashed lines
indicate added arcs as compared to the consensus structure (no arcs were
removed compared to the consensus structure).
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Table 2.

Symmetric class difference between arc sets of modal
graphs in the posteriors for different models and
aggregation methods’

M, M, M; M, Ms; Mg CS LASI
M, 0

My 0 0

M, 23 23 0

M, 23 23 4 0

M 33 33 10 12 O

Msg 25 256 10 10 16 O

s 30 30 53 53 63 55 0
LASI |82 82 8 &8 91 83 76 0
LASU | 165 165 146 144 140 144 183 147

IMaximum difference is 420

8 Conclusions and future directions

When applying network theories to real life problems such as various sam-
pling schemes it is essential that we know something about what mechanisms
are involved when responses are generated. We could take reports about the
network at face value and hope that various forms of bias cancel each other
out to produce an overall bias of nought, or we could try to control for sources
of bias to obtain more stable estimates. This procedure could e.g. be rele-
vant in adaptive sampling. When it comes to prediction it is obvious that a
model where covariates are more closely tied to competencies would be more
natural - a logit or probit model could for example be fitted to data (c.p.
Koskinen, 2002).

It would be desirable to have more in-built dependencies between reports
as well as dependencies between the actual structure and the competencies.
The need for the latter became clear when reference was made to prior hy-
pothesis regarding CSS.

Although the field of study, i.e. CSS, is interesting in its own right, the
data collecting paradigm might seem to demand rather a lot of the research
subjects.
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We call for further exploration of the influence of priors. Ideally, one
ought to examine the frequency of "right” choices in model selection using
data generated from a known model. This would also be beneficial to the
assessment of sensitivity of model selection to different specifications of the
hyper parameters. That there is no simple way to automate the setting of
hyper parameters is a definite drawback, especially so since the posterior
model probability can become a little hard to interpret.

In this paper Z and X; has been binary adjacency matrices but as men-
tioned earlier these matrices could be more general structures. If the el-
ements of Z take values in F and the elements of X, take values in X
and we define the indicators in (3) appropriately, the model is still essen-
tially the same and has the same conjugate priors. For, say, digraphs we
could ascribe an arbitrary label, ¢;z, j < k, to each {j, k} € (‘2/), and let
F ={(0,0),(1,0),(0,1),(1,1)}, so that for example Z,, = (1,0), if j is
adjacent to k but k is not adjacent to j. Using this formulation of the model
one would focus more on the dyads than if one merely considered each arc
separately. Doing this one would have to put up with the fact the proba-
bility of X;, = x4 given Z, = (0,0), and n,, (0,0) would be equal for all
2 € F\{(0,0)}.

One obvious extension of the model is to apply it to multiple relational
networks (see e.g. Fienberg, Meyer, and Wasserman, 1985). For valued
relations R;, ¢ € Z, we could have reports X; = (Xj,), with X}, taking values
in X;. As an example we could have the relations esteem, disesteem, liking,
disliking, positive influence, negative influence, praise and blame, as in the
Sampson Monastery data (Sampson, 1969, Breiger, Boorman and Arabie,
1975). Our assumption could then be that there is an underlying structure
Z which all these relations reflect in a stochastic way.

The mixing of the Metropolis-Hastings algorithm is a slight concern. It
turns out that the algorithm is fairly sensitive to the choice of initial distri-
bution. A further concern is the dependence between states in the MCMC
sample. Although the remedy could be using a different proposal distribution
the author has not found a proposal distribution which does not seriously
slow down the mixing.

The implementation of the Bayesian analysis of cognitive social structures
is quite computer intensive. In the absence of exact analytical expressions
approximate solutions to the estimation procedure would be worth striving
for.
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The High-tech Manager Team

Figure A. 1. is an illustration of the organisational structure of Krackhardt’s
(1987) high-tech manager team. The 21 nodes are the members of the man-
ager team and the edges represent departmental affiliation between hierarchi-
cal levels. The chief executive officer (CEO) has an edge to the vice president
(VP) of each department. The VP is adjacent to each manager of his depart-
ment. The nodes are positioned according to the age and length of tenure
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of the individuals represented by the nodes. The axis of tenure has been
perturbed to make the picture more visibly tractable.
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Figure A. 1. The organisational structure of Krackhardt’s (1987) high-tech
manager team.

35



B Results from M,
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Figure B.1. Priors (dashed lines) and posteriors (solid lines) of the
competencies conditional on M;. For each group of four panels, for
perceivers ¢ 1 through 9, the top two panels represent the analysis of

n,., (1) and 1, (0) repectively. The bottom two correspond to
Irlvig (1) a‘nd 771/1'2 (O) :
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Figure B.1. continued for perceivers ¢ 10 through 21.
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Figure B.2. The prior and posterior distribution of the total number of arcs
in Z when the prior on Z is uniform over all labeled digraphs with 21
vertices. The posterior of the total number of arcs in Z is derived from the

posterior distribution of Z conditional on model 1.
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C Results from M,

Table C. 1. Estimates for competencies according to model 2.
The point estimates are posterior expected values (std)

m, (1) 1, (0)
1 71 (158) .87 (.088) .88 (.028)|.86 (.087) .24 (.093) .45 (.031)
2 22 (.145) .93 (.051) .54 (.046) | .89 (.085) .33 (.156) .90 (.018)
3 87 (.116) .75 (.123) .75 (.027) | .38 (.122) .42 (.102) .74 (.028)
4 86 (.130) .85 (.100) .82 (.033) | .53 (.122) .48 (.104) .73 (.028)
5 89 (.101) .70 (.125) .81 (.034) | .41 (.129) .53 (.105) .76 (.027)
6 27 (.168) .65 (.134) .34 (.041) | .94 (.058) .79 (.084) .98 (.009)
7 86 (.126) .75 (.090) .70 (.041)|.79 (.100) .49 (.142) .80 (.025)
8 86 (.118) .51 (.134) .76 (.037) | .83 (.095) .77 (.089) .89 (.020)
9 55 (177) .80 (.127) .67 (.040) | .34 (.118) .50 (.098) .83 (.024)
10 |.69 (.183) .83 (.108) .72 (.039) | .35 (.114) .42 (.101) .89 (.020)
11 |.54 (.183) .86 (.080) .41 (.043)|.94 (.059) .48 (.120) .96 (.012)
12 | .41 (.184) .82 (.116) .66 (.041)|.94 (.059) .60 (.098) .86 (.022)
13 |.63 (.147) .72 (.155) .30 (.040) | .91 (.080) .82 (.073) .98 (.009)
14 .38 (.134) .90 (.065) .53 (.046) | .91 (.089) .26 (.113) .80 (.025)
15 | .88 (.111) .79 (.134) .45 (.043)|.06 (.063) .41 (.096) .96 (.012)
16 | .65 (.171) .53 (.148) .34 (.041) | .94 (.060) .80 (.081) .99 (.006)
17 | .52 (.180) .61 (.152) .27 (.038)|.82 (.096) .78 (.082) .99 (.007)
18 |91 (.084) .92 (.057) .70 (.042)|.32 (.133) .50 (.144) .89 (.019)
19 .90 (.092) .73 (.120) .62 (.042) |.74 (.118) .78 (.088) .95 (.013)
20 | .57 (.152) .84 (.102) .43 (.043) | 40 (.134) .48 (.104) .97 (.011)
21 | .87 (.117) .89 (.076) .85 (.032) | .63 (.121) .27 (.103) .76 (.027)
prior | .5 (289) .75 (.144) 5 (289)|.5 (289) .38 (.161) .6 (.200)
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Figure C.1. Priors (dashed lines) and posteriors (solid lines) of the
competencies conditional on M. For each group of six panels,for
perceivers i 1 through 9, the top two panels represent the analysis of

n,., (1) and 7, (0) repectively. The intermediate two panels correspond to

n,., (1) and 7, (0), and the bottom two correspond to 7, . (1) and 7, (0).
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Figure C.1. continued for perceivers i 10 through 21.
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Figure C.2. Prior and posterior distribution of the total number of arcs
in Z when the prior on Z is uniform over all labeled digraphs with 21
vertices. The posterior of the total number of arcs in Z is derived from the

posterior distribution of Z conditional on model 2.
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D Results from M;
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Figure D.1. Posteriors of the competencies conditional on Mjs. The left
upper panel corresponds to the probability of ”correctly” reporting

a present tie for a perceiver that belongs to the top of the organisational
hierarchy. The uppermost right panel corresponds to the probability of
”correctly” reporting the non-existence of an arc for a perceiver that belongs
to the top of the organisational hierarchy. The bottom panels are the
corresponding probabilities for a perceiver that belongs to the lower

half of the organisational hierarchy.
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Figure D.2. Prior and posterior distribution of the total number of arcs
in Z when the prior on Z is uniform over all labeled digraphs with 21
vertices. The posterior of the total number of arcs in Z is derived from the

posterior distribution of Z conditional on model 3.
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E Results from M,
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Figure E.1. Prior (dashed lines) and posterior (solid lines) distributions

of ,, (1) and 7, (0) for perceivers i 1 through 21.
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Figure E.2. Prior and posterior distribution of the total number of arcs
in Z when the prior on Z is uniform over all labeled digraphs with 21
vertices. The posterior of the total number of arcs in Z is derived from the

posterior distribution of Z conditional on model 4.
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Results from M
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Figure F.1. Posterior distributions of the competencies for

categories v, and v, respectively conditional on model 5.
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Figure F.2. Prior (dashed lines) and posterior (solid lines) distributions

of the competencies, 7, (1) and 7, (0), for perceivers i 1 through 21

conditional on model 5.
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Figure F.3. The prior and posterior distribution of the total number of arcs.
in Z when the prior on Z is uniform over all labeled digraphs with 21
vertices. The posterior of the total number of arcs in Z is derived from the

posterior distribution of Z conditional on model 5.
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G Results from M

Figure G.1. Priors (dashed lines) and posteriors (solid lines) of the
competencies conditional on Mgy. For each group of six panels,for

perceivers i 1 through 9, the top two panels represents the analysis of

n,., (1) and 1, (0) respectively. The intermediate two panels correspond to

n,., (1) and 7, (0), and the bottom two correspond to 7, . (1) and 7, (0).
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Figure G 1. continued for perceivers i 10 through 21
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Figure G.2. The prior and posterior distribution of the total number of arcs.
in Z when the prior on Z is uniform over all labeled digraphs with 21
vertices. The posterior of the total number of arcs in Z is derived from the

posterior distribution of Z conditional on model 6.
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