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Abstract

A data-swapping technique based on ranks is described and sug-
gested as a possible approach to statistical disclosure control. The
proposed method is intended to be applied to quantitative data and
utilizes the rank structure of disjoint subsets of an original data set;
values of one subset are exchanged for values of other subsets. The
procedure retains the validity of a sample on an intravariate level
but the association between pairs of variables is typically weakened.
Theoretical and simulation results indicate that the proposed method
performs reasonably well in the bivariate normal case.

Keywords: Concomitants; Data-swapping; Data dissemination;
Disclosure control; Order statistics; Ranks.

1 Introduction

With the gradually improved means for researchers and others to conduct
their own explorations there has followed an increase in the demand for the
collection and dissemination of public-use microdata files. This creates a
natural conflict. On one hand there is the demand for making data widely
accessible as the principal goal of data collection is research. On the other
the rights of the respondents, both natural and legal, need to be protected
against unnecessary exposure, as much statistics are based on information
that is by some definition sensitive. In such instances producers of statistical
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data have a justifiable reluctancy to make the data available and may instead
offer to conduct the analysis themselves. This process may prove both time
consuming and expensive for the end-user. Furthermore, the end-user may be
reluctant to specify the exact nature of the questions being asked since this
could in itself reveal sensitive information, for instance political intentions or
market strategies. Under these circumstances it is easy to identify a demand
for methods that will help to increase the availability of microdata while
at the same time offering a reasonable level of protection against improper
disclosure. Comprehensive overviews and discussions of the problems asso-
ciated with the dissemination of data and statistical disclosure control are
given by e.g. Dalenius (1974, 1977), Frank (1976, 1983), Duncan and Lam-
bert (1989), Bethlehem et al. (1990), Duncan and Pearson (1991), Reynolds
(1993), Lambert (1993), Fienberg (1994) and also in references cited in these
papers. Willenborg and de Waal (1996, 2000) provide excellent introductions
to the issues concerned. Recent publications include also the special issue
of the Journal of Official Statistics (1998, vol. 14), Doyle et al. (2001) and
Domingo-Ferrer (2002).

The method suggested in this paper is a variant of data-swapping. Data-
swapping as a means for disclosure control was suggested in Dalenius (1979)
and Dalenius and Reiss (1982) for the case where the attributes assume cat-
egorical values. Fienberg et al. (1998) relates data-swapping methods for
categorical data to conventional statistical methods associated with loglin-
ear models. A method for dealing with quantitative data was illustrated in
Dalenius (1988). Greenberg (1987) and Moore (1996) describe a method for
ordinal data based on rank-proximity. Variants of data-swapping have also
been used in practice by the US Census Bureau e.g. for the release of tabular
data from the 1990 census. We refer to the paper by Moore (1996) and to
references cited in Fienberg et al. (1998). See also Paass (1988) and Spruill
(1983). Recent work may be found in Domingo-Ferrer and Torra (2001),
Dandekar et al. (2002) and Sebé et al. (2002).

Whereas most data-swapping procedures described in the literature in-
volve swapping values within the same sample or set, the method proposed
in this paper exchanges the values of a pre-specified subset of a larger data
set with the values of other subsets from the same larger set. The exchange
is based on the rank structure of each of the involved subsets and is intended
for quantitative data. The resulting set which is made public instead of the
original set is a combination of values pertaining to respondents from sev-
eral disjoint sets, the purpose being to enhance the level of confidentiality
while maintaining a reasonable level of congruity with the original data. It
should however be noted that the ideas in this paper are tentative and have
not been tested on real-life data. The focus here is limited to describing the
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basic swapping procedure and on the asymptotic bivariate and univariate
properties of the resulting data sets. The numerical examples throughout
this paper are based on experiments and before the methods can be used on
a larger scale, more research is needed.

This paper is organized as follows. Properties of data-swapping meth-
ods in general are discussed in section 2. In section 3 some basic notation
is introduced and the swapping procedure is described by means of simple
examples in section 4. Section 5 provides some theory regarding the effect
the swapping operations have on the association between pairs of variables
and illustrates the effect by means of simulation studies. The univariate
effects are described in section 6. In section 7 we discuss the effect of the
data-swapping procedure on disclosure limitation and on statistical analysis.
Finally some concluding remarks and prospects for future research are given
in section 8.

2 Data-Swapping Methods

Data-swapping transforms a data set into another by exchanging attribute
scores between respondents so that the value of a variable for a respondent
is not her own value but the value of some other respondent. Normally
data-swapping affects the structure of the data, especially if the swapping
procedure is performed without restrictions. In general any data-swapping
procedure will have its benefits but also its shortcomings. The following list
adapted from Moore (1996) briefly summarizes some of the properties:

- Data-swapping masks accurate information about each respondent.

- The relationship between the record and the respondent is weakened if
performed on potential key variables.

- Swapping can be used on a select set of variables, without disturbing
the responses for non-sensitive and non-identifying attributes.

- Swapping of continuous variables can provide protection where it is nec-
essary since rare and unique attributes and combinations of attributes
are generally used to identify respondents.

- The variables selected for swapping are subject to additional error,
diminishing the analytical value of the data. Typically multivariate
relationships are distorted.



- Arbitrary swaps can produce a large number of unusual observations
in sub-domains, e.g. newly born with high incomes. Even unrealistic
or inconsistent combinations may occur.

- The procedure is simple, the programming is straightforward and in
the case of rank-based methods the execution is as fast as the sorting
algorithm used.

- A large number of records in the original file and a large number of vari-
ables selected for swapping can take a significant amount of computer
resources; rank-based methods are only as fast as the sorting algorithm
used.

Swapping also has the psychological advantage that it is often possible to
say that the sensitive properties assigned to a person are never his own. The
fact that Mr. Brown is coupled with the property ”tax evader” is due to the
fact that some one else in the material is in fact a tax evader. Furthermore,
one can not be sure that it is Mr. Brown at all since the attributes used to
link records in the released data to individuals in the population may have
been swapped as well.

3 Notation

Consider a vector of random variables (X,Y,... W) generated from a con-
tinuous multivariate distribution with finite first and second order moments.
Denote the expectation of a general variable Z by p, and the corresponding
variance by 0%. The covariance between two variables Z, U is denoted by
ozu- The cumulative distribution function and probability density function
of a random variable Z will be denoted by F; (z) and f (z), respectively.
The multivariate distribution and the respective marginal distributions of
(X,Y,... , W) will be referred to as the parent distributions.

Assume that several independent random samples M,, a = 1,2,... of
equal size n are available. A set M, may be arranged as

Xl,a le,a e Wl,a
Ma:[Xa Ya Wa}:
Xn,a Yn,a e Wn,a
where each row (X4, Yia, ..., Wia), i =1,... ,n denotes one observation of
(X,Y, ..., W) and each column is the nx 1 vector corresponding to respective

random variable. The latter is denoted in bold typeface, e.g. Z,.
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Let X,., denote the r’th order statistic of the X’s in the set M,. The
variable Y; , associated with X,., will in the following be denoted by Y.,
and termed the concomitant to the r’th order statistic of X, adopting the
terminology of, among others, David (1981). The concomitant to the s’th
order statistic of Y is correspondingly denoted by X{;.,;. A more appropriate
notation should perhaps reflect the specific variate to which the concomitant
is associated, e.g. Yj.q, is the concomitant to X,.,. We will however in
the following focus on relations between pairs of variables and the present
notation will suffice. For example, an observation on X and Y in M, may
be denoted by either of the following

(Xi,aalfi,a) - (X'r:aa }/s:a) - (X'r‘:aayv[r:a]) - (X[s:ab}/s:a)

assuming Rank [X; ,] = r, and Rank [Y; ,] = s. A general theory for concomi-
tants of order statistics is given in e.g. Yang (1977) and David (1981).

4 Description of the Data-Swapping Proce-
dure

The basic idea that the data-swapping method builds on is simple and is
perhaps best illustrated by simple examples involving only two variables, X
and Y say. Since the available subsets (samples) M, M, ... are independent
realizations from the same distribution, the conditional distribution of the
r’th concomitants in any two samples are identical. Thus, conditional on X
we have

.fY[M]|XT;1 (y| Xpn=2) = fY[T:QNXT;z (Y| Xpp=12) = Jyix (y| X =x).

Furthermore, since E [X,.1] = E [X,.2], one would expect X,.; to be approxi-
mately equal to X,.o for large n, therefore justifying the approximation

E [Y[m] | Xp = xl} ~ F [Y[T:Q] | Xpo = @} )

Hence a simple way to create artificial observations is to exchange the ob-
served order statistics between independent samples i.e. X,.; is swapped for
Xyg, forallr=1,... n.

Assume that three disjoint and equally sized subsets M; = [X;,Y/],
M; = [X,,Ys] and M3 = [X3,Y3] are available of which we select M; to
build on and refer to as the reference set. The other sets, My and M3 will
provide the values that replace the original values of M; and we refer to these
as the auxiliary sets.



Define X, as the vector consisting of the n entries in X, rearranged in
ascending order. The permutation of X, to X, is easily defined as a linear
transformation

RXaXa - Xa

where Rx, is the n X n orthogonal matrix with ones in the entries corre-
sponding to the shifts in X, and zeroes elsewhere. For example, X, , = X,.,
entails a one in the 7’th column of the r’th row of Rx, and zeroes in the re-
maining positions of that same row. The reverse operation is easily obtained
by R% X, = X, where R%, is the transpose of Ry,. The matrices R will
in the following be referred to as ordering permutations.

To exchange the values of X; for those in X5, the observations in X, are
first rearranged so that the rank ordering is the same as the ordering given
by the observations in X;. This is easily accomplished by the operation

R% Ry, X, = XI. (1)

The column vector X is thereafter exchanged for X7, i.e. X,.; is swapped
for X,.o, for all » = 1,... ,n. The star notation (x) will throughout denote
that the original values have been swapped for new ones.

Example 1 To illustrate the procedure consider two sets of data given by

46 45 72 40
M,=|26 39|, My= |32 59
63 44 61 60

Swapping the scores in X1 for those in Xy results to

M; = [ RER0X,, Y]

010 010 72 45 61 45
= 1 00 0 01 32 |, 39 =132 39
0 01 1 00 61 44 72 44

Carrying the operation one step further we may consider swapping the Y
scores as well. By rearranging the observations in Y, with respect to Y; and
then swapping the observed values of the same, yet another set is created.
Alternatively, we can consider swapping the scores in Y; for those given by
Yj,i.e. we use two separate sources for the two variables. The re-ordering
transformations in either case are defined analogously to (1).

Extending the procedure to situations with more than two variables is
straightfoward. A simple example involving six variables is depicted in figure
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1. Here three of the variables, X, Y and W, have been selected to remain
intact, i.e. the original observations of M; are retained. The variables Z
and U are swapped for values from the auxiliary source My and the variable
V' is swapped for values from Mjs. Formulating the operation in terms of
re-ordering permutations would yield the following expression:

Mj = [ Xy, Yy, RglRZQZQ, RglRUzUz, RglegV3 Wi }

When assessing what happens with the association between pairs of variables
we note that any given pair in this example (and in general) is described by
one of the following: (a) swapping only one variable, e.g. the relationship
between X and Z, (b) swapping both variables with values from the same
source, e.g. Z and U, (c) swapping both variables with values from separate
sources, e.g. Z and V and finally (d) no swap, e.g. the relationship between
the unswapped variables X and Y. The first three cases are investigated
further in section 5, the fourth is trivial. For higher order relationships
the number of possible combinations one needs to consider will of course be
larger.

On the univariate level it can be argued that the swapping procedure is
equivalent to adding some kind of error or noise to the individual scores. On
the other hand it should be clear that any univariate inference is equally valid
after the swap, as before; one sample of scores has simply been exchanged for
another of equal size. However, from the viewpoint of disclosure limitation
it is important to investigate the properties of the added error and we return
to these issues in sections 6 and 7.

On the univariate level it can be argued that the swapping procedure is
equivalent to adding some kind of error or noise to the individual scores. On
the other hand it should be clear that any univariate inference is equally valid
after the swap as before; one sample of scores has simply been exchanged for
another of equal size. However, from the viewpoint of disclosure limitation
it is important to investigate the properties of the added error and we return
to these issues in sections 6 and 7.

4.1 Related methods

At least two rank-based swapping techniques for continuous data have been
proposed in the literature; Dalenius (1988, ch. 27, pp. 6-9) and Greenberg
(1987), the latter being explored by Moore (1996). The procedure suggested
by Dalenius was illustrated in the case with two variables, X and Y. The
original data matrix M is arranged in ascending order of X, and in the
first step, M is partitioned into k consecutive and continuous subsets of



X3 Y3 Z3 U3 V3 W3

M,
X4 Y Z U, W,
T

M

X2 Y2 22 U2 V2 W2
Figure 1: Example of the swapping procedure with six variables and three
subsets.

equal size, with 1 < k < n. Typically k£ should be much smaller than
n. Note that the data in each subset is still arranged in increasing order
of X. Next, the Y-values within each of the k subsets are permuted at
random, generating the masked matrix M*. Permuting the X-values instead
of the Y’s, would have an equivalent effect. The procedure could then be
repeated for each variable selected for swapping, given the initial partitioning.
Dalenius gave the following two remarks: (1) the intravariate properties are
exactly retained, since all the values originally present in M are retained in
the released matrix. As for the correlation between X and Y, the resulting
bivariate relationship will be subject to error which in general will decrease
with increasing k. (2) The protection provided by disseminating M* in place
of M will clearly depend on the choice of k; increasing k£ will reduce protection
since the number of available candidates to swap with is reduced.

The method proposed in this paper is apparently a reversed version of the
Dalenius proposal. That is, Dalenius will first order the records in accordance
with the ranks on the entire set, then partition the set into k£ subsets and
finally randomly swap within each subset. Our proposal on the other hand



starts off by randomly partitioning the records of the entire set into k subsets,
orders the records within each subset and then swaps values between subsets.
In short, Dalenius stratifies the data and randomly swaps within strata, we
randomly cluster the data and then swap between clusters. The implications
noted by Dalenius will accordingly be the opposite.

The method proposed by Greenberg and Moore applies a different ap-
proach. Start with a data set M of size n and order the responses in as-
cending order of a single variable X. Determine a value Px with 0 < Px <
100, the intention being to swap the value X,., with that of X, so that
the percentage difference of the indices (ranks) r and s is less than Px of
n. Initialize all records set to top- or bottom-code and records of all im-
puted and blank values as ”swapped”. All other records are initialized as
"unswapped”. Starting with the lowest unswapped rank, say r, randomly
select a record with an unswapped rank from the interval [r + 1, m] where
m = min{N, r + nPx/100}, hence motivating the term ”rank-based prox-
imity swap”. Assuming the randomly selected rank is s, the values of X,.,
and X,., are swapped and labelled as "swapped”. The procedure is then
repeated until all ranks are labelled ”swapped”. The entire procedure can of
course be performed on several additional variables. Furthermore the values
P for the different variables need not equal each other. Moore defined crite-
ria for choosing the P values with the purpose of preserving univariate and
covariate properties of the original data.

The procedure of Greenberg and Moore resembles the proposal of Dale-
nius. The main difference is that the data is not initially partitioned into
subsets, rather the data values are swapped on a record-by-record basis. The
interval [r 4 1,m] can be viewed upon as a window that moves across the
records of the variable selected for swapping, determining the range of pos-
sible swapping candidates. The value Px which determines the range of the
interval is the counterpart of k£ in the method of Dalenius, the number of
subsets which directly determines the size of the subsets.

4.2 Variations of the swapping procedure

Given the basic outline, variations of the described method are easily con-
ceived. Although an in-depth investigation of such extensions is beyond the
scope of this paper, we might hint at some possibilities. First, it is possible
to make use of the entire data file and not just disjoint subsets of the records
over separate variables. As seen in figure 1 only one third of all available val-
ues are used in the final set of this example. Extending the swap scheme to
include two-way swaps between blocks of attributes or even chains of swaps,
the entire set of values can be used. In this way, several subsets act as refer-
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ence sets. By merging the resulting subsets, a final set M* is created, which
is equal in size to the original set. Furthermore, the univariate characteris-
tics would remain intact since all of the original values are retained in the
resulting set. Extending the example in figure 1 could for example result in
the following swap-scheme:

X1 Y1 RglRZQZQ RglRUQUQ RglegV3 W1
M= | Xy, Yy RLRAZ, RILRpU; RLRyVE Wo
X3 Y3 Z3 Us R{sRyoVy Wy

Here the scheme has been extended to include two-way swaps on the Z and
U variables. Note also that the blocks Z3 and Us have been left unswapped,
the obvious effect being that the association between e.g. X and Z is lesser
strained then if all the values of Z had been subjected to swapping. The
drawback would of course be a lesser degree of masking of the original data.
An example of a chain of swaps is given for the variable V' where V; is
swapped for V3, V, for V; and V3 for V,. Once a masked set has been
generated in this way it would of course be possible to release only a sample
from it.

Allowing the subset size to depend on the degree of sensitivity is a vari-
ation suggested by the relationship between partition size, preservation of
characteristics and disclosure control. Using smaller subsets for certain sen-
sitive attributes the disclosure control can be enhanced. The increasing costs
in terms of overall degradation induced could be checked by increasing the
subset size of all other variables. This would in effect correspond to varying
the value Px of the method proposed by Greenberg (1987) and Moore (1996).
It is also possible to consider partitioning anew for each variable selected for
swapping.

A third variation is achieved by first taking a sample M; of the original
data set M and then recording the ranks with respect to M;. The size n of
the sample would equal the number of records considered for release. The
values of the sample are then exchanged for the corresponding quantiles of the
remaining records, i.e. M \ M;. The procedure might prove useful in cases
were the size of the original data set is judged too large to be manageable as
it is easier to implement and more rapidly executed compared to subjecting
the entire set to a swapping scheme. Also the actual values in the resulting
set will be subject to a lesser degree of variation; the values will depend
less on the sample M; and more on the sampling fraction. The degree of
randomness is mainly attributed to the rank structure of the selected sample
M, which will vary between different samples.
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5 Cross Product Moments

In this section we investigate the expected effects of the swapping procedure
on the covariate association between pairs of variables within a subset as
gauged by the cross product moment under some basic model assumptions.
We consider the simple case with only two variables, X and Y, and explore
the three different cases noted in section 4. Although exact expressions for
the cross product moments are derived, the results are quite complicated.
To illustrate the behavior we have used simulation studies under a bivariate
normal distribution.

Assume that X and Y are generated from a continuous bivariate distri-
bution with finite first and second order moments and that they are linked
by a linear regression relation given by

Oy
Yia = piy + Py (Xia — pix) +€iar o] <1 (2)

where the X, and ¢;, are mutually independent. From (2) it follows that
E(gia) = 0, Var(g,,) = 0% (1 —p*) and Corr (X;,,Yi.) = p. Without
loss of generality we may assume in the following that the X’s and Y’s are
standardized with zero expectations and unit variances. Thus, expressing the
relationship in (2) in terms of order statistics and corresponding concomitants
gives

Yir:a] = pXr:a + €lr:a]- (3)

In the following the index of the error term is dropped for notational ease.

5.1 Swapping one variable

With two available variables X and Y we first consider swapping only X.
Assuming that Rank [X;;] = R, the swapping procedure exchanges X,
i=1,...,n, for X;s = Xpo = X/, for some j.

Theorem 1 For a randomly chosen pair (X}, Yi1) € M3, the cross product
moment is given by

1 n
E [X21Y;,1] = E ZMX:TE {E [Y;,l ‘ Xi,l = XT:l]}
r=1

which under the assumption of (2) equals
: 1 ¢« 1%
E [Xz',IY;,l] = Wx My + poxoy — Z/’LX:T - = (4)
nox r=1 Ox
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where (., denotes the expectation of the r’th order statistic of X (in a sample
of size n). Under the assumption of (3), (4) simplifies to

E Xz*l zl :pz Hx.r = Ps- (5)

Proof. We are satisfied in proving (5). Since the samples M; and M, are
independent, Xp., and Y|r.1) are conditionally independent given the rank R.
By conditioning on R, which is a random variable, we have

E[X}\Yi1]| = Er{E [XgaYiry | R]} = Er {E[Xga2 | R E [Yigy | R]}

Since Pr (R =r) = n"! the result follows. From (3) we have

E [Y[mﬂ = E{EYi1| Xi1 =X} =E{E[pXi1+¢c| Xi1 = X,a]}
= E{pX;1}=puy,

and the result in (5) follows. Note that it is implied that the ¢ € M; are
independent of the X, € My. m

The result above is of course valid only if the expectations p ., exist for
all r. However, this follows from the assumption of a finite first moment in
the parent distribution of X (cf. David, 1981, pp. 32-33). Given that the
variance of the parent distribution of X equals unity it is also concluded that

1 & 1 & 1<
O<5ZM§(T:EZ(E[XE<1]_ai(r):l_gz(jg(?“<1
r=1 r=1

r=1

where 0%, denotes the variance of the 7’th order statistic of X in a sample
of size n. This provides a naive bound for the expected influence of the
operation, i.e. 0 < pg < p. As the sum does not depend on p, the expected
relative deterioration of the association induced by the scheme is constant
for all p given the sample size n; that is, the absolute deterioration increases
with the absolute magnitude of p and decreases with sample size. It should
also be clear that the limit of (5) as n — oo equals p; a proof is outlined in
the appendix.

Although the calculation of (5) is straightforward it might be somewhat
cumbersome in practice since it requires the computation of all n expectations
of the order statistics. Saw and Chow (1966) showed that

n n—1
1 9 (n—1)! 9
- 2r+1) J; 6
n;ux’" ;n%—r n—l—r)( +1) (6)
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Table 1: The expected degree of deterioration (eq. 4) for various distribu-
tions and sample sizes. Values were calculated using the approximation in
(6) with * m = 23 and ** m = 14; all other values were caculated using the
sum of squared expectations in (4).

| n| 5 | 10 | 3 | 60 | 100 | 300 | 1000 |
N (0,1) [ 0.6390 | 0.7914 [ 0.9186 | 0.9563 | 0.9726 [ 0.9901* | 0.9968*
Unif(—%,%) [ 0.6667 [ 0.8182 [ 0.9355 [ 0.9672 | 0.9802 [ 0.9934 | 0.9980
Exp(1) [ 0.5433 [ 0.7071 [ 0.8668 | 0.9220 | 0.9481 [ 0.9791 | 0.9925
LogN(0,1) | 0.3707 | 0.5157 | 0.6982 | 0.7825 | 0.8302"* | - -

J. = / LRy (1) — 1] afx (2) de

[o.¢]

where L, (z) is the r’th order Legendre polynomial in z. This representation
can for some parent distributions efficiently reduce the computational burden.
Saw and Chow also suggested a truncated version of the left hand side of (6)
as an approximation, i.e. the summation is carried out only up to a number
m<n— 1.

Note that the expression inside the brackets of equation (4) can be seen
as a measure of the expected deterioration of association between X and Y;
when it is close to unity E [X*Y] will be close to E [XY]. Table 1 gives the
values of this expression for a selection of sample sizes under four different
distributions of X; a standardized normal, a uniform, an exponential dis-
tribution, and a lognormal distribution. The truncated version of (6) was
used in three cases as indicated, using m = 23 for the N (0,1) and m = 14
for LogN (0,1). The absolute error due to the approximation (cf. Saw and
Chow, 1966) is less than 10~* for the normal distribution but somewhat
larger for the lognormal, less than 5 x 1073, Furthermore, for the lognormal
distribution the error of approximation was considered to large for sample
sizes larger than 100 and these values have been omitted. We conclude from
the table that under a standardized normal distribution, the expected degree
of deterioration is less than 1% if the sample size is at least 300 and for
n > 60 it is less than 5%. The uniform distribution yields a slightly better
preservation whereas the exponential is only slightly inferior. The lognormal
distribution exhibits a larger degree of degradation which most likely is due
to the positive skewness and heavy right tail.
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5.2 Swapping both variables for values from one source

When swapping both X, ; and Y;; we must consider both their respective
ranks. Assuming first that Rank [X; ;] = R, the value of X;; is exchanged
for the value of X;, = Xgo = X7, for some j. Secondly, assuming that
Rank [Y; 1] = S, the value of Y;; is exchanged for the value of Yo = Yg.0 =
Y’ for some k. Note that the ranks R and S are dependent random variables
due to the linear link between X, ; and Y;; defined in (2)-(3). We introduce

the following notation for the involved probabilities:

Pr(R=r)=m,=n"", Pr(R=r,S=38) =
and
Pr(S=s|R=r)=my,.

The joint probability 7,, can be obtained from the relation m,, = m, - 7y, =
n’lﬁsw. Exact expressions for the conditional probabilities were given by
David et al. (1977).

Theorem 2 For a randomly chosen pair (X}4,Y;

1) € M, the cross product
moment is given by

1
E [XZIY;TI] - E Z Zﬂ-sh“ (:U’X:T:U’Y:s + O-Xi’fVYIS) = Pp1 (7)

r=1 s=1

where 0 x..y.s denotes the covariance of the r’th order statistic of X and the
s’th order statistic of Y, in a sample of size n.

Proof. By conditioning on the ranks R and S we have

E[X;\ Y] = Ers{E [Xp2Yso | R, S|} = Ers{pix.plty.s + Ox:ry:s} -

Using that 7., = n_17TS|T the result follows. m

The product moment pj,; depends on p through both the covariance terms
and the probabilities 7,,. A reasonable conjecture under assumption (3)
which however remains to be proven is that the limit of (7) as n — oo equals
p.

Although exact expressions for the conditional probabilities 7, are avail-
able, the calculation of (7) is even more cumbersome compared to (5), even
for moderate sample sizes. Some simplifications can possibly be attained by
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using various recurrence relations (cf. David et al., 1977, David, 1981, pp.
46-49 and Lin, 1989). Also, the covariance term is quite involved in the gen-
eral case (cf. David, 1981, pp. 25-26). It is however instructive at this stage
to study the behavior of (7) under the assumption of (3) at the special cases
when p = 0 or £1. The conditional probabilities in these cases are

p=0 = mg.=nt Vrs

_ 1 . |1, forr=s
p= Tt =0 0, otherwise : (8)
1, forr=n—s+1
p=-1 = M= 0, otherwise

Thus, for p = 0, and keeping the assumption of zero expectations and unit
variances in the parent distributions in mind, (7) reduces to

1 n n
Pp1= 75 Z Z (Hxrby:s T Oxrys) = pxpby =0

r=1 s=1

since 0 x..y.s = 0 when X and Y are independent variates (cf. David, 1981,
pp. 25-26). For p =1

n

1 1 ¢
Pp1 = EZ (:ugf:?“ +U§(:T) = EZE [Xf:a} =FE [XQ] :,u§( +a§( =1
r=1 r=1

and for p = —1 the result is analogous. The latter result is intuitively
reassuring; the swapping procedure can be seen as the imposing of the rank
structure of M; onto the observed values of My and in the case of p = +1
the rank structures of the two sets are identical with probability equal to one
as indicated by the conditional probabilities in (8).

5.3 Swapping both variables with values from separate
sources

Here the reasoning is the same as in the preceding section with regard to the

ranks R and S and their respective probabilities, unconditional and condi-

tional. However, the Y;; are now exchanged for Yj 3 = Yg.3 = e for some
k instead of Yg.o.

Theorem 3 For a randomly chosen pair (X;,,Y;’{) € Mj, the cross product
moment is given by

1 n n
E [X;:IY;:T] = ﬁ Z ZW'SlTILLX:TILLYLS = Pp2- (9)

r=1 s=1
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Proof. Since the samples M5y and M3 are independent, X r.» and Ys.3 are
conditionally independent, given the ranks R and S. Thus, by conditioning
on R and S we have

E |:X21)/:1*<} = ER,S {E [XR:QYS:3 | RJ S]}
= Erps{E[Xpo|R,S|E[Yss|R,S} = Ers{tix.plty.s}-

Using that 7, = n~'7y), the result follows. m

Comparing this result with (7) we first note that |p,| < |pp;| with
equality if and only if p = 0. Reasonable conjectures that remain to be
proven seem to be that |p,,| < |pg| for all p and that the limit of (9) equals
p as n — oo. Using the probabilities in (8) we find that for p = 0, (9) reduces
to

Pp2 = % Z Z Pxrtly.s = Px by =0

r=1 s=1

and for p =1

Pp2 = % ; Hxorly . = % ; :u’g(:r

under the assumption of zero expectations and unit variances in the parent
distribution. For p = —1 the result is analogous. We note that when the
correlation is at its extremes +1, the operation is evidently equivalent to
swapping only one variable. This is reasonable since the rank structure of
the two variables in both auxiliary sets and the reference set are identical
with probability equal to one. Thus swapping X; for X, and Y, for Y3
would be equivalent to using My (or M3) as reference set and swapping only
the Y’s (or Xs).

5.4 Simulation study under a bivariate normal distri-
bution

In order to provide an idea of the degree of expected deterioration on the as-
sociation between pairs of variables, a simulation study was conducted under
a bivariate normal distribution using the usual sample correlation coefficient
as the measure of association. The study comprised sample sizes of n = 30,
100, 300 and 1000 and correlation coefficients p = 0, 0.1, 0.2,...,0.9 and
0.95, 0.99 and 1.0, giving a total of 52 configurations with respect to sample
size and correlation. The simulation study was carried out as follows:
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1. Three random samples M, = [X,, Y,|, a = 1,2, 3, were generated from
a bivariate normal distribution with zero means and unit variances.

2. The sample correlation coefficient for the set M;, denoted ry, was
calculated.

3. X was swapped for the values in X5. The sample correlation coefficient
for this set, denoted rg, was calculated.

4. Both X; and Y; were exchanged for the values in X, and Y5 respec-
tively. The correlation coefficient for this set, denoted rp;, was calcu-
lated.

5. Both X; and Y; were exchanged for the values in X, and Y3 respec-
tively. The correlation coefficient for this set, denoted rp9, was calcu-
lated.

6. The values of 7y, rs, rp; and rpy were subsequently stored in a file and
the procedure was repeated B = 50,000 times for each combination of
n and p.

The bias and standard error of each of the four resulting sample correla-
tions were estimated by

Bias|ry] = % Zf;l Txi—p=Tx—p

and

SE[rx] = /55 S0 (ray — Ta)’

respectively, for X = U, S, D1 and D2. However, the ordinary sample cor-
relation coefficient is a biased estimator of p. Since we are only interested
in estimating the level of additional bias introduced by the swapping proce-
dures, the estimates for the three swapped cases were adjusted by subtracting
the estimated bias of 77, i.e.

AddBias [ry| = Bias [rx| — Bias [ry]

for X = S, D1 and D2. The standard error of the additional bias is accord-
ingly estimated by

SEAddBias[rX} = \/SE [Tx]Q + SE [TU]2 —2Cov [T;\g, TU].
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The estimated (additional) bias and standard error of the sample correlation
coefficients are given in tables 3 - 4 together with the correlation between
sample correlation coefficients, i.e. Corr [ry,ry]. The additional bias intro-
duced by the respective schemes is illustrated in figure 2 in order to provide
a graphical presentation of the results in the tables. The figure also shows
the estimated bias of r;; which was used to adjust the estimates. The simu-
lation standard error is approximately given by SE/vB ~ SE - 0.0045 and
we conclude that the deviations of the bias estimates from zero at p = 0
are accounted for by simulation error; the true bias is of course exactly 0 at
p=0.

The general conclusion is that the performance with respect to retaining
the original correlation ranges from reasonable to good, depending primarily
on sample size. The expected behavior of the swapping schemes as dis-
cussed earlier seems to be confirmed. Swapping one variable results in an
expected relative deterioration that is constant for all p given the sample
size n. Swapping both variables for values from the same source adds to
the level of expected deterioration. However, as p approaches unity, the ef-
fect of the swapping decreases. Finally, swapping both variables for values
from separate sources resembles swapping from the same source but as p
approaches unity the effect is equivalent to swapping only one variable. It
should be noted that there is a slight discrepancy in the results of the sim-
ulation study when compared to the theoretically derived values in table 1.
This is explained by the sample correlation coefficient which standardizes the
observed covariance with the standard deviations of the variables involved.
Hence, when a swap has taken place the corresponding observations in the
denominator are changed as well which will adjust the level of deterioration
to the better.

The effects of the data-swapping operations are also illustrated in figure
3 where the sample correlations of the first 500 unswapped samples are plot-
ted against the resulting sample correlations after the respective swapping
schemes were applied. The figure shows the results for sample size n = 100
and for a selection of the values of p. A diagonal line was imposed in each
plot for reference. It is clear in particular for larger correlations, that a
negative bias is introduced. Still, the association between the original and
masked sets is obvious and indicates a reasonable degree of preservation of
the association between X and Y. This is indicated further by the strong
correlation between pre-swap and post-swap sample correlation coefficients
as seen in tables 3 - 4. We note further that all three swap-schemes seem to
produce similar results when the correlation is small or moderately large as
illustrated by the cases p = 0 and 0.5. When viewing the spread conditional
on the original sample correlation, it is seen that it is slightly smaller when
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Figure 2: Estimated additional bias of the sample correlation coefficient in-
troduced by the swapping procedures as a function of p under a standardized
bivariate normal distribution; one variable swapped rs — 7, (dash - 1 dot),
both swapped, same source, rp; — ry, (dashed) and both swapped, different
sources, Tps — ry, (dash - 2 dots); estimated bias of the sample correlation
coefficiet, unswapped, 7y, (dotted line). For sample sizes (a) n = 100 and
(b) n = 1000; based on 50,000 simulations.

only X is swapped. By swapping both X and Y the spread tends to increase.
Note however that the spread will decrease when both variables are swapped
using the same auxiliary source.

6 Univariate Properties

A desirable property of any disclosure limiting technique is the ability to
preserve univariate statistics such as means and variances. Although the
original univariate sample moments of the reference set will not be retained,
the swapping procedure generates at least equivalent samples of the same
size. This means that any inference on single variables will be just as valid
as if the analyst had access to the original data; we are simply exchanging one
sample for an other. It is however evident that the procedure is equivalent
to adding some kind of error or noise 6 to the individual scores, i.e.
Xjo= Xzfl = Xi1+06i1

and it is essential to investigate the properties of this error. More specifically
we are interested in finding the distribution of the error added to the original
value after substitution, conditional on the original value and also conditional
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Figure 3: The effect of the swapping procedures on the sample correlation
coeflicient; original correlation r versus the correlation after swapping, s, rp;
and rpo respectively; for sample size n = 100 and p = 0, 0.5, 0.9 and 0.99;
first 500 simulated cases in each plot.
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on the new swapped value the, i.e.

féi,1|Xi,1 (d | :E) and f5¢,1|X;1 (d | I) .

This is of interest when the variable is studied under different categories or
sub-domains but also for assessing the effect on disclosure limitation, i.e the
degree of added perturbation.

Note that if the swap scheme is extended to a two-way swap between
X, and X, and the resulting sets X] and X3 merged into one set, the uni-
variate characteristics would remain intact since all of the original values are
retained. Furthermore, the set of errors associated with X3 would be the
same as those of X] with only a change in sign, i.e. §;2 = —0,; for some j.
Thus, the errors in the merged set will sum to zero.

In the following the index of the variables concerned is dropped for no-
tational ease; we simply denote the original variable by X, its substitute by
X* and the added error by 6.

6.1 The distribution of the added error

Since the two variables X and X* originate from the same distribution we
have that fx (z) = fx~ (x). Furthermore, the exchange of X for X* implies
that they have the same rank R with respect to their respective sets M;
and M,. The unconditional distribution of R is as earlier noted given by
fr(r) =n ! and standard theory of order statistics yields

frx (r]a) = frx-(r|a)= () B (1= F)"
and
Ixip(@ | 1) = fx~r(x]|7)= n(fill)F;fl (1-F)"" fx (2)
where F, is a shorter notation for Fx (). Thus, we have the following result:

Theorem 4 The conditional distribution of the added error 6, given the
value of the original value X, is

fsix (d | z)

= nfx@+d)> (NE1 - Fd)" T EN 1 - F)"TL(10)

r=1

Proof. Using that X and X* are independent conditional on the rank
R, since they originate from two independent samples, we have that

fX,X*,R (55,55*,7’) = fr (7’) fX|R (»T* \ 7’) fX|R (fE ! 7“)
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from which the joint distribution of X and X* follows as

[xx+ (z,2%)
n

= nfx (@) fx @)Y () FT = Be)" T (- E)TL (1)

r=1
After transformation and conditioning on X, (10) follows. m

The result is straightforward however impractical, especially for larger
sample sizes. Conditional means and variances of (10) under a standardized
normal distribution were however evaluated numerically together with the
10th and 90th percentiles for different n and for a selection of values on
X. The results are presented in table 5; due to the symmetry in the joint
distribution we are satisfied with reporting the values for X > 0; for negative
X the results are analogous.

The basic findings are (a) the conditional mean is quite stable near the
center but tends to curve off as X approaches the tails, (b) the conditional
spread of the error increases as X increases in absolute magnitude but tends
to decrease slightly when X is at its extreme; this is noticeable for n = 30
and 100, and (c) the conditional spread and curving of the conditional mean
decrease with sample size. The properties are illustrated in figure 4 where the
conditional means and percentiles are imposed over scatterplots of simulated
cases (see the following subsection).

From (11) it is possible to derive the unconditional distribution of the
error term which can be used to characterize the global properties of the
perturbation. We are satisfied here by simply formulating the expectation
and variance:

Ep|=E[X"-X]=E[X"]-E[X]=px—px =0 (12)
and

Var[8] = Var [X*] + Var [X] — 2Cov [X*, X] = 20% — 2E[X*X] + p%.

The cross product moment E[X*X]| above is already given in (5) by setting
p = 1. Thus, under the assumption of zero expectations and unit variances
for the X’s, the variance is given by

Var[§] =2 (1 — %i,&) : (13)
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6.2 Simulation study under a univariate normal distri-
bution

In order to examine the expected behavior of the added error we conducted
a simple simulation study. The simulation study was carried out for sample
sizes n = 30,100, 300 and 1000 and was performed as follows:

1. Two independent and equally sized univariate samples M; and M,
were generated from a normal distribution with zero mean and unit
variance.

2. A rank r was randomly selected from the interval [1,n] and the differ-
ence d = x,.o — T, was calculated.

3. The values of r, x,.1, z,.0 and d were subsequently stored in a file and
the procedure was repeated B = 50,000 times for each sample size.

The resulting joint distribution of the error term and the original value of
X is depicted in figure 4 and shows scatterplots of the simulated ¢’s against
the simulated X’s, showing the first 2000 values for each sample size. The
numerically evaluated means of (10) are imposed on the plots together with
the 10th and 90th percentiles.

The findings reported in the preceding subsection are largely confirmed.
It is interesting to note the "tilting” hourglass shape in the distribution.
This behavior is explained by the possibility of observing extreme outliers
in either of the two variables, X and X*. If an outlier is observed in the
X’s, the swapping procedure will tend to pull it back by exchanging it for a
more probable observation found in the X*’s. If the opposite occurs, i.e. an
outlying value in the substitute X*, this would tend to push the original ob-
servation, which with high probability is located closer to the center, further
away. This also explains the curving of the conditional mean near the tails
and the "bump” observed in the corresponding percentiles.

To conclude this section we report the unconditional behavior of the error
terms. In table 2 the values of the means and standard deviations of the error
terms, both theoretically derived and simulated, are given for all four sample
sizes. The theoretical values were derived using (12) and (13) and for the
latter we used the values of the sum of squared expectations of the order
statistics listed in table 1.

23



n=30 n=100

delta
°

delta
o

delta
o

Xor
Xor

Figure 4: Relationship between the original values X and the added error 6
under a standardized normal distribution for different sample sizes n. Scat-
terplot based on 2,000 simulated cases; conditional mean (solid line) and 10th
and 90th percentiles (dashed lines) theoretically derived.

Table 2: Theoretical and simulated unconditional means and standard de-
viations of the added error § for different sample sizes n; based on 50,000
simulations. (*) The values of the theoretical standard deviations for n = 300
and 1000 were calculated using the truncated version of (5) with m = 23.

Theoretical Simulated
Sample size n Mean | StDev | Mean | StDev
30 0.0 | 0.404 0.003 | 0.407
100 0.0 { 0.234 | -0.000 | 0.234
300 0.0 | 0.141* | 0.000 | 0.140
1000 0.0 | 0.080* | -0.000 | 0.079
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7 The Effects of Data-Swapping

In the statistical analysis of a data set subjected to a masking technique
such as data-swapping it is necessary to account for the amount of added
perturbation. Thus, for an analyst to make inference about the parameters
underlying the original data the data provider must also supply additional
information so that the analyst can ”statistically undo” the transformation
and in doing so also include the additional uncertainty introduced. That is,
given information about which variables that have been swapped, the sources
of the swapped data (auxiliary sets), and the set size n used for the swap,
an analyst should be able to adjust for the added bias and take into account
the added uncertainty. Examples of this inferential approach are provided
by e.g. Gouweleeuw et al. (1998) and Fienberg et al. (1998). See also the
discussion by Rubin (1993).

As discussed in the preceding section the proposed swapping technique
can be seen as a procedure where individual scores are perturbed by adding
an error term. However, as already argued, any strictly univariate inference
should not have to take the proposed swapping technique and the added
error into account since the swapped data constitutes an equally valid sam-
ple compared to the original data; we have simply swapped one sample for
another of the same size. This is even more evident after merging swapped
subsets to the original set size since all original scores are still in the data.
The procedure will however have an impact on any multivariate analysis.
Typically associations between variables are weakened and the level of ex-
pected deterioration is seen to depend on the specific form of the assumed
parent distribution and on the size of the subsets, as seen in e.g. table 1. For
example, when the correlation coefficient is of interest, an approximate for-
mula for the variance of the same is usually given by Var [ry] &~ n (1 —p?)%
The added variability after swapping can be accounted for by adjusting the
formula for the expected additional bias, i.e. Var[rs] ~ n=!(1 — (p+ added
bias)?)?, an approximation which holds for r up to about 0.95 based on the
empirical results in tables 3-4. Other types of multivariate analysis such as
means over domains will of course also require adjusting for bias and added
variability. It should be noted that these results refer to expected degrada-
tion under specific models but that they still provide some insight in what to
expect from applying the method. As pointed out by an anonymous referee,
such asymptotic results are not always useful for an analyst in practical situ-
ations and further research is of course necessary. This is even more obvious
when it comes to such statistical uses as model selection and estimation of
casual effects.

The second property of the proposed method that must be evaluated be-
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fore it can be used in practice, is its ability to limit the risk of disclosure.
Many different conceptualizations of disclosure have been considered in the
literature and a very useful typology for distinguishing the various concep-
tions is given in Duncan and Lambert (1989). Although large subsets were
shown to retain associations between pairs of variables, the swap may not
provide an acceptable level of perturbation and effectively mask the data
since the changes on individual scores may not be large enough. This points
to the problem of reaching a balance between the two conflicting aims: to
minimize information loss and maximizing the reduction in disclosure risk.

With the method of data-swapping there are some special considerations.
Assume for example that a record has been masked by exchanging the scores
of all variables for new scores originating from one and the same other record.
We then face two possibilities for a correct re-identification; linking to the
original record or to the record from which the new scores originate. This
lack of one-to-one mapping requires a redefinition of disclosure risk measures
as discussed in e.g. in Dandekar et al. (2002). Another issue pertaining to
disclosure limitation concerns extreme values since records containing such
values on one or several attributes are more easily spotted in an identification
process. In table 6 it is illustrated how the swapping procedure will result
in large expected changes were it is most likely needed, in the tails of the
distribution. E.g. an original value located at 2.50 from the origin will
change to something inside an approximate interval of 20 4+ ¢ for n = 30
and to 2.30 + 0.90 for n = 100. It is also worth noting that the result
in (10) can be used to infer the distribution of the original value given the
swapped value simply by conditioning on the swapped value, i.e. fx|x+( |
x*). This shows that supplying the swapping scheme of the masked data
provides additional information that can be used by a perceived intruder. A
related issue concerns unique record, i.e. records with a unique combination
of scores on the attributes (see Bethlehem et al. 1990). Although changes are
most likely to be large on extreme individual scores there is no investigation
of what will happen to combinations of extreme scores. A unique record
may very well still be unique after the swap and if it in addition is closest to
the original by some metric there will still be a risk of correctly linking the
record.

Potential data uses are very diverse and it is difficult, if at all possible, to
identify them all at the time of release. However, the need to measure infor-
mation loss in some generic way reflecting the harm done to the original data
is still desirable. For this purpose Domingo-Ferrer and Torra (2001) devel-
oped a metric for comparing masking techniques where the information loss
and reduction of disclosure risk are combined into an overall score. Informa-
tion loss is by their definition defined as the discrepancy between the original
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and the masked data as measured by the individual record scores and a set of
statistics such as means and covariances. In their paper, and in Dandekar et
al. (2002), the rank-proximity-swap of Greenberg (1987) and Moore (1996) is
compared to other masking methods such as multivariate microaggregation
and additive noise, using the metric of Domingo-Ferrer and Torra. Although
the metric in itself is perhaps not very useful for an analyst, the results are
still encouraging since they appear to favor data-swapping over other.

8 Comments

We conclude from the results that the proposed method is able to retain basic
properties of an original data set at least fairly well. It should however once
again be stressed that the ideas in this paper are tentative and have not been
tested on real-life data. Before the methods can be used on a larger scale
more research is needed and in this section we might hint at some areas.

It remains to be investigated how the methods fare when faced with data
comprising a large number of variables and coming from populations with
more complex underlying properties. As discussed and exemplified by Lam-
bert (1993), many interesting analyses do not involve just the mean vector
and variance-covariance matrix of the joint distribution and a future area of
investigation would be to ascertain the degree of congruity with respect to
higher order associations. It is of course possible to approximately recover
the sample moments after the swapping procedure has taken place in order
to preserve the variance-covariance structure of the original data, e.g. by the
post-masking optimization procedure of Sebé et al. (2002). But one could
ask oneself, as Citteur and Willenborg (1993) argue, if yielding the sample
moments directly would not be a more efficient alternative since the other
information in the file would not necessarily pertain to reality.

The simulation studies reported on in this paper have only considered a
standardized bivariate normal distribution. In practice data is often highly
skewed as in e.g. business and economic or social data and such cases should
be investigated as well. The theoretical results of theorems 1-4 however
rely only on the very simple assumptions of finite first and second order
moments in the parent distributions and that the variables are linked by
a linear regression relation. The specific form of the parent distribution is
not specified and the results hold in the general case as well. In table 1
the expected effect on four different parent distributions are reported. The
lognormal performs worst of the four and a probable reason is a heavier
upper tail compared to e.g. the exponential, a property which will yield
more "extreme” values which in turn will be subjected to a larger amount
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of added variability. However, more research is needed before any general
conclusions can be stated.

Practical issues have to be investigated and resolved. In applications it
will be necessary to consider the number of available observations and the size
n of the sample considered for release which controls the number £ of possible
subsets. A partitioning of the original set into subsets has to be done and
the reference set and auxiliary sets have to be chosen. Furthermore, it has to
be determined which variables to swap and for each variable which auxiliary
set to swap values from. Obviously, careful consideration would have to be
given to these latter steps since there will be a trade-off between the degree
of expected deterioration of information and the risk of disclosing sensitive
information. For instance it might be considered that certain combinations
of variables constitute a potential risk if left intact. In such cases a subset
of the variables might have to be swapped, leaving the rest unswapped or
alternatively swapped for values from another source, in order to achieve an
acceptable level of perturbation.

Other practical issues pertain to data comprising ties or to data measured
on an ordinal scale. The reordering permutations in (1) are not uniquely de-
termined in the presence of ties and it remains to be investigated how different
but valid reordering permutations affect the data. This also touches upon the
issue of top-bottom coded data values and also missing data. One approach
is to solve the problem in the same manner as Moore (1996). That is, leave
the records containing top- or bottom codes or missing values unswapped
and proceed only with those for which actual values are provided.
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A Limit of pg

An outline for a proof, proposed by Thorburn (2000), that the limit of (5)
as n — oo equals p, is given by the following argument. Define the random
variable £ by choosing any number ¢ > 0 and by truncating the parent
distribution of X at the single points a < 0 < b so that

¢ = max {a, min {X,b}} and E [52} >1—€/2.
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Through the truncation of the parent distribution and using the asymptotic
normality of the order statistics (e.g. David, 1981, pp. 254-257) it can be
shown that

1 =
ﬁzr:ﬂug"‘_)E[gQ} >1—¢/2

as n — 00. Choose ng such that

R
- 27:1 Per >1—¢€ Vn =ng.

This gives

P
1> ﬁ ZT:l Hx.r 2 E ZT:l He.pr >1-e

By letting € — 0 the proof is complete.
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B Tables

Table 3: Estimated bias and standard error (SE) of r; and ry — ry and
correlation (Corr) between ry and ry for X = S, D1 and D2 (see sec. 5.4);
based on 50,000 simulations, all values except Corr are x1073. Sample size

n = 30, 100.
| n =30
8% r's—Tu 'p1 — Ty 'p2 — Ty

p | Bias | SE Bias | SE | Corr | Bias | SE | Corr | Bias | SE | Corr
0.0 1-0.59 | 185.9 | -0.01|48.0]0.967 | -0.02 | 66.9 | 0.935| -0.21 | 67.0 | 0.935
0.1 |-049 | 1834 | -3.14|47.810.966 | -6.28 | 67.0 | 0.933 | -6.33 | 67.0 | 0.933
0.2 -390 |179.2 | -6.85|47.0]0.966 | -12.92 | 66.0 | 0.933 | -13.06 | 65.9 | 0.933
0.3 |-4.74|170.1 | -9.57 | 46.0 | 0.964 | -18.89 | 64.4 | 0.929 | -18.87 | 64.7 | 0.928
0.4 |-6.43 | 157.4 | -13.01 | 45.1 | 0.960 | -25.15 | 62.7 | 0.922 | -25.26 | 62.8 | 0.922
0.5 |-6.20 | 142.5 | -16.32 | 42.5 | 0.956 | -31.13 | 60.2 | 0.914 | -31.44 | 59.8 | 0.915
0.6 |-7.23|122.2 | -19.87 | 40.4 | 0.947 | -37.02 | 57.3 | 0.897 | -37.59 | 56.2 | 0.900
0.7 1-6.69 | 99.1|-23.11|37.1| 0.933 | -41.47 | 52.7 | 0.873 | -43.02 | 51.6 | 0.877
0.8 |-5.52 | 71.2|-26.42 | 32.9|0.902 | -44.16 | 47.1 | 0.827 | -47.52 | 45.1 | 0.836
0.9 |-281| 381 |-29.78 | 27.3 | 0.804 | -41.02 | 37.5 | 0.725 | -49.50 | 35.6 | 0.732
0.95 | -1.76 | 19.8 | -31.54 | 23.7 | 0.629 | -34.66 | 30.4 | 0.586 | -48.15 | 28.9 | 0.584
0.99 | -0.39 4.1]-32.91 | 20.0 | 0.187 | -18.99 | 18.4 | 0.327 | -42.13 | 21.7 | 0.240
1.0 0.00 0.0 | -33.02 | 19.0 - 001 0.0 - 1-33.19 | 19.1 -

n = 100

0.0 |-0.54 | 100.2 0.04 | 15.9 | 0.987 0.02 | 22.5 | 0.975 0.13 | 22.5 | 0.975
0.1 |-0.65| 99.6 | -1.45| 15.80.987 | -2.69 | 22.3 | 0.975 | -2.70 | 22.3 | 0.975
0.2 |-1.17 | 96.8 | -247 | 15.7|0.987 | -4.91 | 223 0974 | -4.83 | 22.2|0.974
0.3 |-144| 91.3| -3.78 | 1540986 | -7.35 | 21.6 | 0972 | -7.31 | 21.6 | 0.972
04 |-149| 8.1 | -5.08 | 14910985 | -9.98|21.0|0.970 | -9.97 | 20.9 | 0.970
0.5 |-1.90| 75.5 | -6.36 | 14.3 | 0.982 | -12.18 | 20.2 | 0.965 | -12.32 | 20.1 | 0.965
0.6 |-2.03| 64.7| -7.56 | 13.3 | 0.979 | -14.26 | 18.8 | 0.959 | -14.55 | 18.7 | 0.959
0.7 |1-1.39 | 51.9| -8.77|12.4]0.972 | -15.81 | 17.5 | 0.946 | -16.52 | 17.2 | 0.948
0.8 |-1.72 | 36.9|-10.02 | 10.9 | 0.958 | -16.71 | 15.2 | 0.923 | -18.10 | 14.7 | 0.927
0.9 |-075| 194 |-11.35| 9.1]0.903 | -15.68 | 11.8 | 0.858 | -18.97 | 11.5 | 0.861
0.951-043 | 10.0|-11.98 | 80| 0.779 | -12.99 | 89 | 0.765 | -18.28 | 9.3 | 0.741
0.99 | -0.10 20|-1246 | 6.8 0.280| -7.00| 4.7]0.470 |-15.89| 7.1 0.313
1.0 0.00 0.0 |-12.58 | 6.5 - 0.00 | 0.0 - | -12.58 | 6.5 -
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Table 4: Estimated bias and standard error (SE) of ry and ry — ry and
correlation (Corr) between ry and ry for X = S, D1 and D2 (see section
5.4); based on 50,000 simulations, all values except Corr are x1073. Sample
size n = 300, 1000.

| n = 300 |
Y s —Tu ;1 —Tu 'p2 — Ty

p | Bias | SE | Bias | SE | Corr | Bias | SE | Corr | Bias | SE | Corr
0.0 |-0.22 | 57.9| 0.00 [ 5.7 | 0.995 | -0.11 | 81 | 0.990 | -0.03 | 8.1 | 0.990
0.1 |-0.18 | 57.0 | -0.51 | 5.7 | 0.995 | -1.01 | 8.0 | 0.990 | -1.02 | 8.0 | 0.990
0.2 |-0.25|55.7(-098 5.6 |0.995|-1.92 |80 0990 |-1.94 | 80 | 0.990
0.3 |-0.57|52.6 |-1.44 | 5.5|0.995|-2.84 | 7.7 0989 |-2.86 | 80 | 0.989
04 |-044 485 (-193 (530994 |-3.84 7.5 | 0988 |-3.85|7.6|0.988
0.5 |-047|43.6 |-2.44 |51 (0993 |-4.80 | 7.2 0.986 | -4.80 | 7.0 | 0.987
0.6 |-0.56|37.1]-291|48[0.992|-554 |68 |0.983]|-5.63|6.6|0.984
0.7 |-077129.5|-3.44 | 440989 | -6.23 | 6.2 | 0.978 | -6.49 | 6.0 | 0.979
0.8 |-0.55]21.0(-393 (390983 |-6.58 |54 0968 |-7.12 | 5.1 | 0.970
0.9 |-032|11.0|-438 (330958 |-6.03|4.10938]|-7.29 |39 0.938
0.951-0.16 | 5.7|-4.61 28| 0.895|-5.02 3.0 0.890 |-7.09 | 3.2 | 0.873
0.991-0.02| 1.2|-484|24|0424|-2.70 | 1.5 | 0.646 | -6.15 | 2.5 | 0.442
1.0 0.00| 0.0]-4.861 2.3 -1 0.00 | 0.0 - -4.88 |23 -
n = 1000
0.0 |-0.17 | 31.6 |-0.01 [ 1.8 [ 0.998 | 0.00 | 2.6 | 0.997 | 0.00 | 2.6 | 0.997
0.1 |-0.06|31.1]-0.16 |1.8|0.998|-0.34 2.6 | 0.997 | -0.35 | 2.6 | 0.997
0.2 |-0.06|30.4|-033 180998 |-0.66 | 2.5 0.997 | -0.66 | 2.5 | 0.997
0.3 |-0.36 | 28.9 | -0.51 [ 1.7 | 0.998 | -1.00 | 2.5 | 0.996 | -0.99 | 2.5 | 0.996
04 |-0.22|26.5|-0.66 [ 1.7 | 0.998 | -1.33 | 2.4 | 0.996 | -1.32 | 2.4 | 0.996
0.5 |-0.21 | 23.8-0.83 160998 |-1.63 |23 |0.995|-1.63 | 2.3 | 0.995
0.6 |-0.29120.3(-099 (150997 |-1.90 220994 |-1.93|2.1|0.995
0.7 |1-0.11|16.1|-1.15|1.4|0.996 | -2.12 | 2.0 | 0.992 | -2.21 | 1.9 | 0.993
0.8 |-0.16 | 11.4|-1.33 (1.2 0994 | -2.24 | 1.7 | 0.989 | -2.43 | 1.7 | 0.989
0.9 |-0.07| 6.0 |-1.48 [ 1.0 | 0.986 | -2.06 | 1.2 | 0.979 | -2.49 | 1.3 | 0.979
0.951-0.02 | 3.1 |-1.57 [ 0.9 | 0.960 | -1.71 | 0.9 | 0.960 | -2.40 | 1.0 | 0.951
0.991-0.01| 06 |-1.64 |08 0.636|-0.92 | 0.4 | 0.842 | -2.10 | 0.8 | 0.637
1.0 0.00| 0.0]-1.65] 0.7 -1 0.00 | 0.0 -1-1.65| 0.7 -
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Table 5: Theoretical conditional means, variances and 10th and 90th per-
centiles for the added error § given X under a standardized normal distribu-
tion for different values of X and sample sizes n.

n =30 n = 100

X | Mean | Var | 10th | 90th | Mean | Var | 10th | 90th
0.0 | -0.000 | 0.105 | -0.413 | 0.413 | -0.000 | 0.032 | -0.227 | 0.227
0.5 | -0.008 | 0.116 | -0.433 | 0.429 | -0.002 | 0.034 | -0.238 | 0.237
1.0 | -0.020 | 0.155 | -0.494 | 0.483 | -0.006 | 0.046 | -0.272 | 0.272
1.5 -0.057 | 0.225 | -0.612 | 0.559 | -0.012 | 0.076 | -0.343 | 0.343
2.0 1 -0.206 | 0.263 | -0.817 | 0.472 | -0.037 | 0.145 | -0.472 | 0.453
2.5 1-0.532 | 0.256 | -1.140 | 0.136 | -0.187 | 0.190 | -0.697 | 0.391
3.0 1-0.974 | 0.249 | -1.573 | -0.317 | -0.539 | 0.189 | -1.053 | 0.035
n = 300 n = 1000

X | Mean | Var | 10th | 90th | Mean | Var | 10th | 90th
0.0 | -0.000 | 0.010 | -0.131 | 0.131 | -0.000 | 0.003 | -0.072 | 0.072
0.5 ] -0.001 | 0.012 | -0.137 | 0.137 | -0.000 | 0.003 | -0.075 | 0.075
1.0 | -0.002 | 0.015 | -0.158 | 0.158 | -0.001 | 0.005 | -0.086 | 0.086
1.5 -0.004 | 0.025 | -0.200 | 0.201 | -0.001 | 0.007 | -0.110 | 0.111
2.0 | -0.008 | 0.052 | -0.280 | 0.286 | -0.002 | 0.015 | -0.156 | 0.159
2.5 1-0.039 | 0.120 | -0.430 | 0.410 | -0.006 | 0.042 | -0.246 | 0.256
3.0 | -0.240 | 0.153 | -0.695 | 0.278 | -0.054 | 0.108 | -0.420 | 0.376
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