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Abstract. The multivariate split normal distribution extends the usual multivariate nor-
mal distribution by a set of parameters which allows for skewness in the form of contrac-
tion/dilation along a subset of the principal axes. This note derives some properties for this
distribution, including its moment generating function, multivariate skewness and multivari-
ate kurtosis.

1. Introduction

The univariate split normal distribution, or the two-piece normal, extends the symmetric
normal distribution with an additional parameter to model skewness. This distribution was
originally introduced by Gibbons andMylroie (1973), with most of its known properties derived
by John (1982); see also Kimber (1985) for some additional results. Johnson, Kotz and
Balakrishnan (1994) contains references to papers where the split normal distribution is used
as a statistical model. The split normal distribution has also been recognized as a convenient
vehicle for elicitation of subjective beliefs, see e.g. Blix and Sellin (1998) and Kadane, Chan
and Wolfson (1996), which in turn have motivated extensions to the multivariate case; see e.g.
the bivariate translation approach in Blix and Sellin (2000) and the discussion of Kadane et
al. (1996) in Bauwens, Polasek and van Dijk (1996).
In an influential paper on Monte Carlo integration, Geweke (1989), apparently unaware of

earlier work in this area, suggested a multivariate generalization of the split normal distribution
to be used in the construction of an importance function. The density was only given up to a
constant and no properties of this distribution were presented. In this note, some properties
of the multivariate split normal distribution will be derived using a suitable reparametrization
of Geweke’s distribution.
The paper is outlined as follows. The next section gives a short review of the univariate

split normal distribution. Section 3 describes the multivariate split normal distribution and the
fourth section derives some of its properties. The proofs have been collected in an appendix.
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2. The univariate split normal distribution

The following definition is a reparametrization of the univariate split normal distribution
in John (1982).

Definition 1. x ∈ R follows the univariate split normal distribution, x ∼ SN(µ,λ2, τ2), if it
has density

f(x) =

 c · exp
h
− 1
2λ2
(x− µ)2

i
if x ≤ µ

c · exp
h
− 1
2τ2λ2

(x− µ)2
i

if x > µ,

where c =
p
2/πλ−1(1 + τ)−1.

The density of the SN(µ,λ2, τ2)-distribution is thus proportional to the density of the
N(µ,λ2)-distribution to the left of the mode, µ, whereas to the right of the mode it is pro-
portional to the density of the N(µ, τ2λ2)-distribution. For τ < 1 the distribution is skewed
to the left, for τ > 1 it is skewed to the right and for τ = 1 it reduces to the usual symmetric
normal distribution.
John (1982) derived several properties of the univariate split normal distribution. The

following result will be useful in the sequel.

Lemma 1. If X ∼ SN(µ,λ2, τ2), then
E(X) = µ+

p
2/πλ(τ − 1)

V ar(X) = bλ2

where b = π−2
π (τ − 1)2 + τ .

The next lemma gives the univariate skewness

β1 =
E[x−E(x)]3
[V ar(x)]3/2

and univariate kurtosis

β2 =
E[x−E(x)]4
[V ar(x)]2

of a SN(µ,λ2, τ2) variable.

Lemma 2. If x ∼ SN(µ,λ2, τ2) then
β1 = b

−3/2p2/π(τ − 1)[(4/π − 1)(τ − 1)2 + τ ]

and
β2 = b

−2q,

where q = 3(1 + τ5)/(1 + τ)− 4π−2(1− τ)2
£
(3 + π)(1 + τ2) + 3(π − 2)τ¤ .

The next lemma gives the moment generating function φx(t) = E(e
tx) of a univariate split

normal variable as derived by John (1982).
Lemma 3. If x ∼ SN(µ,λ2, τ2), then

φx(t) =
2λ
©
exp(−λ2t2/2)Φ(−λt) + τ exp(−λ2τ2t2/2)Φ(−λτ t)ª

λ(1 + τ) exp(µt)
.
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Figure 1. Contour plots of bivariate 1-split normal density functions.
µ = (−1, 2), Σ = (1, ρ; ρ, 1), Q = 1 and τ = 2.

3. The multivariate split normal distribution

The following definition is a natural generalization of the univariate split normal distribution
in John (1982) to the multivariate setting and is a reparametrization of the multivariate split
normal distribution in Geweke (1989).

Definition 2. A vector x ∈ Rp follows the q-split normal distribution, x ∼ SNp(µ,Σ, τ ,Q), if
its principal components are independently distributed as

v0ix ∼
½
SN(v0iµ,λ

2
i , τ

2
i ) if i ∈ Q

N(v0iµ,λ
2
i ) if i ∈ Qc,

where Q ⊆ {1, ..., p} of size q, Qc = {1, 2, ..., p}\Q is the complement of Q, vi is the eigenvector
corresponding to the ith largest eigenvalue in the spectral decomposition of Σ = V ΛV 0, Λ =
diag(λ21, ...,λ

2
p) and τ = (τ i)i∈Q is q-dimensional vector of contraction/dilation parameters.

Definition 2 coheres with the idea that multivariate data are driven by a small number of
underlying variables (here represented by the principal components) and it is these underlying
variables which are allowed to have skewed distributions. Let us consider the case Q ={r} for
illustration, i.e. when only the rth principal component has a skewed distribution. It is then
easy to see that the density of x is

f(x) =

½
c · exp©−12(x− µ)0Σ−1(x− µ)ª if v0r(x− µ) ≤ 0
c · exp©−12(x− µ)0Σ̄−1(x− µ)ª if v0r(x− µ) > 0,

where Σ̄ = V Λ̄V 0, Λ̄ = diag(λ21, ..., τ21λ
2
r, ...,λ

2
p) and c

−1 = 1
2(2π)

p/2 |Λ|1/2 (1+τ1). This should
be compared to the univariate case in Definition 1. Figure 1 illustrates two possible shapes of
the SN2(µ,Σ, τ ,Q)-distribution.
The general SNp(µ,Σ, τ ,Q)-distribution amounts to using different multivariate normal

distributions, all with mode µ, over 2q regions of Rp separated by the q hyperplanes v0i(x−µ) =
0, for i ∈ Q. Other forms of the separating hyperplanes, or more general changes in covariance
structure between the 2q regions, produces ill-behaved densities with sharp ridges.
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4. Some properties of the SNp(µ,Σ, τ ,Q) distribution
In the following theorems, let bi = π−2

π (τ i − 1)2 + τ i for i ∈ Q. Our first result generalizes
Lemma 1 to the multivariate setting.

Theorem 4. If X ∼ SNp(µ,Σ, τ ,Q), then
E(X) = µ+

p
2/π

X
Q

λi(τ i − 1)vi

V ar(X) = V ΛQV 0

where ΛQ is a diagonal matrix with ith element equal to λ2i if i ∈ Qc or biλ2i if i ∈ Q.
Let

Mxz = (x−m)0S−1(z −m),
be the Mahalanobis distance between two p-dimensional independent identically distributed
random vectors x and z, where m and S are the common mean and covariance matrix, re-
spectively. Mardia (1970) used Mxz to define a widely used measure of multivariate skewness

β1,p = E(M
3
xz).

Note that if x ∼ Np(µ,Σ), then β1,p = 0. β1,p is related to the univariate skewness through
the equality β1,1 = β21. We have the following result.

Theorem 5. If x ∼ SN(µ,Σ, τ ,Q) then
β1,p =

X
Q
b−3i (2/π)(τ i − 1)2[(4/π − 1)(τ i − 1)2 + τ i]

2.

The Mahalanobis distance may also be used to define multivariate kurtosis (Mardia, 1970)

β2,p = E(M
2
xx).

If x ∼ Np(µ,Σ), then β2,p = p(p+ 2). Note also that β2,1 = β2. The next theorem gives β2,p
for the multivariate split normal distribution.

Theorem 6. If x ∼ SN(µ,Σ, τ ,Q) then
β2,p = p(p+ 2) +

X
Q
b−2i qi − 3q,

where qi = 3(1 + τ5i )/(1 + τ i)− 4π−2(1− τ i)
2
£
(3 + π)(1 + τ2i ) + 3(π − 2)τ i

¤
.

The moment generating function φx(t) = E[exp(t
0x)] of a SNp(µ,Σ, τ ,Q) variable is given

in the next result.

Theorem 7. If x ∼ SNp(µ,Σ, τ ,Q), then

φx(t) =

"Y
Q

2λi
©
exp[−(λiv0it)2/2]Φ(−λiv0it) + τ i exp[−(λiτ iv0it)2/2]Φ(−λiτ iv0it)

ª
λi(1 + τ i) exp(µiv

0
it)

#

× exp
(X
Qc
[µiv

0
it−

1

2
(v0it)

2λ2i ]

)
.
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5. Appendix

5.1. Proof of Lemma 2. From John (1982) we have

E[x−E(x)]3 =
p
2/πλ(τ − 1)[(4/π − 1)(λ(τ − 1))2 + λ2τ ].

Make the transformation y = (x−µ)/λ. It is easy to see that y ∼ SN(0, 1, τ2) with V ar(y) =
λ−2V ar(x) = b. Since skewness is invariant to linear transformations we have

β1(x) = β1(y) =
E[y −E(y)]3
[V ar(y)]3/2

= b−3/2
p
2/π(τ − 1)[(4/π − 1)(τ − 1)2 + τ ].

Similarly, since kurtosis is invariant to linear transformations

β2(x) = β2(y) =
E[y −E(y)]4
[V ar(y)]2

= b−2E[y −E(y)]4,

where

(5.1) E[y −E(y)]4 = E(y4)− 4E(y3)E(y) + 6E(y2)[E(y)]2 − 3[E(y)]4.
and

E(y) =
p
2/π(τ − 1)

E(y2) = (1− τ)2 + τ

E(y3) = 2
p
2/π(τ4 − 1)/(1 + τ)

E(y4) = 3(1 + τ5)/(1 + τ).

Inserting these moments into (5.1) and simplifying yields

E[y −E(y)]4 = 3(1 + τ5)/(1 + τ)− 4π−2 (1− τ)2 [(3 + π)(1 + τ2) + 3(π − 2)τ)],
which proves the result.
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5.2. Proof of Theorem 4. Since x = V y, where y is the vector of principal components, we
have

E(x) = V E(y) =
X
Q
viE(yi) +

X
Qc
viE(yi) =

X
Q
vi[v

0
iµ+

p
2/πλi(τ i − 1)] +

X
Qc
viv

0
iµ

= µ+
p
2/π

X
Q

λi(τ i − 1)vi,

by Lemma 1.
The covariance matrix can be written

V ar(x) = V · V ar(y) · V 0 =
pX
i=1

V ar(yi)viv
0
i =

X
Q
biλ

2
i viv

0
i +

X
Qc

λ2i viv
0
i = V ΛQV

0,

again using Lemma 1.

5.3. Proof of Theorem 5. Since x = V y, where y are the principal components of x,

β1,p(x) = β1,p(V y) = β1,p(y),

by the invariance of β1,p under linear transformations (Mardia, 1970). Let v and w be in-
dependent random vectors from the same distribution of y, m = (m1, ...,mp)

0 = E(y) and
V ar(y) = ΛQ = Diag(σ21, ...,σ

2
p), where σ2i = λ2i if i ∈ Qc and σ2i = biλ

2
i if i ∈ Q. By

definition, β1,p(y) = E(M
3
vw), where Mvw may be decomposed as

Mvw = (v −m)0Λ−1Q (w −m) = Σpi=1σ−2i (vi −mi)(wi −mi) = Σ
p
i=1Mviwi ,

and therefore

M3
vw = Σ

r1+...+rp=3

3!

r1! · · · rp!M
r1
v1w1 · · ·M

rp
vpwp .

Since E(Mviwi) = 0 for i = 1, ..., p, by the independence of the elements of v and w, we have

E(M3
vw) = Σ

p
i=1E(M

3
viwi),

which proves that
β1,p(y) = Σ

p
i=1β1,1(yi).

Since β1,1 = β21 and βi = 0 for i ∈ Qc, the result now follows from Lemma 2.

5.4. Proof of Theorem 6. Since x = V y, where y are the principal components of x,

β2,p(x) = β2,p(V y) = β2,p(y),

by the invariance of β2,p under linear transformations (Mardia, 1970). Now, by the diagonality
of V ar(y) = ΛQ,

M2
yy = Σ

p
i=1M

2
yiyi + 2

X
i<j

MyiyiMyjyj .

Thus,

E(M2
yy) = Σpi=1E(M

2
yiyi) + 2

X
i<j

E(Myiyi)E(Myjyj )

= Σpi=1E(M
2
yiyi) + p(p− 1).
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since E(Myiyi) = 1 for i = 1, ..., p. Thus

β2,p(y) = Σ
p
i=1β2,p(yi) + p(p− 1) =

X
Q

β2(yi)− 3q + p(p+ 2).

since β2,p(yi) = β2(yi) and β2(yi) = 3 for i ∈ Qc. The result now follows fromLemma 2.
5.5. Proof of Theorem 7. Since x = V y,

φx(t) = E[exp(t0x)] = E[exp(t0V y)] =
Y
Qc
E[exp(t0viyi)]

Y
Q
E[exp(t0viyi)]

=
Y
Qc

φyi(v
0
it)
Y
Q

φyi(v
0
it) = exp

(X
Qc
[µiv

0
it−

1

2
(v0it)

2λ2i ]

)Y
Q

φyi(v
0
it),

where, using Lemma 3,

φyi(v
0
it) =

2λi
©
exp[−(λiv0it)2/2]Φ(−λiv0it) + τ i exp[−(λiτ iv0it)2/2]Φ(−λiτ iv0it)

ª
λi(1 + τ i) exp(µiv

0
it)

for i ∈ Q.
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