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Abstract

The Bayesian approach to cluster analysis is presented. We assume that all data
stem from a �nite mixture model, where each component corresponds to one clus-
ter and is given by a multivariate normal distribution with unknown mean and
variance. The method produces posterior distributions of all cluster parameters
and proportions as well as associated cluster probabilities for all objects. We
extend this method in several directions to some common but non-standard sit-
uations. The �rst extension covers the case with a few deviant observations not
belonging to one of the normal clusters. An extra component/cluster is created for
them, which has a larger variance or a di¤erent distribution, e.g. is uniform over
the whole range. The second extension is clustering of longitudinal data. All units
are clustered at all time points separately and the movements between time points
are modeled by Markov transition matrices. This means that the clustering at
one time point will be a¤ected by what happens at the neighbouring time points.
The third extension handles datasets with missing data, e.g. item non-response.
We impute the missing values iteratively in an extra step of the Gibbs sampler
estimation algorithm. The Bayesian inference of mixture models has many ad-
vantages over the classical approach. However, it is not without computational
di¢ culties. A software package, written in Matlab for Bayesian inference of mix-
ture models, is introduced. The programs of the package handle the basic cases
of clustering data that are assumed to arise from mixture models of multivariate
normal distributions, as well as the non-standard situations.
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1 Introduction

Cluster analysis or classi�cation is the collective term for methods which create
distinct and homogenous subgroups in a given set of data points. The majority of
cluster analyses done in practice are based on deterministic methods. Most statis-
tical software available is of this kind. The idea behind deterministic clustering is
to base groupings on measures between objects, or between objects and centroids,
to create groups that are as cohesive and homogenous as possible. Contrary to
these approaches, model-based clustering is based on standard principles of sta-
tistical inference. Data is assumed to arise from a mixture model, which means
that it is viewed as coming from a �nite number of populations, mixed in various
proportions. Each population represents a cluster with its speci�c characteristics.
This approach brings advantages in the sense of �exibility in sizes, shapes, and ori-
entations among groups. Model-based clustering is also able to handle overlapping
groups by taking cluster membership probabilities in these areas into account. We
use Bayesian inference, which has certain advantages over a classical frequentist
approach. Point estimates of the parameters in the model are replaced by the
whole posterior distributions. This gives information concerning associated uncer-
tainties to all point estimates. In the Bayesian approach, an observation is not
allocated to a cluster with probability 1. The Bayesian approach generates cluster
probabilities for each single object. This is especially important for observations
close to cluster boundaries.

2 Deterministic versus Model-based Cluster Analy-
sis

Most clustering is in practise based on traditional deterministic methods. In these
methods, the observations are classi�ed in a mechanical manner according to some
chosen procedure. There is a vast literature on traditional deterministic clustering
methods: see for instance Sharma (1996), Jain and Dubes (1988), and Everitt et
al. (2001).

One widely used deterministic method involves hierarchical clustering. It starts
with as many clusters as there are observations, and the number of clusters is de-
creased one by one, at each step. Two groups are merged at each stage, according
to certain optimization criteria. Commonly used criteria for merging are cluster
measures such as smallest dissimilarity (single-linkage), average dissimilarity (av-
erage linkage), or maximum dissimilarity (complete linkage). In single linkage, the
distance between two clusters is represented by the minimum distance between all
possible pairs of objects. In average linkage, the distance used is the average of all
pairs of objects and complete linkage is based on the maximum distance between
all possible pairs of objects in the two clusters.

Ward�s method is another hierarchical method. It forms clusters by maximizing
within-cluster homogeneity. The measure of homogeneity is the within-group sum
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of squares. The method tries to minimize the total sum of squares by in each step
merging the two clusters for which the increase of the sum of squares are the lowest.
Ward�s method creates clusters of near equal size, having close to hyperspherical
shapes.

Another commonly used deterministic method is non-hierarchical clustering, which
is based on iterative relocation. These methods do not create a tree structure to
describe the groupings in data, but create rather a single level of clusters. Objects
are relocated between a predetermined number of groups until there is no further
improvement according to the criteria used. As opposed to hierarchical clustering,
the number of groups must be known prior to the clustering. K-means clustering
is a non-hierarchical clustering algorithm which uses an iterative algorithm that
minimizes the sum of distances from each object to its cluster centroid, over all
clusters. This algorithm moves objects between clusters until the sum cannot be
decreased further. The result is a set of clusters that are as compact and well-
separated as possible.

Deterministic clustering is suited for cohesive and well-separated groups, but is
not constructed for clusters with di¤erent geometric forms, nor for situations with
overlapping groups. Moreover, these methods are not based on standard principles
of statistical inference and do not provide an assessment of clustering uncertainties.

Model-based cluster analysis is another cast of mind developed in recent years
which provides a principled statistical approach to clustering. For a comprehen-
sive review, see McLachlan and Peel (2000) or Fraley and Raftery (2002). The idea
is to base cluster analysis on a probability model. The population of interest con-
sists of J di¤erent subpopulations, each with its own distribution. Data is viewed
as coming from a mixture model where each distribution represents a cluster. The
development of cluster analysis in this direction opens for understanding of the
true process and origin of clusters, and for suggesting new and better methods.
Various geometric properties are obtained through di¤erent parametrization of the
distributions, or even completely di¤erent distributions among clusters. Measure-
ment errors are an inherent part of the model, and outliers can be modeled by
adding a distribution with larger variance or a di¤erent distribution than the rest
of the clusters in the mixture.

In Figure 1, we visualize the di¤erence between the deterministic and the model-
based probabilistic approaches for one-dimensional data. The top graph shows
the true model with three overlapping groups with di¤erent distributions. The
middle graph shows what we observe from data and also the approximate outcome
of a non-hierarchical, deterministic clustering based on Euclidean distance. The
dividing point between any two clusters lies an equal distance from the two cluster
means. Objects in the group tails will then be incorrectly classi�ed into the nearest
cluster.
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Figure 1: Comparison of deterministic versus model-based clustering. Top graph -
three overlaping distributions. Middle graph - data as it appears in reality and the ap-
proximate result of a deterministic clustering by minimizing Euclidean distance. Bottom
graph - model-based clustering and its ability to handle cluster membership probabili-
ties for overlapping areas. The X, Y, and Z points illustrate di¤erent probabilities for
an object being a member of the three possible distributions/clusters. For example, an
object at point X has equal probability of coming from the two left distributions and,
in addition, a small probability of being an extreme observation from the right cluster.

The bottom graph in Figure 1 shows the features of a model-based clustering.
This approach is able to handle classi�cation probabilities in overlapping areas.
One object at the intersection point between two densities, as the one marked
with an X, has an equal probability of coming from either cluster. In this speci�c
case there is, in addition, a slight chance that it is an extreme observation from
the third distribution. At Y , the probability of belonging to the middle cluster is
about 25 percent and of belonging to the right cluster is about 75 percent. An
observation at Z is most likely an observation from the left cluster.

3 Mixture Models

The theory of mixture models dates back to Pearson (1894) who estimated the
parameters of a mixture of two univariate normal distributions by using a method
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of moments. Since then, mixture models have been used in a wide range of appli-
cations. Titterington (1997) gives a comprehensive list of examples. It is however
in the �eld of cluster analysis that mixture models are increasingly used. Finite
mixture models in the context of clustering have been studied in, for example,
Wolfe (1970), Edwards and Cavalli-Sforza (1965), Day (1969), Scott and Symons
(1971), and Binder (1978). In recent years, it has been recognized that model-
based clustering can answer practical questions such as how many clusters data
should be divided into, which distributions and parametrization to use, and how to
handle outlier objects. Ban�eld and Raftery (1993), Cheeseman and Stutz (1995),
and Fraley and Raftery (1998) have all made contributions in the �eld.

Many recent publications have shown a number of practical applications. Identi-
�cation of textile �aws from images in Campbell et al. (1997), microarray images
in DNA in Li et al. (2005) and Yeung et al. (2001), setting in social networks in
Schweinberger and Snijders (2003), classi�cation of astronomical data in Bensmail
et al. (1997), separating species in Raftery and Dean (2004), color image quanti-
zation, or clustering of the color space in Murtagh et al. (2001), and curvilinear
clustering for detecting mine�elds and seismic faults in Dasgupta and Raftery
(1998) and Stanford and Raftery (2000).

Mixture models are used to model data where each observation is assumed to have
arisen from one of J possible groups. Speci�cally, data (y1; :::;yn) are viewed as
coming from a mixture model, where each distribution fj represents a cluster.

f(yi j� ) =
JX
j=1

!jfj(yi j� ) i = 1; :::; n (1)

The cluster proportions !j satisfy 0 < !j < 1 and
JP
j=1

!j = 1.

The distributions fj may theoretically represent any probability distribution. Dif-
ferent types of distribution within the same mixture model are also possible. In this
thesis, each cluster follows a multivariate normal distribution (with one exception,
see Section 6.1). Formula (1) may then be written as

f(yi
���j;�j ) =

JX
j=1

!jfj(yi
���j;�j ) i = 1; :::; n

where �j is the mean vector and �j the covariance matrix of the normal distrib-
ution fj, representing cluster j.

3.1 Gaussian Mixtures

One of the greatest advantages with the model-based clustering approach is its
ability to handle groups of di¤erent shape, orientation, and volume. In a Gaussian
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mixture, these characteristics are described by the covariance matrices �j. Each
cluster is represented by its speci�c covariance matrix, which gives the form of
the cluster. �j can be given without any restrictions, allowing for any form.
Several constraints can, however, be placed on the covariance matrices. Ban�eld
and Raftery (1993) suggest eight di¤erent models, based on the standard spectral
decomposition of the covariance matrix �j.

�j = �jDjAjD
t
j

�j is a scalar controlling the volume. Dj is an orthogonal matrix of eigenvectors
in charge of orientation. Aj controls the shape and is a diagonal matrix with
elements proportional to the eigenvalues of �j.

The eight models representing di¤erent covariance structures are shown in Table
1. Di¤erent models are obtained by placing constraints on the covariance matrix
such as Aj = A, which means that the shape is the same for all j clusters. The
model �j = �jDjAD

t
j; for example, has the same shape but di¤erent orientation

and volume among the clusters. Model 1, with spherical shaped clusters and the
same volume corresponds to the structure of a deterministic clustering based on
Euclidean distance.

Model �j Shape Orientation Volume
1 �I Spherical None Same
2 �jI Spherical None Di¤erent
3 � Same Same Same
4 �j� Same Same Di¤erent
5 �DjAD

t
j Same Di¤erent Same

6 �jDjAD
t
j Same Di¤erent Di¤erent

7 �jDAjD
t Di¤erent Same Di¤erent

8 �j Di¤erent Di¤erent Di¤erent

Table 1: Cluster models indicating whether the shape, orientation, and volume are the
same or di¤erent for each group. (From Ban�eld and Raftery (1993)).

The mixture model in Formula (1) is equally applicable to all these covariance
structures, but Model 8 is used throughout this thesis. If knowledge about the
covariance structure is available, one should restrict the model as much as possible
to improve the estimates. The unrestricted choice in Model 8 often requires longer
simulation sequences than the restricted models.

4 The Bayesian Approach

Bayesian estimation for mixture models is a relatively new approach in the liter-
ature. It took almost 100 years from Pearson�s (1894) introduction of the mix-
ture model until Bayesian solutions were developed. Among the �rst to write
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about Bayesian estimations for mixtures via posterior simulations were Gilks et
al. (1989), Gelman and King (1990), Verdinelli and Wasserman (1991), and Evans
et al. (1992). Some initial key papers on the subject are Lavine and West (1992),
Diebolt and Robert (1994), Escobar and West (1995), and Bensmail et al. (1997).

Development of the method for special purposes has been the focus of many stud-
ies. Model selection for mixtures is studied in various Bayesian approaches. An
approximation of Bayes factor (BIC) can be used for the pairwise comparison
of models with di¤erent numbers of components or various underlying densities.
Examples can be seen in Raftery and Dean (2006), Leroux (1992), Roeder and
Wasserman (1997), and Stanford and Raftery (2000). Another type of model se-
lection can be obtained by a reversible jump MCMC algorithm which can deal with
parameter estimation and model selection jointly. The algorithm jumps between
subspaces, corresponding to di¤erent numbers of components and/or variable sets
in the mixture model. This procedure often allows for the birth and death of a
cluster during the simulations. Richardson and Green (1997), Phillips and Smith
(1996), Stephens (2000), and Zhang et al. (2004) have all made contributions in
the �eld. Another approach to mixture modeling is to handle noise or deviant
observations. Fraley and Raftery (2002) and Bensmail and Meulman (2003) add
an extra term in the mixture distribution, which models noise as a homogenous
Poisson process. The most recent papers on Bayesian estimation of mixture mod-
els with applications on real data sets, include Bensmail et al. (2005), Fraley and
Raftery (2007), and Oh and Raftery (2007).

In the following section, an introduction to Bayesian inference is given. A more
comprehensive explanation can be found for example in Bernardo and Smith (2000)
or Gelman et al. (2004). Bayesian inference on mixture models are included in
the books by Gelman et al. (2004), McLachlan and Peel (2000) and Gilks et al.
(1999).

4.1 Bayesian Inference

While classical statistics deals with point estimators, their variances and con�-
dence intervals, Bayesian statistics is concerned with calculating whole posterior
distributions of the unknown quantities, �, given both data, y; and the prior opin-
ions on those parameters. In classical hypothesis testing, a hypothesis is either
rejected or not. Bayesian statistics, on the other hand, calculates the probability
that the hypothesis is true or uses Bayes factors for similar purposes. Bayesian
statistics therefore gives a more complete picture of the uncertainty.

In probability theory Bayes theorem is well known:

p(� jy ) = p(�)p(y j� )
p(y)

/ p(�)p(y j� ) (2)

where p(y) =
P

�p(�)p(y j� ) when � is discrete; i.e. the sum over all possible
values of � or p(y) =

R
p(�)p(y j� )d� when � is continuous.

6



Formula (2) may be expressed in words: The posterior distribution p(� jy ); of the
parameter �; given the data y is proportional to the prior information p(�); times
the information from data, i.e. the likelihood function p(y j� ).

Posterior / Prior � Likelihood

The prior distribution p(�); of the unknown � value, describes the uncertainty of
� before data is observed. The prior belief is subjective and varies according to
the knowledge and experience with regard to the unknown parameter. A strong
belief about the parameter is expressed by a compact prior distribution around its
believed mean value. The likelihood function p(y j� ); expresses the probabilities
for the data, given the parameter. When the prior distribution is updated with
data in the form of the likelihood function, one obtains the updated prior, i.e. the
posterior distribution p(� jy ).

In the classical approach, the unknown parameter � is thought of as a �xed quan-
tity and the known data as random. In the Bayesian approach � is viewed as an
unknown quantity whose variation is described by its prior and posterior distrib-
ution while the data is observed, and after that considered �xed in the analysis.
Therefore, in Bayesian inference, one can, for example, make statements about the
probability that the parameter�s lying in a certain interval, which is not possible
in classical inference. This causes many misunderstandings. It is not uncommon
that scientists using the classical approach falsely believe that the probability that
a parameter lies inside a 95 percent con�dence interval is 95 percent. They are
then treating con�dence intervals as Bayesian probability intervals.

Example 1 In Figure 2, the e¤ects of two di¤erent priors for the parameter �
are illustrated. In this example, � is one univariate parameter. Suppose that two
persons with di¤erent prior knowledge (A and B) are faced with the same data.
Prior A represents a person with little prior knowledge modeled by �A � N(27; 72)
while prior B represents a specialist with better prior knowledge, �B � N(40; 12).
The broken line is the likelihood function created from one observation Y = 32
where data is normally distributed with known variance, Y j� � N(�; 32). A nor-
mal prior distribution and the likelihood yield a normal posterior distribution with
new parameters. In this case the posterior distributions are �A jY � N(31:2; 2:82)
and �B jY � N(39:2; 0:62). From Figure 2 it appears that the prior A does not
have much e¤ect on the posterior distribution. Instead the likelihood and data
stand for a large part of the information. In the case of a more precise prior B the
posterior is greatly a¤ected by it. Since person B knows much about the parameter
in advance, the prior belief is very precise. For him the new data only stands for
a minor part of the information.
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Figure 2: Two di¤erent prior distributions (dotted lines) and their e¤ect on the pos-
terior distributions (solid lines). The likelihood function (broken line) is the same for
both examples.

In Example 1, the experiment was based on one observation. A person with
no prior opinion learned a lot but the specialist�s knowledge was based on more
substantial experience. If the experiment grows larger, both persons will eventually
reach the same conclusion. The mean and variance for the posterior distributions
approach the same values as the number of observations increases.

5 MCMC Estimation Technique

According to Bayesian methodology, our prior assumptions together with the
likelihood function from the data generate the posterior distribution. Its exact
evaluation often requires complicated integration. One problem with, and non-
philosophical criticism of, Bayesian mixture estimation are its computational dif-
�culties. Thanks to the availability and development of high-speed computing
in recent years, the use of Bayesian inference has increased. In Markov Chain
Monte Carlo (MCMC) simulations, complicated or impossible analytical calcula-
tions are replaced by simulated approximations. The MCMC method evaluates
the posterior by drawing samples from a Markov Chain, with the true posterior as
equilibrium. After a burn-in period, the draws can be treated as coming from the
target distribution. MCMC methods can be traced back to at least Metropolis et
al. (1953) and have been further developed by Hastings (1970). The method was
introduced in Tanner and Wong (1987) and Gelfand and Smith (1990) as a power-
ful alternative to numerical integration. With these articles, the implementation
of the Bayesian approach for mixtures became practical.
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The Gibbs sampler is a particular MCMC algorithm working with conditional
states. It was �rst introduced in Geman and Geman (1984) and Tanner and
Wong (1987). Each iteration of the Gibbs sampler cycles through the conditional
distributions of all the parameters. In each iterative step, new parameters are
generated and the conditional distributions are updated for the next iteration. It
is suitable in situations where the joint distribution of the parameters of interest,
say p(�; �; �); is di¢ cult to calculate, but the conditional distributions p(� j�; � ),
p(� j�; � ); and p(� j�; � ) are possible to simulate from. This iterative procedure
makes the process approach the equilibrium p(�; �; �). Gamerman and Lopez
(2006) give a comprehensive explanation of MCMC simulation including Gibbs
sampler.

The posteriors of the parameters in the mixture model of Formula (1), (�j, �j; !j
fj = 1; :::Jg) are estimated with the Gibbs sampler algorithm throughout this
thesis. The posterior distributions for all parameters, generated from the prior
and likelihood distributions, are expressed conditional on one or more of the other
model parameters.

6 Development of the Model for Non-standard
Situations

The �exibility in the Bayesian, model-based clustering methodology can be used for
a number of speci�c purposes, such as model and variable selection, the handling
of outlier objects, or clustering of odd shaped groups. In this thesis, three special
extensions of the model are investigated.

1. It is not unusual with some observations that are unsuitable for classi�ca-
tion. Sometimes it is not realistic that all observations can be described by
a small number of groups. These observations can be included in the model
by introducing a deviant group with another distribution or the same distri-
bution but with a much larger variance than the rest of the clusters. This is
done in Paper I and II.

2. Besides cross-sectional clustering, the method may be used for longitudinal
clustering. Cluster parameters are estimated at each time point and longi-
tudinal movements are studied through transition probabilities between the
time points. One may learn how objects move between groups over time and
how group structures change as time passes. This is explored in Paper III.

3. Missing data is a frequent problem in any kind of multivariate analysis. The
method can easily and e¤ectively be extended to deal with missing data.
In Paper IV, the longitudinal approach is extended to data with item non-
response. Multiple imputation is carried out as a step in the estimation
process.
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6.1 Deviant Observations

In many real data sets there are objects not suitable for classi�cation. These
objects are characterized by their discrepancy from all other objects in the data set.
If present, these observations should not be ignored. Milligan (1981) point out the
importance of the level of coverage in cluster analysis, and Edelbrock (1979) argues
that a requirement for all observations to be classi�ed can severely in�uence the
accuracy. One common approach to outliers or deviant observations is simply to
identify and remove them prior to the analysis. There are several methodologies for
the identi�cation process. The RESIDAN methodology is described in Bergman
et al. (2003), where observations similar to at most k other observations are
removed from the data set. Raftery and Dean (2004) compare models with di¤erent
variable sets and decide which observations should be removed by pairwise model
comparison using Bayes factors. Fyyad and Smyth (1996) use a method where
observations are removed from clusters in an iterative clustering-removal process.
The iterations are repeated until all remaining observations have relatively high
density.

Contrary to the above methods, one may argue that the outliers or deviant obser-
vations rightly belong to the sample. Instead of removing them, one should use a
method of analysis that takes their existence into account. The �exibility of the
model-based approach o¤ers the possibility of handling these deviant observations
within the model.

Fraley and Raftery (1998) and (2002) propose a way of dealing with �noise and
outliers�within the model. One extra component in the mixture models noise as a
homogenous Poisson process. Even though the method has been used successfully
in a number of applications (Bensmail and Meulman 2003, Ban�eld and Raftery
1993, Dasgupta and Raftery 1998, and Campbell et al. 1997, 1999), the estimation
is done in several steps, and information is needed prior to clustering. The method
requires an initial approximate identi�cation of the noise and clusters, whereupon
a hierarchical clustering of the denoised data is performed. In a �nal step, the
estimation is executed on the entire data set with the added noise term included
in the model.

A more direct solution is to add an extra distribution to the mixture model,
representing the deviant observations. This distribution can be spread over part
of, or the whole sample space. In Paper I, a mixture of Gaussians are used where
the deviant observations are represented by a normal distribution of larger variance
than the other clusters. The method is tested on two simulated data sets, with
a thriving outcome. One deviant cluster of smaller size and larger variance is
successfully distinguished.

In Paper II, the deviant observation is instead modeled by a uniform distribution.
The method is applied to one simulated and one real data set. The simulated data
study shows correct estimates for the non-deviant cluster as well as the deviant.
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In the real data study, the method is applied on data from 935 children in sixth
grade. Data was collected by the Individual Development and Adaption (IDA)
program at the Department of Psychology, Stockholm University. A longitudinal
data base has been created with the purpose of studying individual development
processes. A selection of seven variables is used in the attempt to �nd a cluster
structure among a group of twelve-year old students. The variables used are the
students�attitudes to three school subjects, their grades in the same subjects, and
their parents�educational level. Using this method, we manage to separate the
pupils into logical clusters and, moreover, identify outlier objects by placing them
in a separate cluster. In general, the clusters follow a pattern where high grades go
hand in hand with positive attitudes and highly educated parents, and vice versa.
Exceptions from the pattern are mainly due to the variable representing parents�
educational level. Students with probabilities for the deviant cluster of 50 percent
or higher are sorted out. These individuals have in general a di¤erent variable
set than those described in the ordinary clusters. The results from our solution
are compared with those from clustering by Ward�s method, giving a promising
outcome for the model-based method.

6.2 Longitudinal Cluster Analysis

When working with clustering of longitudinal data, there are mainly two ap-
proaches. In the �rst, the development pattern is the focus of the analysis. The
aim is to cluster observations into a few typical development classes: see Pauler
and Laird (2000). In the second approach, classi�cation is made at each sepa-
rate time point and the focus is to study how observations move between groups
over time and how group structure changes as time passes. Both approaches are
consistent with the model-based approach to clustering. The second approach is
the main topic of Paper III and the underlying condition for further development
concerning missing data, in Paper IV.

Data at each separate time point is assumed to arise from a �nite mixture of
multivariate normal distributions. The objects or individuals are the same for all
measurement occasions but the number of variables and what they represent may
change between times. As in cross sectional clustering, group characteristics are
studied. In addition movements between clusters at di¤erent time points are an-
alyzed. These movements are modeled by transition matrices, where one matrix
is applied between two consecutive time points. Information about cluster prob-
abilities for a single observation is generated, as well as its possible movements
between clusters and the probabilities for each movement.

There are previous examples of deterministic, longitudinal clustering using transi-
tion matrices to describe development from one time to another. In these examples,
data is clustered at each time point separately, using a deterministic method. The
cluster assignments and cluster centers are treated as known, whereupon the in-
formation is used to estimate the transition matrices. Applications can be found
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in Sugar et al. (1998) and (2004) with k-means clustering and in Bergman et
al. (2003) with Ward�s method. The two-step procedure, of �rst assigning ob-
servations to clusters and then estimating transition matrices, does not take all
available information into account. In the longitudinal model-based clustering ap-
proach, cluster allocation for an observation is done simultaneously for all time
points. This means information from all times is taken into consideration. Scott
et al. (2005) adopt this approach and adapt it for special circumstances using
treatment data.

In Paper III, longitudinal, model-based clustering is applied to two simulated and
one real data set for a maximum of three time points. The results from the sim-
ulated data sets are compared to k-means clustering. The cluster parameters,
including cluster probabilities and transition probabilities, are satisfactorily es-
timated. In comparison with k-means clustering, the method generates similar
results concerning classi�cation accuracies. In this respect, the advantages of tak-
ing information from all time points into consideration does not seem to have
a signi�cant e¤ect. The e¤ect would probably have been more noticeable, with
longer time chains. With similar results concerning classi�cation accuracies, the
model-based approach generates useful information in addition to point estimates.

The IDA data base is once again the provider of the real data set. The data covers
720 students in third grade and then again in sixth grade. Variables used are the
grades and attitudes to three school subjects. Logical cluster solutions appear at
both time points, even though they di¤er in structure. In third grade, the attitudes
to a subject are more or less independent of the mark in the same subject. When
reaching sixth grade the dependencies between the two types of variables are much
stronger. Transitions between the two times show high probabilities for transitions
to clusters with similar characteristics, which is the expected pattern.

6.3 Missing Data

Multivariate data sets are often subject to non-response. When the data, in ad-
dition, is longitudinal, it is even more exposed to non-response. The model-based
approach to longitudinal clustering may easily be extended to deal with missing
data, provided that the data is missing at random (MAR) or missing completely at
random (MCAR), see Little and Rubin (2002). Imputation under the assumption
of a multivariate normal mixture has been studied in Schafer (1997), Liu (1999),
and Gahramani and Jordan (1994). These authors all use the EM algorithm when
estimating the parameters. Lin et al. (2006) made a comparison between im-
putation using the EM algorithm and imputation using Bayesian inference. The
Bayesian approach shows promising accuracies in comparison, especially when the
non-reponse rate becomes high.

In the Bayesian estimation process, imputation is carried out in an extra step in the
Gibbs sampler algorithm. The process itereratively generates model parameters
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and imputes missing values. Imputed values for an observations are generated
from the distribution/cluster the observation is classi�ed to at that iteration step.

In Paper IV, the imputation method is tested on simulated and real, longitudinal
data sets with various rates of non-response. Studies with simulated data show a
well-functioning imputation method which handles non-reponse rates of up to 40-
45 percent without serious loss of precision in estimates. The method is compared
to other methods of handling missing data. The most primitive, and unfortunately
most often used method, is that of removing observations with at least one missing
variable. This may drastically reduce the data set and worsen the result, which one
of the studies in Paper IV con�rms. Using the mean imputation method generates
reasonable estimates for low non-response rates, but for higher rates the method
is outperformed by the Bayesian, model-based imputation method.

For the students in the IDA data base, a comparison study is made between
applying the method on data including only those with a complete variable set
and including all individuals, using imputation. The 720 students who were the
object of the longitudinal study in Paper III are included in this study, together
with those 486 students who were left out because of their incomplete variable
sets. When including all individuals, the variances of the estimates were lower and
the cluster membership and transitions between them seemed to be more stable.
The cluster structures did not di¤er much, even if the variables that were most
prominent in the clustering changed when adding individuals with missing data.

7 The MBCA Data Program

Most statistical software packages contain alternatives for traditional deterministic
clustering. If one instead wants to adopt the model-based clustering approach,
the selection of prewritten programs is much more limited. The MCLUST (Fraley
and Raftery 2007, 2006, and 2003) and MIXMOD (Biernacki et al. 2005) are
two choices for model-based cluster analysis using classical inference. The model
parameters are estimated using the EM algorithm, which is a maximum likelihood
estimator. Applications can be seen in Fraley and Raftery (1998), Wehrens et
al. (2003), and Dasgupta and Raftery (1998). The EM algorithm is advanced
in many respects. Still, it comes with a number of limitations which we can
overcome or more e¤ectively generate with the Bayesian approach. The maximum
likelihood estimator runs the risk of being stuck in a local maximum, if present.
Moreover, the method only generates point estimates with no estimates about the
uncertainty of the parameters. The so called MCMC simulation technique used in
the Bayesian inference will eventually reach the target distribution. The Bayesian
approach generates associated uncertainties for all point estimates in the form of
the whole posterior distribution. The method also generates posterior predictive
probabilities for a single observation�s being derived from any of the distributions
(groups) in the model.
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WINBUGS is a widely used software package that has been designed to carry out
MCMC computations for a wide variety of Bayesian models. It may also handle
normal mixtures. The �exibility of the program is also its greatest disadvantage
for a novice user. WINBUGS is not menu driven and pre-packaged. It requires
previous knowledge about both Bayesian inference and the program itself. Discus-
sions on how to use WINBUGS is found in Schollnik (2001), Fryback et al. (2001),
and Woodworth (2004, Appendix B).

The MBCA software package, described in Paper V, is written in Matlab for
Bayesian inference of model-based clustering. Users with very limited knowledge
about both Bayesian inference and Matlab will be able to use it. The program
assumes a mixture of a �nite number of multivariate distributions. The program
generates parameter estimates for mean values, (co)variances, and cluster probabil-
ities for all groups, as well as cluster probabilities for single observations. Iteration
plots can be obtained as well as visual graphical representations of the posterior
distributions in the form of histograms. The user may freely choose prior speci-
�cations or use default priors. The program is available for free downloading on
the internet. Five programs within the package handle di¤erent aspects of model-
based clustering. The �rst program is the basic approach which clusters data into
a prespeci�ed number of groups. This program can also handle a deviant group
with a normal distribution of larger variance. The second program uses instead a
uniform distribution to model the outlier or deviant observations. The third pro-
gram makes it possible to include all observations in the cluster analysis, despite
item non-response. The fourth program clusters data at two or three consecutive
time points. In addition to parameter estimates, the program generates estimates
of transition matrices between time points. The last program handles longitudinal
clustering of data with non-response.

8 The IDA Data

The same data base has been used throughout the various applications in this
thesis. �Individual Development and Adaption� (IDA) is a Swedish longitudinal
research program from the Department of Psychology, Stockholm University. It
was created to study individual development as a process in which adaption is a
central concept. The main IDA cohort contains all school children (about 1300)
who attended third grade in 1965 in a moderately sized city in Sweden, called
Örebro. The individuals have been investigated from third grade in 1965 up to
adult age. The database covers a broad range of topics such as school marks,
school related behaviors, social relations, family climate, psychological, mental,
and socioeconomic factors. The program has resulted in several hundred scien-
ti�c publications. Information about the project can be found in Bergman and
Magnusson (1997) and in Magnusson (1988).

For this thesis, three types of variable are chosen. The marks in three school
subjects, the student attitudes towards the same subjects, and their parents�ed-

14



ucational level. Data from when the students where in third and sixth grade are
used. From this kind of data, one can expect to �nd clusters generally going from
students with high marks, positive attitudes and highly educated parents to clus-
ters with the opposite characteristics. One is also likely to �nd clusters with more
unpredictable structures. In addition, there may be students who do not �t into
the general pattern. The seven variables used are discrete, but an approximation
by a normal distribution is believed to be acceptable.

Even though the main aim of this thesis is not to make quali�ed psychological
evaluations, the applications have generated some interesting results.

Studies on the student when they were in sixth grade show a cluster division which
in general follow the expected pattern. Five groups, excluding the deviant, seems
to be enough to catch the main patterns of the data. The largest group consists of
about 30 percent of the students. The estimates in this group are average for all
parameters, except for parents�educational level, which is surprisingly low in this
group. Marks in�uence the classi�cations more than the attitudes, and even more
by the parents�education. Within a cluster the mark variable are quite similar,
while the attitudes di¤er more.

The results also show evidence for a deviant group of about 5 percent. If one looks
closer on the individuals with a probability for the deviant cluster of more than 50
percent, odd variable patterns appear. We �nd, for example, individuals with bad
attitude, low marks despite highly educated parents. Good marks together with
negative attitude or vice versa is also found, as well as large variation between
practically all seven variables.

Data from when the students where in third and sixth grade, are clustered in a lon-
gitudinal manner. Now all variables except parents�educational level is included
in the analysis. The most interesting conclusion is the di¤erent cluster structures
between the two time points. The cluster structure is much more unanimous in
sixth grade than in third. In the third grade, good marks and a positive attitude or
vice versa, do not necessarily come hand in hand. When the student have reached
sixth grade, the mark variables become more in line with the attitude variables.
The clusters are nicely ordered, going from �better� groups to �worse� according
to all variables. In the third grade, the attitudes are in general considerably more
positive than in the sixth grade while the marks in general do not change much.

Transition probability estimates between third and sixth grades show movements
between clusters of similar characteristics. Even though it is hard to make a similar
ranking of clusters at the two times, due to di¤erent group structures, it is obvious
that most individuals are in clusters of similar features at both times. Nevertheless,
a smaller percent of the transitions are to very di¤erent clusters. There are a few
percent who make a turn from prosperous groups to more �unsuccessful� groups,
or vice versa.
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9 Conclusions and Further Developments

The main conclusion from this thesis lay in di¤erent extensions of the model-based
clustering approach:

The existence of a component in the mixture corresponding to outlier or deviant
observations is not an innovation. Studies already made concentrate on modeling
the outliers using a homogenous Poisson process or by capturing these observations
in the broad tails of t-distributions. We showed that it is also e¢ cient to model
deviant observations by either a normal distribution with larger variance or by a
uniform distribution over the whole sample space.

We developed the model-based method for clustering longitudinal data. Previ-
ous studies most often use deterministic clustering at each time point whereupon
transition matrices are estimated. Very few studies use a model-based approach.
When this is done, it is for special or customized situations. We presented a general
clustering approach where the longitudinal aspect of data is taken into account.
The cluster allocation of an observation were performed simultaneously for all time
points by calculating probabilities for all possible trajectories an observation can
take between clusters at the di¤erent time points.

Imputation of missing data in various ways is the focus of many studies. Imputing
missing values as an extra step in the Gibbs sampler algorithm is much more
uncommon. We took it one step further by imputing missing values in longitudinal
clustering. The longitudinal aspect of clustering in�uence the imputation and vice
versa. Including observations with partial non-response most de�nitely improves
the estimates, and the clustering structure helps to generate appropriate values to
impute.

The special extensions of this thesis together with the Bayesian approach require
complex estimation procedures. To make these methods practicable for anyone,
the MBCA software has been developed. Users with access to Matlab, may, with-
out much previous knowledge, execute the MCMC simulations for any desired
situation/extension, described in this thesis.

The Bayesian inference used in this thesis is in itself a contribution. Even though
the Bayesian approach has been used in many situations involving mixture models,
applications to the special areas of this thesis are rare or nonexistent.

Our work can be investigated further in various ways and other developments
may also be of interest. The possibilities are many, but below are some relevant
suggestions.

The simulation studies can be more far reaching. More extensive simulation studies
can strengthen the credibility of the method. To really declare a good performance
of a method, it should be tested with satisfactory result on several di¤erent data
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sets. Comparison studies can be made between simulations with many di¤erent
priors or start values, to investigate their e¤ects on the result. Another angle
concerning the performance would be to see what happens if data is generated
with no deviant observations and one then tries to �t a model with a deviant
cluster.

Normality is assumed for all groups, except the deviant, throughout this thesis.
Other distributions, and also di¤erent distributions within the same mixture distri-
bution can broaden the area of applications. An example is Stanford and Raftery
(2000) who show promising results in �nding curvilinear clusters by assuming other
distributions.

Gibbs sampler is a rather simple algorithm in MCMC simulations. More com-
plicated algorithms can improve the results and open for new possibilities. A
�reversible jump� algorithm allows for simulation of the posterior distribution on
spaces of varying dimensions. The algorithm split or merge clusters throughout
the simulations, which means clustering is possible even if the number of parame-
ters in the model is not known. Bayes factor can also be used when the number
of components is unknown. It is a model comparison tool, which makes pairwise
comparison between two models of di¤erent number of components or variable
sets.

In the longitudinal studies in this thesis, the number of time points are limited
to three. The limitation is not set by the method, but by the MBCA software
package, which is not prepared for more. Development of the software for any
chosen number of time points will extend its �eld of application. In the current
method, independence between time points is assumed. This is not always a
realistic assumption. Development of the method to handle dependencies between
times is not straight-forward, but can be done.

The real data material used, is only a small part of the total IDA data base. Studies
with more speci�c intensions and prespeci�ed problems can be made on extensive
or di¤erent variable sets. The longitudinal data base also o¤ers possibilities to
analyze data during more time points than just two.

There are mainly two types of longitudinal approaches concerning clustering. The
�rst is concerned with the clusters patterns at each time points and movements in
between, which was the approach in this thesis. The other approach clusters data
according to their development pattern over time. The mixture model is suitable
for both approaches. It may be interesting both in a theoretical and practical
viewpoint, to explore the various possibilities the second approach can bring.
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Abstract

A Bayesian, model-based approach to clustering is presented. We study
a mixture model where each distribution represents a cluster with its speci�c
covariance matrix. The method can identify groups that are overlapping and
of various sizes and shapes. This opens for the possibility of introducing a
deviant cluster into the structure. In a data set there are often observa-
tions unsuitable for classi�cation. These outlier objects are collected in one
cluster of much larger variance than the others. We estimate the cluster
parameters by simulating from their joint posterior distribution using the
Gibbs sampler. Two simulated examples with di¤erent cluster structures
are given to show the e¢ ciency of the method.

Keywords: Cluster analysis, Clustering, Classi�cation, Gaussian, Bayesian
inference, Model-Based, Mixture model, Deviant group, MCMC.
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1 Introduction

We present an approach to cluster analysis based on Bayesian inference through
MCMC simulation. Our aim is to identify a number of subgroups or clusters
by estimating their model parameters. Data is assumed to come from a mixture
model of J distributions, where each distribution represents a cluster. All clusters
have a multivariate normal distribution, but each with its speci�c mean vector
and covariance matrix. Along with the means and variances/covariances, the
probabilities for each cluster, and the probability of a single observation�s belonging
to a given cluster, are estimated.

MCMC simulation is suitable in situations where the joint distribution p(�; �) of
the parameters of interest (illustrated here with two unknowns � and �) is dif-
�cult or impossible to calculate but the conditional distributions p(� j�; y ) and
p(� j�; y ), where y is the data set, are possible to simulate from. An iterative
procedure generates samples from the conditional distributions, and makes the
process approach the equilibrium p(�; � jy ). We use the iterative resampling ap-
proach called the Gibbs sampler. Convergence is obtained through successive
updating of the parameters.

There is a vast literature on mixture models starting with Pearson (1894), who
estimated the parameters of a mixture model consisting of two univariate normal
distributions. More recent publications with a thorough explanation of mixture
models include Titterington et al. (1985) and McLachlan and Peel (2000). Some
key papers on Bayesian analysis of mixture models are Diebolt and Robert (1994),
Escobar and West (1995), Richardson and Green (1997), Lavine and West (1992)
and Bensmail et al. (1997).

Model-based clustering has several advantages compared to traditional, determin-
istic clustering methods. Deterministic methods use di¤erent measures between
objects, and between objects and centroids, to create cohesive and homogenous
groups. However, they assume equal structure among clusters, and cannot handle
clusters of di¤erent shapes, sizes, and directions. Model-based clustering is bet-
ter able to handle overlapping groups by taking into account cluster membership
probabilities in these areas. These features create new possibilities. In some situa-
tions there may be a number of observations not suitable for classi�cation. These
outlier objects are present in many real data sets. The approach in this paper is
to create a cluster containing these deviant observations. Among a more or less
given cluster structure, we introduce one cluster with a much larger variance than
the others. The deviant cluster contains objects showing no resemblance to other
cluster structures. It can be spread over part or the whole of sample space.

In this paper, Bayesian inference is used. An alternative frequentist approach to
handle clustering based on mixture models is the EM algorithm. Several maximum
likelihood algorithms are to be found in the literature, but the EM algorithm is
used most frequently in this area. Examples can be seen in Fraley and Raftery
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(1998), Wehrens et al. (2003), and Dasgupta and Raftery (1998). The aim is to
maximize the likelihood

l (�;�;
 j y) =
nY
i=1

JX
j=1

!jfj(yi
���j;�j )

where the means and covariances for cluster 1 to J are expressed by� = (�1; :::;�J)
and � = (�1; :::;�J): The probability vector 
 = (!1; :::; !J); where !j is the
probability that an observation belongs to cluster j:

The EM algorithm is advanced in the sense of allowing for di¤erent sizes, shapes,
and orientations among the clusters. Still, it comes with some limitations that
we can overcome with the Bayesian approach. The MCMC technique will even-
tually reach the target distribution, even if it takes some time. The maximum
likelihood estimator runs the risk of getting stuck in a local maximum, if present.
In addition, the method only gives point estimates, and produces no estimates
concerning the uncertainty of the parameters. The Bayesian approach generates
point estimates for all variables as well as associated uncertainty in the form of
the whole estimates�posterior distribution. Moreover, the method generates pos-
terior predictive probabilities for a single observation�s being derived from all the
di¤erent distributions (clusters) in the model.

In Section 2, the mixture model is presented, and prior and posterior distributions
for the unknown parameters are described. The simulation procedure is explained
in Section 3. Section 4 contains a discussion of how the Markov chains converge
to the true posterior distributions. In Section 5, we apply the method to two
simulated data sets to show its e¢ ciency. Finally, in Section 6, there is a discussion.

2 Mixture Model

We consider n independent and multivariate observations y = fy1; :::;yng from
the mixture distribution f(yi j� ) of J multivariate normal components in K di-
mensions. We assume that the number of clusters, J , is known. We let � denote
the totality of the unknown parameters, which include �; �; and 
. We may
express the mixture distribution as

f(yi j� ) =
JX
j=1

!jfj(yi
���j;�j ) i = 1; :::; n (1)

where the probabilities satisfy 0 < !j < 1 and
PJ

j=1 !j = 1, and where �j is a
mean vector of length K, �j is a K �K covariance matrix, and 
 = (!1; ::; !J)
is a vector with classi�cation probabilities for the J clusters.

Speci�cally, yi comes from the distribution fj(yi
���j;�j) � NM(�j;�j) with

probability !j for each j = 1; :::; J . We are about to estimate the parameters �j

2



and �j for each cluster j, and the cluster probabilities f!1; :::; !Jg. We introduce
a classi�cation vector V = (v1; :::; vn); where vi = j implies that observation yi
is classi�ed into cluster j. The classi�cation vector is regarded as an unknown
parameter and is included in �.

2.1 Prior Distributions

We use conjugate priors for the parameters �, �; and 
 of the mixture model
according to Lavine and West (1992). The inverse Wishart distribution, with mj

degrees of freedom and scale matrix  j,

�j � W�1 �mj; j
�

is used to describe the prior distribution of �j. All �j are assumed to be mutually
independent.

The inverse Wishart distribution is the multivariate generalization of the inverse-
�2. No limitations are put on variability between clusters, i.e. we allow each
cluster to have its own speci�c covariance matrix in terms of volume, shape and
orientation. This makes it possible to work with cases where one cluster (or more)
may have a distinguishing characteristic in terms of large variance. A higher
variance of one cluster, s; is modelled by a larger  s >>  j; j 6= s. The strength
of our prior belief for �j is adjusted with mj.

The conditionally conjugate prior distribution for �j is the multivariate normal
distribution with known covariance matrix �j=� j, for some precision parameters
� j. That is,

�j j�j � NM
�
�j;�j=� j

�
The mean is expressed with a dependency on the covariance. We assume

�
�j;�j

�
to be mutually independent over clusters.

The prior probability vector 
 = (!1; :::; !J) is assumed to be independent of
� and �. The conjugate prior distribution for 
 is a multivariate generaliza-
tion of the beta distribution, known as the Dirichlet distribution, (!1; :::; !J) �
D(�1; :::; �J). This is fully speci�ed as

f (
) =
� (�1 + :::+ �J)

� (�1) � ::: � � (�J)
!�1�11 � ::: � !�J�1J (2)

The relative sizes of the Dirichlet parameters �j describe the mean of the prior
distribution of 
, and the sum of the �j�s is a measure of the strength of the prior
distribution. The prior distribution is mathematically equivalent to a likelihood
resulting from

PJ
j=1 (�j � 1) observations with �j � 1 observations of the j:th

group.
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2.2 Posterior Derivation

The likelihood from (1) and a joint prior distribution g(�) for the unknowns,
generate the joint posterior distribution

�(� jy ) _
nY
i=1

f(yi j� )g(�)

With the introduction of the classi�cation vector V we are able to simplify the
problem to a large extent by working with conditional distributions. Under the
speci�ed mode, the joint distribution of (�, �, 
, V) has the following conditional
posterior distributions, derived from the conjugate prior distributions above.

The posterior distribution of �j is the inverse Wishart distribution given condi-
tional on y and V,

�j jy;V � W�1
�
nj+mj; j +�j +

nj� j
nj + � j

(yj � �j)(yj � �j)t
�

where �j =
P
i2j
(yi � yj)(yi � yj)t

The degrees of freedom equal the sum of the prior degrees of freedom mj, and the
number of observations in cluster j, nj. The scale matrix has three components
- the prior opinion of �j, namely  j, the sum of squares �j, and the deviation
between prior and estimated mean values.

The posterior distribution for �j is the multivariate normal, which is expressed
conditional on y, �j, and V, namely

�j jy;�j;V � NM
�
�j;�j=(� j + nj)

�
where �j =

� j�j + njyj
(nj + � j)

The mean vector �j in the posterior distribution is a weighted sum of the prior
and, by data, estimated mean values.

For the derivation of the posterior distribution of the probability vector 
, we give
the likelihood for V j
 ; which is the multinomial distribution according to

f (V j
) /
JY
j=1

!

nP
i=1

I(vi=j)

j
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This is a multivariate generalization of the binomial distribution. The indicator
function I is used to count the number of observations in the J di¤erent clusters.
The sum of the probabilities,

PJ
j=1 !j, is 1. The multinomial likelihood times the

conjugate Dirichlet prior in (2) generates the Dirichlet posterior distribution,

(!1; :::; !J jV ) � D
�
�1 +

nP
i=1

I (vi = 1) ; :::; �J +
nP
i=1

I (vi = J)

�

fully speci�ed as,

f(
 jV) =
�

  
�1+

nP
i=1

I(vi=1)

!
+ ::: +

 
�J+

nP
i=1

I(vi=J)

!!

�

 
�1+

nP
i=1

I(vi=1)

!
�:::��

 
�J+

nP
i=1

I(vi=J)

! JY
j=1

!
�j+

nP
i=1

I(vi=j)�1

j

The prior speci�cation �1; :::; �J , and the classi�cation of the observations I (vi = j) ;
i = 1; :::; n; j = 1; :::; J; constitute the ingredients of the posterior parameters.
Given V, the probability vector 
 is conditionally independent of (y, �, �):

The posterior probability tij for observation yi, to belong to cluster j is calculated
according to Bayes theorem conditionally on y, �j, and �j:

tij
���j;�j;
 =

!jf
�
yi
���j�j

�
JP
j=1

!jf
�
yi
���j�j � i = 1; :::; n

The probabilities are the basis for the simulation of the classi�cation vector V.

3 Simulation Method

In Bayesian inference, one often needs to calculate integrals of di¤erent functions,
say g(�); with respect to the posterior density p(� jy ), where � denotes the un-
known parameter vector. These posterior integrals, or expected values, often have
no explicit solutions, and numerical integration schemes are required. In high
dimension parameter spaces, Monte Carlo integration is a useful method. The in-
tegration is performed by simulating a sample f�i; i = 1; :::; ng from the posterior
distribution p(� jy ); and estimating the posterior integral g =

R
g(�)p(� jy )d� by

the ergodic mean
Pn

i=1 g(�i)=n.

Some Monte Carlo schemes generate the Monte Carlo samples from p(� jy ) by
simulating a Markov chain, which is de�ned such that the posterior is the sta-
tionary distribution. This procedure is commonly called Markov Chain Monte
Carlo simulation (MCMC). There is a vast literature on MCMC, encompassing
both theory and applications: see for example Gamerman (1997) and Gilks et al.
(1999). MCMC methods can be traced back at least to Metropolis et al. (1953),
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and were further developed by Hastings (1970). Other important contributions
along the way were Geman and Geman (1984) and Gelfand and Smith (1990).

Gibbs sampler is a frequently used MCMC algorithm, and is used here to estimate
the model parameters �, �, 
, and the classi�cation vector V. Gibbs sampler
works by iteratively drawing samples from the full conditional posterior distribu-
tions of the parameters of interest, given in subsection 2.2. The full conditional
distribution of a parameter is the distribution of that parameter given current or
known values for all the other parameters. The parameter value simulated from its
posterior distribution in one iteration step is used as the conditional value in the
next step. Repeating the process, consisting of steps 1 through 4 below, provides
for an approximate random sample to be drawn from the posterior distribution,
forming the basis of a Monte Carlo analysis. Casella and George (1992) give a
detailed explanation of Gibbs sampler.

We begin the simulation by creating a preliminary clustering to generate start
values for the parameters. The start values could be determined in an easier
way, for example through a quali�ed guess, or using neutral values. Clustering is
however preferred since the Markov chains converge faster when the start values
are closer to their target values. A non-hierarchical clustering is used with an
iterative algorithm that minimizes the sum of distances from each object to its
cluster centroid, over all clusters. This algorithm moves objects between clusters
until the sum cannot be decreased further. The result is a set of clusters which are
compact and well-separated. Since we are interested in �nding one deviant cluster
which in contrast to being compact, could be scattered over the whole sample
space, we use the non-hierarchical clustering to create J�1 clusters. Out of these,
we create the last cluster consisting of the 20 observations with the largest sum of
distances to its centroids.

Each iteration consists of the following four steps. After one iteration the new
updated parameter values are used in the next iteration.

1. New values for �j, j = 1; :::; J , are simulated from the inverse Wishart
posterior distributions, conditional on y and the previous V.

2. New values for �j, j = 1; :::; J , are simulated from the multivariate normal
posterior distributions, conditional on y and the previous values of �j and
V. The new covariance matrices simulated in step 1 are taken as known in
step 2:

3. A new probability vector 
 is simulated from the Dirichlet posterior distri-
bution, conditional on the previous V:

4. In the last step, new classi�cation variables vi are simulated according to
their posterior probabilities tij, conditional on the new �, �, and 
. The
element vi is equal to j; with probability tij, independent of all other vi0
i0 6= i.
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The order of the four steps matters for the convergence. The generations of the
classi�cation variables are to be put either �rst or last. The �rst three steps
can be made in any order, but to get a faster convergence one should generate
�j before �j. This has to do with the fact that �j is generated conditional on
�j. Thus, the algorithm appears as a special case of Gibbs sampler called Data
Augmentation. Data Augmentation possesses certain convergence advantages; it
is further discussed in the next section.

4 Convergence Results

The Gibbs sampler was introduced in Geman and Geman (1984) as an approx-
imation method in order to e¢ ciently compute Bayes estimators. It was also
presented in Tanner and Wong (1987) under the name of data augmentation for
missing value problems. A mixture model can be expressed in terms of missing or
incomplete data. The data augmentation method generates the parameters �(m)

and the missing data z(m) iteratively according to �(�
��y; z(m) ) and �(z ���y; �(m+1) ).

Here �(m) and z(m) denote the values of the parameters and missing data after
iteration m has been completed. By including the missing data into the set of
parameters of the mixture distribution, data augmentation appears as a special
case of the Gibbs sampler.

Each of the papers mentioned above presents a proof of how the Gibbs sequence
converges to the parameter�s posterior distribution. In Geman and Geman (1984)
the proof only applies to �nite state models, and in Tanner and Wong (1987)
several restrictions and regularity assumptions are imposed. Diebolt and Robert
(1990) and (1994) establish convergence without requiring these restrictions. They
show how to obtain convergence results using a duality principle. This is shown
in the context of one-dimensional normal mixtures for data augmentation.

Since the algorithm used in this paper is a data augmentation algorithm, a brief
overview of the convergence proof of Diebolt and Robert is given. The princi-
ple works for cases when one chain of interest, �(m), is associated with a sec-
ondary (or dual) chain, z(m), such that the distribution of interest, �, is the mar-
ginal distribution of the invariant probability distribution of (�(m); z(m)), namely
�(�(m); z(m)) = f(�(m)

��z(m) )g(z(m)). The duality principle �borrows strength�
from the simplest chain z(m).

A general form of data augmentation for one dimensional data is given in (3). The
� parameters correspond to �, �, and 
 in Section 2, and z to the classi�cation
vector V.
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Step m 1: Generate �
(m+1)
1 � �

�
�1
��y; z(m) �

1:2 Generate �
(m+1)
2 � �

�
�2

���y; z(m); �(m+1)1

�
:::

1:s Generate �(m+1)s � �
�
�s

���y; z(m); �(m+1)1 ; :::; �
(m+1)
s�1

�
2: Generate z(m+1) � f

�
z
���y; �(m+1)1 ; :::; �(m+1)s

�
(3)

Theoretically, the algorithm is composed of only two steps, the �rst to generate �,
and the second to generate z, i.e. dual sampling according to (4).

1: Generate z(m) � f(z
���y; �(m) )

2: Generate �(m+1) � �(�
��y; z(m) ) (4)

In our case, the simplest chain z(m) will be an aperiodic and recurrent �nite Markov
chain. It is easy to show that z(m) is ergodic, and that its distribution converges
towards equilibrium in an exponential way. The more complicated chain �(m), only
depends on previous values through z(m), and according to the duality principle
most properties of z(m) can be transferred to �(m), including geometric ergodicity.
Geometric ergodicity guarantees fast convergence to the posterior distribution.
The distribution of �(m) converges at the same rate as z(m).

As mentioned before, data augmentation appears as a special case of the Gibbs
sampler. The procedure for a general Gibbs sampler algorithm is given in (5).
The di¤erence from data augmentation is that the generation of random variables
is totally circular. The generation is conditional on all the previous values of the
other parameters, while for data augmentation there is a dichotomy between z and
�. If s = 1, or if �(m+1) can be split into s components, mutually independent and
expressed conditional on (y; z(m)), data augmentation and the Gibbs sampler are
the same.

Step m 1: Generate �
(m+1)
1 � �

�
�1

���y; z(m); �(m)2 ; :::; �(m)s

�
1:2 Generate �

(m+1)
2 � �

�
�2

���y; z(m); �(m+1)1 ; �
(m)
3 ; :::; �(m)s

�
:::

1:s Generate �(m+1)s � �
�
�s

���y; z(m); �(m+1)1 ; :::; �
(m+1)
s�1

�
2: Generate z(m+1) � f

�
z
���y; �(m+1)1 ; :::; �(m+1)s

�
(5)

The convergence properties for the general Gibbs sampler, when the duality prin-
ciple can not be used, are much more di¢ cult to obtain, and more dependent on
the sample distribution. For further reading about this, see Diebolt and Robert
(1990). It should be mentioned that the data augmentation algorithm performs
better in terms of convergence and speed than the Gibbs sampler algorithm. This
is because the Gibbs sampler algorithm leaves more room for randomness.
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5 Examples

We constructed two examples with simulated data to test the method. In the
examples a deviant cluster, in form of smaller size and larger variance than the
others, is created and observed. The computations were performed in Matlab, ver-
sion 7. The program used is available for downloading together with instructions
on www.statistics.su.se/forskning/MBCA.

5.1 Example 1

350 data points were simulated from three di¤erent multivariate normal distribu-
tions, all in three dimensions. 100 data points were generated from a distribution
with mean vector [4 0 2] and covariance matrix I, where I is the identity ma-
trix. 200 data points came from a distribution with mean vector [0 1 � 1] and
covariance matrix I. The last 50 data points are much more scattered. They are
spread around the mean vector [0 0 0], with a covariance matrix � = diag [9 9 25].
Data is shown in Figure 1, and mean vectors and covariance matrices are given
in the Appendix, Table 5. Multidimensional scaling (MDS) is used to give a two
dimensional presentation of our three dimensional data. MDS places objects in
a Euclidean space, reduced in dimensions, while preserving the distance between
them as well as possible (Oh and Raftery, 2003).

8 6 4 2 0 2 4 6 8 10 12
8

6

4

2

0

2

4

6

8

10

12
Cluster 1
Cluster 2
Cluster 3

Figure 1: 350 data points in three dimensions, simulated from three di¤erent multi-
variate normal distributions. The data points are presented in a two dimensional plot,
after they are rescaled using MDS.

We are rather vague in the prior speci�cations. We want data to have the major
in�uence on the posterior distributions, not the prior speci�cations. The Dirichlet

9



parameters �j are set to 5 for all j, corresponding to a prior belief of equal size
for all clusters. The choice of putting �j to 5 instead of a higher value gives us
a wider range for the prior belief of !j. In this case, a 95 percent interval lies
approximately between 0.1 and 0.55. We use the mean and covariance matrix
for the whole data set of 350 points as the prior for each separate cluster (for
numerical values, see the prior row in Table 1). The precision parameters � j = 1
for j = 1; :::; 3. The prior for �j; times its degrees of freedom mj, gives us 	j.
The degrees of freedom mj are set to 2, giving a wide enough prior for �j. We
do not specify in the priors, that we expect a smaller deviant cluster with larger
variance than the other clusters. Instead, we use neutral prior speci�cations to
test if the method manages to discern the deviant group, simply by the nature of
the data itself.

It is important to determine how long the simulation should be and to discard a
number of burn-in iterations. If the iterations have not proceeded long enough,
the simulations may be grossly unrepresentative of the target distribution. Even
when the simulation has reached approximate convergence, the early iterations
are still in�uenced by the start values rather than the target distribution. The
length of the burn-in can be estimated theoretically - see for instance Gilks et al.
(1999), Chapter 1 but we settle for a visual inspection of the Monte Carlo output.
Figure 2 shows the iteration plots where convergence is rapidly attained for ! and
� values. The same goes for variance and covariance values although they are not
shown here. The burn-in in this example is practically nonexistent. Therefore,
only 200 iterations were discarded.
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2

0

2

0 500 1000 1500 2000 2500 3000 3500
5
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10

Figure 2: Left �gure: Iteration plots for the cluster probabilities. Right �gure: Itera-
tion plots for the mean values. One graph for each cluster. All three dimensions within
each cluster are plotted.

To determine the number of iterations we rely on trial and error, and run several
chains in parallel and compare the estimates. If they do not agree adequately, the
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number of iterations is increased. 3000 iterations seemed to be su¢ cient for this
example. Several simulations were run with di¤erent prior values. The sensitivity
of the results due to reasonable changes in the prior were found to be small.

Despite the neutral prior information, the posterior variables are estimated in a
satisfactory way. The computations manage to distinguish the clusters in the right
proportions. The deviant cluster with large variance is well distinguished despite
its location over the other two clusters. It is clear from the posterior columns
of Table 1 that all mean and covariance values also lie fairly close to the values
desired. The variances of the two last dimensions of the deviant cluster lie a little
lower than they should. This is partly due to the relatively low prior variances.

Prior Speci�cations
Cluster Mean Covariance Probability

1,2 and 3

0@ 1:10
0:52

�0:10

1A 0@ 5:21 �0:40 1:83
2:05 �0:64

5:89

1A 1=3

Posterior Estimates
Cluster Mean Covariance Probability

1

0@ 3:96
�0:03
1:86

1A0@ 4
0
2

1A 0@ 1:28 0:03 0:14
0:98 0:00

1:14

1A0@ 1 0 0
1 0
1

1A 0:30 (0:29)

2

0@ �0:06
0:99

�1:04

1A0@ 0
1

�1

1A 0@ 1:11 0:22 0:06
0:96 0:12

0:97

1A0@ 1 0 0
1 0
1

1A 0:56 (0:57)

3

0@ �0:25
�0:31
�0:39

1A0@ 0
0
0

1A 0@ 9:59 1:37 �8:26
6:97 �1:76

22:58

1A0@ 9 0 0
9 0
25

1A 0:14 (0:14)

Table 1: The prior parameters are equal for all clusters. The posterior variables are the
mean of the 2800 last simulations. In parentheses to the right are the true underlying
values.

The histograms presented in Figure 3, give a picture of the estimated posterior
distributions of a selection of the parameters. The conditional posterior for the
mean values is a normal distribution. The conditional posterior distribution for the
covariance matrix is the inverse Wishart, while a single parameter in the diagonal,
i.e. the variance parameters, has an inverse �2-distribution. One single probability
parameter in the Dirichlet distribution has a beta distribution. The generating
outcomes for the mean, variance and probability parameters are shown in Figure
3.

Due to the use of simulated data, we are able to evaluate and examine our results.
One way is by investigating how objects, originated from the three clusters, are
classi�ed throughout the iteration process. The percentage of the times objects
from each cluster is classi�ed into its true group, or into one of the two other
groups, is shown in Table 2. Objects from clusters 1 and 2 are to a very high extent
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Figure 3: Histograms for the last 2800 simulations for a) The mean values for each
cluster (row) and variable (column) b) The variances for each cluster (row) and variable
(column), i.e. these are the diagonal values in the three estimated covariance matrices.
c) The probabilities for each cluster.

classi�ed into the right group. The objects of the deviant group have a somewhat
lower percentage for the right group. The fact that this cluster is spread over the
other two increases the risk of misclassi�cation. Cluster 2, whose mean vector lies
closest to that of the deviant cluster, attracts the most missclassi�ed objects from
the deviant group.

Classi�ed into
Cluster

1 2 3 Total
Originated 1 98 1 2 100
from 2 1 95 4 100
Cluster 3 8 22 70 100

Table 2: The percentage of the times objects originated from the three clusters are
classi�ed into the right cluster, or misclassi�ed into one of the other two.
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5.2 Example 2

In the second example, we simulate 500 data points in three dimensions from four
multivariate normal distributions with di¤erent shapes, sizes, and directions. Yet
again, one of the clusters is deviant, with a larger variance than the others. The
cluster structure is more di¤use than in Example 1. The clusters lie closer together
and also overlap to a higher extent. Each of Clusters 1 through 3 contains 150 data
points. Cluster 1 is generated from a distribution with mean vector [1 0 0] and
covariance matrix �1 = I, Cluster 2 is generated from a distribution with mean
vector [�1 � 2 0] and covariance matrix �2 = diag [4 1 1]. Cluster 3 comes from
a distribution with mean vector [�2 1 1] and covariance matrix �3 = diag [1 1 4].
The last deviant cluster consists of 50 data points from a distribution with mean
vector [0 0 0] and covariance matrix �4 = diag [9 9 9]. Multidimensional scaling
is once again used to show data in a two dimensional graph: see Figure 4. Actual
mean vectors and covariance matrices can be seen in Table 6 in the Appendix.

6 4 2 0 2 4 6 8 10
8

6

4

2

0

2

4

6

8

10
Cluster 1
Cluster 2
Cluster 3
Cluster 4

Figure 4: 500 data points in three dimensions simulated from four di¤erent multivariate
normal distributions. The data points are presented in a two dimensional plot after they
are rescaled using MDS.

We use the mean vector for the whole data set as the prior for �j. The precision
parameters � j = 1 for j = 1; :::; 4. The variances for the whole data set lie around
3. We make a prior assumption that the non-deviant clusters all have smaller
variances, and the deviant cluster has larger variances, than 3. The mean prior
covariance matrices for Cluster 1 through 3 are �1 = �2 = �3 = diag [1:5 1:5 1:5]
and for Cluster 4, �4 = diag [5 5 5]. The degrees of freedom mj are set to 10 for
all clusters. This gives an approximate 95 percent prior interval for the variances
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between 0:2 and 2:8 for the �rst three clusters, and between 0:5 and 9:5 for the
deviant cluster. The Dirichlet parameters are �1 = �2 = �3 = 10 and �4 = 5. This
corresponds to equal expected size among Cluster 1, 2, and 3, and half the size for
the deviant cluster. A 95 percent interval for the probabilities is approximately
between 0:15 and 0:44 for Cluster 1 through 3, and between 0:02 and 0:26 for the
deviant cluster.

We used 5 000 iterations in this example. Convergence was rapidly attained for all
parameters; iteration plots are shown for mean and variance estimates in Figure
6 in the Appendix. Histograms over the mean values are found in Figure 5. 200
iterations were discarded. The simulation result is summarized in numbers, in
Table 3, together with the prior speci�cations. The method manages to discern
the clusters in the right proportions, with parameter estimates close to the true
underlying values.
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Figure 5: Histograms for the mean values after 4800 simulations. Rows correspond to
clusters and columns to variables.
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Prior Speci�cations
Cluster Mean Covariance Probability

1,2,3

0@ �0:67
�0:30
0:30

1A 0@ 1:5 0 0
1:5 0

1:5

1A 0:29

4

0@ �0:67
�0:30
0:30

1A 0@ 5 0 0
5 0
5

1A 0:14

Posterior Estimates
Cluster Mean Covariance Probability

1

0@ 0:97
0:05
0:13

1A0@ 1
0
0

1A 0@ 0:99 �0:06 �0:05
1:07 �0:09

0:91

1A0@ 1 0 0
1 0
1

1A 0:29 (0:30)

2

0@ �1:30
�1:74
0:06

1A0@ �1
�2
0

1A 0@ 3:77 �0:26 �0:06
1:27 �0:07

1:05

1A0@ 4 0 0
1 0
1

1A 0:34 (0:30)

3

0@ �1:98
1:05
1:11

1A0@ �2
1
1

1A 0@ 1:51 �0:05 �0:21
0:99 0:00

4:31

1A0@ 1 0 0
1 0
4

1A 0:28 (0:30)

4

0@ 0:54
�0:28
�0:79

1A0@ 0
0
0

1A 0@ 9:57 �1:97 1:68
10:55 0:62

8:67

1A0@ 9 0 0
9 0
9

1A 0:09 (0:10)

Table 3: The prior mean parameters are equal for all clusters, while the prior variance
parameters are higher for the deviant cluster. The posterior variables are the mean of
the 4800 last simulations. In parenthesis to the right are the true underlying values.

The percentage of the instances, in which objects from each cluster are classi�ed
into their true groups or into one of the other three groups, can be seen in Table
4. Objects from cluster 1 through 3 are to a high extent classi�ed into the right
groups. The objects originating from cluster 4 have a harder time �nding their
origin. It should be mentioned that when each observation is classi�ed into the
cluster it ended up in most of the times during the last 4800 simulations, the
percent of misclassi�cation is lower for all clusters (not reported).

Classi�ed into
Cluster

1 2 3 4 Total
Originated 1 73 17 6 4 100
from 2 13 78 4 5 100
Cluster 3 6 11 77 6 100

4 12 22 19 47 100

Table 4: The percent of the times objects originatingfrom the four clusters are classi�ed
into the right cluster, or misclassi�ed into one of the other three.
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6 Discussion

We have presented and exempli�ed a Bayesian, model-based clustering methodol-
ogy. A mixture model is used, where each distribution represents a cluster. Each
cluster has a multivariate normal distribution with its own parameterization. As
opposed to the deterministic approach, the model-based approach has several ad-
vantages. It comes with the possibility of handling groups of di¤erent shapes,
volumes, and directions, as well as handling overlapping groups. This opens up
for the possibility of including outlier objects in the cluster solution by creating a
deviant cluster with large variance. The use of Bayesian inference adds additional
advantages. As we know, Bayesian inference not only provides point estimates,
but gives the whole posterior distributions, and therefore provides a picture of
the uncertainty of the estimated parameters. In traditional cluster analysis each
object is assigned to a cluster without speci�cation of cluster membership proba-
bilities for other clusters. The Bayesian approach is able to provide probabilities
for single objects coming from any cluster. This is especially interesting for objects
in overlapping areas.

Two simulated data sets are used to test and verify the method. We are able to
satisfactorily estimate the distribution parameters and the probabilities between
clusters, and to separate data into their original distributions.

The model-based approach with Bayesian inference works well in the situations
described in this paper. Further improvements and developments of the method
may nevertheless be of interest. Normality is assumed for data in all clusters.
Other distributions, and also di¤erent distributions within a mixture model, can
open up for new situations and applications. Stanford and Raftery (2000) show
promising research in �nding curvilinear clusters by assuming other distributions.
In this thesis, we assume normality in all clusters, even the deviant. In real data
sets it may not be optimal to assume normality for the deviant objects. A uniform
distribution over the whole sample space may be a better unrestricted choice.

A structure with a deviant cluster is only one of many special structures the
model-based approach can handle. The method leaves room for tailored solutions,
by di¤erent prior speci�cations. If knowledge about a speci�c structure is available
a priori, it should be used in the analysis. There is a wide range of possibilities
to model di¤erent prior speci�cations. Besides di¤erent sizes and shapes of the
clusters, there might, for example, be information on the variables used. We
might know that some variables are of the same kind, or the variables may refer
to di¤erent time points with di¤erent prior knowledge.

The Gibbs sampler is a rather simple algorithm in MCMC simulations. More
complicated algorithms may improve the results, and can open for new possibilities.
Richardson and Green (1997), for example, use a more complicated �reversible
jump�algorithm in addition to Gibbs sampler in their work with mixture models.
The algorithm is able to split or merge clusters throughout the simulations, and
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can also allow for the birth or death of an empty cluster. The number of clusters
is therefore decided during the simulations and need not be decided prior to the
analysis.
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Appendix

Cluster Mean Covariance Probability

1

0@ 4:01
�0:03
1:91

1A 0@ 0:93 0:10 0:06
0:91 �0:02

1:04

1A 0:29

2

0@ �0:00
1:03

�1:01

1A 0@ 0:97 0:18 0:07
0:92 0:08

0:95

1A 0:57

3

0@ �0:29
�0:42
�0:47

1A 0@ 7:08 0:42 �3:90
6:42 �1:08

24:27

1A 0:14

Table 5: Simulated values used in Example 1.

Cluster Mean Covariance Probability

1

0@ 0:94
0:06

�0:01

1A 0@ 0:82 0:01 �0:07
0:85 �0:15

0:87

1A 0:30

2

0@ �0:66
�1:47
0:17

1A 0@ 4:19 0:58 �0:04
1:65 0:06

0:89

1A 0:30

3

0@ �2:04
0:95
0:95

1A 0@ 1:15 0:02 �0:05
1:01 0:18

4:33

1A 0:30

4

0@ 0:15
�0:16
�0:54

1A 0@ 10:96 �2:07 1:05
10:69 1:06

9:14

1A 0:10

Table 6: Simulated values used in Example 2.
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Figure 6: 5 000 iterations from Example 2. Mean values are on top, and the variance
values at the bottom - one graph for each cluster. All three dimensions within each
cluster are plotted.
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Abstract

In standard cluster analysis it is assumed that all units in a group of
individuals can be classi�ed into a certain category. However, in real life,
there are often individuals who are not easy to classify since they resemble
no one else. These outlier individuals have little in common with the other
individuals in the data set. In this paper we classify most individuals into
ordinary clusters but leave room for deviant individuals to form a special
cluster with a much larger deviation than the others. Here, we apply this
approach to twelve year old students from a midswedish municipality. In
contrast to the deterministic clustering approach often applied in the social
and behavioral sciences, an alternative model-based probabilistic approach
is used. It has advantages in the sense of �exibility in size and structure
between clusters, and the ability to handle overlapping groups. Cluster
parameters are estimated using Bayesian inference and MCMC techniques.
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1 Introduction

Classi�cation of individuals or subjects into homogeneous classes or groups is a
common problem in behavioral sciences. The classi�cation is often done using
cluster analysis (cf. Everitt et al. 2001), which is a collective term for methods to
create distinct and homogenous subgroups (clusters) in a given set of data points.
Most such methods are descriptive, and no real model is assumed for the data. One
may instead start with a model saying that the population is a mixture of groups
with di¤erent properties. In the descriptive case, each unit must be classi�ed
into one and only one cluster, and the clusters do not necessarily correspond to
anything in real life. It is just a way of dividing the observations into a �xed
number of clusters. In the model-based case, each individual is assumed to come
from a subgroup with certain properties. The object of the analysis is to �nd
these groups, their properties, and to classify the individuals as well as possible.
A natural result is that an observed unit belongs to a speci�ed group with a certain
probability, and to another group with another probability.

From a person-oriented perspective, Bergman (1998) suggested that an important
task can be to identify typical patterns. However, he also said that sometimes it
was not realistic that all individuals can be described by a small number of groups
or patterns. There will often remain a few unique persons, whose patterns are so
rare that they do not adhere to the common norm. In this paper we will study
this case where most sampled individuals come from one of a few larger groups,
with characteristics coming from di¤erent distributions, while a few individuals are
special and may have their own values. Formally this will be modelled by saying
that their pattern can be anywhere in a wide region, i.e. the observed values
are uniformly distributed over the whole sample space, or come from a normal
distribution with a very large variance.

Several methods for handling deviant data have been suggested in the literature.
Most authors simply remove outliers from the data set prior to or during the
classi�cation. Bergman et al. (2003) suggest the RESIDAN methodology, which
uses similarity measures to identify observations which are similar to at most
k other observations (most often k = 0). These observations are denoted as
the residue, and are removed from the rest of the data set before the cluster
analysis. Raftery and Dean (2004) use an algorithm to compare models with
di¤erent variable contents in which observations to remove are decided by pairwise
model comparisons using an approximation of Bayes factor (for example Kass
and Raftery, 1995 and Lavine and Schervish, 1999). Milligan (1981) stresses the
importance of the level of coverage, and Edelbrock (1979) investigates the accuracy
as a function of the coverage of the classi�cation, arguing that a requirement to
classify all individuals can severely underestimate the accuracy of the clustering.
Contrary to these authors, we argue that these persons rightly belong to the sample
and should not be removed from the analysis, but that one must instead use a
method of analysis that takes the existence of special persons into account.
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Model-based cluster analysis is successfully used in biology for classifying species:
see for instance Raftery and Dean (2004) and Bensmail et al. (1997). Several
studies have also been made in medicine and genetics. Oh and Raftery (2003),
Fraley and Raftery (2002), Ban�eld and Raftery (1993), and Yeung et al. (2001)
are a few examples. Other areas of application are geophysics, for detecting seismic
faults, described in Dasgupta and Raftery (1998), and settings in social networks:
see Schweinberger and Snijders (2003). There are rather few studies using model-
based cluster analysis in psychology and the behavioral sciences. A couple of
examples among the few are Gri¢ ths et al. (in press), Rosseel (2002), and Larsen
(1995), but no applications with the aim of handling deviant individuals within
the model, are found.

Finding patterns is important in psychological development studies. Every teacher
or person working with children knows that most children can be classi�ed into a
few groups depending on such properties as being intelligent, lazy, conscientious,
timid, outgoing, interactive and so on. They also know that there are some pupils
who are not similar to anyone else or have very rare patterns. Two examples are
resilience children, who despite poor circumstances manage to succeed in life and
autistic children.

Our model-based clustering method with a deviant group is tested on data for
12-year old school children. The database contains information on individuals
who attended school in the Swedish town of Örebro. The data was originally
collected within the longitudinal research project �Individual Development and
Adaption� (IDA) at the Department of Psychology at Stockholm University. It
was created with the purpose of understanding and explaining the individual de-
velopment process. The children have been investigated from the third grade in
1965 up to adult age. The database covers a broad range of topics such as behav-
ior, social relations, family climate, and psychological, mental, and socioeconomic
factors. Further information can be found in Bergman and Magnusson (1997) and
in Magnusson (1988).

Formally our model is given by a mixture distribution. The observed values of an
arbitrary individual yi come from the distribution

f(yi) =
JX
j=1

!jfj(y) + !0f0(y);

where !j; fj = 1; :::; Jg is the cluster probabilities of the J ordinary groups with
densities fj(y); fj = 1; :::; Jg respectively. Finally, !0 and f0(y) are the probability
of deviant individuals and their widely spread distribution. This approach allows
each group to have its own speci�c shape, size, and orientation described by its
distribution fj. The distributions will mainly be multivariate normal, and the
means and covariance matrices will be estimated as well as the cluster probabilities.
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A Bayesian framework is used for the analysis. Even though standard techniques
such as ML-estimation are sometimes used with the EM-algorithm (see for exam-
ple Dasgupta and Raftery, 1998 and Wehrens et al., 2003), the Bayesian approach
is more �exible and can produce much additional information, e.g. about cluster
probabilities for individuals and about the joint uncertainty of the model para-
meters. A short description of Bayesian inference in general, is given in Section
2.

The methods are described in general terms in Section 3. This section is partly
technical, but most technical details are given in the Appendix. The method is
illustrated by a short simulation example in Section 4. In Section 5, the methods
are applied to a data set on twelve-year old children from the IDA data base.
The application concerns the children�s attitudes to di¤erent school subjects, their
school grades, and their parents�educational level. The data set is described, the
method adapted, and the results are given. Section 6 contains a comparison with
other clustering techniques, in particular with Ward�s method. Finally, in Section
7, there is a discussion.

2 A Short Introduction to Bayesian Inference

Bayesian statistics di¤er from classical statistics in that they describe the uncer-
tainty about parameters and nature in terms of probability, while classical statis-
tics regards the observed data as random and the unknown parameters as �xed.
One starts by stating one�s prior opinion on the parameters. In scienti�c papers,
one often uses a prior which corresponds to total prior ignorance, or carries very
little information, known as an uninformative prior. The transformation from
prior to posterior is given by Bayes theorem, saying that the posterior distribution
of the parameters � is proportional to the prior information times the information
from data, i.e. the likelihood function:

Posterior / Prior � Likelihood of data
�(�jdata) _ �(�) � p(dataj�)

The prior distribution �(�) can be seen as a probability (or density) function de-
scribing the uncertainty before the data is observed. The prior belief can vary
between persons according to their knowledge and experience. With an uninfor-
mative prior, the posterior distribution is almost completely determined by data.
The likelihood function is the ordinary probability function used in classical statis-
tics. When the prior distribution is updated with data according to this formula,
one gets the posterior distribution.

In Bayesian inference, one can for example make statements about the probability
of the parameter�s being in a certain interval, which is not possible in classical in-
ference. This causes many misunderstandings. It is not uncommon that scientists
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using the classical approach falsely believe, that the probability that a parameter
lies inside a 95 percent con�dence interval is 95 percent. They are then treating
con�dence intervals as if they were Bayesian probability intervals.

In recent years, the interest in using Bayesian methods in the social sciences has
increased. Gill (2002) gives a comprehensive description of Bayesian methods in
the social and behavioral sciences free from most complicated mathematical com-
putations. Sohlberg and Andersson (2005) argue that the Bayesian approach is
helpful for psychologists to extract a maximum of useful information from statis-
tical research data.

One reason for the increasing use of Bayesian methods is the development of
computer capacity and a special technique called Markov Chain Monte Carlo-
techniques (MCMC). Model speci�cation of prior and likelihood functions often
lead to a posterior speci�cation which is di¢ cult, or even impossible, to handle
analytically. Integrals over high-dimensional probability distributions call for ap-
proximations.

The principle behind MCMC-simulation is that it is often easier to simulate the
posterior distribution than to describe it analytically. The MCMC technique pro-
duces a sequence of dependent random variables whose distribution converges to
the true posterior distribution. A histogram of these values will describe the true
distribution. The longer the sequence is, the better the description is. Usually
the simulation does not start from the exact true posterior but converges after a
number of iterations. One usually takes away a small part of the simulated series
in the beginning, referred to as the burn-in period. So-called iteration plots are
often used to see how fast the estimate converges. The iterations should look like
white noise. In this paper the most common MCMC technique, Gibbs sampler, is
used. It is sometimes also called alternating conditional sampling. MCMC tech-
niques, including Gibbs sampler, are to be found in most Bayesian literature, for
example Gill (2002) and Gamerman and Lopes (2006).

3 Methods

3.1 Model

When using the model-based approach, many authors assume a normal distrib-
ution in all clusters, i.e. (yi

���j;�j ) � N(�j;�j); where �j is the mean vector
and �j the covariance matrix for cluster j. The same is done in this paper for the
ordinary clusters, but for the deviant cluster a uniform distribution is assumed
over the whole sample space. This is described as

f(y) =
JX
j=1

!jfj(y) + !0f0(y) i = 1; :::; n (1)
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where the �rst J densities fj(y) are multivariate normal densities with di¤erent
means and covariance matrices. The last density f0(y) corresponds to the deviant
group and often to a uniform distribution. In that case it is constant and inde-
pendent of y. The numerical value f0 will then be 1 divided by the area of the
parameter range. When the parameter range is in�nite, it is not possible to de�ne
a uniform distribution. In that case one may let f0(y) be a normal distribution
with a very large variance, which corresponds to uninformative prior knowledge.

In reality, the distributions of the data used in this paper are discrete, but an
approximation by a normal distribution is believed to be acceptable in this sit-
uation. Several constraints can be placed on the covariance matrices. Ban�eld
and Raftery (1993) suggest eight di¤erent models for the covariance matrices �j;
but in this paper no restrictions are used. This is quite a general approach, but
it means that the estimates will be more uncertain compared, for instance, to a
situation where all covariance matrices are known to be equal. If knowledge about
the covariance structure is available, one should of course use this information to
improve the estimates.

The sample consists of n individuals that are known to come from di¤erent groups,
i.e. the distribution is as in (1). In this paper, the number of groups J; is assumed
known. For all but the deviant cluster the mean and the covariance parameters
are to be estimated together with the cluster probabilities. To our help we have
observations y1; :::;yn which are K-dimensional vectors. The distribution fj (clus-
ter j) is multivariate normal with mean vector �j and positive de�nite covariance
matrix �j. The probabilities for the di¤erent clusters are 
 = (!1; :::; !J) wherePJ

j=1 !j+!0 = 1. The classi�cation vector V = (v1;:::; vn) is de�ned as the cluster
indices of the n individuals, i.e. �i is the cluster number of unit i. The quantities
(�j;�j; !j); j = 1; :::; J , !0, and �i; i = 1; :::; n are the unknown parameters. The
prior opinion of these parameters is given in the next subsection. The remaining
part of this chapter is of a more technical nature.

3.2 Prior Distributions

The prior knowledge of the parameters is formulated in terms of a conjugate
prior. The prior distribution for each �j is the inverse Wishart distribution,
�j � W�1 �mj; j

�
, with mj degrees of freedom and scale matrix  j. This is

the multivariate generalization of the inverse-�2 and an obvious choice for multi-
variate variances. All �j are assumed to be independent. Our best prior guess of
�j would thus be  j=mj; and the knowledge of the variance corresponds to the
knowledge obtained from mj individuals. The choice mj = 0 corresponds to no
prior knowledge. From this, one can deduce that the conjugate prior distribution
for �j given �j is multivariate normal, �j j�j � NM

�
�j;�j=� j

�
. The cluster

means are expected to be around the selected values �j; j = 1; :::; J . The precision
of this opinion corresponds to having observed � j individuals that are known to
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come from that cluster. The choice � j = 0 corresponds to having no information
at all.

The prior distribution for the parameters de�ning the cluster probabilites !1; :::; !J+1
is a multivariate generalization of the beta distribution, namely the Dirichlet dis-
tribution (!0; !1; :::; !J) � Dirichlet (�0; �1; :::; �J). The relative sizes of the para-
meters �j describe the mean of the prior distribution for 
 = (!0; !1; :::; !J); and
the sum of the �j�s is a measure of the strength of the prior belief. This prior belief
corresponds to the knowledge one would have after observing a random sample
with �0 + �1 + :::+ �J observations from the J + 1 cluster groups.

3.3 Derivation of Posterior Distributions

It is not possible to �nd the full posterior distribution in a closed form. However, it
is straightforward to derive the conditional posterior distributions from the prior
and likelihood functions. Since conjugate distributions are used, the posterior
distributions belong to the same class of distributions as the priors, but with other
parameters. As a consequence of the prior speci�cations, the conditional posterior
distributions are multivariate normal for the cluster means �j (given data, V;
and �j), inverse Wishart for the cluster covariances �j (given data and V), and
Dirichlet for the cluster probabilities !0; !1; :::; !J (given V). Further details and
the posterior hyperparameters are given in the Appendix.

It remains to �nd the posterior distribution of the classi�cation vectorV. The prior
probabilities for a speci�ed observation to belong to cluster j were the same for
all individuals. When data is taken into account, the probabilities di¤er between
individuals. The posterior probabilities tij for observation i to belong to a certain
cluster j is calculated according to Bayes theorem,

tijjdata;�;�;
 =

8>>>>>>><>>>>>>>:

!jfj(yij�j�j)0@ JP
j=1

!jfj(yij�j�j)

1A+!0f0(y)
j = 1; :::; J

!0f0(y)0@ JP
j=1

!jfj(yij�j�j)

1A+!0f0(y)
j = 0

for i = 1; :::; n;

where fj
�
yij�j�j

�
, j = 1; :::; J are the conditional distributions of the clusters.

The second line is the probability of the i:th individual�s belonging to the deviant
cluster. The observations in the deviant cluster are assumed to come from a
uniform distribution, f0.
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3.4 Technical Details

The conditional posterior distributions for each parameter are the foundation for
the Gibbs sampler algorithm. It works by, in each iteration step, generating sam-
ples from each parameter distribution, conditional on the other parameters. The
generating order in this paper was:

1. Generate new covariance matrices �j, conditional on data and the classi�-
cation vector V:

2. Generate new mean vectors �j, conditional on data, covariance matrices �j,
and the classi�cation vector V:

3. Generate new !-values, conditional on the classi�cation vector V:

4. Generate a new classi�cation vector V through the posterior probabilities
tij, conditional on data, mean vectors �j, and covariance matrices �j.

Each individual is assigned to a cluster in each iteration step. This can be used to
estimate the probability of a speci�c individual�s belonging to the di¤erent clusters,
by looking at how many times during the simulations the speci�c individual ended
up in a speci�c cluster. In the same way one can generate the probability that two
(or more) individuals belong to the same group.

The computations were performed using a program constructed by the author in
Matlab, version 7.4.0. The program used is available for downloading together
with instructions on www.statistics.su.se/forskning/MBCA.

4 A Short Simulation Study

The method is tested on a generated data set consisting of 470 subjects coming
from four distributions in three dimensions. The �rst three groups are gener-
ated from normal distributions, each with its speci�c mean vector and covariance
matrix. The observations from the last cluster are generated from a uniform dis-
tribution over the whole sample space, with the purpose of creating a group with
deviant characteristics.

The 150 subjects from the �rst group are generated from a normal distribution
with mean vector (�1;�2; 0) and covariance (1; 2; 1) � I; where I is the identity
matrix. The corresponding values for the 100 subjects from group 2 are mean
vector (1; 0;�2) with covariance (1; 1; 2) � I; and for the 200 subjects of group 3
the mean vector is (2; 1; 2) and the covariance matrix is equal to I. The two groups
with non-spherical clusters, due to larger variance in one of the three dimensions,
are intentional. This is done for the purpose of testing the method�s ability to
handle clusters of di¤erent shapes and directions. The 20 subjects from the no-
tional deviant cluster are generated from a uniform distribution between �5 and
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Figure 1: The generated data set presented through the �rst two principal components,
standing for 87.3 percent of the variance.

5 for each dimension. To be able to give a clear picture of the three dimensional
data, it is presented through its �rst two principal components in Figure 1.

The mean prior speci�cations are set to �j = (0; 0; 0) with precision parameter
� j = 1 for all j: The covariance prior is set to the identity matrix I for all groups
with mj = 10 degrees of freedom for all dimensions and clusters, making the
prior speci�cation  j = mj ��j = mj � I. The prior speci�cation for the cluster
probabilities is set through the prior parameters (�1; �2; �3; �4) = (10; 10; 10; 2) ;
where number 2 re�ects our prior belief that there is a smaller (deviant) cluster
among three larger ones. The prior speci�cation is rather vague, letting data stand
for most information in the posterior distributions.

The convergences were almost immediate for all parameters. 50 000 iterations
were used and a burn-in period of 2 000 iterations were discarded. The posterior
estimates for all parameters are given in Table 1. To the right of each estimated
value are the values from which data is generated. A comparison of these values
shows that the method manages to estimate the parameters as being close to their
original values. It recognizes the larger variance in two of the clusters, even though
they do not quite reach up to the value 2. It also recognizes the deviant cluster.
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Mean Covariance Probability

Cluster 1
�1:19
�2:13
0:01

�1
�2
0

0@ 1:03 0:10 �0:02
1:52 0:10

0:97

1A0@ 1 0 0
2 0
1

1A 0:304 0:319

Cluster 2
0:82
0:06

�2:04

1
0

�2

0@ 1:01 �0:09 �0:17
0:98 0:11

1:90

1A0@ 1 0 0
1 0
2

1A 0:231 0:213

Cluster 3
1:94
0:97
1:85

2
1
2

0@ 0:96 0:17 0:14
1:19 0:17

1:08

1A0@ 1 0 0
1 0
1

1A 0:422 0:425

Cluster 4 - - 0:044 0:043

Table 1: Posterior estimates of mean, covariance, and probability parameters after 50
000 (minus a burn-in of 2 000) iterations. To the right of each estimate are the values
from which data are generated.

The method generates probabilities of each individual�s belonging to each underly-
ing distribution. If one instead wants a cluster division coincidental with ordinary
cluster methods, one can assign each individual to the cluster it most probable
comes from. In that case, 95 percent of the individuals from Cluster 1 are as-
signed to their true clusters. The same value for Cluster 2 is 92 percent, for
Cluster 3, 97 percent, and for the deviant cluster, 55 percent. It is natural that
individuals from the deviant cluster are captured by other clusters to a rather
high extent because of their spread over the whole sample space. Nevertheless,
the probability estimate (4.4 percent) for the deviant cluster is very close to its
true probability (4.3 percent). When dealing with small clusters one can very well
obtain a situation with no individuals with highest probability for that cluster,
but still get a probability estimate, well above zero.

5 Real Data Study

5.1 Data

Seven variables are chosen from questionnaires completed by 935 students in sixth
grade and their parents at home. They correspond to 78 percent of all eligible
children. All students with one or more unknown variables are removed, so there
is no partial non-response in the data set. A description of the questionnaire and
the data collection procedure can be found in Magnusson (1988). The material
used in this paper contains data on the students�attitudes towards three school
subjects, their grades in these subjects, and their parents�educational level. The
attitudes towards the subjects Swedish, Mathematics, and Religion are measured
on a �ve grade scale where 1 corresponds to �strongly dislike�and 5 to �like it
very much�. Parents�educational level is classi�ed on a seven grade scale going
from �only compulsory school or less�(1), to �university degree�(7). The grades
were their true grades given by the school for the same subjects. They are given
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on a �ve grade scale, where 1 is the worst grade and 5 the best. The mean values
and covariance matrix for the complete data set are given in Table 2.

Variables Mean Variance/Covariance
Attitude Swedish
Attitude Math
Attitude Religion
Grade Swedish
Grade Math
Grade Religion
Parents Edu: Level

2:13
2:72
1:78
3:17
3:23
3:15
1:96

1:08 0:16 0:34 0:17 0:06 0:14 0:04
1:32 0:17 0:06 0:35 0:07 0:12

1:30 0:12 0:16 0:28 0:18
0:89 0:66 0:64 0:48

1:07 0:63 0:52
0:92 0:52

2:97

Table 2: Mean values and covariance matrix for the IDA data set.

Sweden had at that time a relative grading system, which means that the average
grades of all subjects should be around 3 and the variances should be roughly 1.
It is worth noting the strong preference for Mathematics present in the attitudes.
The attitudes vary more than the grades, and the parents�education varies even
more than that. This will probably mean that the education level will in�uence the
clustering more than the other variables, since the variables are not standardized
and the prior cluster variance will be assumed equal in all clusters. Note also the
higher covariances within grades and between education level and grade compared
to the covariances within attitudes. This means also that there is more to gain by
basing the clustering mainly on these four variables compared to basing it on the
attitudes.

5.2 Choice of Prior Distributions

It is natural to expect some clusters generally ordered from groups with positive
attitudes, good grades and highly educated parents, to groups with negative atti-
tudes, low grades and low education among parents. It is also likely that one or
more clusters with other structures will be detected, such as positive attitudes and
good grades, but parents with low education. However the choice in this paper is
not to be speci�c in the prior belief of the unknown parameters. Data should have
the major in�uence on the posterior distributions, not the prior belief.

Since knowledge about the clusters is practically nonexistent, the prior of the
cluster means are set to be in the middle of their respective ranges, i.e. �j = 3 for
the �rst six dimensions, where the observations lie between 1 and 5; and �j = 4
for the last dimension, where the scale goes from 1 to 7. The precision parameter
� j is set to 1 for all j.

The prior of the covariance matrix is in each cluster modelled by the parameters
mj and  j. An initial guess is that the covariance matrix �j lies somewhere
around the identity matrix. This means that we do not believe more in positive
than negative correlations within clusters. For the prior precision of this guess
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mj = 10; i.e. the assumption is that this information will carry as much weight
as an ordinary estimate, based on ten observations. This means that  j is set to
mj � I; where mj is a vector containing as many 10�s as there are dimensions in
data, and I is the identity matrix.

The cluster probabilities are Dirichlet distributed with parameters �j. All clusters
are assigned an �-value equal to 10 except the deviant cluster, which is believed to
be smaller and is therefore given the �-value 5. This can be interpreted as saying
that, a priori, there is no reason to believe that any special cluster is larger than
any other among the ordinary clusters. The prior weighs equally much, as having
observed 10 from each ordinary cluster and 5 from the deviant one. However,
the deviant cluster is believed to have about half the size of the average ordinary
cluster.

The simulations were run for several possible cluster structures. The solution
with six clusters of which one is deviant were �nally chosen, based both on a
logical interpretation of the results, as well as by using Bayes factor as a model
comparison tool. Bayes factors can be used to estimate the number of groups.
Kass and Raftery (1995) and Lavine and Schervish (1999) provide a comprehensive
description; and Bensmail et al. (1997) use Bayes factor for this speci�c approach.

The density in the deviant cluster is assumed uniform. Since there are 56 � 7 =
109375 possible combinations of outcome for the six �ve-grade scales and one
seven-grade scale, we set f0 = 1=109375.

5.3 Description of the MCMC-simulation

Since �ve ordinary clusters were assumed, 181 parameters were estimated during
the MCMC-phase - 35 mean parameters, 140 variance/covariance parameters, and
6 !-parameters (restricted by their sum being 1). One might also call the classi�-
cation vectorV a parameter vector, from which we derive the posterior probability
for each unit�s belonging to the six clusters.

For each estimated parameter one is able to obtain a picture of the posterior
distribution in the form of a histogram over generated values from all iterations.
To illustrate this, three chosen mean variables from the �fth cluster are presented
in Figure 2. The left graph shows the iteration plot for the 100 000 iterations.
This picture looks very stable, like white noise, which means that the process,
most likely, has reached equilibrium. The process seemed to be stable also for the
other parameters, but not all iteration plots are shown. The second graph shows
the posterior distributions created from the last 95 000 iterations, after a burn-in
period of 5 000 iterations have been discarded.
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Figure 2: Left graph: Iteration plot for three chosen mean variables from the �fth
cluster. From top to bottom are Grade Swedish, Attitude Swedish, and Parents�edu-
cational level. Right graph: Histograms for the same variables created from the last 95
000 iterations (100 000 minus a burn in of 5 000).

5.4 Results

5.4.1 Cluster Parameters

In Table 3, a summary is given of the posterior mean, variance and probability
estimates. The whole covariances matrices are given in the Appendix. In addition
to the deviant group, �ve groups appear, each with its own speci�c structure.
Cluster 1 and 2 seem to consist of the �elite� students with high grades and a
positive attitude towards the three subjects. The main di¤erence between Clusters
1 and 2 is the average Parents�educational level, which is very high in Cluster 1,
but more ordinary and more variable in the larger Cluster 2. Cluster 3 is more
or less average in all senses, with no grades equal to 1, 2, or 5. This is also the
largest group. Surprisingly enough, parents�educational level is quite low in this
group. Clusters 4 and 5 show similar patterns with low grades and a more negative
attitude. The main di¤erence is once again mainly among the parents�educations.
A good �ve percent of the children, were estimated to have other combinations
than those found in Clusters 1 through 5, standing for the deviant cluster.

Within each cluster the three grade variables measuring school performance are
quite similar. The attitudes di¤er more between subjects, and their variances are
constantly higher than those in the grade category. Note also that the variances
for attitudes decreased less than the other variances, compared to the full data
set. This means that the grades and parents�educational level have in�uenced the
classi�cation more than the attitudes. The variance of the attitude to Swedish
has not decreased at all. The fact that the attitudes have least in�uence on the
clustering was to be expected, since in the full data set, the correlations between
grades and between grades and education are higher than correlations involving
attitude variables.
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Cluster 1 2 3
Mean Variance Mean Variance Mean Variance

Attitude Swedish 2.25 1.41 2.30 1.12 2.11 1.12
Attitude Math 2.90 1.37 3.19 0.86 2.84 1.13
Attitude Religion 2.17 1.17 1.98 1.06 1.90 1.12
Grade Swedish 3.88 1.03 3.85 0.80 3.25 0.66
Grade Math 4.16 0.55 4.12 0.50 3.34 0.34
Grade Religion. 3.98 0.50 3.89 0.39 3.31 0.31
Parents edu. level 5.59 0.45 2.65 0.92 0.78 0.44
Probability parameter 0.094 0.224 0.284

Cluster 4 5 6
Mean Variance Mean Variance Mean Variance

Attitude Swedish 2.04 1.34 1.98 1.30 - -
Attitude Math 2.48 1.30 2.30 1.61 - -
Attitude Religion 1.44 1.00 1.42 1.30 - -
Grade Swedish 2.74 0.73 2.30 0.66 - -
Grade Math 2.51 0.49 2.17 0.35 - -
Grade Religion. 2.56 0.40 2.15 0.30 - -
Parents edu. level 2.50 0.51 0.67 0.38 - -
Probability parameter 0.138 0.204 0.056

Table 3: Estimated posterior means, variances and proportions between clusters.
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Figure 3: Mean estimates for the �ve non-deviant clusters.

A graphical comparison of the mean estimates for each cluster is given in Figure
3. In general, all clusters follow a pattern, where a positive attitude comes hand
in hand with good grades and highly educated parents and vice versa. The mean
of all variables basically order the clusters in this way, with one exception. The
order between Clusters 3 and 4 deviates for Parents�educational level. Cluster
1 and 2 are very similar except for Parents�educational level. If one disregards
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the attitude variables, which have small in�uence on the clustering, and divides
the grades and parents�education into three levels, high, medium, and low, the
�ve clusters correspond to high-high, high-medium, medium-low, low-medium,
and low-low. It is interesting to note that medium-high and medium-medium are
missing.

The correlations (given in Appendix) have generally decreased in the clusters. For
example, the correlation between grade and attitude to Mathematics has almost
completely vanished. A few high correlations remain though, in particular between
the Swedish grade and the other grades, and to a slightly smaller extent between
the attitudes to Religion and Swedish.

5.4.2 Multivariate Cluster Properties

It is di¢ cult to give a graphical illustration of the results due to the seven di-
mensions. Two parameters out of the seven are therefore chosen to give a visual
presentation and understanding of the cluster structure. A two dimensional graph
representing grade in Religion and Parents�educational level is presented at the
top of Figure 4. Here each point represents an individual and the sign (asterisk,
dot, triangle etc.) represents the group to which the individual belongs with the
highest probability. In the second graph, educational level is exchanged for grade
in Mathematics. Other combinations give similar graphs, although these speci�c
combinations give a somewhat clearer view. As Figure 4 shows, �ve more or less
well collected clusters is de�ned as well as a last deviant cluster spread over the
whole sample space (solid dots).

Another way to provide a two dimensional visual presentation of the cluster struc-
ture is by plotting the individuals in a principal component plot. As in the previous
�gure, each observation in Figure 5 is allocated to one of six clusters by looking
at which cluster the observation most often ended up in during the 95 000 iter-
ations. Data in the new coordinate system is de�ned by the �rst two principal
components, which stand for 58:4 percent of the total variance.

5.4.3 The Deviant Cluster

It might be interesting to investigate observations with predominant probabilities
for the deviant cluster. In the Appendix, 29 observations with a probability for
the deviant cluster of 50 percent or higher are listed. No obvious similarities occur
between individuals and none have variables coincident with the �ve clusters in
Table 3. We �nd for example individuals with positive attitudes towards the three
subjects despite low grades in them, and vice versa. The �ve non-deviant clusters
have well-collected variables in the grade category. In the deviant group, there are
individuals who di¤er from the pattern by a large spread in both the attitude and
grade category.

For each observation, one is able to calculate the probabilities for that individual to
belong to di¤erent clusters. This is done by observing how many times during the
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Figure 4: Cluster structure for the six clusters, shown in two dimensions. The deviant
cluster (solid dots) is spread over the whole sample space. The number of possible values
for the seven parameters is limited and therefore several observations will end up with
the exact same values, for two or more variables. To make the graphs perspicacious the
observations are separated by adding a random number between -0.4 and 0.4 to each
observation. It scatters the observations and prevents them from ending up on top of
each other in the �gure. For example, observations with grade 3 are uniformly spread
in the interval 2.6-3.4. Each observation is allocated to one of six clusters by looking at
which cluster the observation ended up in most often during the 95 000 iterations.
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Figure 5: Data projected onto the �rst two principal components. Each observation
is allocated to one of six clusters by looking at which cluster the observation most often
ended up in during the last 95 000 simulations. The deviant cluster (solid dots) is not
circled.

95 000 iterations the observation was classi�ed into each cluster. The results for
two selected individuals are shown in Table 4. In the same way one can calculate
the probability of two speci�c individuals coming from the same distribution. The
probability that Individuals 30 and 485 come from the same cluster is 0:60; of
which 0:52 stands for Cluster 4 and 0:08 for Cluster 5.

Cluster
1 2 3 4 5 6

Individual 30 0 0 0 72.1 23.4 4.5
Individual 485 0 0 0.6 70.2 29.0 0

Table 4: Two individuals and their probabilities (in percent) of belonging to each
underlying distribution/cluster.

6 Comparisons toWard�s and Other Cluster Tech-
niques

6.1 General

There exist many other techniques to handle cluster analysis (see for example
Sharma, 1996). The most common approaches are descriptive. The usual ap-
proach is to set up a distance function and then try to �nd clusters so that an
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expression involving the data points and the distance function is as small as pos-
sible. For example, one may want to minimize the total sum of distances from the
data points to the cluster centre or the sum of all distances between points in the
same cluster. Other methods are more interested in trying to maximize distances
between points in di¤erent clusters, e.g. the minimal distance between two points
in di¤erent clusters. The way to obtain this is to perform some type of minimiza-
tion technique. There are step-by-step-methods starting with n distinct clusters
with one point each and then merging two clusters, one at a time. Such methods
give a classi�cation tree. There are also methods that start with a given number
of clusters and try to �nd the optimal cluster in an intelligent way. For instance,
starting with a trial cluster division, and then moving data points between clusters
to obtain a better �t.

In contrast to these descriptive methods, the method of this paper builds on a
model. The individuals come from di¤erent groups and each group is character-
ized by a distribution with certain parameters. The goal is to �nd the correspond-
ing parameters. In earlier times with slower computers and poor algorithms this
was impossible for normal sized data sets, but nowadays it is much easier. If the
goal is to �nd the ML-estimates of the parameters a good algorithm to use is the
EM-algorithm. The method of this paper uses a Bayesian approach, which in addi-
tion to the parameter estimates, also generates probabilities for each individual�s
belonging to the di¤erent clusters. One can of course make a more traditional
clustering where each individual is assigned to a speci�c cluster. This is done
by classifying each individual as coming from the distribution having the highest
posterior probability for that individual. In the next subsection the result of the
previous clustering is compared with a common hierarchical clustering method
called Ward�s method.

Explained variance is used to compare methods. This comparison will, of course,
be unfair, since the goal of our method is not to �nd a data description which
maximizes explained variance. This can be illustrated with a very simpli�ed ex-
ample with only one dimension and two clusters. Suppose that we have univariate
data coming from the same standard normal distribution. If one wants to max-
imize explained variance, one should divide the data into positive and negative
observations, which will explain 64% (exactly 2=�). The model-based approach,
however, will say that there is only one normal distribution, and, if forced, it will
give a very small second group somewhere. It will thus not explain any variance
at all, but will still give the best model description. Another reservation may be
that explained variance treats all directions as equal (after standardization), and
the model-based method will put more emphasis on directions where there is a
clear structure such as a bimodal density.

6.2 Ward�s Method

Before Ward�s method is applied to the IDA data set, it is standardized. No
obvious number of clusters appears as the best solution using Ward�s method.
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To compare with the model-based solution we look at the �ve-cluster solution.
The sixth cluster in the model-based solution is deviant and does not have a
homogeneous structure. It would therefore be useless to compare it with a non-
deviant group. The clustering result di¤ers between the two methods. The cluster
variances generated by Ward�s method are smaller than those generated by model-
based clustering, except for the variances of parents�educational level. The groups
also become more similar in shape and size, a consequence of the Euclidean dis-
tances used in Ward�s method. In Figure 6, a plot over the �rst two principal
components is given for a graphical comparison to model-based clustering in Fig-
ure 5.
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Figure 6: Clustering structure according to Ward�s method.

Since the data set does not have a strong homogeneous group structure, both meth-
ods generate results with relatively low explained variance. Explained variance for
the �ve-cluster solution using Ward�s method is 36:5 percent. The explained vari-
ance in percent is calculated as the di¤erence between the total variance and the
unexplained variance (the within variance), divided by the total variance. The
within variance for the model-based method is calculated in two di¤erent ways.
The �rst takes into consideration the membership probabilities for overlapping
areas in the following way:

Within V ariance =
JP
j=1

KP
k=1

b!jb�2kj; (2)

where b�2kj is the estimated variance for dimension k in Cluster j, and b!j is the
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estimated probability for Cluster j. We will call this Layout 1. The other way to
calculate the within variance is simply to assign an individual to the cluster which
it is the most likely to come from. The variance for each cluster is then calculated
in an ordinary fashion. We call this Layout 2. It is more comparable with the
explained variance generated from a deterministic clustering, since it makes clear
cuts between clusters.

In addition to the two ways of calculating the variance, there are two ways of
handling the variance of the deviant cluster. The question arises if it should be
viewed as unexplained or explained variance. To include the large within variance
for the deviant cluster into the unexplained variance would not be correct. The
deviant cluster is generated on the basis of dissimilarities between individuals,
and the variance should therefore not be classi�ed as unexplained. On the other
hand, labelling it as explained variance, i.e. as the variance between groups, is not
completely correct. The labelling is subjective, and we therefore present results
from both perspectives and for both ways of calculating the variance. Layout 1
calculates the within variance according to (2), and Layout 2, described above,
assigns each individual to a cluster before calculating the variance.

Not surprisingly, Layout 1 generates lower variances than Layout 2. If we view
the variance in the deviant cluster as explained variance, both Layouts 1 and 2
give better results than Ward�s method, which has an explained variance of 36:5
percent. When the variance of the deviant cluster is viewed as unexplained the
result is once again better for Layout 1, and just below that of Ward�s method for
Layout 2.

Explained Variance (%)
Variance in deviant cluster Variance in deviant cluster
classi�ed as explained classi�ed as unexplained

Layout 1 44.3 35.0
Layout 2 47.8 42.2

Table 5: Explained variance for model-based clustering for the IDA data set. The
corresponding value for Ward�s method is 36.5 percent.

7 Discussion

In our model-based, probabilistic clustering approach, most data is modelled from
a mixture of multivariate normal distributions where each distribution represents a
cluster. This approach is well suited for handling overlapping groups with di¤erent
structures. The special topic of this paper is a deviant group, consisting of indi-
viduals di¤erent from any other individual, widely spread over the sample space.
Model-based clustering has the ability to handle cluster membership probabilities
for overlapping areas, which is not possible on a deterministic approach.
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The method is tested on a generated data set, containing deviant observation,
with promising results. The real multidimensional data set used in this paper is
complex in its nature. It does not show an obvious group structure which makes a
clustering of data challenging. Cluster means, variance/covariance matrices, and
cluster probabilities are estimated. Bayesian inference with MCMC simulation is
used. A prior opinion together with a likelihood function give us a posterior dis-
tribution for each variable. In this case, there is no previous knowledge about the
cluster structure. Therefore the prior distributions contain very little information,
which means that the posterior distributions are mainly determined by data. The
estimates are based on simulations from these posterior distributions. The method
separates data into overlapping clusters with logical group patterns. In addition,
the method successfully places deviant observations in a separate cluster.

Model-based clustering gives group structures with di¤erent shapes, volumes, and
directions. Deterministic clustering withWard�s method, which is based on Euclid-
ean distance, and where the aim is to minimize the unexplained variance, gives
somewhat di¤erent results. The method generates cluster structures where the
groups have a tendency to be of the same size and shape, presumably because of
limitations in the method. When comparing explained variance between the two
methods, model-based clustering gives the better result.

The model-based probabilistic approach has many advantages.

1. The method allows for the existence of a deviant cluster within the model.
In a deterministic clustering, outlier individuals have to be removed from
the data set prior to a clustering.

2. The method allows for di¤erent shapes, volumes, and directions among clus-
ters, as we have shown. It is equally well suited for situations where one or
several of them are equal or when the structures are predetermined, although
not illustrated in this paper.

3. The method handles overlapping groups by taking into account cluster mem-
bership probabilities in these areas.

4. Statements can be made on probabilities for single individuals�belonging to
di¤erent clusters. We can also calculate the probabilities for two or more
individuals�coming from the same underlying distribution.

5. The method not only generates point estimates for all variables, but also
associated uncertainty in the form of the whole estimated posterior distrib-
ution.

A drawback with the method is that the complex model requires a lot of data
capacity and long iteration chains to get reliable estimates. The computational
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capacity and iterations needed increase drastically with the number of parameters
to be estimated.

The normal- and uniform distributions used in this paper could of course be
changed to other distributions suitable for the analysis of interest. There are
a wide range of possibilities in changing the distributions. Adjustments of the
prior parameters for a given distribution are also possible and can improve the
result.
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Appendix
The likelihood function for data given �j, �j; and the number of observations from
cluster j is multivariate normal, yi

���j;�j � NM
�
�j;�j

�
. The inverse Wishart

prior distribution for �j together with the multivariate normal likelihood result
in an inverse Wishart posterior distribution conditional on y and V.

�j jy;V � W�1
�
nj +mj; j +�j +

nj� j
nj + � j

(yj � �j)(yj � �j)t
�
;

where nj is the number of observations from cluster j, yj is the sample mean in

cluster j, and �j =
P
i2j
(yi � yj)(yi � yj)t:

The same likelihood function together with the multivariate normal prior distrib-
ution for �j generates a multivariate normal posterior distribution conditional on
y, �j and V.

�j jy;�j;V � NM
�
�j;�j=(� j + nj)

�
;

where �j =
� j�j + njyj
(nj + � j)

:

The multinomial distribution is used to describe data conditional on !1; ::; !J ,
where each (unobserved) observation vi is one of J possible outcomes. The indica-
tor function I (vi = j) returns the value 1 if vi = j, i.e. observation i is classi�ed
in Cluster j; and 0 otherwise.

f (V j
) /
JY
j=1

!

nP
i=1

I(vi=j)

j

The multinomial likelihood times a Dirichlet prior generates a Dirichlet posterior
distribution for !1; :::; !J conditional on V.

!1; :::; !J j V � Dirichlet
��
�1 +

nP
i=1

I (vi = 1)

�
; :::;

�
�J +

nP
i=1

I (vi = J)

��

24



Cluster 1 Cluster 2

2666666664

1:41 0:12 0:36 0:15 0:03 0:05 �0:06
1:37 �0:03 �0:19 0:04 �0:12 0:01

1:17 0:01 0:03 0:08 0:04

1:03 0:35 0:27 0:02

0:55 0:09 0:05

0:50 0:11

0:45

3777777775

2666666664

1:12 0:22 0:38 0:03 �0:01 0:02 �0:08
0:86 0:16 �0:08 0:05 �0:09 0:05

1:06 0:09 0:06 0:10 �0:06
0:80 0:33 0:24 �0:29

0:50 0:10 �0:31
0:39 �0:14

0:92

3777777775
Cluster 3 Cluster 4

2666666664

1:12 0:16 0:28 0:05 �0:02 �0:01 �0:04
1:13 0:01 �0:08 0:07 �0:07 �0:04

1:12 �0:06 �0:03 0:03 �0:01
0:66 0:12 0:15 0:02

0:34 0:00 �0:04
0:31 0:06

0:44

3777777775

2666666664

1:34 0:24 0:27 0:10 0:05 0:04 �0:02
1:30 �0:09 �0:08 0:11 �0:09 0:01

1:00 0:04 �0:03 0:04 0:02

0:73 0:21 0:20 �0:01
0:49 0:03 �0:14

0:40 �0:02
0:51

3777777775
Cluster 5

2666666664

1:30 �0:05 0:30 0:12 �0:03 0:06 0:00

1:61 0:08 �0:07 0:03 �0:04 0:01

1:30 �0:04 �0:02 0:03 �0:01
0:66 1:17 0:11 0:01

0:35 �0:02 0:05

0:30 0:02

0:38

3777777775
Table 6: Estimated covariance matrices for the real data study.

Individual
720 155 28 481 886 334 533 889 451 165 42 324 277 524 747

Attitude Swedish 3 4 4 1 2 1 2 2 2 1 3 5 1 1 1
Attitude Math. 5 4 3 2 5 5 4 1 5 2 3 3 4 5 5
Attitude Religion. 5 5 3 2 4 3 3 5 5 1 3 5 1 4 3
Grade Swedish 4 3 2 2 4 4 2 4 5 3 2 3 3 2 4
Grade Math 2 2 1 2 5 3 3 5 4 2 2 5 3 3 3
Grade Religion 2 2 2 2 5 2 5 5 5 3 2 2 5 3 4
Parents�Educ. Lev. 1 1 1 1 6 3 5 7 5 1 1 7 5 4 3
Prob. Cluster 6 1.00 0.98 0.98 0.93 0.92 0.91 0.86 0.86 0.86 0.83 0.83 0.82 0.79 0.78 0.72

Individual
154 523 24 719 322 43 179 578 284 534 743 25 333 890

Attitude Swedish 4 5 5 1 2 4 3 3 5 2 1 4 3 3
Attitude Math. 2 2 3 1 1 3 4 3 1 4 5 3 1 2
Attitude Religion. 1 1 2 2 5 5 4 3 1 1 2 2 4 3
Grade Swedish 3 2 1 3 3 2 3 3 3 3 4 2 4 2
Grade Math 1 3 3 5 5 2 2 3 4 1 3 1 3 2
Grade Religion. 3 3 4 2 2 2 4 1 3 2 4 1 1 3
Parents�Educ. Lev. 6 1 6 7 5 2 1 1 1 4 1 4 5 6
Prob. Cluster 6 0.67 0.65 0.64 0.63 0.61 0.58 0.56 0.55 0.55 0.55 0.55 0.55 0.53 0.51

Table 7: Actual values for all individuals with a probability of 50 percent or higher for
the deviant cluster. The bottom row presents classi�cation probabilities for the deviant
cluster, and the individuals are presented in order of decreasing probability.
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Abstract

A Bayesian approach to longitudinal cluster analysis is presented. At
each time point data is assumed to come from a number of multivariate
distributions, each one with its speci�c size, shape and orientation. Lon-
gitudinal movements are studied through transition matrices, where one
matrix applies between two consecutive time points. We estimate cluster
parameters and transition probabilities through Markov Chain Monte Carlo
(MCMC) simulations. We apply the method on two generated data sets,
one with two time points and the other with three. The results are com-
pared to k-means clustering by looking at the classi�cation accuracy. The
results show that our method is well on a par with k-means clustering. We
also apply the method on a real data set, where logical cluster divisions and
transitions between them appear. Our Bayesian approach, in comparison to
a frequentist approach, not only generates point estimates of the parame-
ters of interest, but also information about their uncertainties in the form
of the posterior distributions. We also obtain information on probabilities
for a single object belonging to a cluster at a speci�c time point, or to a
longitudinal development pattern.

Keywords: Longitudinal, Transition matrix, Cluster analysis, Clus-
tering, Classi�cation, Gaussian, Mixture model, Hidden Markov Model,
MCMC, Gibbs sampler.
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1 Introduction

Cluster analysis with the aim of �nding group structures in data, is applicable in
many di¤erent �elds. Longitudinal data give a new perspective on cluster analysis.
There are two main routes to take when working with longitudinal cluster analysis.
In the �rst, the development of each individual over time is studied, and the aim is
to cluster the individuals into a few typical development classes. The longitudinal
types are identi�ed directly in the classi�cation: see for example Pauler and Laird
(2000). In the second approach, which is the focus of this paper, each object
is classi�ed at each time point, and in the longitudinal analyses, one learns how
subjects move between groups over time and how group structures change as time
passes. Classi�cation of individual development patterns in psychology, and the
e¤ectiveness of a drug or treatment in medicine, are two examples among a wide
range of applications.

We present a Bayesian and model-based approach to longitudinal cluster analysis.
All objects are measured on several variables at certain time points. The number
of variables and which variables to use, may change between times. We study the
case with continuous data, which we assume to come from di¤erent multivariate
normal distributions at each time point. The units are to be classi�ed on each mea-
surement occasion, and we are interested in both the speci�c cluster parameters
and the movements between clusters. These are modeled by Markov transition ma-
trices, where one matrix is applied between two consecutive data collection points.
The method accounts for uncertainty in the parameters, conditional only on the
correctness of the underlying model. The analysis provides information, not only
on group structures at di¤erent time points and transition patterns between them,
but also on every single object. One may, for example, study an object to see its
possible movements between clusters and the probabilities for each movement.

Our model belongs to the category of hidden Markov models (HMM). In a Markov
model objects move between di¤erent states where the future states depend only
on the present state, and not on the previous state. In a hidden Markov model
the states are latent and can not be observed directly. We can only use a number
of indicators to determine them. In an ordinary Markov model, the states are
known and visible to the observer, leaving the transition probabilities as the only
parameters in the model. Hidden Markov models are widely applied in �nancial
time series analysis - see for example Shi and Weigend (1997) and Knab et al.
(2002) - and are also used with great success in signal processing �elds like speech
recognition (Rabiner (1989) and Huang et al. (1990).

The study of longitudinal clustering using transition matrices is not new. How-
ever, the methods most frequently used are deterministic clustering where each
object is assigned to a cluster at each time independently. After that, the cluster
assignments and cluster centers are treated as known and the results are used to
estimate transition probabilities and to �nd movement patterns. Examples can
be seen in Sugar et al. (1998) and (2004), where k-means clustering is used to �t
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health state models, and in Bergman et al. (2003) where Ward�s method is used
for this purpose in studying individual development.

The deterministic clustering, even though easy to implement, comes with some
drawbacks. It is a two-step procedure where objects are �rst assigned to clusters,
after which the transition probabilities are estimated. This procedure does not
take into account all available information. Our method simultaneously estimates
the parameters of the mixture components and the transition probabilities, in-
cluding information from all time points. Furthermore, k-means clustering and
other deterministic methods often work best when the data stem from a mix-
ture of Gaussian distributions with identity covariance matrices: see Scott et al.
(2005). This might cause problems when the clusters are in fact di¤erently shaped.
These methods also make clear cuts between clusters, while our method handles
overlapping groups by producing cluster membership probabilities in these areas.

Scott et al. (2005) use a similar HMM method specially designed to study tran-
sitions between health states after di¤erent treatments. Their model incorporates
treatment data into the procedure, to directly assess a treatment�s e¤ectiveness.
The model accounts for treatments starting, ending, or switching during the time
period. Instead of normal distributions, Scott et al. use the t-distribution, which
calls for an extra iteration step to estimate the degrees of freedom in the distrib-
ution.

In Section 2, we begin by presenting the model for an arbitrary number of time
points. The method, including prior speci�cation and posterior derivation, is given
in Section 3. Two simulated data studies, the �rst with two time points and the
second with three time points, are analyzed, discussed and compared to k-means
clustering in Section 4. Results from a real data set are given in Section 5. Finally,
in Section 6, concluding remarks are given.

2 Model

We follow n objects over a number of T time points. At each time t; we assume
data to be generated from a mixture of multivariate normal distributions, each
distribution with its speci�c mean vector �(t)j and covariance matrix �(t)j . We
allow for the groups to have di¤erent shapes, volumes, and directions described by
their covariance matrix. The number of distributions may vary between the time
points and so may the dimensions of data. At time t there is a mixture of J (t)

distributions in d(t) dimensions. We assume that all objects and time points are
independent. Data for object i at time t; y(t)i is a vector with length equal to the
dimension of data. The mixture distribution for data at time t is expressed as

f
�
y
(t)
i

����(t)j ;�(t)j � = J(t)X
j=1

!
(t)
j f

(t)
j

�
y
(t)
i

����(t)j ;�(t)j � i = 1; :::; n
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where !(t)j is the probability that an object belongs to Cluster j at time t and f (t)j
is a multivariate normal density.

We introduce the matrix V =
�
V(1):::V(T )

�
, where each V(t) is a vector containing

the classi�cation for all n objects at time t; i.e. V(t) =
h
v
(t)
1 ::: v

(t)
n

i0
where v(t)i = j

means that object i belongs to group j at time t.

In a hidden Markov model, the objects move between the distributions (hidden
states) according to a Markov chain with the transitions matricesQt and the initial

distribution between clusters 
(1) =
h
!
(1)
1 ::: !

(1)

J(1)

i
. We use an inhomogeneous

hidden Markov model where we allow for di¤erent transition matrices between
di¤erent time periods. The matrixQt contains the transition probabilities between
times t and t + 1. The transition matrix Qt is of size J (t) � J (t+1), containing
the elements qj(t);j(t+1) ; which gives the transition probability between Cluster j

(t)�
j = 1; :::; J (t)

	
at time t; and Cluster j(t+1)

�
j(t+1) = 1; :::; J (t+1)

	
at time t +

1. The clusterprobabilities at time t + 1, 
(t+1) =
h
!
(t+1)
1 ::: !

(t+1)

J(t+1)

i
, is a direct

consequence of 
(t) and the transition probabilities in Qt according to


(t+1) =
h
!
(t+1)
1 ; :::; !

(t+1)

J(t+1)

i
= 
(t) �Qt

�i;j(1);j(2);:::;j(T ) is the indicator for observation i as belonging to a certain develop-
ment pattern, i.e. it belongs to Cluster j(1) at time 1; and Cluster j(2) at time 2;
until the last time point T where it belongs to Cluster j(T ). The indicator proba-
bilities are the basis for the simulation of the classi�cation matrixV. According to
Bayes�rule we may express the conditional probability for a speci�c development
pattern for object i given the data and the parameters as

P
�
�i;j(1);:::;j(T ) = 1

���y(1)i ; :::;y(T )i ;�
(1)
j ; :::;�

(T )
j ;�

(1)
j ; :::;�

(T )
j ;
(1);Q1; :::;QT�1

�
=

P
�
�i;j(1);:::;j(T ) = 1;y

(1)
i ; :::;y

(T )
i

����(1)j ; :::;�(T )j ;�
(1)
j ; :::;�

(T )
j ;
(1);Q1; :::;QT�1

�
P
�
y
(1)
i ; :::;y

(T )
i

����(1)j ; :::;�(T )j ;�
(1)
j ; :::;�

(T )
j ;
(1);Q1; :::;QT�1

� =

!
(1)

j(1)
�
T�1Q
t=1

qj(t);j(t+1) �
TQ
t=1

f
(t)
j

�
y
(t)
i

����(t)j ;�(t)j �P
j(1);::;;j(T )

�
!
(1)

j(1)
�
T�1Q
l=1

qj(t);j(t+1) �
TQ
t=1

f
(t)
j

�
y
(t)
i

����(t)j ;�(t)
j

��
for i = 1; :::; n and all possible combinations of j(1); :::; j(T ):
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3 Method

3.1 Prior Speci�cation

According to Bayesian standards, we specify the prior distributions and accompa-
nying hyperparameters for each model parameter, in this case �(t)j , �

(t)
j , 


(1), and
Qt for j = 1; :::; J (t) and t = 1; :::; T: The derivations of posterior distributions are
given in the next section.

An inverse Wishart distribution is used as prior for �(t)
j � W�1

�
m
(t)
j ; 

(t)
j

�
, with

m
(t)
j degrees of freedom and scale matrix  (t)j . The prior for �

(t)
j given �(t)

j is a

multivariate normal distribution, �(t)j
����(t)

j � NM
�
�
(t)
j ;�

(t)
j =�

(t)
j

�
; for some preci-

sion parameter � (t)j . A small value of the precision parameters �
(t)
j gives less weight

to the prior means and larger variance in the posterior distributions.

The prior distribution for the cluster probabilities at Time 1; is a Dirichlet distri-
bution with hyperparameters �1; :::; �J(1) , i.e. (!

(1)
1 ; :::; !

(1)

J(1)
) � Dir (�1; :::; �J(1)).

The relative sizes of the parameters describe the expected cluster proportions, and
the sum of the �j�s is a measure of the strength of the prior distribution.

The transition matrixQt contains the group transition probabilities between Time
t and t + 1. Given the cluster membership at Time t, the transition probabilities
to Time t+1 follow Dirichlet distributions, which means that each row in Qt may
be expressed as,

Qt(j
(t); �) � Dir(�(t)1 ; :::; �

(t)

J(t)
)

where the � hyperparameters have functions equivalent to those of the � parame-
ters.

Rows in Qt are independent of each other and of previous or future Q0s:

3.2 Conditional Posterior Distributions

When the posterior belongs to the same distributional family as the prior, the
likelihood and the prior distributions are said to be conjugate. This is the case in
this paper. The conditional posterior distributions have the same form as the pri-
ors, but with updated parameters. The conditional posterior distribution for �(t)j ;
containing the hyperparameters from the prior distributions and the likelihood
information is

�
(t)
j

��y(t);V(t) � W�1

 
n
(t)
j +m

(t)
j ; 

(t)
j +�

(t)
j +

n
(t)
j �

(t)
j

n
(t)
j + �

(t)
j

(y
(t)
j � �(t)j )(y

(t)
j � �(t)j )

0

!
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where n(t)j is the number of observations from Cluster j, y(t)j is the sample mean

in Cluster j, and �(t)j =
P
i2j
(y
(t)
i � y(t)j )(y

(t)
i � y(t)j )

0
; for t = 1; :::; T:

The conditional posterior for �(t)j has the following form:

�
(t)
j

���y(t);�(t)j ;V(t) � NM
�
�
(t)

j ;�
(t)
j =(�

(t)
j + n

(t)
j )
�

where �
(t)

j =
�
(t)
j �

(t)
j + n

(t)
j y

(t)
j�

n
(t)
j + �

(t)
j

� t = 1; :::; T:

The conditional posterior distribution for the cluster probabilities at Time 1 de-
pends on the prior belief and the actual number of objects classi�ed into each
respective group, described by the indicator function I below.

!
(1)
1 ; :::; !

(1)

J(1)
j V(1) � Dir

��
�1 +

nP
i=1

I
�
v
(1)
i = 1

��
; :::;

�
�J(1) +

nP
i=1

I
�
v
(1)
i = J (1)

���

Each row in Qt is generated separately. Conditional on an object�s origin at Time
t, the posterior distribution is

Qt(j
(t); �)

��V(t) � Dir
�
�
(t)
1 + n

(t) �
j(t); 1

�
; :::; �

(t)

J(t)
+ n

(t) �
j(t); J (t+1)

��
where n(t)(j(t); j(t+1)) counts the number of transitions from Cluster j(t) to Cluster
j(t+1) between Times t and t + 1 and �(t)1 ; :::; �

(t)

J(t)
are the hyperparameters from

the prior Dirichlet distribution.

3.3 Gibbs Sampler

The parameters of our model are estimated with the Gibbs sampler algorithm
which is the most commonMarkov ChainMonte Carlo (MCMC) technique. MCMC
techniques work by drawing samples from a parameter�s density, producing a chain
of samples in the right proportion, whereupon summary statistics of the parameter
can be made. The Gibbs sampler algorithm generates a new sample from all pa-
rameters in each iteration step. Each parameter is generated conditionally on the
others, successively updating the parameters. A detailed explanation of MCMC
techniques and the Gibbs sampler can be found in, for example, Gamerman (2006)
or Gilks et al. (1999).

The Gibbs sampler algorithm cycles, in our case, between sampling from the pos-
teriors of p

�
�
(t)
j

��y(t);V(t)
�
, p
�
�
(t)
j

���y(t);�(t)j ;V(t)
�
, p
�
P(1)

��V(1)
�
,
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p
�
V
���y(t);
(1);�

(t)
j ;Q

�
and p (Q jV ) for all t and j, according to the posterior

distributions given in the previous section.

4 Simulated Data Study

We test our method on two simulated data sets. In the �rst example, we generate
data from two time points, with di¤erent dimensions and number of clusters at
the separate times. At the �rst time point, two of the clusters are generated with
di¤erent variances within the covariance matrix, testing the method�s ability to
handle non-spherical distributions. In example 2, three time points are used and
the number of clusters and dimensions is increased. Data in both examples are
assumed independent between time points and are generated accordingly. The sim-
ulations are performed in Matlab, version 7.4, by a customized program written by
the author. The program is available for downloading, together with instructions
on www.statistics.su.se/forskning/MBCA.

4.1 Example 1

The �rst data set consists of 1100 objects generated from four multivariate normal
distributions in three dimensions at Time 1, and from three multivariate normal
distributions in four dimensions at Time 2. The mean vectors and cluster proba-
bilities, from which data is generated, are given in Table 1. The identity covariance
matrix is used for all clusters, except for two clusters at Time 1, where they have
smaller variance in one dimension. Data, in all three dimension combinations for
Time 1, can be seen in the �rst three graphs in Figure 1. We only present one
graph from the �rst two dimensions, out of four, for Time 2, since data is gener-
ated from distributions with the same mean values for all dimensions. This would
generate four almost identical graphs.

The prior belief for the mean is set to 0 for all dimensions and clusters, i.e. �(1)j =

[ 0 0 0 ]0 and �(2)j = [ 0 0 0 0 ]0 with the precision parameters � (1)j = �
(2)
j = 1.

The covariance priors �(1)j and �
(2)
j are equal to the identity matrix where 	(t)

j =

m
(t)
j �

(t)
j with m(1)

j = m
(2)
j = 5 degrees of freedom for all j. The expected cluster

probabilities at the �rst time point are assumed equal, �1 = �2 = �3 = �4 = 10;
and so are the transition probabilities within each row in the transition matrix,
�
(1)
1 = �

(1)
2 = �

(1)
3 = 5.

The results from 95 000 iterations (100 000 minus a burn in of 5 000) are shown in
Table 1. The algorithm manages to separate the objects into their original clusters
to a high extent, and to estimate the model parameters in a satisfactory way. The
two non-spherical clusters at Time 1, are recognized by the model.
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Figure 1: Generated data from Times 1 and 2. The �rst three graphs are from Time 1,
presented for all dimension combinations. The last graph presents data from Time 2 in
the �rst two dimensions. The rest of the combinations give similar graphs since data are
generated from distributions with mean values and variances equal for all dimensions.
Cluster 1: dots, Cluster 2: circles, Cluster 3: stars, and Cluster 4: plus signs.
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Posterior Estimates at Time 1
Cluster Mean Covariance Probability

1
2:90
0:07
0:93

3
0
1

0@ 0:35 �0:04 0:02
0:97 0:15

0:85

1A0@ 0:25 0 0
1 0

1

1A 0:19 0:18

2
�1:03
�0:02
1:96

�1
0
2

0@ 1:02 0:10 0:10
0:45 0:00

1:00

1A0@ 1 0 0
0:50 0

1

1A 0:22 0:23

3
�0:94
�1:96
�0:79

�1
�2
�1

0@ 0:93 0:05 �0:10
1:24 0:05

1:09

1A0@ 1 0 0
1 0

1

1A 0:28 0:27

4
0:95
2:00
3:02

1
2
3

0@ 1:04 0:07 0:15
0:99 0:07

1:01

1A0@ 1 0 0
1 0

1

1A 0:31 0:32

Posterior Estimates at Time 2
Cluster Mean Covariance Probability

1

1:02
0:98
1:03
0:99

1
1
1
1

0BB@
1:17 0:04 �0:08 �0:01

0:98 �0:04 0:02
1:03 0:02

0:97

1CCA
0BB@
1 0 0 0

1 0 0
1 0

1

1CCA 0:32 0:32

2

�0:96
�1:11
�1:03
�1:20

�1
�1
�1
�1

0BB@
1:48 0:23 0:05 0:45

1:22 0:25 0:21
0:90 0:13

1:20

1CCA
0BB@
1 0 0 0

1 0 0
1 0

1

1CCA 0:27 0:30

3

�1:81
�1:88
�1:92
�1:83

�2
�2
�2
�2

0BB@
1:06 0:08 0:14 0:07

0:95 �0:01 0:15
1:23 0:12

1:22

1CCA
0BB@
1 0 0 0

1 0 0
1 0

1

1CCA 0:41 0:38

Table 1: The top table contains estimates from Time 1 and the bottom table estimates
from Time 2. The posterior estimates are the mean of 95 000 iterations (100 000 minus
a burn-in of 5 000 iterations). To the right of each estimate are values from which data
were generated. The proportion estimates at Time 2 are a direct consequence of the
proportion estimates at Time 1, and the estimated transition matrix presented in Table
2.

In the transitions matrix Q, the rows represent the four clusters at Time 1 and
the columns, the three clusters at Time 2: The estimated transition matrix, seen
in Table 2, agrees well with its true values presented to the right.

Transition Matrix0B@ 0:67 0:18 0:15
0:22 0:49 0:29
0:19 0:19 0:62
0:28 0:26 0:45

1CA
0B@ 0:7 0:2 0:1
0:2 0:5 0:3
0:2 0:2 0:6
0:3 0:3 0:4

1CA
Table 2: The transition probabilities estimated from 95 000 iterations. To the right
are the probabilities from which data were generated.
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For a graphical illustration of the results and an understanding of the spread
around the estimated means, we give iteration plots and histograms for a small
selection of the estimated variables. Histograms for mean values from one cluster
at each time point are given in Figures 3 and 4. In addition, the iteration plot
for the mean values at Time 1, underlying the histogram in Figure 3, is given in
Figure 2. The values for each dimension are presented. The histograms in Figure
3 are located around the true mean values, whereas in Figure 4, there is a small
drift towards the right for all dimensions. The prior belief, put to 0 for all mean
values, may result in a higher estimate. Studying the probability estimates for
Time 2 in Table 1, one can see that the current Cluster 3 �steals� objects from
Cluster 2, which has mean values equal to -1, making the estimates of Cluster 3
a little higher than -2. It should be said that when estimating many values, a few
posterior distributions are expected to be skewed or not even to cover the right
value. We could expect the posterior estimates to cover the true value for about
95 out of a 100 estimates. For this example, we are estimating 24 mean values, 3
cluster probabilities, 54 variances and covariances, and 12 transition probabilities,
adding up to a total of 54 parameters.
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M
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Figure 2: Iteration plot over mean values from Cluster 4 at Time 1, underlying the
histograms in Figure 3.

9



0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5 x 104

Dimension 1
1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5 x 104

Dimension 2
2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5 x 104

Dimension 3

Figure 3: Histogram over mean values from cluster 4 at Time 1. The results from
95 000 iterations are presented for all three dimensions. Data are generated from mean
values equal to 1, 2 and 3.
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Figure 4: Histogram over mean values from cluster 3 at Time 2. The results from
95 000 iterations are presented for all four dimensions. Data are generated from mean
values equal to -2 in all dimensions.
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In Figure 5, we show the histograms for four out of the twelve transition proba-
bilities.
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Figure 5: Histogram over four of the twelve transition probabilities in the transition
matrix estimated from 95 000 iterations. The probabilities from where data are generated
are 0.7, 0.3, 0.2 and 0.3.

In addition to the posterior information of the cluster parameters, the iterations
provide us with information about single objects. For each object we may get a
chart like the one presented in Table 3, showing the number of times a chosen
object is classi�ed into each development pattern. For instance, the chosen object
in Table 3 is generated from Cluster 1 at Time 1 with values [ 2:4 0:6 2:3 ] and
Cluster 1 at Time 2 with values [ 0:8 1:8 1:2 2:8 ]. In the iteration process the
object ended up in the correct cluster combination 88.3 percent of the time. The
rest of the time the object was misclassi�ed, mainly to the combination going from
Cluster 4 at Time 1 to Cluster 1 at Time 2; i.e. it has a slight tendency to be
misclassi�ed into Cluster 4 at the �rst time point. In the margins of Table 3 the
probabilities for each cluster at each separate time is presented. The mean values
for Cluster 1 at Time 1 are [ 3 0 1 ] and for Cluster 4 [ 1 2 3 ], leaving the
generated values [ 2:4 0:6 2:3 ] in between the clusters, but closer to the centre
of its true cluster.

Cluster 1 2 3 Prob.at Time 1
1 83 922 14 0 88:3%
2 327 1 0 0:3%
3 0 0 0 0:0%
4 10 730 6 0 11:3%

Prob.at Time 2 99:9% 0:01% 0:0%

Table 3: The frequency of the cluster allocation combination for a chosen object after
95 000 iterations, generated from cluster 1 at Time 1, and cluster 1 at Time 2.
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4.1.1 Comparison with K-means Clustering

K-means clustering is a non-hierarchical clustering algorithm, which means that
it does not create a tree structure to describe the groupings in data, but creates
rather a single level of clusters. As opposed to hierarchical clustering the number of
groups must be known prior to the clustering. K-means uses an iterative algorithm
that minimizes the sum of distances from each object to its cluster centroid, over
all clusters. This algorithm moves objects between clusters until the sum cannot
be further decreased. The result is a set of clusters that are as compact and
well-separated as possible.

We compare the performance of our method with k-means clustering for this data
set. This is done by looking at the classi�cation accuracy, i.e. the percentage
of the objects classi�ed into the correct cluster. We look at the two time points
separately and simultaneously to see how the methods perform in a longitudinal
manner. The two methods show very similar results. In addition, our model-based
method generates more information, such as probabilities for single objects and
uncertainty information on estimated parameters.

k-means Model-based
Classi�cation accuracy at Time 1 94% 93%
Classi�cation accuracy at Time 2 87% 87%
Classi�cation accuracy at Time 1 and 2 82% 81%

Table 4: The classi�cation accuracy for k-means and model-based clustering. Per-
centage of objects that are correctly classi�ed at the two time points separately and
simultaneously. In our model-based method, each object is classi�ed to the cluster it
most often ended up in during the 95 000 iterations.

4.2 Example 2

In the second example, we expand the algorithm to cover three time points. 2000
data objects are generated from six normal distributions in four dimensions at
Time 1, from four normal distributions in �ve dimensions at Time 2, and from
�ve normal distributions in six dimensions at Time 3. In plain numbers we have
n = 2000, J (t) = 6; 4; 5 and d(t) = 4; 5; 6 for t = 1; 2; 3: Mean vectors from where
data is generated are given in Table 5. The identity matrix is used as the covariance
matrix for all distributions. To give a visual picture of our multivariate data set,
we reduce data at each time point to their �rst two principal components. The
graphs are presented in Figure 6.
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Figure 6: Generated data from the three time points presented by their �rst two
principal components. Graph 1: Data at Time 1, generated from six distributions
in four dimensions. The two principal components stand for 80.9 percent of the total
variance. Graph 2: Data at Time 2, generated from four distributions in �ve dimensions.
The two principal components stand for 74.0 percent of the total variance. Graph 3:
Data at Time 3, generated from �ve distributions in six dimensions. The two principal
components stand for 70.5 percent of the total variance. Cluster 1: x:s, Cluster 2: circles,
Cluster 3: triangles, Cluster 4: plus signs, Cluster 5: stars, and Cluster 6: dots.

The prior speci�cations for the parameters to be estimated are as follows. Prior
mean values are set to 0 for all dimensions and clusters, i.e. �(1)j = [ 0 0 0 0 ]0 ;

�
(2)
j = [ 0 0 0 0 0 ]0, �(3)j = [ 0 0 0 0 0 0 ]0 ; with the precision parameters

�
(1)
j = �

(2)
j = �

(3)
j = 1: The identity covariance matrices are used for the covariance

priors �(1)j ; �
(2)
j ; and �

(3)
j ; where 	

(t)
j = m

(t)
j �

(t)
j with m(1)

j = m
(2)
j = m

(3)
j = 5

degrees of freedom for all j. Equal probabilities for clusters at the �rst time point
�1 = ::: = �6 = 10; and equal transition probabilities within each row of the
transition matrices �(1)1 = ::: = �

(1)
5 = 5 and �(2)1 = ::: = �

(2)
4 = 5 are used. Table

5 contains posterior estimates after 95 000 iterations together with values from
which data were generated. Covariance matrices are presented in the Appendix.
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Posterior Estimates at Time 1
Cluster 1 Cluster 2 Cluster 3

Mean

�2:89
�0:91
�2:69
�2:77

�3
�1
�3
�3

�1:08
0:01

�0:94
�0:91

�1
0

�1
�1

0:96
0:00
0:89
1:08

1
0
1
1

Prop. 0:10 0:10 0:16 0:15 0:16 0:20

Cluster 4 Cluster 5 Cluster 6

Mean

1:76
�0:71
1:80

�0:64

2
�1
2

�1

0:11
2:00
2:02
0:11

0
2
2
0

3:99
2:94
1:95
1:00

4
3
2
1

Prop. 0:13 0:10 0:16 0:15 0:29 0:30

Posterior Estimates at Time 2
Cluster 1 Cluster 2 Cluster 3 Cluster 4

Mean

�2:02
�1:95
�2:01
�1:94
�1:91

�2
�2
�2
�2
�2

0:08
0:12

�0:03
�0:05
�0:08

0
0
0
0
0

�0:81
�1:01
�0:96
�0:99
�0:87

�1
�1
�1
�1
�1

0:88
0:92
0:96
0:96
0:91

1
1
1
1
1

Prop. 0:26 0:27 0:26 0:31 0:22 0:18 0:26 0:24

Posterior Estimates at Time 3
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Mean

�0:91
�0:98
�1:08
�0:95
�0:98
�0:83

�1
�1
�1
�1
�1
�1

�0:10
1:94
0:12
1:01
0:10
2:05

0
2
0
1
0
2

1:07
1:06
0:88
1:02
1:04
1:02

1
1
1
1
1
1

3:14
2:08
0:88
0:07

�0:96
�2:15

3
2
1
0

�1
�2

�1:79
�1:07
0:03

�1:04
�1:76
�2:83

�2
�1
0

�1
�2
�3

Prop. 0:27 0:29 0:24 0:24 0:17 0:17 0:12 0:12 0:21 0:19

Table 5: The posterior estimates are the mean of 95 000 iterations. To the right are
values from which data were generated. The proportion estimates at Times 2 and 3
are a direct consequence of the proportion estimates at Time 1 and the two estimated
transition matrices.

The method manages to satisfactorily estimate the mean, covariance, and cluster
probability parameters according to the true origin of data. At each time point
there are a few, minor drifts from the original values. At Time 1, Cluster 4 has
somewhat higher values for probability and mean parameters than wanted. It
�steals� values from Cluster 3, which ends up with somewhat lower estimates
compared to the origin of data. The same phenomenon can be seen at Time 2,
where Clusters 3 and 4 attract objects from Cluster 2, which lies between the two,
and at Time 3, where Cluster 5 attracts some values from Cluster 1, since the two
clusters are close in space.
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The estimates of the transition matrices Q1 and Q2 are presented in Table 6.
The estimates are accurate with a few exceptions. The largest deviation between
estimates and true values are the transition probability from Cluster 6 to 2 between
Times 1 and 2. It deviates by 10 percent, being estimated at 0.3 compared to the
true value of 0.4. It is partly a consequence of the random realization that Cluster
2, at Time 2, has a 5 percent lower probability estimate than the original value,
leaving fewer objects in the path to Cluster 2 at Time 2. The same tendencies are
present for most values in the second column of the estimated transition matrix
Q1, i.e. independent of the classi�cation at Time 1, objects move to Cluster 2 at
Time 2 to a lower extent than they should.

Transition Matrices
Between Times 1 and 20BBBBB@

0:48 0:22 0:16 0:15
0:07 0:35 0:11 0:46
0:10 0:32 0:36 0:22
0:30 0:18 0:22 0:30
0:52 0:10 0:12 0:26
0:22 0:30 0:27 0:21

1CCCCCA

0BBBBB@
0:5 0:2 0:1 0:2
0:1 0:4 0:1 0:4
0:1 0:4 0:3 0:2
0:3 0:2 0:2 0:3
0:6 0:1 0:1 0:2
0:2 0:4 0:2 0:2

1CCCCCA
Between Times 2 and 30B@ 0:45 0:20 0:13 0:09 0:12

0:31 0:08 0:16 0:11 0:35
0:08 0:51 0:17 0:10 0:14
0:20 0:20 0:21 0:18 0:21

1CA
0B@ 0:5 0:2 0:1 0:1 0:1
0:3 0:1 0:2 0:1 0:3
0:1 0:6 0:1 0:1 0:1
0:2 0:2 0:2 0:2 0:2

1CA
Table 6: The posterior estimates of the two transition matrices. To the right are the
values from which data were generated.

The paths for an object generated from Clusters 5, 1 and 1 in time order, with
values

�
�1:6 2:5 2:9 1:9

�
at Time 1,

�
�4:1 �2:1 �2:4 �2:4 �1:6

�
at Time

2, and
�
�1:8 �0:1 �2:7 �0:2 �1:0 �1:3

�
at Time 3, are presented in Table 7.

During the 95 000 iterations the object is correctly classi�ed to its true cluster
combination 98:7 percent of the time. When it is wrongly classi�ed, it is mainly
to Cluster 5 at Time 3, which is the cluster closest to Cluster 1 at that time point.

Path 5; 1; 1 5; 1; 5 3; 1; 1 5; 3; 1 4; 1; 1 5; 3; 5 4; 1; 5 3; 3; 1 6; 1; 1 2; 1; 1 4; 3; 1
Times 98 834 796 158 100 100 5 2 2 1 1 1

Table 7: Path frequency for an object generated from the cluster path 5,1,1. Paths
not presented have no hits during the 95 000 iterations .

4.2.1 Comparison with K-means Clustering

Comparing classi�cation accuracy for the two models gives similar results. Since
the model-based clustering takes data from all time points into account when
allocating objects to clusters, one would expect it to be better than k-means
clustering. However, this does not seem to matter much for the results. The
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di¤erences in Table 8 are too small to claim one method is superior to the other,
as regards classi�cation accuracies.

k-means Model-based
Classi�cation accuracy at Time 1 88:9% 90:0%
Classi�cation accuracy at Time 2 79:8% 83:3%
Classi�cation accuracy at Time 3 91:1% 89:0%
Classi�cation accuracy at Times 1, 2 and 3 64:6% 67:0%

Table 8: The classi�cation accuracy for k-means and model-based clustering. Percent-
age of objects that are correctly classi�ed at the three time points separately and at all
time points together.

The advantages of taking information from all time points into consideration does
not seems to have signi�cant e¤ect. The number of time points in the two examples
are few. With longer time chains, the e¤ect would probably have been more
noticeable.

5 An Application to the Cognitive Development
of School Children

We study the development of school children between third and sixth grade as
regards their attitudes to school work and their marks. Our data contain attitudes
to three school subjects - Religion, Mathematics, and their mother tongue Swedish,
as well as their marks in the same three subjects. The data comes from the
longitudinal research project �Individual Development and Adaption�(IDA) from
the Department of Psychology at Stockholm University. Our material covers all
1200 children in the Swedish town of Örebro who were born in 1954. Data was
collected in 1965 and 1968. This is just a part of the material in the IDA database
which contains much more information about the children from 1965 until the
present. In the study, many variables relating to behavior, social relations, family
climate, psychological, mental, and socioeconomic factors were measured. Further
information about the project can be found in Bergman and Magnusson (1997)
and Magnusson (1988).

Attitudes are measured on a scale from 1 to 5 corresponding to �dislike it�, �don�t
like it very much�, �neither-nor�, �like it�, and �like it very much�. The marks are
measured on the same scale with 1 being the worst mark and 5 the best. The data
used was collected when the students were in third grade and then again when
they reached sixth grade. The analysis is made on 720 individuals without partial
non-response for all variables at both time points. Mean vectors and covariance
matrices for the whole data set are presented in Table 9, for each time point
separately.
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Time 1
Variables Mean Covariance

Attitude Swedish
Attitude Math
Attitude Religion
Mark Swedish
Mark Math
Mark Religion

2:42
3:06
2:73
3:19
3:25
3:15

1:38 0:21 0:29 0:21 0:06 0:10
1:33 0:13 0:13 0:25 0:02

1:50 �0:05 �0:06 0:13
0:93 0:58 0:46

0:87 0:40
0:65

Time 2
Variables Mean Covariance

Attitude Swedish
Attitude Math
Attitude Religion
Mark Swedish
Mark Math
Mark Religion

2:14
2:70
1:81
3:18
3:23
3:14

1:08 0:13 0:36 0:18 0:05 0:16
1:35 0:20 0:06 0:35 0:10

1:33 0:15 0:15 0:31
0:88 0:64 0:68

1:06 0:67
0:97

Table 9: Mean values and covariance matrices for 720 individuals in the IDA data set,
presented for each time point.

The period from the age of 9 to 12 is an important period of a young person�s life.
The spread in the population increases between those who are successful at school
and those who are not. The marks are relative, so this cannot be seen from Table
9; but it is seen that the covariances increase between the time points. It will thus
be interesting to see if the present method can capture something of the changes.

The knowledge about the cluster structure for this data set is very limited. Mean
priors are set to 3 for all dimensions and clusters, i.e. �(1)j = [ 3 3 3 3 3 3 ]0 ;

�
(2)
j = [ 3 3 3 3 3 3 ]0 for all j; with the precision parameters � (1)j = �

(2)
j = 1:

The identity covariance matrices are used for the covariance priors �(1)j and �(2)j ,

where 	(t)j = m
(t)
j �

(t)
j with m(1)

j = m
(2)
j = 5 degrees of freedom for all j. Equal

probabilities for clusters at the �rst time point �1 = ::: = �5 = 10; and equal
transition probabilities within each row of the transition matrices �(1)1 = ::: =

�
(1)
5 = 5 are used to let data stand for the majority of information in the estimation
process.

The algorithm was run for di¤erent numbers of clusters, and the solution with
�ve clusters at each time point was �nally chosen. The decision is based on a
procedure starting with two groups and successively adding one group at a time.
The procedure was done for each time point separately. Up until a number of
�ve groups, additional cluster structure appeared for the new cluster at both time
points. Adding new clusters after that resulted in two or more clusters with almost
identical characteristics. Cluster solutions with up to ten clusters were tried. The
result for the �ve-cluster solution is seen in Table 10. The estimates are based
on 95 000 (100 000 minus a burn-in of 5 000). As an example, the iteration plot
for the probability estimates at Time 2 are given in Figure 7. A clear graphical
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picture of the mean estimates is given in Figure 8, and the cluster division for data
through the �rst two principal components is given in Figures 9 and 10.

0 2 4 6 8 10

x 104

0

0.05

0.1

0.15

0.2
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0.3

0.35

0.4

0.45

Iteration

Figure 7: Iteration plot for all �ve proportion parameters at Time 2. These values
are not generated directly but are a consequence of the generated proportion values at
Time 1 and the generated transition probabilities.

Time 1
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Attitude Swedish 2.29 2.77 2.22 2.74 2.15
Attitude Math 2.51 3.99 2.93 3.39 1.85
Attitude Religion 2.51 2.76 2.69 3.63 2.10
Mark Swedish 3.89 3.79 2.95 2.44 2.23
Mark Math 4.17 4.10 3.00 2.07 1.86
Mark Religion 3.71 3.53 3.01 2.60 2.45
Probability (percent) 18.3 23.8 34.4 12.6 10.9

Time 2
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Attitude Swedish 2.19 2.19 2.14 2.10 1.96
Attitude Math 3.06 3.06 2.74 2.25 1.64
Attitude Religion 2.02 1.97 1.77 1.57 1.74
Mark Swedish 4.12 3.73 3.04 2.39 2.09
Mark Math 4.95 3.99 3.00 2.01 1.58
Mark Religion 4.15 3.70 2.98 2.31 2.08
Probability (percent) 13.8 25.6 33.8 18.7 8.1

Table 10: Posterior estimates of the mean values for each cluster at the two time
points. Proportions between clusters are also given.

In the third grade, the attitudes are in general more positive than in the sixth.
The mark and attitude variables are more unanimous at Time 2 than at Time 1.
Good marks and a positive attitude towards a subject do not necessary go hand
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in hand for the students in third grade. The attitudes become more in line with
the mark variables at Time 2, and are also more even among groups compared to
Time 1, where they have a more sprawling nature. For both time points, Cluster
3 is the largest cluster, and lies more or less in the middle for all variables, making
it the �average group�.

It is interesting to see from Figure 8 that the classi�cation is not essentially one-
dimensional at third grade. If we classify the attitudes as P (Positive), M (Middle),
and N (Negative) and the marks as H (High), M (Median), and L (Low), the
�ve groups can be described as PH, PL, MM, NH, and NL. In the sixth grade,
the grouping is essentially one-dimensional and follows the marks more closely.
In particular, the mark in mathematics was central for the classi�cation. Even
though this classi�cation was done using longitudinal data, this can be seen as a
cross-sectional description.

Attitude Swedish Attitude Religion Attitude Math Mark Swedish Mark Math Mark Religion

1.5

2

2.5

3

3.5

4

4.5

1

Time 1

Cluster 1 (NH)
Cluster 2 (PH)
Cluster 3 (MM)
Cluster 4 (PL)
Cluster 5 (NL)

Attitude Swedish Attitude Religion Attitude Math Mark Swedish Mark Math Mark Religion
1

1.5

2

2.5

3

3.5
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4.5
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Time 2
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Cluster 3
Cluster 4
Cluster 5

Figure 8: Mean estimates for the �ve clusters at Time 1 (top) and Time 2 (bottom).
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Figure 9: Data from Time 1 projected onto the �rst two principal components standing
for 56.2 percent of the total variance. Each observation is allocated to one of �ve clusters
by looking at which cluster the observation most often ended up in during the 95 000
iterations
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Figure 10: Data from Time 2 projected onto the �rst two principal components stand-
ing for 58.1 percent of the total variance. Each observation is allocated to one of �ve
clusters by looking at which cluster the observation most often ended up in during the
95 000 iterations.
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Estimates of the transition probabilities between the two time points are presented
in Table 11. The clusters at both time points are ordered in descending order of
the marks. At each row, there are three probabilities appreciable greater than the
last two. Not surprisingly, transitions to clusters of similar characteristics have
the greatest probabilities.

The two groups NH and PH have almost identical transition probabilities. This
indicates that those who succeed at school their attitudes have almost no impor-
tance for their future development. On the other hand, the two groups NL and PL
di¤er. Those with positive attitudes are less likely to appear in the bottom group
(5) after three years compared to those with negative attitudes. One explanation
may be that children with positive attitudes are more likely to put more e¤ort into
their schoolwork.

Time 2
1 2 3 4 5

1 (NH) 0.25 0.45 0.22 0.04 0.04
2 (PH) 0.30 0.43 0.20 0.04 0.03

Time 1 3 (MM) 0.03 0.17 0.54 0.23 0.04
4 (PL) 0.05 0.06 0.35 0.39 0.15
5 (NL) 0.05 0.06 0.17 0.40 0.31

Table 11: Posterior estimate of the transition matrix between Times 1 and 2. Between
the demarcation lines are the three highest probabilities for each row. Given a cluster
membership at Time 1, transitions are more probable to clusters of similar characteristics
at Time 2.

6 Concluding Remarks

We have presented a model-based approach to longitudinal clustering. At each
time point, data is assumed to come from one of a number of multivariate normal
distributions, each with speci�c mean vector and covariance matrix. Transition
movements between clusters are studied through transition matrices. Di¤erent
transition probabilities apply for di¤erent transition periods. Changes over time
may occur naturally such as in the case of processes in nature, or be caused
by premeditated interference such as when di¤erent treatments are applied to a
population to see how it a¤ects transition patterns.

Application to two generated data sets gives promising results. The method man-
ages to estimate cluster parameters in a satisfactory way, as well as probabilities
between clusters at each time point, and transitions probabilities between clusters
at two consecutive time points. Comparing our method with k-means clustering
gives similar results for classi�cation accuracy, leaving our method with additional
information. An application is also made on a real data set consisting of data from
720 students. Data is collected at the third grade and then again at the sixth. A
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logical cluster solution at both time points appears together with a transition ma-
trix with high probabilities for transitions to clusters with similar characteristics.

The clustering for the real data set is based more on the mark variables than
the attitude variables. This can be seen for example by looking at the variance
estimates for each variable in each cluster. The variances are in general lower
for the mark variables than the attitude variables. The attitudes towards di¤er-
ent subjects among students in third grade, are more or less independent of their
marks in the same subjects. What the students enjoy is not dependent on their
performance. When the students reach sixth grade, their attitudes have a much
stronger connection with their marks. The cluster division at this time is basi-
cally ordered from clusters with negative attitudes and low marks to clusters with
positive attitudes and high marks.

For all estimated parameters, we are provided with the whole posterior distribu-
tion, giving us information about the accuracy of the point estimates. Moreover,
we obtain information about single objects. In k-means clustering and other de-
terministic methods each object is classi�ed in a group with probability 1. In our
model-based method we get probability estimates for each object�s belonging to
each cluster at each time point and also probabilities for all possible longitudinal
trajectories through time.

The method simultaneously estimates the parameters of the mixture components
and the transition probabilities, including information from each time point. With
a longitudinal viewpoint in mind, this is an advantage compared to an approach
where classi�cation is made at each time point before the transition probabilities
are estimated. For two or three time points, the advantages of using a longitudinal
viewpoint when clustering longitudinal data, were not signi�cant. A study, with
longer time chains, would get a better answer on how this approach impacts the
clustering result. However, once the time points and clusters increase, the number
of possible trajections from the �rst to the last time point for an object increases
drastically, which requires greater computer capacity.

Our approach is very general, allowing for clusters of di¤erent sizes, shapes, and
directions. In practice, it may be better to use a less general approach, for instance
constant variances between clusters. Another point of view is that the cluster
membership may not be the only information to use throughout the estimation.
There may be a correlation between the values at di¤erent clusters and/or times.
For example, if an object stays in a cluster where its values are a little below the
cluster means, this may have the e¤ect that its values are still somewhat low at a
later time. Dependencies between time points is not considered in this paper, but
can be built into the model.
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Appendix

Posterior Covariance Estimates at Time 1
Covariance 1 Covariance 2 Covariance 30BB@

1:12 �0:01 0:12 0:12
1:05 0:05 0:02

1:11 0:22
0:89

1CCA
0BB@
1:09 �0:05 �0:02 �0:04

1:01 0:00 0:03
1:03 0:01

1:06

1CCA
0BB@
1:00 �0:02 �0:10 0:03

0:82 �0:03 0:03
0:89 0:05

1:04

1CCA
Covariance 4 Covariance 5 Covariance 60BB@

1:14 �0:12 0:21 �0:12
1:06 �0:03 0:15

1:17 0:00
1:50

1CCA
0BB@
0:96 �0:13 �0:07 0:04

1:12 �0:04 0:00
1:01 0:04

1:07

1CCA
0BB@
1:04 �0:04 0:05 0:03

1:05 0:02 0:07
1:02 0:04

0:98

1CCA

Posterior Covariance Estimates at Time 2
Covariance 1 Covariance 20BBBB@

0:91 0:00 �0:11 �0:07 �0:08
0:98 0:00 0:10 0:04

1:08 0:01 0:00
1:08 0:02

1:11

1CCCCA
0BBBB@
1:17 0:10 0:01 0:09 �0:01

0:89 �0:05 �0:14 �0:04
0:94 �0:02 �0:04

1:02 0:00
0:99

1CCCCA
Covariance 3 Covariance 40BBBB@

1:05 0:06 0:15 0:09 0:13
0:97 �0:03 �0:01 0:15

1:07 0:02 0:13
1:20 0:16

1:32

1CCCCA
0BBBB@
1:16 0:07 0:13 �0:01 0:05

1:02 0:04 0:05 0:10
0:99 0:01 �0:06

1:00 �0:02
1:13

1CCCCA

Posterior Covariance Estimates at Time 3
Covariance 1 Covariance 20BBBBBB@

0:98 0:04 0:04 0:07 0:09 0:02
1:05 0:02 0:07 �0:06 �0:05

0:96 �0:10 0:01 0:03
1:06 0:00 0:10

1:08 0:07
1:00

1CCCCCCA

0BBBBBB@
0:96 0:02 �0:08 0:00 �0:11 0:12

1:02 �0:02 0:06 0:01 0:01
1:12 �0:04 0:11 �0:17

0:97 �0:08 �0:01
1:03 0:00

1:14

1CCCCCCA
Covariance 3 Covariance 40BBBBBB@

0:89 0:11 0:04 �0:02 �0:06 0:01
0:90 �0:05 0:08 �0:11 0:04

0:93 �0:02 0:01 �0:03
1:17 0:02 0:11

1:03 0:04
1:08

1CCCCCCA

0BBBBBB@
1:20 0:09 �0:16 �0:03 �0:06 �0:07

1:01 0:07 �0:03 �0:05 0:01
0:91 0:03 �0:01 0:04

0:93 �0:08 �0:08
1:02 0:03

1:02

1CCCCCCA
Covariance 50BBBBBB@

1:02 0:01 �0:02 �0:03 0:14 0:23
1:01 0:01 0:05 �0:01 �0:07

0:91 �0:04 �0:11 0:03
1:05 0:09 �0:05

1:02 0:17
1:24

1CCCCCCA
Table 12: Posterior estimates of covariance matrices for Example 2.
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Posterior Covariance Estimates at Time 1
Covariance 1 Covariance 20BBBBBB@

1:37 �0:11 0:20 0:23 0:01 0:13
0:91 0:10 0:01 0:08 �0:01

1:40 0:02 �0:03 0:18
0:62 0:12 0:26

0:25 0:05
0:51

1CCCCCCA

0BBBBBB@
1:00 0:01 0:36 0:10 0:01 0:03

0:06 0:01 0:01 0:01 0:01
1:22 0:03 0:12 0:13

0:56 0:15 0:24
0:33 0:10

0:44

1CCCCCCA
Covariance 3 Covariance 40BBBBBB@

1:38 0:18 0:24 0:21 0:00 0:08
1:40 0:06 �0:10 0:00 �0:15

1:64 0:03 0:00 0:20
0:57 0:00 0:20

0:02 0:00
0:51

1CCCCCCA

0BBBBBB@
1:34 0:13 0:04 0:15 0:01 0:00

0:65 0:04 �0:04 �0:01 �0:06
0:36 �0:06 �0:01 �0:01

0:56 0:02 0:13
0:15 �0:00

0:52

1CCCCCCA
Covariance 50BBBBBB@

1:75 �0:01 0:05 �0:05 �0:07 0:09
1:63 �0:58 �0:01 �0:06 �0:15

1:84 �0:20 �0:09 0:27
0:78 0:09 0:05

0:32 �0:01
0:50

1CCCCCCA
Table 13: Posterior estimates of covariance matrices at Time 1 for the real data study.

Posterior Covariance Estimates at Time 2
Covariance 1 Covariance 20BBBBBB@

1:03 0:26 0:33 �0:03 0:01 0:00
1:27 0:36 �0:13 0:04 �0:12

1:18 0:05 0:01 0:18
0:41 0:03 0:24

0:13 0:03
0:66

1CCCCCCA

0BBBBBB@
0:98 0:16 0:28 0:20 0:00 0:12

0:99 0:20 �0:12 0:01 �0:13
1:20 0:01 �0:00 0:12

0:56 0:00 0:30
0:04 0:00

0:52

1CCCCCCA
Covariance 3 Covariance 40BBBBBB@

1:17 0:12 0:33 0:17 �0:00 0:15
1:19 0:03 �0:19 0:00 �0:16

1:31 0:04 �0:00 0:26
0:51 0:00 0:26

0:02 �0:00
0:61

1CCCCCCA

0BBBBBB@
1:10 �0:04 0:50 0:26 �0:00 0:20

1:46 0:15 �0:27 �0:00 �0:16
1:49 0:10 0:00 0:24

0:52 0:00 0:27
0:05 0:01

0:55

1CCCCCCA
Covariance 50BBBBBB@

1:16 �0:05 0:22 �0:11 0:06 0:11
1:20 0:05 �0:13 �0:28 �0:02

1:57 0:19 0:03 0:30
0:53 0:11 0:18

0:62 0:18
0:52

1CCCCCCA
Table 14: Posterior estimates of covariance matrices at Time 2 for the real data study.
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Abstract

Non-response is a frequent problem when analysing repeated measure-
ments of multidimensional data. We evaluate a multiple imputation method
used in the process of clustering an incomplete longitudinal data set. A
model-based, longitudinal clustering method is used. At each time, we as-
sume data to be generated from a mixture model of multivariate normal
distributions. Each component of the distribution corresponds to a cluster
with cluster-speci�c parameters. We show that a model-based MCMC clus-
tering approach, can easily and e¤ectively be extended to deal with missing
data. Instead of imputing values before analysing them, which is the com-
mon imputation procedure, we impute missing values within the model.
Missing values are imputed as an iterative step in the Gibbs sampler algo-
rithm, used to estimate the model parameters. The method is applied to
two simulated data sets. The method is shown to handle non-response rates
up to 40-50 percent without serious loss of precision in estimates. A com-
parison is made with the mean imputation method, with favourable results
for the method of this paper. A real data set consisting of school childrens�
attitudes towards three school subjects and their marks in the same subjects
is the object of the last part of this paper. The results show more stable
estimates, with lower simulation variance when all 1206 individuals are in-
cluded in the estimation process through imputation, compared to when
only the 720 individuals with a complete data set were included..

Keywords: Missing data, Longitudinal, Multiple imputation, Transi-
tion matrix, Cluster analysis, Mixture model, Gaussian, Bayesian inference,
Clustering, Classi�cation, Gibbs sampler.
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1 Introduction

Non-response is a frequent problem in multivariate data. This is particularly
problematic in longitudinal studies. Franzén (2008) studied a model-based ap-
proach of longitudinal data over two time points where about 40 percent of the
individuals had to be discharged because of one or more missing values. Here,
we develop the method to use all available data. The underlying method of this
paper is a model-based approach to �nd group patterns in longitudinal data in
several dimensions. Within this method, missing data is imputed as a step in the
clustering/estimation process. The aim of this paper is to test the performance of
this imputation method. We analyze how the method handles di¤erent levels of
non-response. The performance is compared to mean-imputation and also to the
basal alternative of reducing data by deleting individuals with missing values.

Finite mixture-models are powerful and �exible tools in various classi�cation prob-
lems, as they are capable of modelling a wide range of densities. Cross-sectional
clustering under the assumption of a mixture-model has been the focus of many pa-
pers such as McLachland and Peel (2000), Ban�eld and Raftery (1993), Bensmail
et al. (1997) and, as mentioned above, Franzén (2008). Longitudinal clustering
with the mixed-model approach is much more rare in the literature. One example
among a few is Scott et al. (2005), where data is clustered at several time points.
Transition patterns between clusters at di¤erent time points are studied as well
as the development of single individuals. Despite method, repeated multivariate
measures are often subject to incompleteness. Item non-response and/or partial
non-response within items will mostly complicate, both the data analysis and the
statistical inference, and threaten the validity of a study.

Most standard statistical methods require complete data. Incomplete data is of-
ten dealt with by deletion, where all individuals with missing values are simply
excluded. In a longitudinal study, this means that an individual with one or more
missing variables for at least one time point, is removed from the data set. This
may drastically reduce the data set and worsen the result of the analysis. Valuable
information is wasted when individuals with an almost complete variable set are
removed, which may easily result in biased estimates. A well-functioning imputa-
tion method may improve the result considerably. Little and Rubin (2002) give a
comprehensive description of missing data and possible measures.

Many popular methods for imputing missing data in longitudinal studies are based
on the assumption of a linear growth curve model for the whole data set. Such a
model assumes that data is a linear function of covariates and design variables: see
for example Laird (1988), Little (1995), Liu et al. (2000), and Gilks et al. (1993).
In the �rst three papers, the estimates are done using maximum likelihood, where
Gilks et al. use Bayesian inference. In this paper, we are not trying to �nd a linear
development pattern to use when imputing values. Instead we make a classi�cation
of data at each time point and use each individual�s group membership in the
imputation process.
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Imputation of missing data in longitudinal studies may be done cross-sectionally or
longitudinally. The �rst approach imputes values based on other values from that
particular time point, while the latter also uses information from previous and/or
future times. Twisk and de Vente (2002) and Engels and Diehr (2003) compare
di¤erent cross-sectional methods (mean of serie, hot-deck, linear regression) with
longitudinal methods (last value carried forward, linear interpolation, longitudinal
linear regression). Both papers conclude that longitudinal imputation is preferred
over cross-sectional for the methods tested. In this paper, a longitudinal approach
is used. When an individual is allocated to a cluster, this is done simultaneously
for all time points. Information from all times are taken into consideration when
allocating an individual to its clusters throughout times and when imputing miss-
ing values.

Missing data imputation under the assumption of a multivariate normal model
is well studied: see for example Schafer (1997), Liu (1999), and Gahramani and
Jordan (1994). These papers all use the Expectation-Maximization (EM) algo-
rithm to estimate the parameters of the cluster model. The EM algorithm �nds
the maximum likelihood estimates of the model parameters. An alternative to the
EM algorithm is Bayesian inference. The Gibbs sampler is a Bayesian simulation
technique which iteratively draws samples from the full conditional distributions
of the parameters of interest. The posterior distributions are expressed conditional
on the other parameters in the model. The parameter value simulated from its
distribution in one iterative step, is used as a conditional value in the next step.
Replicating the process, generates a random sample from each parameter distrib-
ution. Lin et al. (2006) compareMean Imputation (MI) with imputation methods
using EM, and Data Augmentation (DA), where DA is a special form of Gibbs
sampler. The MI method is outperformed by the EM and DA methods. Further-
more, the DA imputation shows promising accuracy in the prediction of missing
values when compared to the EM imputation, especially when the missing value
rate becomes high.

In this paper, we combine two goals: Classi�cation of longitudinal data and han-
dling of missing values in the data set. Each individual is classi�ed at each time
point and in the longitudinal analyses, one learns how subjects move between
groups over time, and how group structures change as time passes. We take the
missing data into account at the time of the analysis. The technique simultane-
ously estimates the model parameters and imputes missing values. At each time
point, data is assumed to be generated from a mixture of multivariate normal dis-
tributions. We cluster data in a longitudinal manner by taking information from
all time points into account. Our Bayesian approach to cluster analysis provides
a good method for handling missing data, provided the data is missing at random
(MAR) or missing completely at random (MCAR). Under these circumstances, it
is fairly easy to include imputation into the analysis as a step in the Gibbs sampler
algorithm.

In Section 2, the mixture model is explained and the model notations are intro-
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duced. Section 3 deals with the missing value issue, the mechanism behind it,
and how the missing values of an individual are distributed conditional on the
observed values and its cluster membership. The Gibbs sampler is well suited to
simultaneously estimating model parameters and imputing missing values within
the algorithm. In Section 4, an explanation of Gibbs sampler and its simula-
tion steps are given. In Section 5, we test the method on two simulated data
sets generated from three time points. For each data set, imputation is made
for di¤erent non-response rates, and the estimation accuracy is the focus when
evaluating the results. In the same section, a comparison is made with the mean
imputation method as well as the approach of deleting all individuals with missing
values. In Section 6, we apply the method on a real data set consisting of 1206
school students� attitudes and grades, collected when they were in third grade
and then again in sixth grade. We do the analysis with and without imputation.
When deleting individuals with missing variables, we reduce the data set to 720
individuals. Asides from the Appendices, this paper ends with Section 7, where
concluding remarks on the study are given.

2 Model Speci�cation

In this section, we describe the situation with complete data, further described in
Franzén (2008). Developments for missing data are given in the next section.

We base the cluster analysis on a probability model, where each cluster is repre-
sented by a distribution with its speci�c parameters. Given a certain time point,
the population of interest consists of a known number of subpopulations. This
can be described as data coming from a mixture distribution. We give the formal
notations for the model below.

A sample with n individuals is observed at T di¤erent time points. The vector y(t)i
denotes the true values for individual i at Time t. At each time, each individual
is assumed to belong to one of J (t) groups or clusters. If the individual belongs to
group j, his values on the variables are assumed to follow a normal distribution
with mean �(t)j and covariance matrix �(t)

j . In other words, the data at Time
t comes from a mixture of J (t) multivariate normal distributions, each with its
speci�c mean vector and covariance matrix. Each distribution represents a cluster.
We introduce one vector V(t) for each time point, containing indicator variables
such as v(t)i = j if individual i at Time t is a member of Cluster j. The model for
an arbitrary individual i at Time t, conditional on its cluster membership, may be
expressed as:

y
(t)
i

���nv(t)i = j
o
� NM

�
�
(t)
j ;�

(t)
j

�
The true membership of individuals are unknown, i.e. the v(t)0i s are not observed.
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We assume random cluster membership, where the probability of belonging to a
Cluster j at Time t is the same for all individuals, formally expressed as,

p
�
v
(t)
i = j

�
= !

(t)
j

Conditional on the time point, we may interpret data as being a sample from a
mixed population with proportions !(t)1 ; :::; !

(t)

J(t)
. An individual may potentially

be a member of any cluster, and this is expressed through the mixture distribution

y
(t)
i �

J(t)X
j=1

!
(t)
j NM

�
�
(t)
j ;�

(t)
j

�
Going from one time point to another, individuals remain in the same cluster or
move to another according to a Markov process with transition matrix Qt. The
transition matrixQt contains the transition probabilities qjk = p

�
v
(t+1)
i = k

���v(t)i = j
�

between Time t and t+ 1. Given a classi�cation in Cluster j at Time t, the prob-
ability of being classi�ed into Cluster k at Time t + 1 is qjk. The size of the Qt

matrix is
�
J (t); J (t+1)

�
; i.e. the number of rows in Qt are the same as the num-

ber of clusters at Time t, and the number of columns are equal to the number of
clusters at Time t+ 1. Each row in Qt sums to 1.

The cluster probabilities at Time t+1, 
(t+1) =
h
!
(t+1)
1 ; :::; !

(t+1)

J(t+1)

i
, are direct func-

tions of the probabilities at the previous time 
(t); and the transition probabilities
in Qt according to


(t+1) =
h
!
(t+1)
1 ; :::; !

(t+1)

J(t+1)

i
= 
(t) �Qt

In the analysis to follow, we are to estimate the model parameters �(t)j ; �
(t)
j ; and

!
(t)
j for all j within all t as well as Qt for t = 1; :::; T � 1. The collection of these
four kinds of parameter will be given the catch-all denotation �: The classi�cation
vectors V(t) for t = 1; :::; T play an active part in the estimation process described
in Section 4.2. When an individual is classi�ed to a cluster, this is done simul-
taneously for all time points. Instead of making the classi�cation for each time
point separately based on data from that time point only, we take data from all
time points into consideration in the classifying process. An individual�s cluster
memberships are decided simultaneously for all time points. We use the indicator
�i;j(1);j(2):::;j(T ) to describe individuals development over time. �i;j(1);j(2);:::;j(T ) = 1

when observation i belongs to Cluster j(1) at Time 1; and Cluster j(2) at Time 2;
until the last Time point T; when it belongs to Cluster j(T ). The indicator proba-
bilities are the basis for the simulation of the classi�cation matrixV. According to
Bayes�rule we may express the conditional probability for a speci�c development
pattern for individual i given the data and the parameters as:
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P
�
�i;j(1);:::;j(T ) = 1

���y(1)i ; :::;y(T )i ;�
�
=

!
(1)

j(1)
�
T�1Q
t=1

qj(t);j(t+1) �
TQ
t=1

f
(t)
j

�
y
(t)
i

����(t)j ;�(t)
j

�
P

j(1);::;;j(T )

�
!
(1)

j(1)
�
T�1Q
l=1

qj(t);j(t+1) �
TQ
t=1

f
(t)
j

�
y
(t)
i

����(t)j ;�(t)
j

�� (1)

for i = 1; :::; n and all possible combinations of j(1); :::; j(T ):

3 Missing Values

There may be many reasons for missing data. Refusals and missed or overlooked
questions are causes directly connected to the respondent. Other causes may
be information not available, inapplicable questions, or errors in data entry. In
behavioral longitudinal studies it is unlikely that every individual�s variable set
will be complete at all prespeci�ed times. The default option for handling missing
data is often listwise deletion. Any individual with at least one missing variable
is deleted. Listwise deletion can lead to a considerable loss of information and
severely biased estimates. In longitudinal studies, one is especially vulnerable.
One missing variable at one time point for an individual, excludes all data at all
time points for that individual.

To what extent the result of an analysis is in�uenced by the incomplete data, de-
pends on whether or not there is a pattern in the drop-out. If the individuals with
missing variables have special characteristics, this will produce biased estimates. If
drop-out is random, listwise deletion produces a random subsample of the original
sample and the estimates will be unbiased, although there will generally be loss of
information.

3.1 Missing Data Mechanism

It is important to consider the missing data mechanism in all analysis of incom-
plete data sets. In this paper, we assume an ignorable non-response mechanism,
i.e. that data is missing completely at random (MCAR) or missing at random
(MAR). When the conditions hold we may proceed with our method and exclude
complicated missing data modeling. If one suspects a non-ignorable response mech-
anism, all results may be misleading, but one has no way of ascertaining this except
through further data collection.

We use the terminology introduced by Rubin (1976) to distinguish among the three
types of missing data mechanism. MCAR means that missingness is not related
to the variables under study and MAR means the missingness is related to the
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observed data but not to the missing data. Suppose we have a variable X which
is not subject to non-response and a variable Y which is. For a given data set, X
is then recorded for all subjects while Y is incomplete. If the probability that Y
is missing has no relationship to X or Y, data is MCAR. If the probability that Y
is missing depends only on the value of X, data is MAR. A process that is neither
MCAR nor MAR is missing not at random (MNAR), and here the missingness
depends on unobserved and possibly observed data.

There are no consequences concerning bias when making inferences based on data
that are MCAR. In this setting, most analysis will be straightforward. The only
issue is how to implement an analysis with missing data. Listwise deletion, which
discards all units with missing variables, yields valid inferences, although there
may be loss of e¢ ciency.

Rubin (1976) is searching for the weakest simple conditions in the process that
cause missing data, such that it is always appropriate to ignore this process when
making inference about the distributions of data. This is the case when the missing
data is MAR and the parameter of the missing data process is distinct from the
parameters in the model. When, as in MAR, the probability of non-response
depends on the observed response, but not on the unobserved response, it is not
necessary to specify a non-response model or to estimate its parameters in order
to obtain valid inference.

3.2 Distribution of Missing Values

The vector y(t)i for individual i at Time t can be divided into two parts y(t)i =�
yobsi ;y

mis
i

�(t)
; where yobsi is the observed part and ymisi is the missing part of y(t)i .

As stated earlier, the distribution for each vector y(t)i , given the cluster membership

j, is multivariate normal with parameters �(t)j and �(t)
j , i.e.

�
y
(t)
i

���v(t)i = j
�
=��

yobsi ;y
mis
i

�(t) ���v(t)i = j
�
� NM

�
�
(t)
j ;�

(t)
j

�
: The �(t)j and �(t)

j parameters may

also be divided according to the missingness in the data vector y(t)i .

�
(t)
j =

�
�obsj ;�

mis
j

�(t)
�
(t)
j =

�
�j;11 �j;12

�j;21 �j;22

�(t)

The elements in mean vector �(t)j and covariance �(t)
j are rearranged so that pa-

rameters corresponding to the observed values in y(t)i are followed by those corre-
sponding to the missing values. The covariance matrix is divided into four parts.
�j;11 is the (co)variances for observed dimensions and �j;22 for the corresponding
missing dimensions. �j;12 and �j;21 are covariances between missing and observed
values. Note that �j;12 = �

T
j;21. The matrices �j;11 and �j;22 are always symmet-

ric.
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If the missing mechanism is ignorable, i.e. MAR or MCAR, we may express the
conditional distribution of the missing values ymisi ; given the observed values yobsi
and the individuals cluster membership j as:

�
ymisi

���yobsi ; v(t)i = j
�
� NM

�
�misj +�j;21�

�1
j;11

�
yobsi � �obsj

�
;�j;3

�
where �j;3 = �j;22 ��j;21�

�1
j;11�j;12

(2)

Formula (2) is the basis for the imputation process in this paper. The cluster
membership carries information about the values of an individual. We use this to
impute new values in the Gibbs sampler process which is described in Section 4.2.
The imputation is not carried out in a traditional sense, in which the missing values
are imputed once before the analysis. Instead, the imputation is here a process
where new imputed values are generated in each iteration step in the simulations,
labeling it as a form of multiple imputation.

4 Estimation Method

4.1 Bayesian Inference

In classical inference, data is considered random while population parameters are
taken as �xed. In Bayesian analysis, parameters themselves follow a probability
distribution. Knowledge about a parameter, before data is even considered, is
summarized in a prior distribution p(�). The likelihood of the observed data y
given the parameter �, denoted p(y j� ), is used to modify the prior belief with
the knowledge brought by the data, summarized in a posterior density p(� jy ).
According to Bayes theorem, we express the relationship as p(� jy ) _ p(�)p(y j� ):
For a thorough explanation of Bayesian inference, see for example Congdon (2007)
and Bernardo and Smith (2000).

The unknown parameters in our model are �(t)j ; �
(t)
j ; !

(t)
j , Qt as well as the latent

classi�cation vectors V(t). We begin by specifying the prior distribution of each
parameter.

�
(t)
j � W�1

�
m
(t)
j ; 

(t)
j

�
�
(t)
j

����(t)j � NM
�
�
(t)
j ;�

(t)
j =�

(t)
j

�
�
!
(1)
1 ; :::; !

(1)

J(1)

�
� Dir (�1; ::::; �J(1))

Qt(j
(t); �) � Dir(�(t)1 ; :::; �

(t)

J(t)
)
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Except for the �rst two rows, variables are independent of each other and of
di¤erent values on t and J (t); i.e.

�
�
(1)
1 ;�

(1)
1

�
; :::;

�
�
(1)
J ;�

(1)
J

�
;
�
�
(2)
1 ;�

(2)
1

�
; :::;�

�
(T )
1 ;�

(T )
1

�
; :::;

�
�
(T )
J ;�

(T )
J

�
;
(1);Q1(1; �); :::;Q1(j

(1); �);Q2(1; �); :::;QT�1(j
(T�1); �)

are independent random variables.

The prior for �(t)j is the inverse Wishart distribution and for �(t)j the multivari-
ate normal distribution. The Dirichlet distribution is the prior distribution for the
population weights
(1) as well as for the probabilities for each row in the transition
matrices, Qt(j

(t); �). The selection of the hyperparameters (m(t)
j ; 

(t)
j ; �

(t)
j ;�

(t)
j ; �

(t)
j ;

�1; ::::; �J(1) ; �
(t)
1 ; :::; �

(t)

J(t)
) is chosen to make the priors weakly informative, in de-

fault of any prior information. All the priors above are conjugate distributions,
which mean that the posterior distributions are from the same family as the priors,
even though they are no longer independent. A full description of the conditional
posterior distributions, under the assumption of complete data can be found in
Appendix A. The derivations can be found in Franzén (2008).

4.2 Gibbs Sampler

Bayesian inference is often linked to sampling-based estimation methods due to
complicated or impossible numerical integration. Gibbs sampler (Geman and Ge-
man, 1984) is a powerful and well suited Markov Chain Monte Carlo (MCMC)
technique for estimating complex Bayesian statistical models. The Gibbs sam-
pler is an iterative procedure, which generates dependent samples from the joint
posterior density of all free parameters in the model. If we can express the dis-
tribution of each of the parameters conditional on all the others, then by cycling
through these conditional statements, the Markov chain will eventually reach the
true joint distribution of interest. The choice of starting values in�uences the �rst
iterated values. To avoid that these values�in�uencing the estimates, one removes
a suitable number of iterations in the beginning, referred to as the burn-in period.

Before the iteration process is started, one must choose some reasonable starting
values for all parameters. These are used as conditional values in the �rst iteration
round. The �rst step in the iteration involves sampling from the model parameters
�, �, 
, and Q, all denoted �. The �rst step is in reality four steps where
sampling is made from the conditional posterior distribution of each parameter,
given in Appendix A. The posterior distributions are given conditional on the
other parameters, data including imputed values for those that are missing, and
the group classi�cation for each individual, given by V. The second step involves
imputing values for the missing data and is used for each individual with at least
one missing value. This is done by drawing samples from the distribution in
Formula (2). We allow missingness to depend onV; i.e. there may be di¤erent non-
responses in di¤erent groups. In the last step, the classi�cation vectors are updated
in accordance with Formula (1). The classi�cation variables v(t)i ft = 1; :::; Tg are
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simulated according to the posterior probabilities the formula gives for all possible
development patterns. We summarize the tree iteration steps as,

1: p (� jy;V )
2: p

�
ymis

��yobs;V;��
3: p (V jy;� )

In each iteration round, new parameters are generated and the conditional distri-
butions are updated for the next iteration round. For a large enough number of
iterations, the process approaches the target posterior distribution.

5 Simulated Data Studies

The simulations are performed in Matlab, version 7.4, by a customized program
written by the author. The program is available for downloading together with
instructions, on www.statistics.su.se/forskning/MBCA.

5.1 Simulation Procedure

The longitudinal method is applied to two simulated data sets where each contains
data from three time points. Both data sets consist of 1000 individuals, which at
each time point are generated from multivariate normal distributions with di¤erent
mean vectors but the same identity covariance matrix. The mean values all lie
between -3 and 3. At Time 1, data is generated from six normal distributions in
four dimensions, at Time 2 from four normal distributions in �ve dimensions, and
at Time 3 from �ve normal distributions in six dimensions.

We study di¤erent non-response rates � to see how the imputation method man-
ages to improve the clustering results. The non-response is created by deleting �
percent of the values randomly over variables and individuals at each time point.
The result is a data set with missing values that are missing completely at ran-
dom (MCAR). A comparison is made with the mean imputation method. We
also study how much worse the results become when we exclude individuals with
missing values. In the comparisons, we use the performance measures variance
and estimation error as well as classi�cation accuracy, all explained further on.

The imputation method is tested on simulated data with well-separated groups as
well as overlapping groups. A graphical view of the data sets is given in Figure
1. The three graphs in the �rst column show the well-separated data for each
of the three time points. The second column shows the corresponding graphs for
the overlapping data. To be able to present the multidimensional data in two
dimensional graphs, we plot data through its �rst two principal components.

Before the algorithm is run, we specify the priors for the parameters. They are
chosen to be vague in the sense of not being very speci�c in the prior belief, in order
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Figure 1: Graphs in column 1 showi data generated from separated groups, and in
column 2 from overlapping groups. Data is projected onto the �rst two principal com-
ponents at each of the three time points. The principal components stand for 92, 81,
and 83 percent of the total variance for the �rst data material (column 1) and 76, 71,
and 55 percent of the total variance for the second data material (column 2).
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to let data have the main in�uence on the results. The estimates are based on
95 000 iterations. The �rst 5 000 of the total 100 000 iterations where discharged
as a burn-in period. This is common procedure since the algorithm usually takes
some number of iterations to converge to its right states.

5.1.1 Performance Measures

When comparing the performance of the method for di¤erent non-response rates,
we use two disparate performance measures. The Variance (V ar) provides infor-
mation concerning the spread in the estimate, and the Estimation Error (EE)
provides information on how far the estimate is from the true value of the con-
structed data set. The variance is a precision measure based on I iterations in
the Gibbs sampler. We call it the simulation variance. The EE can be seen as a
bias measure, however only based on the one sample from one estimation round.
Let any of the estimated variables be denoted �. The true value of � is denoted
�T : We express the performance measures as

V ar� =

IP
i=1

�
�i � �

�2
I

EE� =
�
� � �T

�2
where � =

IP
i=1

�i

I
(4)

In a Bayesian manner our true value �T follows a certain distribution. If the
method works properly, each �i is a draw from the same distribution. This means
the expected value of �T , �i, and �; which we denote m�, should be the same, and

so should E
h�
�T �m�

�2i
and E

�
(�i �m�)

2� : We approximate m� with � which

means the expectations E
h�
�T � �

�2i
and E

h�
�i � �

�2i
should be approximately

the same for large values of I, or equivalent V ar� = E (EE�) : Thus if our esti-
mation method works properly equality would be a con�rmation of a functional
estimation method. V ar� can, in other words, be used to predict the value of
EE�. In our simulations, we can in fact give both these values. In real data stud-
ies, where we do not know the true values, we are left with only the V ar values.
If large di¤erences appear between V ar� and EE�, it must be due to chance or to
the fact that the Markov chain has not yet converged, which can be solved with
larger I.

It would be too extensive to account for V ar and EE values for all estimated
parameters. Instead, we gather values in groups and present mean values of the
performance measures for each group. Mean 1 is the mean of EE

�
or V ar(1)�kj

�
;

calculated for all estimated cluster mean values at the �rst time point. With
6 clusters and 4 variables for each cluster at Time 1, this will be a mean over
24 values. We let EE(1)�kj

�
or V ar(1)�kj

�
denote the performance measure for the

k:th estimated � variable in Cluster j at Time 1. The EE or V ar values are
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calculated according to (4) for each variable. We make the expression Mean

1 =
�P6

j=1

P4
k=1EE

(1)
�kj

�
=24 which gives us the mean of the performance measure

for all variables and clusters at Time 1. Mean 2 and Mean 3 are calculated in
a similar way to receive the mean values at Times 2 and 3. Omega is the mean
of the performance measure for all cluster probabilities. Omega 1 is the mean
over the 6 values at Time 1, i.e. Omega 1 =

�P6
j=1EE

(1)
!j

�
=6; where EE(1)!j

denotes the performance measure for Cluster j at Time 1. Omega 2 is in the same
way the mean over the 4 values at Time 2, and Omega 3 over the 5 values at
Time 3. The transition matrices Q1 and Q2 are composed of 24 and 20 values
respectively. We express the mean of the performance measure over all transition
probabilities within Q1 as Trans 1 =

�P4
j=1

P6
i=1EEQ1ij

�
=24, where EEQ1ij is

the performance measure for the transition probability in Q1, going from Cluster
i at Time 1 to Cluster j at Time 2. Trans 2 is calculated in a similar manner.

5.2 Simulation Results

5.2.1 Estimation Precision

In the columns in Table 1, performance measures for mean, cluster probabilities
and transition probabilities are presented for each of the non-response rates �. The
performance measures for variances and covariances are given in Tables 10 and 11
in Appendix B.

All 1000 individuals are included in the calculations. Within each table the same
data set is used for all non-response rates. The missing values, on the other hand
vary for the di¤erent levels of non-response. The missing values for one percent
level are deleted, unconditional on other levels of non-response.

As expected, the method generates smaller performance measures in the separated
groups than in the overlapping groups. In general the EE and V ar are higher for
the overlapping groups in comparison with the separated groups for the same non-
response rate. In the same way the values increase in general within each table
when the non-response rate gets higher. There are exceptions from the general-
izations. Variations between two estimation runs, may in addition to the di¤erent
� and group structure (overlapping and separated), depend on the di¤erent data
sets we get when randomly eliminating missing values. These random �uctuations
together with smaller �uctuations in the Gibbs sampler estimation method may
cause estimates to deviate from the expected pattern.

Even though the performance measures for single parameters do not show in the
tables, the summarized mean values give a good compressed answer on the perfor-
mance of the method. Our estimation method works well for all sample sizes, even
though the true errors (EE), on average, are slightly larger than the predicted
(V ar). Equal magnitude for V ar and EE con�rms that the method works prop-
erly, as discussed in subsection 5.1. However, from a practical point of view, one
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should not have more than 40 percent missing values. One reason is a slower con-
vergence rate, which might demand intolerably long iteration chains. The other
reason is that the variance increases rapidly for non-response rates higher than
40-45 percent.

� (%) Mean 1 Mean 2 Mean 3 Omega 1 Omega 2 Omega 3 Trans 1 Trans 2

0 EE 0.00773 0.00728 0.01265 0.00015 0.00017 0.00005 0.00172 0.00085
Var 0.00905 0.00551 0.00816 0.00014 0.00018 0.00016 0.00114 0.00068

5 EE 0.00985 0.00836 0.01376 0.00015 0.00028 0.00006 0.00195 0.00088
Var 0.01008 0.00592 0.00871 0.00015 0.00019 0.00016 0.00119 0.00069

10 EE 0.01431 0.00755 0.01682 0.00018 0.00019 0.00005 0.00185 0.00086
Var 0.01120 0.00627 0.01090 0.00016 0.00018 0.00018 0.00122 0.00074

25 EE 0.02530 0.01728 0.02235 0.00026 0.00056 0.00009 0.00281 0.00100
Var 0.01632 0.00905 0.01421 0.00020 0.00022 0.00022 0.00151 0.00085

40 EE 0.00844 0.02548 0.04545 0.00022 0.00028 0.00030 0.00429 0.00122
Var 0.02718 0.01311 0.02152 0.00025 0.00042 0.00032 0.00201 0.00108

45 EE 0.04339 0.03432 0.05125 0.00051 0.00115 0.00024 0.00497 0.00140
Var 0.03098 0.01482 0.02748 0.00028 0.00030 0.00035 0.00216 0.00124

50 EE 0.39139 0.03505 0.10476 0.00074 0.00135 0.00070 0.00438 0.00136
Var 0.45287 0.01829 0.04653 0.00066 0.00034 0.00055 0.00528 0.00159

55 EE 0.62092 0.05466 0.08890 0.00032 0.00167 0.00079 0.00809 0.00151
Var 0.87568 0.02374 0.04244 0.00081 0.00041 0.00047 0.00635 0.00170

60 EE 1.20574 0.06336 0.47683 0.00032 0.00254 0.00177 0.02832 0.00565
Var 2.07609 0.02895 0.60500 0.00331 0.00043 0.00286 0.01682 0.00549

� (%) Mean 1 Mean 2 Mean 3 Omega 1 Omega 2 Omega 3 Trans 1 Trans 2

0 EE 0.00869 0.01062 0.00791 0.00010 0.00053 0.00037 0.00268 0.00084
Var 0.01424 0.00967 0.00770 0.00025 0.00033 0.00016 0.00166 0.00079

5 EE 0.01015 0.01233 0.00831 0.00006 0.00067 0.00033 0.00341 0.00073
Var 0.01700 0.01158 0.00840 0.00030 0.00039 0.00017 0.00187 0.00089

10 EE 0.01856 0.00803 0.00946 0.00036 0.00048 0.00030 0.00211 0.00095
Var 0.01959 0.01354 0.00920 0.00012 0.00041 0.00018 0.00200 0.00087

25 EE 0.02908 0.07202 0.03230 0.00030 0.00134 0.00051 0.00369 0.00192
Var 0.03527 0.04180 0.01682 0.00055 0.00075 0.00027 0.00314 0.00149

40 EE 0.02454 0.02526 0.02718 0.00028 0.00075 0.00075 0.00499 0.00141
Var 0.03842 0.02763 0.02005 0.00058 0.00064 0.00030 0.00334 0.00148

45 EE 0.63000 0.04647 0.04367 0.00109 0.00102 0.00040 0.00885 0.00137
Var 1.36245 0.02976 0.04396 0.00258 0.00060 0.00058 0.00922 0.00199

50 EE 0.27673 0.35252 0.02109 0.00081 0.00398 0.00045 0.02779 0.00380
Var 0.58651 0.28753 0.03077 0.00125 0.00278 0.00041 0.01947 0.00453

55 EE 0.89819 0.52773 0.17191 0.00059 0.00662 0.00255 0.03320 0.00581
Var 1.22986 0.60365 0.05474 0.00131 0.00275 0.00080 0.01777 0.00690

Table 1: Performance measures. Top table - separated groups, bottom table - overlap-
ping groups
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5.2.2 Classi�cation Accuracy

It may be of interest to study the method�s performance in the sense of classi�ca-
tion accuracies for individuals. Table 2 presents the percent of correctly classi�ed
individuals as a function of the number of missing variables and the non-response
rate. For each non-response rate and time point, we separate the individuals ac-
cording to howmany missing values they got. The percentage of correctly classi�ed
individuals are then calculated for each category.

The Bayesian clustering method generates cluster probabilities for each individual
belonging to each cluster. The allocations in the tables below are performed by
assigning an individual to the cluster for which that individual has the highest
cluster probability estimate. The column furthest to the right gives the overall
classi�cation accuracies for all 1000 individuals, independently of the number of
missing variables. Data has four variables at Time 1, �ve at Time 2, and 6 at
Time 3. The number of possible missing values is therefore di¤erent for the three
time points.

The classi�cation accuracies show a promising result for the method. There are
high percentages of correctly classi�ed individuals even for high rates of non-
response. The overall classi�cation accuracies are above 75 percent for non-
response rates as high as 50 percent for the separated data and 40 percent for
the overlapping data.

When the number of missing variables for an individual increase, the percentage
of correctly classi�ed individuals decreases. Still, for the separated groups, around
or above 90 percent of individuals with at most 2 missing values are correctly
classi�ed with some exception for Time 1, where the number of variables is only
4. The majority of individuals are correctly classi�ed even with only one observed
variable. For the overlapping groups, the result is not as good. Still, there are
around or above 70 percent of the individuals with up to 2 missing values which
are correctly classi�ed, with a couple of exceptions.

5.2.3 Imputation Contra No Imputation

Given a data set with a certain percent of random non-response, how much better
is our method compared to other methods in handling non-response? We will
compare our method with two common methods. In this section we remove all
individuals without complete variable sets. In the next subsection we use the mean
imputation method.

With a fairly low non-response rate of 5 percent a comparison is made between
imputing missing values contra running the method with a data set of only �com-
plete� individuals. The remaining data set, after randomly deleting individuals
with at least one missing value, consists of 464 individuals for the separated data
set and 458 for the overlapping data set.
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� (%) 0 missing 1 missing 2 missing 3 missing 4 missing 5 missing 6 missing Overall
0 Time 1 0.9780 0.9780

Time 2 0.9840 0.9840
Time 3 0.9760 0.9760

5 Time 1 0.9791 0.9598 0.9091* - - 0.9750
Time 2 0.9859 0.9444 0.9167* - - - 0.9760
Time 3 0.9742 0.9784 0.9286* 1.0000** - - - 0.9740

10 Time 1 0.9763 0.9377 0.8776* 0.5000** - 0.9600
Time 2 0.9802 0.9653 0.9054 0.7500** - - 0.9690
Time 3 0.9759 0.9590 0.9875 0.6923* 1.0000** - - 0.9670

25 Time 1 0.9898 0.9463 0.8682 0.6296 0.5000** 0.9230
Time 2 0.9812 0.9495 0.9228 0.8830 1.0000* 0.0000** 0.9420
Time 3 0.9874 0.9468 0.9485 0.8889 0.7105* 0.5000** - 0.9350

40 Time 1 0.9701 0.9511 0.8323 0.6496 0.5556* 0.8620
Time 2 0.9615 0.9635 0.9086 0.8571 0.7778 0.5000* 0.9040
Time 3 0.9302* 0.9175 0.9451 0.9163 0.8261 0.7241* 0.2000** 0.9050

45 Time 1 0.9468 0.9406 0.8376 0.6456 0.4348* 0.8210
Time 2 0.9583* 0.9528 0.9006 0.8367 0.7281 0.4000* 0.8710
Time 3 0.9730* 0.9308 0.9389 0.8622 0.7919 0.5091 0.1429* 0.8570

50 Time 1 0.8679 0.8840 0.7973 0.6202 0.4063 0.7520
Time 2 0.9706* 0.9712 0.8956 0.8397 0.7310 0.3929* 0.8490
Time 3 1.0000* 0.9079 0.9221 0.8550 0.7897 0.6122 0.4211* 0.8310

55 Time 1 0.7813* 0.8367 0.7109 0.5923 0.4257 0.6750
Time 2 1.0000* 0.9250 0.8862 0.8843 0.7040 0.4528 0.8290
Time 3 1.0000* 0.9825 0.9312 0.8814 0.8041 0.5956 0.2692* 0.8200

60 Time 1 0.8095* 0.7545 0.6735 0.5694 0.4206 0.6220
Time 2 0.9091* 0.8955 0.9295 0.8212 0.7371 0.4722 0.8070
Time 3 1.0000** 0.9130* 0.8881 0.8084 0.7027 0.6141 0.3500* 0.7400

� (%) 0 missing 1 missing 2 missing 3 missing 4 missing 5 missing 6 missing Overall
0 Time 1 0.9280 0.9280

Time 2 0.9090 0.9090
Time 3 0.9620 0.9620

5 Time 1 0.9163 0.9045 0.6000* - - 0.9110
Time 2 0.8976 0.8889 0.8333* - - - 0.8940
Time 3 0.9598 0.9256 0.8824* 1.0000** - - - 0.9500

10 Time 1 0.9200 0.8524 0.7755* 0.6000** - 0.8930
Time 2 0.9089 0.8844 0.8529 0.7000* 1.0000** 1.0000** 0.8960
Time 3 0.9560 0.9384 0.8692 0.8571* - - - 0.9400

25 Time 1 0.8967 0.8458 0.7248 0.5455* 0.1000* 0.8140
Time 2 0.8734 0.8395 0.7921 0.7340 0.5294* 0.0000** 0.8180
Time 3 0.9667 0.9331 0.8553 0.8085 0.7353* 0.4000** - 0.8875

40 Time 1 0.9478 0.8085 0.7287 0.5541 0.3429* 0.7470
Time 2 0.8919 0.8745 0.7994 0.7602 0.6471 0.6000** 0.8040
Time 3 0.9787* 0.9391 0.8815 0.8465 0.6985 0.7773* 0.5000** 0.8578

45 Time 1 0.9011 0.8294 0.6741 0.5529 0.2791* 0.6990
Time 2 0.9512* 0.8447 0.8075 0.7348 0.7593 0.5556* 0.7910
Time 3 0.9615* 0.9104 0.8780 0.8633 0.6901 0.5441 0.3333* 0.8220

50 Time 1 0.8442 0.7848 0.6992 0.5759 0.3800 0.6710
Time 2 0.8065* 0.7384 0.7735 0.7090 0.6096 0.5366* 0.7140
Time 3 1.0000* 0.9388 0.8987 0.8278 0.7167 0.6292 0.5909* 0.8080

55 Time 1 0.8000* 0.6915 0.6467 0.5164 0.3300 0.5900
Time 2 0.6000* 0.5000 0.5078 0.5198 0.4147 0.3385 0.4820
Time 3 0.9000* 0.9231 0.8247 0.7491 0.6968 0.5600 0.3333* 0.7250

Table 2: Percentage of individuals that are classi�ed into the right cluster as a function
of the number of variables missing and the total non-response rate. Values with one star
are based on 1 to 5 individuals and values with two stars on 6 to 50 individuals. A dash
indicates no individuals in that speci�c category. Top graph: separated groups, bottom
graph: overlapping groups.
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In Table 3, we once again give the performance measures for � = 5, together with
the new, corresponding values when imputation is not used. This would be the
same as having a non-response rate of 0 but a data set of about half the size of the
original. Both estimates are based on the same data. The performance measures
for the (co)variances are found in Table 12 in Appendix B.

The consequences of deleting the missing values are higher (worse) values of the
performance measures. The largest di¤erences appear in the Mean categories
where a few of the measures are as much as about 20 times higher without impu-
tation. An apparently low non-response rate, results in a large reduction of the
data set and large increases in the performance measures.

Separated Clusters
Without Imputation

� (%) Mean 1 Mean 2 Mean 3 Omega 1 Omega 2 Omega 3 Trans 1 Trans 2
5 EE 0.11885 0.04531 0.05886 0.00027 0.00119 0.00068 0.00615 0.00233

Var 0.23211 0.01780 0.02266 0.00040 0.00041 0.00037 0.00284 0.00144
With Imputation

Mean 1 Mean 2 Mean 3 Omega 1 Omega 2 Omega 3 Trans 1 Trans 2
5 EE 0.00985 0.00836 0.01376 0.00015 0.00028 0.00006 0.00195 0.00088

Var 0.01008 0.00592 0.00871 0.00015 0.00019 0.00016 0.00119 0.00069

Overlapping Clusters
Without Imputation

Mean 1 Mean 2 Mean 3 Omega 1 Omega 2 Omega 3 Trans 1 Trans 2
5 EE 0.07826 0.22881 0.02063 0.00008 0.00090 0.00054 0.00343 0.00122

Var 0.31716 0.24414 0.02009 0.00068 0.00060 0.00034 0.00427 0.00292
With Imputation

Mean 1 Mean 2 Mean 3 Omega 1 Omega 2 Omega 3 Trans 1 Trans 2
5 EE 0.01015 0.01233 0.00831 0.00006 0.00067 0.00033 0.00341 0.00073

Var 0.01700 0.01158 0.00840 0.00030 0.00039 0.00017 0.00187 0.00089

Table 3: Performance measures. Comparison study between imputing missing variables
contra discharging individuals with one or more missing variables.

5.2.4 Comparison with Mean Imputation

The mean imputation method is a commonly used method with a straightforward
application: see for example Little and Rubin (2002). The missing values are sim-
ply replaced by an overall mean, based on the non-missing values. For multivariate
data, a missing value for variable k is replaced by

yk =

PNk
i=1 y

(k)
i

Nk
;

where Nk is the number of non-missing values for variable k, and the i:th non-
missing value for variable k is denoted y(k)i :

The mean imputation method is applied to the data for non-response rates up to
40 percent. Our clustering algorithm is then applied as if there were no missing
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values. The results are shown in Table 4 (and in Table 13 in Appendix B for
(co)variances). Compared to the corresponding rates in Table 1, the estimates are
not as good, especially not for the estimation error (EE). This is however not
much of a surprise. In the mean imputation process, data is deformed towards
an overall mean and away from cluster-speci�c values. This causes the estimation
error EE to be large. The variance (V ar) does not increase as much, but is higher
for the mean imputations than our imputation method. When imputing mean
values, the overall variation in the data set decreases compared to a full data set.
This, in turn, makes it harder to identify clusters since they become more similar
to each other. In the iteration process, this causes more jumps for individuals
between clusters and therefore a larger variance.

� (%) Mean 1 Mean 2 Mean 3 Omega 1 Omega 2 Omega 3 Trans 1 Trans 2
5 EE 0.02201 0.02981 0.04058 0.00010 0.00037 0.00010 0.00237 0.00085

Var 0.01220 0.00659 0.00981 0.00017 0.00020 0.00018 0.00126 0.00072

10 EE 0.06236 0.00754 0.01323 0.00025 0.00032 0.00014 0.00279 0.00074
Var 0.01550 0.06406 0.10134 0.00019 0.00021 0.00021 0.00138 0.00079

25 EE 0.85948 1.38570 0.36259 0.00257 0.00832 0.00078 0.01826 0.00248
Var 0.05636 0.13839 0.01742 0.00031 0.00103 0.00032 0.00288 0.00142

40 EE 2.03553 2.33434 2.05706 0.01440 0.01395 0.01182 0.04234 0.01684
Var 0.39551 0.01390 0.01913 0.00029 0.00038 0.00029 0.00242 0.00116

� (%) Mean 1 Mean 2 Mean 3 Omega 1 Omega 2 Omega 3 Trans 1 Trans 2
5 EE 0.01935 0.02596 0.01648 0.00011 0.00070 0.00034 0.00399 0.00083

Var 0.02168 0.01637 0.00920 0.00035 0.00048 0.00019 0.00214 0.00099

10 EE 0.18590 0.04599 0.04347 0.00033 0.00047 0.00057 0.00493 0.00118
Var 0.24820 0.03818 0.01397 0.00075 0.00088 0.00028 0.00441 0.00138

25 EE 0.75682 0.56054 0.58311 0.00455 0.00611 0.00492 0.03001 0.00880
Var 0.06344 0.03200 0.02306 0.00039 0.00075 0.00045 0.00539 0.00194

40 EE 1.21787 1.07643 1.25841 0.01219 0.00715 0.02056 0.03659 0.02428
Var 0.17061 0.01569 0.05647 0.00030 0.00048 0.00072 0.00308 0.00180

Table 4: Performance measures when using Mean Imputation. Top table - separated
groups, bottom table - overlapping groups

Mean imputation gives fairly good results up to a non-response rate of 10 percent,
even though the values in Table 1 are better. For higher non-response rates than
10 percent, the mean imputation method does not manage to estimate the cluster
parameters and �nd the origin of individuals. At these higher levels, the mean
imputation does not seem to work. It works rather the opposite way by gradually
eliminating cluster speci�c values, making clustering more di¢ cult. The di¤erent
magnitude of the EE and V ar values is also an indication of a badly functioning
estimation process.

Even though mean imputation is not e¢ cient for high non-response rates, for
lower rates, it seems better to use it than to exclude individuals with missing
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values. The mean imputation method shows much better result than the approach
of deleting missing values, even when the non-response rate is only 5 percent.
However, compared to the values in Table 1, the mean imputation method is
outperformed by the imputation method of this paper. This is further con�rmed
by the classi�cation accuracies for mean imputation given in Table 5, which can
be compared to the corresponding values in Table 1. For the mean imputation,
the classi�cation accuracies drastically drop for non-response rates higher than 10
percent.

� (%) 0 missing 1 missing 2 missing 3 missing 4 missing 5 missing 6 missing Overall
5 Time 1 0.9718 0.9195 0.6364* - - 0.9590

Time 2 0.9807 0.9596 0.7917* - - - 0.9720
Time 3 0.9661 0.9397 0.8923* 1.0000** - - - 0.9580

10 Time 1 0.9645 0.9011 0.7143* 0.0000** - 0.9330
Time 2 0.9686 0.9590 0.9054 0.7500** - - 0.9600
Time 3 0.9596 0.9508 0.9500 0.7692* 1.0000** - - 0.9530

25 Time 1 0.8061 0.5864 0.4045 0.2593 0.0000** 0.5910
Time 2 0.6197 0.6414 0.6421 0.6383 0.4545* 0.0000** 0.6340
Time 3 0.9371 0.9272 0.9038 0.7582 0.6053* 0.5000** - 0.8830

40 Time 1 0.1343 0.1606 0.2012 0.1959 0.2000* 0.1770
Time 2 0.4189 0.3321 0.3401 0.3620 0.3529 0.4000** 0.3500
Time 3 0.3617* 0.2944 0.3161 0.2835 0.3088 0.2121* 0.2500** 0.3010

� (%) 0 missing 1 missing 2 missing 3 missing 4 missing 5 missing 6 missing Overall
5 Time 1 0.9126 0.7809 0.5000* - - 0.8850

Time 2 0.8924 0.8677 0.8667* - - - 0.8870
Time 3 0.9612 0.9442 0.8824* 1.0000** - - - 0.9550

10 Time 1 0.9052 0.7491 0.6122* 0.8000** - 0.8480
Time 2 0.9058 0.8571 0.8080 0.7000* 1.0000** 1.0000** 0.8830
Time 3 0.9523 0.9062 0.8037 0.8571* - - - 0.9200

25 Time 1 0.5633 0.3949 0.3119 0.2273* 0.0000* 0.4160
Time 2 0.4323 0.4711 0.5161 0.4787 0.4706 0.0000* 0.4750
Time 3 0.6200 0.6602 0.6399 0.4823 0.3235* 0.4000** - 0.6100

40 Time 1 0.5299 0.3042 0.1982 0.2027 0.2857* 0.2840
Time 2 0.2568 0.2768 0.3430 0.3077 0.3412 0.2000** 0.3100
Time 3 0.4894* 0.4822 0.3040 0.2323 0.1985 0.0303* 0.0000** 0.3050

Table 5: Percentage of individuals that are classi�ed into the right cluster as a function
of the number of variables that are missing for each individual and the total non-response
rate. Top table - separated groups, bottom table - overlapping groups

6 Real Data Study

We look at a data set consisting of 1206 school children with 6 variables. The
variables are their attitudes to three school subjects, Religion, Mathematics, and
their mother tongue Swedish and their marks in the same three subjects. We use
data collected at two time points, the �rst when the children were in third grade
in 1965 and the second when they had reached sixth grade in 1968. The data set is
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part of a much larger data base from the longitudinal research project �Individual
Development and Adaption�(IDA) at the Department of Psychology at Stockholm
University: see Bergman and Magnusson (1997) and Magnusson(1988). The IDA
data base covers a whole range of variables related to behavior, social relations,
family climate, psychological, mental, and socioeconomic factors. The purpose of
the project is to understand and explain individual development processes.

The variables are measured on a discrete scale with values from 1 to 5. The value 1
represents the attitude �dislike it�and 5 �like it very much�. In the same manner
1 is the lowest grade and 5 the highest. Despite discrete values, we use our method
developed for normally distributed data.

The 1206 individuals have di¤erent degrees of missingness. All of them have at
least one measurement on at least one time point. Table 6 gives a presentation on
how many individuals have a certain number of missing variables. The majority
of the individuals have zero missing values at Times 1 and 2, and also when taking
both times into account. There are, however, 28 percent of the individuals at Time
1 and 18 percent at Time 2 who have at least 1 missing value. There are also quite
a few individuals that are short of all variables at either one of the two time points.
When mark variables are missing for an individual they are so, almost exclusively,
for all three mark variables at a certain time point. Among the attitude variables
the same conditions do not apply. Several individuals have one or two missing
attitude variables, in addition to those with all attitude variables missing. The
total non-response rate, counting all variables at both time points, is 32 percent.

Number of missing variables 0 1 2 3 4 5 6 7 8 9 10 11 Total
Time 1 870 50 10 96 2 0 178 1206
Time 2 992 23 8 78 0 1 104 1206

Time 1 and 2 720 56 18 121 5 0 233 8 2 40 2 1 1206

Table 6: Number of individuals represented by how many missing variables they have.
One individual may have 0 to 6 missing variables at Time 1 and the same at Time 2. For
the two time points together, an individual may have 0 to 11 missing values. If all 12
variables were missing, that individual was removed from the analysis (2 individuals).

It is not possible to determine, from the data alone, if the missing data mechanism
is ignorable, i.e. if data ful�ll the MAR conditions. We can not check for possible
dependencies for missing values, simply because we do not have the missing values.
However, here we make the assumption that the missing values ful�ll the needed
conditions.

As in the simulated examples, the prior distributions are speci�ed, so data has
the major in�uence on the estimates, not the prior distributions. Estimates are
based on 95 000 iterations (100 000 minus a burn-in period of 5 000 iterations).
The number of clusters is decided after running the algorithm for two clusters
and then successively adding one cluster at a time. This is done for the two time
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Time 1
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Analysis 1 2 1 2 1 2 1 2 1 2
Attitude Swedish 2.29 2.57 2.77 2.77 2.22 3.27 2.74 2.57 2.15 1.79

Var 0.0123 0.0106 0.0081 0.0074 0.0089 0.0044 0.0521 0.0152 0.0309 0.0172
Attitude Math 2.51 2.38 3.99 3.74 2.93 3.05 3.39 3.71 1.85 2.01

Var 0.0105 0.0134 0.0004 0.0023 0.0093 0.0045 0.0366 0.0046 0.0371 0.0222
Attitude Religion 2.51 2.77 2.76 2.76 2.69 2.59 3.63 3.54 2.10 2.22

Var 0.0125 0.0103 0.0100 0.0071 0.0107 0.0056 0.0071 0.0069 0.0662 0.0229
Mark Swedish 3.89 4.50 3.79 4.00 2.95 3.00 2.44 1.97 2.23 1.76

Var 0.0057 0.0034 0.0046 0.0002 0.0030 0.0001 0.0093 0.0019 0.0147 0.0053
Mark Math 4.17 3.97 4.10 3.85 3.00 3.08 2.07 2.56 1.86 2.15

Var 0.0024 0.0050 0.0042 0.0029 0.0001 0.0015 0.0179 0.0059 0.0068 0.0061
Mark Religion 3.71 3.86 3.53 3.58 3.01 2.99 2.60 2.47 2.45 2.47

Var 0.0046 0.0046 0.0032 0.0021 0.0029 0.0015 0.0076 0.0041 0.0092 0.0044
Probabilities (%) 18.3 14.9 23.8 21.4 34.4 35.8 12.6 14.3 10.9 13.6

Time 2
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Analysis 1 2 1 2 1 2 1 2 1 2
Attitude Swedish 2.19 2.23 2.19 2.35 2.14 2.12 2.10 1.87 1.96 1.61

Var 0.0117 0.0166 0.0054 0.0035 0.0047 0.0029 0.0098 0.0055 0.0454 0.0428
Attitude Math 3.06 2.44 3.06 2.87 2.74 2.73 2.25 2.63 1.64 2.25

Var 0.0150 0.0242 0.0056 0.0047 0.0053 0.0034 0.0143 0.0098 0.0572 0.0651
Attitude Religion 2.02 2.96 1.97 1.91 1.77 1.79 1.57 1.69 1.74 1.42

Var 0.0153 0.0173 0.0065 0.0046 0.0052 0.0035 0.0126 0.0078 0.0530 0.0487
Mark Swedish 4.12 4.81 3.73 4.00 3.04 3.00 2.39 2.00 2.09 1.36

Var 0.0047 0.0054 0.0031 0.0001 0.0021 0.0001 0.0042 0.0002 0.0176 0.0175
Mark Math 4.95 4.37 3.99 3.91 3.00 3.03 2.01 2.30 1.58 1.85

Var 0.0020 0.0079 0.0002 0.0023 0.0001 0.0014 0.0004 0.0029 0.0322 0.0168
Mark Religion 4.15 4.36 3.70 3.79 2.98 2.96 2.31 2.27 2.08 1.93

Var 0.0075 0.0078 0.0029 0.0018 0.0024 0.0011 0.0045 0.0026 0.0189 0.0222
Probabilities (percent) 13.8 9.0 25.6 26.4 33.8 37.5 18.7 20.6 8.1 6.5

Table 7: Posterior estimates of the mean values for each cluster at the two time points.
Proportions between clusters are also given. To the left are the estimates based on the
711 individuals with no missing values and to the right are the estimates based on all
1206 values. Below each estimate is the simulation variance, i.e. the variance in the 95
000 iterations.

point separately. Up until a number of �ve groups, additional cluster structures
appeared for the new cluster at both time points. More than �ve groups resulted
in one or more clusters with almost identical characteristics.

First we run the method for only those individuals with complete data, a total
of 720 individuals (Analysis 1). This analysis can be studied in detail in Franzén
(2008). The results are compared to the results generated when all 1206 individuals
are included, and missing values are imputed within the method (Analysis 2). The
estimates of the cluster means and cluster probabilities are given in Table 7, and
the transition probabilities in Table 8. The (co)variance estimates are presented in
Tables 15-18 in Appendix C. For the estimates in Table 7, the simulation variance
is presented under its corresponding mean estimate. The simulation variance is
the variance in the 95 000 iterations. We have arranged the clusters in the order
going from better to worse marks.

The mean estimates and their di¤erence in Analysis 1 compared to Analysis 2,
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can be seen visually in Figure 2. There are no remarkable di¤erences in the
cluster patterns. Noticeable is a smaller spread between clusters for the variables
�Attitude Math� and �Mark Math� for the two graphs to the right, i.e. when
imputation is carried out. The variables �Attitude Swedish�and �Mark Swedish�
show opposite results.

The simulation variance is lower for a signi�cant part of the estimates, using
imputation (Analysis 2). The underlying values of the variables are in the same
range for this real data set (1 to 5), as for the simulated studies (-3 to 3). We
may therefore make a comparison of the magnitude of the performance measures.
In Table 7, the V ar values are the variance for one parameter. We calculate the
means over all values for a direct comparison to the Mean values. For Analysis 1
Mean 1 = 0:0136 for Time 1 andMean 2 = 0:0123 for Time 2: The corresponding
values for Analysis 2 areMean 1 = 0:0068 andMean 2 = 0:0116. These values are
all lower than corresponding values for similar circumstances (� = 30, overlapping
groups) in Table 1. Even without imputation, the method seems to generate good
estimates. The above comparison indicates not only that the method works, but
also that the variance and estimation errors are relatively low.

Estimates of transition probabilities between Times 1 and 2 are given in Table 8.
An expected pattern would be high transition probabilities between clusters of a
similar kind. The higher probabilities between the lines in the table con�rm the
anticipation. Individuals have a tendency to move to clusters of similar charac-
teristics as the cluster they move from. If the clusters are similar at both time
points and arranged in the same order, one would expect the highest values in the
diagonal of the matrix. In our case, the cluster structures are quite di¤erent at
the two times. This results in a deviation of the assumption for the �rst and last
line. Cluster 5 has more similar mean estimates to Cluster 4 than to Cluster 5 at
Time 2. This explains the higher transition probability from Cluster 5 to Cluster
4 rather than to Cluster 5 at Time 2. The same goes for transition from Cluster 1
at Time 1, where individuals have a higher probability of ending up in Cluster 2
rather than Cluster 1 at Time 2. Analysis 2 shows a more stable estimate of the
transition matrix than does Analysis 1. This means the transition probabilities
are higher for values in the diagonal and values nearby.

Conclusions regarding the analyses would be that the mean estimates do not di¤er
much when the whole data set is used as compared to data where individuals
with missing variables are deleted. The estimates of the cluster- and transition
probabilities do di¤er however. Cluster membership is a little more stable based on
the whole data set. In addition, the precision of the estimates are in general better.
This suggests that there are advantages using the whole data set in combination
with imputation instead of only using complete data.
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Time 2 Time 2
1 2 3 4 5 1 2 3 4 5

1 0.25 0.45 0.22 0.04 0.04 1 0.37 0.41 0.15 0.03 0.03
2 0.30 0.43 0.20 0.04 0.03 2 0.10 0.57 0.26 0.04 0.02

Time 1 3 0.03 0.17 0.54 0.23 0.04 Time 1 3 0.01 0.19 0.63 0.14 0.03
4 0.05 0.06 0.35 0.39 0.15 4 0.03 0.05 0.32 0.48 0.11
5 0.05 0.06 0.17 0.40 0.31 5 0.03 0.05 0.19 0.52 0.21

Table 8: Posterior estimate of transition matrices between Time 1 and 2. To the
left is the transition matrix estimated without imputation and to the right is the matrix
estimated with imputation. Between the demarcations are the three highest probabilities
for each row. Given a cluster membership at Time 1, transitions are more probable to
clusters of similar charactes at Time 2.
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Figure 2: Comparison of the mean estimates when individuals with missing values
are discharged from the analysis (graphs in left column) and when the whole dataset is
included (graphs in right column).
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Another comparison between Analysis 1 and 2 is presented in Table 9. We classify
each observation to the cluster of which it has the highest cluster probability
estimate. Given the cluster classi�cation of all 720 individuals in Analysis 1,
the table gives information on how they are classi�ed in Analysis 2, for each
time point. The last row shows how the 495 individuals, who were not included
in Analysis 1 due to missing values, where classi�ed when they are included in
Analysis 2. One may compare the last lines in the two sub-tables below with the
cluster probabilities for Analysis 1 in Table 7. It then becomes apparent that the
individuals excluded in Analysis 1, have a somewhat di¤erent cluster membership
when they are included in the Analysis.

Time 1
Analysis 2

1 2 3 4 5
1 45 27 25 3 0 100
2 16 55 26 3 0 100

Analysis 1 3 8 10 57 15 11 100
4 0 6 36 51 7 100
5 4 1 32 1 61 100

Excluded 10 23 37 14 16 100

Time 2
Analysis 2

1 2 3 4 5
1 28 60 11 0 0 100
2 13 53 29 5 0 100

Analysis 1 3 2 19 59 19 0 100
4 0 5 34 54 7 100
5 0 0 19 53 28 100

Excluded 4 27 42 22 4 100

Table 9: Illustration of the di¤erence in classi�cation when comparing Analyses 1
and 2, i.e. inclusive or exclusive of individuals with missing values. Given the cluster
classi�cation for Analysis 1, each row gives the percentage of the same individuals�being
classi�ed into the 5 di¤erent clusters for Analysis 2. The last line of each Table gives the
classi�cation of individuals excluded in Analysis 1, but included when imputing values.

7 Concluding Remarks

Non-response is a frequent problem in longitudinal studies of multivariate data.
Multiple imputation is carried out as an integrated step in a longitudinal, model-
based clustering method. At each data collection point, data is assumed to be gen-
erated from a mixture model of multivariate, normal distributions. Each distribu-
tion represents a cluster with its speci�c characteristics. Model parameters which
include mean vectors, (co)variances, cluster probabilities and transition probabili-
ties between clusters at two consecutive time points, are estimated using Bayesian
inference.
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The method is tested on real and simulated data with various rates of non-response.
Studies with simulated data show a well functioning imputation method which
handles non-response rates up to 40-45 percent without serious loss of precision in
estimates. It outperforms the common solution which deletes observations with
one or more missing values, and it also outperforms the results of the mean im-
putation method. For the real data study, comparisons are made between our
integrated imputation/estimation method and the analysis using data with only
a complete variable set. No major di¤erences in the cluster means occurred, but
when using the whole data set, the variances of the estimates are lower and the
cluster membership is more stable.

Although this paper is presented with a longitudinal approach in mind, our method-
ology is equally applicable to cross-sectional imputation. The longitudinal ap-
proach may however help in the classi�cation. An individual with no or very few
observed values at one time point may yet have a high probability of being classi-
�ed into the right cluster. Its classi�cation at other time points, and the transition
matrices in between, increase the probability of a correct classi�cation.
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Appendix A
Posterior distribution of the covariance matrices is the inverse Wishart
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Posterior distribution of the cluster probabilies is the Dirichlet distribution
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counts the number of observations classi�ed into Cluster j.

The posterior distributions for each row in the transition matrices is the Dirichlet
distribution
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where n(t)(j(t); j(t+1)) counts the number of transitions from Cluster j(t) to Cluster
j(t+1), between Time t and t+ 1:
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Appendix B

� (% ) Var 1 Cov 1 Var 2 Cov 2 Var 3 Cov 3 Var 4 Cov 4 Var 5 Cov 5 Var 6 Cov 6
0 T im e 1 EE 0.0041 0.0017 0.0147 0.0038 0.0090 0.0077 0.0114 0.0244 0.0624 0.0149 0.0030 0.0016

Var 0.0068 0.0033 0.0132 0.0068 0.0176 0.0095 0.0251 0.0132 0.0387 0.0189 0.0169 0.0084
T im e 2 EE 0.0147 0.0006 0.0193 0.0022 0.0159 0.0042 0.0206 0.0070

Var 0.0072 0.0036 0.0086 0.0043 0.0155 0.0076 0.0169 0.0088
T im e 3 EE 0.0035 0.0027 0.0087 0.0062 0.0133 0.0035 0.0770 0.0266 0.0777 0.0163

Var 0.0063 0.0032 0.0089 0.0045 0.0124 0.0060 0.0323 0.0167 0.0365 0.0180

5 T im e 1 EE 0.0038 0.0020 0.0211 0.0028 0.0073 0.0083 0.0184 0.0313 0.0744 0.0212 0.0035 0.0025
Var 0.0074 0.0038 0.0150 0.0081 0.0210 0.0117 0.0291 0.0157 0.0425 0.0213 0.0182 0.0092

T im e 2 EE 0.0126 0.0016 0.0224 0.0024 0.0147 0.0041 0.0186 0.0096
Var 0.0075 0.0039 0.0092 0.0049 0.0168 0.0087 0.0181 0.0097

T im e 3 EE 0.0033 0.0041 0.0075 0.0057 0.0129 0.0022 0.0908 0.0310 0.0833 0.0200
Var 0.0069 0.0037 0.0095 0.0050 0.0127 0.0065 0.0354 0.0186 0.0392 0.0195

10 T im e 1 EE 0.0034 0.0037 0.0077 0.0052 0.0215 0.0379 0.0072 0.0067 0.0030 0.0036 0.1197 0.0307
Var 0.0077 0.0042 0.0159 0.0084 0.0300 0.0166 0.0240 0.0137 0.0196 0.0104 0.0524 0.0261

T im e 2 EE 0.0165 0.0014 0.0085 0.0028 0.0141 0.0065 0.0286 0.0064
Var 0.0081 0.0044 0.0091 0.0050 0.0182 0.0096 0.0196 0.0109

T im e 3 EE 0.0064 0.0030 0.0054 0.0064 0.0174 0.0044 0.1263 0.0423 0.1441 0.0249
Var 0.0074 0.0040 0.0102 0.0055 0.0166 0.0088 0.0451 0.0256 0.0561 0.0288

25 T im e 1 EE 0.0112 0.0094 0.0218 0.0096 0.0054 0.0058 0.0475 0.0795 0.0453 0.0303 0.0098 0.0039
Var 0.0110 0.0067 0.0263 0.0158 0.0380 0.0238 0.0470 0.0288 0.0579 0.0322 0.0285 0.0172

T im e 2 EE 0.0197 0.0032 0.0170 0.0075 0.0273 0.0053 0.0727 0.0285
Var 0.0106 0.0068 0.0145 0.0092 0.0250 0.0145 0.0328 0.0211

T im e 3 EE 0.0076 0.0036 0.0128 0.0098 0.0146 0.0030 0.2287 0.1150 0.1063 0.0426
Var 0.0098 0.0064 0.0161 0.0098 0.0186 0.0109 0.0675 0.0430 0.0664 0.0382

40 T im e 1 EE 0.0180 0.0090 0.0239 0.0185 0.0028 0.0202 0.1971 0.1495 0.1203 0.0790 0.0204 0.0181
Var 0.0144 0.0098 0.0338 0.0231 0.0792 0.0509 0.0884 0.0563 0.1111 0.0681 0.0456 0.0291

T im e 2 EE 0.0372 0.0170 0.0215 0.0109 0.0418 0.0143 0.0722 0.0479
Var 0.0152 0.0108 0.0206 0.0151 0.0412 0.0247 0.0462 0.0300

T im e 3 EE 0.0032 0.0060 0.0243 0.0099 0.0178 0.0104 0.3150 0.2133 0.2416 0.0833
Var 0.0144 0.0107 0.0214 0.0151 0.0281 0.0174 0.0869 0.0590 0.1244 0.0725

45 T im e 1 EE 0.0154 0.0125 0.0026 0.0050 0.0254 0.0377 0.1678 0.1477 0.0685 0.0429 0.0271 0.0125
Var 0.0156 0.0102 0.0349 0.0251 0.0990 0.0594 0.1083 0.0659 0.1011 0.0590 0.0572 0.0360

T im e 2 EE 0.0167 0.0207 0.0366 0.0055 0.0868 0.0364 0.0993 0.0293
Var 0.0151 0.0115 0.0193 0.0140 0.0541 0.0359 0.0441 0.0322

T im e 3 EE 0.0145 0.0082 0.0117 0.0163 0.0252 0.0088 0.4676 0.2182 0.2459 0.0554
Var 0.0140 0.0101 0.0237 0.0159 0.0520 0.0340 0.1264 0.0862 0.1376 0.0783

50 T im e 1 EE 0.0019 0.0172 0.0140 0.0086 0.0896 0.0231 0.3505 0.3829 0.0952 0.0758 0.1030 0.0338
Var 0.0150 0.0105 0.1015 0.0595 0.2400 0.1379 0.1253 0.0816 0.1535 0.0906 0.2106 0.1199

T im e 2 EE 0.0326 0.0123 0.0306 0.0281 0.1201 0.0531 0.1108 0.0441
Var 0.0186 0.0153 0.0362 0.0233 0.0640 0.0390 0.0592 0.0456

T im e 3 EE 0.0168 0.0113 0.0174 0.0181 0.0526 0.0198 0.2756 0.2850 0.4256 0.1709
Var 0.0231 0.0186 0.0309 0.0223 0.0733 0.0473 0.1109 0.0775 0.3002 0.1678

55 T im e 1 EE 0.0069 0.0108 0.0301 0.0161 0.1351 0.1012 0.1016 0.1090 0.2771 0.1910 0.1589 0.0505
Var 0.0207 0.0159 0.1504 0.0964 0.2324 0.1685 0.2397 0.1502 0.1921 0.1177 0.1975 0.1310

T im e 2 EE 0.0411 0.0195 0.0891 0.0094 0.1896 0.0723 0.1277 0.0637
Var 0.0236 0.0184 0.0478 0.0303 0.0926 0.0624 0.0695 0.0481

T im e 3 EE 0.0045 0.0074 0.0110 0.0225 0.0450 0.0227 0.2646 0.2781 0.5159 0.1160
Var 0.0225 0.0186 0.0319 0.0216 0.1062 0.0636 0.1266 0.0931 0.2443 0.1368

60 T im e 1 EE 0.0961 0.1170 0.0834 0.0129 0.2323 0.0763 0.2028 0.1268 0.0828 0.0134 0.1438 0.0311
Var 0.1181 0.0939 0.2184 0.1382 0.2903 0.2720 0.2797 0.2369 0.2867 0.1738 0.1303 0.0704

T im e 2 EE 0.0513 0.0246 0.0183 0.0150 0.1941 0.0487 0.2538 0.0408
Var 0.0283 0.0231 0.0505 0.0409 0.1484 0.0772 0.0877 0.0613

T im e 3 EE 0.0187 0.0112 0.0323 0.0118 0.0682 0.0222 0.4151 0.4330 0.4036 0.1427
Var 0.1407 0.0717 0.0654 0.0378 0.1953 0.1142 0.1505 0.1149 0.2271 0.1263

Table 10: Performance measures for separated groups. Estimation deviations of
(co)variances presented for each non-response rate, time point, and cluster separately.
The Var columns give the mean estimation deviation for the diagonal in the covariance
matrix for each cluster, i.e. the variances. The Cov columns give the same values for
the non-diagonal elements in each matrix, i.e. the covariances.
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� (% ) Var 1 Cov 1 Var 2 Cov 2 Var 3 Cov 3 Var 4 Cov 4 Var 5 Cov 5 Var 6 Cov 6
0 T im e1 EE 0.0038 0.0064 0.0226 0.0093 0.0291 0.0055 0.1680 0.0063 0.0175 0.0070 0.0261 0.0100

Var 0.0111 0.0056 0.0192 0.0090 0.0245 0.0115 0.0534 0.0248 0.0405 0.0202 0.0280 0.0140
T im e 2 EE 0.0072 0.0053 0.0022 0.0042 0.0554 0.0096 0.0045 0.0039

Var 0.0089 0.0046 0.0089 0.0045 0.0236 0.0111 0.0331 0.0153
T im e 3 EE 0.0099 0.0033 0.0126 0.0055 0.0126 0.0046 0.0111 0.0066 0.0636 0.0063

Var 0.0070 0.0035 0.0100 0.0048 0.0165 0.0078 0.0211 0.0105 0.0312 0.0142

5 T im e 1 EE 0.0080 0.0087 0.0412 0.0169 0.0368 0.0056 0.1804 0.0078 0.0090 0.0089 0.0295 0.0124
Var 0.0124 0.0064 0.0259 0.0126 0.0277 0.0131 0.0616 0.0285 0.0470 0.0251 0.0347 0.0182

T im e 2 EE 0.0065 0.0044 0.0037 0.0063 0.0656 0.0109 0.0065 0.0065
Var 0.0096 0.0051 0.0097 0.0050 0.0262 0.0127 0.0462 0.0208

T im e 3 EE 0.0081 0.0034 0.0125 0.0054 0.0167 0.0059 0.0119 0.0078 0.0692 0.0087
Var 0.0074 0.0039 0.0109 0.0054 0.0178 0.0088 0.0244 0.0127 0.0330 0.0153

10 T im e 1 EE 0.0138 0.0090 0.0398 0.0201 0.0292 0.0056 0.2463 0.0087 0.0207 0.0058 0.0169 0.0061
Var 0.0150 0.0079 0.0248 0.0126 0.0315 0.0153 0.0868 0.0367 0.0542 0.0259 0.0324 0.0172

T im e 2 EE 0.0089 0.0051 0.0055 0.0040 0.0526 0.0157 0.0131 0.0123
Var 0.0106 0.0058 0.0102 0.0055 0.0283 0.0150 0.0489 0.0213

T im e 3 EE 0.0109 0.0046 0.0169 0.0104 0.0199 0.0070 0.0111 0.0097 0.0706 0.0124
Var 0.0082 0.0045 0.0121 0.0063 0.0200 0.0101 0.0266 0.0140 0.0376 0.0176

25 T im e 1 EE 0.0136 0.0124 0.0321 0.0065 0.0647 0.0134 0.4649 0.0408 0.1179 0.0756 0.0104 0.0034
Var 0.0267 0.0161 0.0337 0.0178 0.0538 0.0278 0.1617 0.0803 0.1365 0.0328 0.0364 0.0212

T im e 2 EE 0.0101 0.0078 0.0089 0.0071 0.1085 0.0674 0.1108 0.0635
Var 0.0137 0.0080 0.0145 0.0093 0.0538 0.0328 0.1357 0.0656

T im e 3 EE 0.0076 0.0047 0.0242 0.0102 0.0432 0.0153 0.0796 0.0243 0.1029 0.0171
Var 0.0110 0.0069 0.0185 0.0102 0.0324 0.0176 0.0529 0.0297 0.0704 0.0375

40 T im e 1 EE 0.0084 0.0262 0.1181 0.0068 0.0254 0.0174 0.3289 0.0315 0.0553 0.0253 0.0473 0.0234
Var 0.0261 0.0170 0.0469 0.0235 0.0548 0.0293 0.1559 0.0664 0.1135 0.0623 0.0530 0.0360

T im e 2 EE 0.0144 0.0191 0.0041 0.0149 0.0820 0.0337 0.0438 0.0261
Var 0.0216 0.0149 0.0222 0.0141 0.0580 0.0368 0.1023 0.0510

T im e 3 EE 0.0058 0.0075 0.0229 0.0080 0.0136 0.0116 0.0268 0.0279 0.2272 0.0392
Var 0.0153 0.0108 0.0205 0.0125 0.0386 0.0226 0.0463 0.0298 0.0969 0.0680

45 T im e 1 EE 0.0590 0.0167 0.0417 0.0134 0.0814 0.0513 0.2628 0.0448 0.2763 0.0411 0.0591 0.0068
Var 0.0565 0.0388 0.0569 0.0281 0.2319 0.0825 0.3211 0.1281 0.3599 0.1666 0.0727 0.0504

T im e 2 EE 0.0235 0.0202 0.0127 0.0036 0.1229 0.0269 0.1683 0.0695
Var 0.0237 0.0167 0.0241 0.0174 0.0673 0.0416 0.1455 0.0705

T im e 3 EE 0.0157 0.0103 0.0398 0.0226 0.0415 0.0328 0.0842 0.0261 0.2458 0.0575
Var 0.0191 0.0146 0.0413 0.0241 0.0633 0.0395 0.1129 0.0605 0.2106 0.1109

50 T im e 1 EE 0.0123 0.0294 0.0269 0.0108 0.1308 0.0357 0.3286 0.0596 0.2069 0.0407 0.1176 0.0261
Var 0.0450 0.0301 0.1288 0.0679 0.2418 0.1385 0.2486 0.1266 0.3236 0.1672 0.0977 0.0600

T im e 2 EE 0.0398 0.0198 0.0370 0.0194 0.2067 0.0738 0.1240 0.0452
Var 0.1256 0.0613 0.1324 0.0612 0.0926 0.0635 0.1897 0.0959

T im e 3 EE 0.0059 0.0114 0.0391 0.0205 0.0183 0.0173 0.1644 0.0458 0.0437 0.0315
Var 0.0173 0.0124 0.0411 0.0279 0.0461 0.0273 0.1355 0.0759 0.0932 0.0539

55 T im e 1 EE 0.0398 0.0381 0.0958 0.0084 0.0977 0.0120 0.3614 0.0318 0.2929 0.0353 0.2511 0.0185
Var 0.0474 0.0342 0.2023 0.1290 0.2170 0.1117 0.3742 0.1562 0.4132 0.1718 0.4998 0.1230

T im e 2 EE 0.0514 0.0173 0.0329 0.0119 0.1331 0.0436 0.0732 0.0207
Var 0.1501 0.0823 0.1303 0.0708 0.1627 0.1094 0.1678 0.1001

T im e 3 EE 0.0270 0.0155 0.0526 0.0132 0.0749 0.0433 0.1811 0.0450 0.5154 0.2118
Var 0.0451 0.0328 0.0471 0.0285 0.0831 0.0562 0.1437 0.0807 0.1896 0.1534

Table 11: Performance measures for overlapping groups. Estimation deviations of
(co)variances presented for each non-response rate, time point, and cluster separately.
The Var columns give the mean estimation deviation for the diagonal in the covariance
matrix for each cluster, i.e. the variances. The Cov columns give the same values for
the non-diagonal elements in each matrix, i.e. the covariances.
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Separated Groups
� (% ) Var 1 Cov 1 Var 2 Cov 2 Var 3 Cov 3 Var 4 Cov 4 Var 5 Cov 5 Var 6 Cov 6
5 T im e 1 EE 0.0049 0.0073 0.0174 0.0102 0.0213 0.0411 0.0641 0.1040 0.3097 0.0906 0.0122 0.0089

Var 0.0155 0.0076 0.0264 0.0137 0.1203 0.0734 0.1139 0.0664 0.1451 0.0719 0.0420 0.0209
T im e 2 EE 0.0376 0.0029 0.0273 0.0072 0.4846 0.0620 0.0497 0.0252

Var 0.0180 0.0091 0.0235 0.0122 0.1193 0.0487 0.0379 0.0197
T im e 3 EE 0.0060 0.0037 0.0173 0.0218 0.0206 0.0101 0.3977 0.2027 0.1046 0.0363

Var 0.0137 0.0068 0.0266 0.0130 0.0463 0.0220 0.1220 0.0732 0.0720 0.0351

Overlapping Groups
� (% ) Var 1 Cov 1 Var 2 Cov 2 Var 3 Cov 3 Var 4 Cov 4 Var 5 Cov 5 Var 6 Cov 6
5 T im e 1 EE 0.0094 0.0111 0.0284 0.0124 0.0127 0.0127 0.6554 0.0459 0.2588 0.0820 0.0820 0.0174

Var 0.0229 0.0114 0.0484 0.0216 0.0782 0.0311 0.6407 0.0824 0.2259 0.1306 0.1542 0.0434
T im e 2 EE 0.0025 0.0121 0.0090 0.0121 0.0365 0.0215 0.0260 0.0184

Var 0.0181 0.0096 0.0213 0.0107 0.0902 0.0387 0.0912 0.0383
T im e 3 EE 0.0227 0.0137 0.0216 0.0108 0.0407 0.0217 0.0070 0.0101 0.1787 0.0373

Var 0.0173 0.0087 0.0195 0.0095 0.0454 0.0210 0.0457 0.0227 0.1077 0.0533

Table 12: Performance measures when eliminating individuals with missing values.
Estimation deviations of (co)variances presented for each non-response rate, time point,
and cluster separately. The Var columns give the mean estimation deviation for the
diagonal in the covariance matrix for each cluster, i.e. the variances. The Cov columns
give the same values for the non-diagonal elements in each matrix, i.e. the covariances.

30



� (% ) Var 1 Cov 1 Var 2 Cov 2 Var 3 Cov 3 Var 4 Cov 4 Var 5 Cov 5 Var 6 Cov 6
5 T im e 1 EE 0.0555 0.0026 0.0155 0.0020 0.0308 0.0120 0.3034 0.0293 0.0975 0.0209 0.0366 0.0045

Var 0.0104 0.0052 0.0143 0.0069 0.0326 0.0205 0.0573 0.0244 0.0468 0.0468 0.0250 0.0122
T im e 2 EE 0.0248 0.0017 0.0151 0.0015 0.0366 0.0053 0.1601 0.0180

Var 0.0079 0.0040 0.0089 0.0044 0.0191 0.0097 0.0260 0.0138
T im e 3 EE 0.0053 0.0041 0.0280 0.0036 0.0120 0.0022 0.4645 0.0602 0.1416 0.0159

Var 0.0070 0.0036 0.0098 0.0049 0.0132 0.0063 0.0548 0.0299 0.0441 0.0216

10 T im e 1 EE 0.2030 0.0057 0.0110 0.0041 0.0730 0.0407 0.4770 0.0120 0.3039 0.0500 0.0607 0.0207
Var 0.0142 0.0072 0.0201 0.0078 0.0417 0.0301 0.0643 0.0305 0.0831 0.0408 0.0272 0.0139

T im e 2 EE 0.0469 0.0011 0.0103 0.0014 0.0860 0.0050 0.4121 0.0139
Var 0.0085 0.0043 0.0076 0.0037 0.0241 0.0122 0.0351 0.0190

T im e 3 EE 0.0059 0.0038 0.0470 0.0046 0.0201 0.0035 1.2250 0.0911 0.3307 0.0224
Var 0.0073 0.0038 0.0107 0.0053 0.0197 0.0094 0.0848 0.0467 0.0679 0.0346

25 T im e 1 EE 0.4948 0.0499 1.6946 0.0878 7.5574 2.5291 2.3107 0.2454 1.1142 0.1072 1.0130 0.1338
Var 0.0289 0.0145 0.0996 0.0178 0.1280 0.0530 0.5753 0.1320 0.4369 0.1939 0.1305 0.0496

T im e 2 EE 0.0895 0.0040 0.1544 0.0026 1.4898 0.4845 4.2239 0.7507
Var 0.0133 0.0076 0.0427 0.0065 0.2319 0.1254 0.4536 0.1602

T im e 3 EE 0.0423 0.0038 0.1688 0.0123 0.0140 0.0054 3.0694 0.0857 0.6207 0.0733
Var 0.0102 0.0052 0.0152 0.0070 0.0180 0.0088 0.1310 0.0722 0.1056 0.0573

40 T im e 1 EE 0.5088 0.0594 6.2618 1.2229 9.1801 2.1000 6.4056 1.1659 4.2800 0.9468 0.5438 0.0789
Var 0.0962 0.0421 0.1573 0.0531 0.1726 0.0647 0.3341 0.1357 0.1298 0.0414 0.2240 0.1305

T im e 2 EE 0.2412 0.0513 1.1319 0.1151 4.2177 0.6971 0.9517 0.2413
Var 0.0334 0.0194 0.0391 0.0087 0.1185 0.0470 0.0340 0.0110

T im e 3 EE 0.7903 0.1097 0.0927 0.0783 4.9252 1.5897 5.2283 0.6791 0.8769 0.1736
Var 0.0418 0.0124 0.0289 0.0151 0.1498 0.0589 0.2226 0.1147 0.0449 0.0150

� (% ) Var 1 Cov 1 Var 2 Cov 2 Var 3 Cov 3 Var 4 Cov 4 Var 5 Cov 5 Var 6 Cov 6
5 T im e 1 EE 0.0198 0.0064 0.0483 0.0104 0.0639 0.0170 0.2166 0.0078 0.0492 0.0245 0.0580 0.0120

Var 0.0141 0.0069 0.0298 0.0138 0.0359 0.0180 0.0884 0.0297 0.0642 0.0347 0.0595 0.0214
T im e 2 EE 0.0091 0.0042 0.0027 0.0055 0.1433 0.0145 0.0155 0.0129

Var 0.0092 0.0046 0.0093 0.0048 0.0335 0.0164 0.0556 0.0266
T im e 3 EE 0.0136 0.0034 0.0178 0.0058 0.0369 0.0070 0.0291 0.0097 0.1013 0.0101

Var 0.0073 0.0036 0.0116 0.0055 0.0195 0.0086 0.0287 0.0141 0.0352 0.0163

10 T im e 1 EE 0.0923 0.0188 0.1017 0.0227 0.0758 0.0065 0.4728 0.0064 0.0864 0.0325 0.0338 0.0061
Var 0.0237 0.0110 0.0311 0.0169 0.1768 0.0306 0.3454 0.0639 0.1048 0.0536 0.0583 0.0193

T im e 2 EE 0.0161 0.0057 0.0033 0.0048 0.1657 0.0249 0.0268 0.0252
Var 0.0114 0.0054 0.0101 0.0056 0.0496 0.0255 0.0755 0.0330

T im e 3 EE 0.0189 0.0040 0.0391 0.0078 0.0714 0.0090 0.0232 0.0057 0.2870 0.0225
Var 0.0079 0.0040 0.0129 0.0065 0.0295 0.0113 0.0310 0.0147 0.0686 0.0323

25 T im e 1 EE 2.1150 0.3862 0.2410 0.0266 1.6014 0.4440 1.1865 0.0397 2.1580 0.1595 0.0067 0.0077
Var 0.0855 0.0238 0.2617 0.1174 0.0696 0.0203 0.1522 0.0840 0.4932 0.1190 0.0471 0.0270

T im e 2 EE 0.1885 0.0252 0.0641 0.0119 0.4422 0.0373 0.4002 0.0516
Var 0.0650 0.0078 0.0741 0.0123 0.0425 0.0248 0.0928 0.0328

T im e 3 EE 0.1272 0.0057 0.7678 0.0843 0.3716 0.0148 0.4634 0.1894 0.9220 0.1994
Var 0.0210 0.0080 0.0394 0.0117 0.0493 0.0153 0.0275 0.0131 0.1265 0.0592

40 T im e 1 EE 0.9853 0.0791 2.2376 0.3693 0.8117 0.0922 1.5983 0.7528 2.2048 0.3379 0.6304 0.2100
Var 0.2237 0.0611 0.0971 0.0194 0.0297 0.0043 1.0506 0.5467 0.1951 0.0371 0.2429 0.1500

T im e 2 EE 0.3680 0.0342 0.3626 0.0130 1.8161 0.5213 0.4934 0.0388
Var 0.0388 0.0056 0.0243 0.0041 0.0901 0.0422 0.0435 0.0107

T im e 3 EE 0.6135 0.1990 0.2827 0.1717 0.1956 0.0140 0.6842 0.0296 0.4920 0.0634
Var 0.3282 0.0699 0.0475 0.0228 0.1627 0.0130 0.0289 0.0057 0.0579 0.0080

Table 13: Performance measures when using mean imputation. Top table: separated
groups, bottom table: overlapping groups. Estimation deviations of (co)variances pre-
sented for each non-response rate, time point, and cluster separately. The Var columns
give the mean estimation deviation for the diagonal in the covariance matrix for each
cluster, i.e. the variances. The Cov columns give the same values for the non-diagonal
elements in each matrix, i.e. the covariances.
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Appendix C

Posterior Covariance Estimates at Time 1 without Imputation
Covariance 1 Covariance 20BBBBBB@

1:37 �0:11 0:20 0:23 0:01 0:13

0:91 0:10 0:01 0:08 �0:01
1:40 0:02 �0:03 0:18

0:62 0:12 0:26

0:25 0:05

0:51

1CCCCCCA

0BBBBBB@

1:00 0:01 0:36 0:10 0:01 0:03

0:06 0:01 0:01 0:01 0:01

1:22 0:03 0:12 0:13

0:56 0:15 0:24

0:33 0:10

0:44

1CCCCCCA
Covariance 3 Covariance 40BBBBBB@

1:38 0:18 0:24 0:21 0:00 0:08

1:40 0:06 �0:10 0:00 �0:15
1:64 0:03 0:00 0:20

0:57 0:00 0:20

0:02 0:00

0:51

1CCCCCCA

0BBBBBB@

1:34 0:13 0:04 0:15 0:01 0:00

0:65 0:04 �0:04 �0:01 �0:06
0:36 �0:06 �0:01 �0:01

0:56 0:02 0:13

0:15 �0:00
0:52

1CCCCCCA
Covariance 50BBBBBB@

1:75 �0:01 0:05 �0:05 �0:07 0:09

1:63 �0:58 �0:01 �0:06 �0:15
1:84 �0:20 �0:09 0:27

0:78 0:09 0:05

0:32 �0:01
0:50

1CCCCCCA
Table 14: Posterior estimates of covariance matrices at Time 1 for Analysis 1.

Posterior Covariance Estimates at Time 2 without Imputation
Covariance 1 Covariance 20BBBBBB@

1:03 0:26 0:33 �0:03 0:01 0:00

1:27 0:36 �0:13 0:04 �0:12
1:18 0:05 0:01 0:18

0:41 0:03 0:24

0:13 0:03

0:66

1CCCCCCA

0BBBBBB@

0:98 0:16 0:28 0:20 0:00 0:12

0:99 0:20 �0:12 0:01 �0:13
1:20 0:01 �0:00 0:12

0:56 0:00 0:30

0:04 0:00

0:52

1CCCCCCA
Covariance 3 Covariance 40BBBBBB@

1:17 0:12 0:33 0:17 �0:00 0:15

1:19 0:03 �0:19 0:00 �0:16
1:31 0:04 �0:00 0:26

0:51 0:00 0:26

0:02 �0:00
0:61

1CCCCCCA

0BBBBBB@

1:10 �0:04 0:50 0:26 �0:00 0:20

1:46 0:15 �0:27 �0:00 �0:16
1:49 0:10 0:00 0:24

0:52 0:00 0:27

0:05 0:01

0:55

1CCCCCCA
Covariance 50BBBBBB@

1:16 �0:05 0:22 �0:11 0:06 0:11

1:20 0:05 �0:13 �0:28 �0:02
1:57 0:19 0:03 0:30

0:53 0:11 0:18

0:62 0:18

0:52

1CCCCCCA
Table 15: Posterior estimates of covariance matrices at Time 2 for Analysis 1.
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Posterior Covariance Estimates at Time 1 with Imputation
Covariance 1 Covariance 20BBBBBB@

1:20 0:14 0:14 0:17 0:01 0:04

1:75 0:19 0:41 0:51 0:14

1:25 0:02 0:05 0:25

0:36 0:19 0:08

0:66 0:17

0:60

1CCCCCCA

0BBBBBB@

1:24 0:07 0:34 0:00 �0:12 0:00

0:27 0:06 0:01 0:01 �0:02
1:27 0:00 �0:07 0:04

0:05 0:00 0:00

0:58 0:10

0:39

1CCCCCCA
Covariance 3 Covariance 40BBBBBB@

1:40 0:18 0:33 0:00 �0:04 �0:05
1:29 0:08 0:00 0:18 0:01

1:70 �0:00 �0:05 0:13

0:03 0:00 �0:00
0:52 0:13

0:46

1CCCCCCA

0BBBBBB@

1:42 0:02 0:15 0:00 �0:14 �0:09
0:33 0:04 �0:02 �0:01 �0:03

0:47 �0:03 �0:12 �0:01
0:16 0:05 0:03

0:63 0:11

0:46

1CCCCCCA
Covariance 50BBBBBB@

1:73 0:07 0:19 0:00 �0:10 0:04

1:81 �0:41 �0:06 0:18 �0:02
2:11 �0:12 �0:19 0:20

0:40 0:12 0:06

0:57 0:07

0:45

1CCCCCCA
Table 16: Posterior estimates of covariance matrices at Time 1 for Analysis 2.

Posterior Covariance Estimates at Time 2 with Imputation
Covariance 1 Covariance 20BBBBBB@

1:15 0:30 0:30 0:05 0:04 �0:03
1:57 0:25 0:16 0:07 0:04

1:15 0:02 0:06 0:05

0:28 0:04 0:07

0:57 0:15

0:54

1CCCCCCA

0BBBBBB@

0:93 0:06 0:40 0:00 �0:08 �0:02
1:17 0:14 0:00 0:37 0:02

1:22 �0:00 0:05 0:14

0:04 0:00 0:00

0:64 0:18

0:52

1CCCCCCA
Covariance 3 Covariance 40BBBBBB@

1:14 0:23 0:27 �0:00 �0:06 0:01

1:35 0:27 �0:00 0:38 0:08

1:36 0:00 0:08 0:22

0:02 �0:00 0:00

0:62 0:13

0:45

1CCCCCCA

0BBBBBB@

1:03 0:15 0:34 0:00 �0:08 0:08

1:40 �0:02 �0:00 0:21 0:06

1:47 0:00 0:06 0:20

0:05 0:00 0:00

0:59 0:21

0:51

1CCCCCCA
Covariance 50BBBBBB@

1:37 �0:44 0:16 0:14 �0:07 0:19

1:31 0:02 �0:18 �0:05 �0:28
1:66 0:06 �0:03 0:31

0:48 0:11 0:15

0:57 0:11

0:76

1CCCCCCA
Table 17: Posterior estimates of covariance matrices at Time 2 for Analysis 2.
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Abstract

This guide describes and explains the software package Model-Based
Cluster Analysis (MBCA), which is written in Matlab. The programs esti-
mates the parameters of a multivariate mixture model of normal distribu-
tions and clusters the observations. Full posterior distributions are obtained
using the Gibbs sampler. An introduction is given to the theory of model-
based clustering and to Bayesian inference. Instructions are presented on
how to enter data and prior speci�cations into the program. Special pro-
grams in this package take care of deviant observations, handle missing data,
and perform longitudinal cluster analysis.

Keywords: Cluster analysis, Clustering, Classi�cation, Mixture model,
Model-based, Gaussian, Bayesian inference, MCMC, Gibbs sampler, Mat-
lab, Deviant group, Longitudinal, Missing data, Multiple imputation

�The support from the Swedish Research Council (Grant no 2005-2003) are gratefully ac-
knowledged.



1 Introduction

Classi�cation or clustering of data is one of the most important techniques of
multivariate analysis. Many software packages contain prewritten programs for
handling deterministic cluster analysis. Model-based cluster analysis is a good
alternative for �nding group patterns in data. It has become increasingly preferred
over traditional deterministic clustering due to its �exibility. Clustering based on
probability models has certain advantages for handling overlapping groups and
groups of di¤erent sizes and shapes. The estimation method, however, relies on
an iteration procedure which is not straightforward to implement and the choice
of prewritten programs is limited. The MBCA program is written for the model-
based clustering approach. The program consists of �ve variants that can be used
in standard and non-standard situations. We give an introduction to the theory
and also practical guidance to the program.

The MBCA program is written in Matlab, and Bayesian inference is applied in the
program. Standard techniques such as ML-estimation are sometimes used for the
model-based approach, often with the EM-algorithm. MCLUST and MIXMOD
are two existing programs written for this purpose. Biernacki et al. (2005) give
an introduction to MIXMOD, and Fraley and Raftery (2007), (2006), and (2003)
do the same for the MCLUST software. MCLUST is available with an R or S-
PLUS language interface. MIXMOD is interfaced with SCILAB and Matlab. The
EM algorithm is advanced in the sense of allowing for di¤erent sizes, shapes, and
orientations of the clusters. Still, it comes with some limitations that we can
overcome with the Bayesian approach. The MCMC technique used will eventually
reach the target distribution, even if it takes some time. The maximum likelihood
estimator runs the risk of getting stuck in a local maximum, if present. In addition,
the method only gives point estimates and produces no estimates regarding the
uncertainty of the parameters. The Bayesian approach generates point estimates
of all variables as well as associated uncertainty in the form of the whole posterior
distribution. Moreover, the method generates posterior predictive probabilities for
a single observation�s being derived from all the di¤erent distributions (groups) in
the model. A comprehensive explanation of Bayesian analysis is given in Bernardo
and Smith (2000) and in Gelman et al. (2004), and MCMCmethods can be studied
in Gamerman and Lopez (2006)

WINBUGS is a widely used software package for MCMC computations for a wide
variety of Bayesian models, including normal mixtures. The program is very �exi-
ble, but because of that it is not straighforward to use. The user have to do some
own coding which requires previous knowledge about Bayesian inference and the
program itself. Discussions on how to use WINBUGS is found in Schollnik (2001),
Fryback et al. (2001), and Woodworth (2004, Appendix B). The MBCA pro-
gram is not nearly as comprehensive as WINBUGS, but is instead much more user
friendly. Without much previous knowledge, one may execute the MCMC simula-
tions for the basic case with a mixture of J multivariate normal distributions as
well as for a few special situations.
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The MBCA package is available on www.statistics.su.se/forskning/MBCA. The
package contains �ve programs written for special features and two programs for
graphical presentations of the results.

� The �rst program handles the basic case of grouping data into J clusters.

� Outliers or deviant observations may interfere in a negative way when clus-
tering data. The second program handles these observations by adding an
extra cluster into the solution. This group consists of observations which do
not �t into one of the general group patterns.

� Missing data is almost inevitable in real-life data. The model-based cluster-
ing approach can easily and e¤ectively be extended to handle data with item
non-response. In Program 3, multiple imputation is carried out as a step in
the algorithm.

� The next issue is longitudinal studies. Program 4 gives the possibility of
clustering data from two or three repeated measurements. Changes in cluster
divisions over time and transition patterns between clusters at di¤erent time
points may be analyzed.

� Repeated measurements are especially exposed to missing data. Program
5 combines the longitudinal clustering with missing data. All observations
from one or more time points may even be missing.

� Two programs are included for graphical presentations of the results. Iter-
ation plots and histograms over the estimated parameters can be obtained.
The program Graph1.m handles cross sectional data while Graph2.m handles
longitudinal data.

In the MBCA program, data is assumed to be generated from a mixture model
of multivariate normal distributions. Each distribution represents a cluster with
its speci�c group parameters. The programs do not come with limitations on
the number of variables or clusters. In Section 2, a short presentation of the
theory is given. The mixture model is presented and, in a Bayesian manner, prior
distribution and posterior derivations are given. The section also includes a brief
description of the MCMC estimation technique. A more complete description
of the theory and also a number of applications for the di¤erent features of the
program can be found in Franzén (2006), (2007), (2008a), and (2008b). Section 3
gives instructions on how to use each of the �ve programs. It gives guidance on
how to make the model- and prior speci�cations. Finally, in Section 4, a number
of practical considerations and possible challenges faced when using the program
are explained.
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2 Mixture Model

In MBCA, the n multivariate observations y = fy1; :::;yng are assumed to be
independent observations of a mixture distribution with density

f(yi j� ) =
JX
j=1

!jfj(yi
���j;�j ) i = 1; :::; n

where !j fj = 1; :::; Jg are the mixing proportions which satisfy 0 < !j < 1 andPJ
j=1 !j = 1: The density fj(yi

���j;�j ) denotes a multivariate normal distribu-
tion with mean vector �j and covariance matrix �j. Each of these J densities
corresponds to a cluster with speci�c characteristics described by its parameters.

The unknown parameters to be estimated are thus (�1; :::;�J ;�1; :::;�J ; !1; :::; !J) :
We also introduce a classi�cation vector V = (v1; :::; vn); where vi = j implies that
observation yi is classi�ed into Cluster j. The classi�cation vector is regarded as an
unknown parameter, and the marginal of its posterior are the cluster probabilities
for single observations.

2.1 Prior Distributions

In a Bayesian analysis each parameter of the model follows a distribution. The
prior opinion on a parameter is described by its prior distribution. We use conju-
gate priors for the parameters of the mixture model according to Lavine and West
(1992). When there are no prior opinions, a vague prior can be used within this
class of conjugate priors.

The prior distribution for �j is the inverse Wishart distribution

�j � W�1 �mj; j
�

with mj degrees of freedom and scale matrix  j.

No limitations are put on variability between clusters, i.e. we allow for each
cluster to have its own speci�c covariance matrix in terms of volume, shape and
orientation. This makes it possible to work with cases where one cluster (or more)
may have a distinguishing characteristic in terms of large variance.

The prior distribution for �j is the multivariate normal distribution with known
covariance matrix �j=� j for some precision parameters � j. That is,

�j j�j � NM
�
�j;�j=� j

�
The conjugate prior distribution for
 =(!1; :::; !J) is a multivariate generalization
of the beta distribution, known as the Dirichlet distribution
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(!1; :::; !J) � D(�1; :::; �J)
The prior distribution can be seen as a probability (or density) function describing
the uncertainty before the data is observed. The prior belief, speci�ed here by the
location and precision parameters mj;  j, �j, � j, and �j fj = 1; :::; Jg, can vary
between persons according to their knowledge and experience. With an uninfor-
mative prior the posterior distribution is almost completely determined by data.
In Section 3 there is an explanation of how to specify the priors in accordance with
ones choice.

2.2 Posterior Derivations

The likelihood from data, together with the priors described in the previous sec-
tion, generates the posterior distribution for each parameter. The transformation
from prior to posterior is given by Bayes theorem, which says that the posterior
distribution of the parameters, �; is proportional to the prior information times
the information from data, i.e. the likelihood function.

Posterior / Prior � Likelihood of data
�(�jdata) _ �(�) � p(dataj�)

The posterior distributions is in this program given by a set of conditional dis-
tributions. The posterior distribution of �j is the inverse Wishart distribution
conditional on y and V,

�j jy;V � W�1
�
nj+mj; j +�j +

nj� j
nj + � j

(yj � �j)(yj � �j)t
�

where �j =
P
i2j
(yi � yj)(yi � yj)t

The degrees of freedom equal the sum of the prior degrees of freedom mj, and the
number of observations in Cluster j, nj. The scale matrix has three components
- the prior opinion of �j, namely  j, the sum of squares �j, and the deviation
between prior and estimated mean values.

The posterior distribution for �j is the multivariate normal which is expressed
conditional on y, �j, and V, namely:

�j jy;�j;V � NM
�
�j;�j=(� j + nj)

�
where �j =

� j�j + njyj
(nj + � j)

The mean vector �j in the posterior distribution is a weighted sum of the prior-
and, by data, estimated mean values.
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The posterior distribution of the probability vector 
 conditional on V is the
Dirichlet distribution

(!1; :::; !J jV ) � D
�
�1 +

nP
i=1

I (vi = 1) ; :::; �J +
nP
i=1

I (vi = J)

�

The prior speci�cation �1; :::; �J , and the number of objects classi�ed into each
Cluster j described by

Pn
i=1 I (vi = j), are the updated parameters in the posterior

of 
:

The posterior probability tij for observation yi to belong to Cluster j is calculated
according to Bayes theorem conditionally on y, �j, and �j

tij
���j;�j;
 =

!jf
�
yi
���j�j �

JP
j=1

!jf
�
yi
���j�j

� i = 1; :::; n

The probabilities are the basis for the simulation of the classi�cation vector V.

2.3 Parameter Estimation through the Gibbs sampler

The Gibbs sample algorithm (Geman and Geman, 1984) is used to estimate the
model parameters �j, �j, 
, and the classi�cation vector V: The Gibbs sampler
works by iteratively drawing samples from the full conditional posterior distrib-
utions of the parameters in the model, as presented in the previous section. A
parameter value simulated from its posterior distribution in one iteration step is
used as a conditional value in the next step. Replicating the process, consisting
of steps 1 to 4 below, allows for an approximate random sample to be drawn from
the joint posterior density.

1. New values for �j, j = 1; :::; J , are simulated from the inverse Wishart
posterior distributions, conditional on y and the previous V.

2. New values for �j, j = 1; :::; J , are simulated from the multivariate normal
posterior distributions, conditional on y and the previous values of �j and
V. The new covariance matrices simulated in step 1 are considered as known
in step 2:

3. A new vector probability 
 is simulated from the Dirichlet posterior distri-
bution, conditional on the previous V:

4. In the last step, new classi�cation variables vi are simulated according to
their posterior probabilities tij, conditional on the new �, �, and 
. The
element vi = j with probability tij, independent of all other vi0 i0 6= i.
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3 Programs

The programs run in a Matlab environment. Versions 7.1 or later are recom-
mended. Previous versions have a fault in one of Matlab�s own m-�les, which may
overestimate the covariances. For e¤ective simulations, the recommended com-
puter capacity is an Intel Core 2 Duo processor with at least 2 GHz and 2 GB
RAM, or corresponding. Instructions on how to use the programs are given in the
following steps.

1. Download the programs

Download the Matlab programs from www.statistics.su.se/forskning/MBCA
into one catalogue without changing their names or formats. There are a
total of six �les, one for each program described below and two for graphical
presentations.

2. Create a data matrix

Open Matlab and the command window will appear. Before running any of
the programs, the data matrix Y has to be speci�ed in the command window.
The data matrix Y has to be of size K�n; where K is the dimension of data
and n the number of observations. Each observation in Y is then represented
by a column and each variable by a row. For small data materials, the matrix
can be typed directly in the Matlab command window. For an imaginary
data set with 4 observations in 3 dimensions type:

>> Y=[2.6 1.4 3.8 4.5;4.5 1.2 6.9 4.5;6.3 4.5 1.1 2.5]

which Matlab writes as:

Y =

2.6000 1.4000 3.8000 4.5000

4.5000 1.2000 6.9000 4.5000

6.3000 4.5000 1.1000 2.5000

Most data sets are too big to be typed manually. If data is stored in Excel,
one may fetch data by the Matlab command

>> Y = xlsread(��lename�)

Data in Excel is often in the format of columns representing variables and
rows representing observations, i.e. the opposite of the matrix Y: This is
easily put right by transposing the matrix;

>> Y = Y�
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Other alternatives to xlsread for other data forms than Excel are dlmread,
wk1read, cdfread, and textread. For information on these options, type help
followed by the desired alternative in the command window, or use the Mat-
lab help menu.

For Programs 4 and 5, where we work with longitudinal data, data is speci�ed
in one matrix for each time point. Y1 contains data from time point 1, Y2
from time point 2, and, if present, Y3 from time point 3. Speci�cations for
these data matrices are performed in the same way as above. Note that the
number of observations must be the same for all time points, but dimensions
on data may be di¤erent. This means the number of columns in Y1, Y2, and
Y3 have to be the same, but the number of rows may di¤er. The same column
must correspond to the same individual at all time points. If an individual
is not measured at a certain time point, enter NaN in that column.

3. Start the program

To start the desired program type its name in the command window. De-
pending on the current directory in Matlab, it may be enough just to print
the �le name. If the current directory, which shows if cd is typed in the
command window, is set to another location, the whole pathname must be
speci�ed. Alternatively, one may change the current directory by typing
cd(�directory�), where directory is the pathname.

4. Model and prior speci�cations

When the program is started, model and possibly prior speci�cations are
typed directly in the command window according to instructions that appear
on the screen. Necessary entries include the number of clusters, iterations,
and burn-in iterations. For Program 2, it also includes speci�cation of the
possible outcomes for the deviant cluster. After making model speci�cations,
one has the choice of using default prior speci�cations or making customized
speci�cations. Default prior values are prespeci�ed in the program. One may,
however, change these speci�cations to other values by typing 1 when the
question appears on the screen. If 1 is typed, a number of prior speci�cations
that need to be made appear in turn on the screen. Instructions on how to
make these speci�cations are given in the following subsections.

If 0 is typed, default values are used in the analysis. The default priors are
rather vague but center around the mean and covariance for the whole data
set. It should be said, that it is opposite to the Bayesian idea when using the
data in the prior speci�cations. However, we make this moderate overstep to
simplify for the user. At the same time we reduce the strength of the mean
and covariance priors by putting low values on the other prior parameters
for the mean vectors and covariance matrices. The degrees of freedom mj,
equal 10; and the precision parameters � j equal 1 for all clusters. Default
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priors for the cluster probabilities �j is 5 for all clusters. In Program 2, �j
is 5 for all non-deviant clusters and 1 for the last deviant group, re�ecting
the prior belief of a smaller deviant cluster. For Programs 3 and 4, the �j
speci�cations for the transitions matrices are all set to 5.

5. Running Time

After the speci�cations are made in the command window, the iteration
process starts. This might take a considerable amount of time depending on
the number of iterations, the extent of the data material, and the program
used. Running time for Program 1 with 6 clusters, 7 variables, 100 000
iterations, and 1 000 observations was a little over 3 hours on a computer with
3 GHz and an Intel Core 2 Duo E6850 processor with 3 GB RAM. Running
time for Program 4, with the same number of iterations and observations,
and with 4 clusters in 3 dimensions at Time 1 and 3 clusters in 4 dimensions
at Time 2, was almost 5.5 hours on the same computer. 100 000 iterations
are usually considered a long iteration chain.

6. Results

Estimation results are automatically presented in the command window after
the program is executed. MEAN are the mean estimates where each column
represents one cluster. PROB shows all the cluster probability estimates,
and COV1, COV2,..., COVJ are the covariance estimates for the J clusters.
To receive the cluster probabilities of all n objects, write

>> CLUSTERPROB

in the Matlab command window.

Each row in CLUSTERPROB shows cluster probabilities for one observation.
The columns represent the J clusters in the same order as the mean and
covariance estimates are presented. When we have more than one time point,
i.e. in Programs 4 and 5, the name of the estimation results are followed
by a number corresponding to the time. MEAN1 are for example the mean
estimates at Time 1 and COV12 is the covariance matrix for Cluster 2 at
Time 1. Cluster probabilities at Time 2 for example are received by typing
CLUSTERPROB2.

7. Save the results

Save the results under "Save Workspace As" in the �le menu. When opening
the workspace again, the results will not automatically appear on the screen.
You have to call each estimate by its name given above. Before running a
new program, make sure to clear the previous data by typing

>> clear

and

>> clc
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8. Graphical presentations of the results.

Iteration plots and histograms over estimated parameters may be obtained
after the program is run. Iteration plots are useful when checking the conver-
gence. If the method works properly, the iterations should generate �white
noise� around the estimated mean value. The iterations, after the speci�ed
burn-in period, underlie the histogram which gives a visual representation of
the posterior distribution of the estimated value. The �gures below show an
example of an iteration plot and corresponding histograms for three mean
variables from one cluster. The convergence for this example was short, and
the burn-in period of 5 000 iterations was much longer than necessary.
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Figure 1: Left graph - Iteration plot for 3 mean variables. Right graph - Histograms
for the same variables created from the last 95 000 iterations (100 000 minus a burn-in
of 5 000).

To obtain iteration plots and/or histograms for the estimates, open the program
Graph1.m or Graph2.m through the �le menu. The �rst program handles cross
sectional data and is used after running Program 1, 2, or 3. The second program
handles longitudinal data and is used after running Program 4 or 5. When opening
the suitable program, one will then enter the editor where several sections are
prepared for di¤erent plots and histograms. To obtain a speci�c graph, copy
the corresponding section and simply paste it into the Matlab command window.
Before copying, minor speci�cations need to be made as, for example, which cluster
the graph shall illustrate. The �rst section in the Graph1.m program is shown
below. When pasted into the command window, this section plots the iterations
for one probability estimate. If another cluster than 1 is desired, change j = 1 to
the number of the desired cluster.

%ITERATION PLOT FOR CLUSTER PROBABILITIES
%Before copying, enter j for the desired cluster j = 1; :::; J
j = 1;
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plot(Theta(:; j))

The iteration plots show all generated values, including the burn-in iterations in
the beginning. This way one can study how long it takes for the chain to converge.
The histograms are plotted without the burn-in iterations, to give a picture of the
true posterior distribution.

3.1 Program 1 - Clustering of J Groups

The �rst program handles the basic case where data is to be clustered in J di¤erent
groups. The program is the foundation for the extended and modi�ed programs to
follow in the next sections. For a demonstration and application of this program
see Franzén (2006). Below are instructions on how to enter model and prior
speci�cation into the program.

Model speci�cations

� The program asks for the number of clusters J . Specify and press enter.

� The program asks for the number of iterations T . The larger the number of T
the better the estimates, but keep in mind that a large number of iterations
may demand a lot of computer time, memory, and capacity.

� The program asks for the number of iterations F to discard in the beginning
, i.e. the burn-in period. More on this in Section 5.1.

� The program asks if one wants to use default priors or not. For default
values, type 0. If customized prior speci�cations are wanted, type 1. The
program will then ask for new prior speci�cations. Below are instructions
for each step.

Prior speci�cations for �

� Instruction 1. Specify the precision parameters for each cluster in vector
form, i.e. [� 1 � 2 ::: �J ]. The length of the vector is equal to the number of
clusters J .

� Instruction 2. Specify the mean of the prior beliefs of the mean values �j in
matrix form. The size of the matrix has to beK�J . Rows represent variables
and columns represent clusters. Each column in the matrix represents the
vector �j for Cluster j. For example

[1 2 3;1 2 3;1 2 3;1 2 3]

generates a matrix with values equal to 1 in column 1, 2 in column 2, and 3
in column 3. This corresponds to a prior belief of 1 for all variables in Cluster
1, and 2 for all variables in Cluster 2, and 3 for all variables in Cluster 3.
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The cluster means are expected to be around the selected values in �j, j = 1; :::; J .
A small value of the precision parameters � j gives less weight to the prior means
and larger variance in the posterior distributions, compared to higher values. The
precision of the prior opinion corresponds to having observed � j individuals that
are known to come from that cluster. The choice � j = 0; corresponds to having
no information at all.

Prior speci�cations for �

� Instruction 3. Specify the degrees of freedom for each cluster in vector
form i.e. [m1 m2 ::: mJ ]. The length of the vector is equal to the number of
clusters J .

� Instruction 4. Specify the prior belief of the covariance matrices �j for
each cluster in matrix form. The program asks for one covariance matrix at
a time, starting with the covariance for Cluster 1. The size of the matrix has
to be K �K. If, for example, one wants to use the identity matrix I as the
prior covariance, type eye(K): If another value a is desired instead of 1 in
the diagonal, simply write a � eye(K): If other values than 0 are desired for
the non-diagonal values, i.e. the covariances, each matrix has to be typed
out in its complete form. For example, if K = 3, [1.2 0.5 0.5;0.5 2 0.5;0.5 0.5
3] generates the prior covariance matrix

1.2000 0.5000 0.5000

0.5000 2.0000 0.5000

0.5000 0.5000 3.0000

Observe that  j = mj�j; but we specifymj and �j separately and leave it to
the program to calculate  j. �j should re�ect the actual prior belief of the
covariance matrix. The strength of our prior belief for �j is adjusted with
mj. Our best prior guess of �j would thus be  j=mj; and the knowledge
of the variance corresponds to the knowledge obtained from mj individuals.
The choice mj = 0, corresponds to no prior knowledge.

Prior speci�cations for 


� Instruction 5. Specify the prior beliefs of the cluster proportions in vector
form, i.e. [�1 �2 ::: �J ] : The length of the vector is equal to the number of
clusters J .

The relative sizes of the Dirichlet parameters �j describe the expected proportions
between groups, and the sum of the �j�s is a measure of the strength of the prior
distribution. The prior distribution is mathematically equivalent to a likelihood
resulting from

PJ
j=1 (�j � 1) observations with �j � 1 observations of the j:th

group.
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3.2 Program 2 - Clustering with Deviant Observation

Usually, outlier or deviant observations are simply ignored in the analysis, or, more
preferably, removed from the data set prior to the analysis. In this program we
allow for deviant observations within the model. The mixture model is extended
with one deviant cluster where the observations are assumed to follow a uniform
distribution f0(y) over the whole sample space.

f(yi j� ) =
JX
j=1

!jfj(yi
���j;�j ) + p0f0(y)

The cluster probabilities satisfy
PJ

j=1 !j+!0 = 1: Theory and application related
to this program may be found in Franzén (2007).

The model and prior speci�cations in Program 1 also apply in this program. One
additional entry concerning the deviant cluster needs to be made in the model
speci�cations.

� Instruction 1. The program asks for the possible outcomes of the deviant
cluster. For discrete data: Give the number of possible outcomes for each
variable in vector form for example [10 5 10] means that the �rst variable,
among a total of three, may attain 10 possible values, the second 5 and
the last 10. For continuous data: Give instead the interval length of each
variable�s range.

Priors for the J non-deviant clusters are speci�ed in the same way as they are for
the J clusters in Program 1, with one exception. No prior speci�cations are made
on the mean vector and covariance matrix of the deviant cluster, since estimates
for this cluster would be uninformative. The size of the deviant cluster, is, however
of great interest. Therefore, the vector specifying the cluster proportions will now
be of length J + 1.

� Instruction 2. The program asks for the prior beliefs of the cluster propor-
tions in vector form, i.e. [�1 �2 ::: �J+1] : The vector is now of length J + 1
where the last value corresponds to the deviant cluster. The prior speci�ca-
tions on the last value are usually lower than the rest of the � parameters
since we normally expect this deviant cluster to be smaller than the others.

After the program is executed, one may in addition to the automatically presented
results obtain information on the observations in the deviant cluster.

>> DEVOBS
Shows the values of those observations where cluster probabilities are the highest
for the deviant cluster.

>> PLACE
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Shows which observation numbers these observations have.

Instead of assuming a uniform distribution for the deviant cluster, one may assume
a normal distribution with a much larger variance than the rest of the clusters.
In that case, Program 1 can be used to model the existence of a deviant group.
This is simply done by specifying large values on the prior variances in �j for the
cluster corresponding to the deviant group.

3.3 Program 3 - Clustering with Missing Data

Missing values are handled as an extra step in the iteration process. Missing values
for an observation are replaced by values generated from the normal distribution
of which the observation is a member at that iteration step.

The missing variables are denoted NaN in the program. To change numeric values
representing missing values (for example 99) in the data matrix Y to NaN, write
in the command window

>> Y(Y==99)=NaN

No additional entries from Program 1 need to be made. The model and prior
speci�cations are speci�ed in the same way. The prior default values of the mean
and covariance are now only based on the observations with a complete variable
set.

3.4 Program 4 - Longitudinal Clustering

This program clusters data collected at 2 or 3 consecutive time points. At each
time point t, data y(t)i fi = 1; :::; ng is assumed to come from a mixture model of
multivariate normal distributions

f
�
y
(t)
i

�
=

J(t)X
j=1

!
(t)
j f

(t)
j

�
y
(t)
i

����(t)j ;�(t)j � i = 1; :::; n

where !(t)j is the proportion of objects belonging to Cluster j at Time t and f (t)j
is a multivariate normal density. J (t) denotes the number of clusters at Time t.
The mixture model theory is the same as when clustering cross-sectional data.
The allocation of objects is however done in a longitudinal manner. An object�s
classi�cation is determined simultaneously for all time points. Information from
all occasions is taken into consideration when determining an object�s develop-
ment pattern. We introduce the transition matrix Qt; which consists of transition
probabilities from clusters at Time t to clusters at Time t + 1: Given a cluster
membership at Time t corresponding to one row in Qt, the columns in Qt give
transition probabilities to all possible clusters at Time t + 1: In addition to the
cross sectional study one may study transition patterns between time points and
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also see how cluster structures change. The model allows for the number of clusters
and/or the number of variables to di¤er between time points.

The prior distribution for each row in the transition matrix Qt is the Dirichlet
distribution

Qt(j
(t); �) � Dir(�(t)1 ; :::; �

(t)

J(t)
)

where the � parameters have functions equivalent to the � parameters in the
Dirichlet distribution for the cluster probabilities.

The posterior distributions for each row in Qt is

Qt(j
(t); �)

��V(t) � Dir
�
�
(t)
1 + n

(t) �
j(t); 1

�
; :::; �

(t)

J(t)
+ n

(t) �
j(t); J (t+1)

��
where n(t)(j(t); j(t+1)) counts the number of transitions from Cluster j(t) to Cluster
j(t+1) between Times t and t+1 and �(t)1 ::: �

(t)

J(t)
are the parameters from the prior

Dirichlet distribution.

For more information on the theory of longitudinal clustering and applications of
this particular program see Franzén (2008a).

Except for the addition of the transition matrices Qt, the model- and prior speci-
�cations do not di¤er much from Program 1. The same speci�cations have to be
made, but now for more than one time point. We specify changes and additions
from Program 1 below.

Model speci�cations

� The program asks for the number of time points, i.e. 2 or 3.

� The program asks for the number of clusters at each time point in vec-
tor form, i.e.

�
J (1) J (2) J (3)

�
if we have data from 3 time points, or else�

J (1) J (2)
�
:

Prior speci�cations for �

� Instruction 1. Specify the precision parameters for each cluster in vector
form, i.e.

h
�
(t)
1 �

(t)
2 ::: �

(t)
J

i
: The speci�cation is repeated for t = 1; :::; T:

� Instruction 2. Specify the prior beliefs of the mean values �(t)j in matrix
form. The size of the matrix has to be K(t) � J (t). Rows represent variables
and columns represent clusters, both at Time t. Each column in the matrix
corresponds to the vector �(t)j for Cluster j. Either one types out the whole
matrix as shown in Program 1, or if the same value is desired within the same
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matrix we simplify and type 0 � ones(D(1); J(1)). This results in a matrix
in the right size (at Time 1) with zeros on all places. Replace the zero when
the prior belief is of another magnitude. The speci�cation is repeated for
t = 1; :::; T:

Prior speci�cations for �

� Instruction 3. Specify the degrees of freedom for each cluster in vector
form i.e.

h
m
(t)
1 m

(t)
2 ::: m

(t)
J

i
: The speci�cation is repeated for t = 1; :::; T:

� Instruction 4. Specify the prior belief of the covariance matrices �(t)j at
Time t, in the same way as in Program 1. The size of the matrix has to be
K(t) �K(t): The speci�cation is repeated for t = 1; :::; T:

Prior speci�cations for 


� Instruction 5. Specify the prior beliefs of the cluster proportions for the
clusters at Time t in vector form, i.e.

h
�
(1)
1 �

(1)
2 ::: �

(1)
J

i
: No speci�cations are

needed for Times 2 and 3 since these probabilities are a direct consequence
of the cluster probabilities at Time 1 and the transition matrices speci�ed
in the next steps.

Prior speci�cations for Q

� Instruction 6. Specify the prior beliefs of the transition probabilities be-
tween Times t and t + 1 in matrix form. Note that the number of rows
corresponds to the number of clusters at Time t and the number of columns
to the number of clusters at Time t + 1. The size of the matrix between
Time 1 and 2 is J (1) � J (2) and between Time 2 and 3 (if there is a third
point) J (2) � J (3). Each row is speci�ed unconditional of any other rows.
As for the � parameters, the relative sizes of the �(t)j in one row describe

the expected proportions between groups, and the sum of the �(t)j �s in one
row is a measure of the strength of the prior distribution. If there are three
time points, the matrix speci�cation is repeated once, for transition between
Times 2 and 3.

3.5 Program 5 - Longitudinal Clustering with Missing Val-
ues

Longitudinal data in several dimensions are in particular subject to incomplete-
ness. Deleting observations with one or more missing variables at one or more
time points may drastically reduce the data set and worsen the result. In the
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same way as in Program 3, multiple imputation is performed as a step in the it-
eration process. This time the method is applied to longitudinal data. Franzén
(2008b) presents the theory and applies it to simulated and real data.

The entries are the same as in Program 4. Like Program 3, the missing values in
the data matrices Y 1, Y 2, and possibly Y 3 have to be encoded NaN.

4 Practical Issues

4.1 Start values

The iteration process successively updates the values in the Markov chain. To get
the process started we need a set of start values for all parameters. Start values
in the MBCA programs are decided by default by doing a preliminary clustering
by the k-means clustering method. The values could be settled in an easier way,
for example through a quali�ed guess or neutral values. The gain from using
a more de�ned method is that the start values probably become closer to their
target values and therefore make the Markov chain converge faster. Generally it
is best to try several starting points in the state space. If they lead to noticeably
di¤erent posterior estimates the Markov-chain has not yet converged. The opposite
condition, i.e. if one starts at di¤erent starting points and ends up in the same
region, does not guarantee that the chain has reach its stationary distribution. It
may be stuck in a local maximum and will need more iteration runs to eventually
�nd its way out. This means that, within reason, as many iterations T as possible
should be chosen.

Changes of the default start values are not straightforward but can be done in
any of the Programs P1.m to P5.m. Lines 138-141 in Program P1.m, for example,
look like this:

M(:,:,1)=M0(:,1:J);
V(1,:)=V0;
Theta(1,:)=Theta0;
Sigma(:,:,1)=Sigma0(:,1:K*J);

To change start values, the expressions to the right of the equal signs are in turn
replaced by:

� AK�J matrix where each column represents the start values for one cluster.
For example, type zeros(K; J) if all starting mean values are to be 0.

� A 1 � n vector where each value represents the cluster belonging for that
corresponding observation. This may be a long vector if n is large, and
therefore be time-consuming to type. One may then leave the line unchanged,
which means the cluster classi�cations generated by the k-means are valid.
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� A 1 � J vector where each value is the cluster probability for each cluster.
The sum of all values has to be 1. For example, type (1=J) � ones(1; J) for
equal size of all start values.

� A K � (J � K) matrix where the �rst K columns represent the covariance
matrix for Cluster 1, the next K columns Cluster 2 and so on. For example,
type repmat(eye(K); 1; J) for J identity covariance matrices in a row or
repmat(a � eye(K); 1; J) if the value a is desired in the diagonal instead of
1.

The same lines are found on lines 167-170 in Program P2.m and lines 153-156 in
Program P3.m. When we are dealing with data from more than one time point,
we have to change start values for all time points. The lines in Program P4.m are
found on lines 386-394 for Time 1 and 2 and on lines 424-427 if there are three
times. For Program P5.m the lines are 424-432 and 462-465.

4.2 Burn-in Period

Usually it takes a number of iteration rounds before the algorithm converges to
the desired limiting distribution. The length of the burn-in period, during which
the generated values are not representative of the posterior distribution, must be
decided. The slower the chain is to converge the longer the burn-in period has
to be. Even when starting the chain in the target area, there is no guarantee the
burn-in period is unimportant. It will always take some time for the Markov chain
to forget its starting position.

There is no guaranteed way to decide the length of the burn-in period, which we
denote F in the programs. There are methods of approximation, but we settle
for a visual inspection of the iteration output. By studying an iteration plot,
one would most often get an idea how many iterations are needed before the
chain seems to have reached its stationary distribution. Iteration plots of all the
cluster proportions in one graph usually give a good indication. Figure 2 shows
the iteration plot for the cluster proportions for a mixture of 4 groups. The
burn-in period for these estimates, in this particular run, consists of about 400
iterations. The burn-in period in the next run may be much longer. It is always
better to exaggerate the length of the burn-in period than the opposite. The only
disadvantage with a longer burn-in period than necessary would be that useful
generated values are discarded.

4.3 Label Switching

So-called label switching is a well known problem when taking a Bayesian approach
to clustering using mixture models. Label switching is the name for the event when
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Figure 2: Illustration of the burn-in period. For these iterations convergence was
reached after about 400 iterations.

Clusters j and j0 change places during the iteration process. This phenomenon
arises because the likelihood

L (� jy ) =
nY
j=1

[!1f (yi j�1�1 ) + :::+ !Jf (yi j�J�J )]

is the same for all permutations of clusters. This means the parameters in the
model are not identi�able by a speci�c cluster number. If we have no prior in-
formation that distinguishes the components of the mixture, i.e. if the priors are
the same for all permutations of �, then the posterior distribution will be simi-
larly symmetric. The same prior distribution for all components of the mixture is
usually the case if one has no real prior information about the components.

Label switching can often be detected by studying the iteration plots.

A common solution to the label switching problem is to introduce some iden-
ti�ability constraints on the parameter space such as !1 > !2 > :: > !J or
�1 > �2 > ::: > �J . The �rst constraint, where the cluster sizes are ordered, can
be included in the programs. The constraints are prepared for by an inactive line
in each program. To activate, simply remove the %-sign on rows 188, 220, 257,
561, or 767 depending on which program among P1.m to P5.m is being used. It
should be said that this is not a guaranty for eliminating label switching. However,
when experiencing label switching, this measure should at least be tried. Stephens
(2000) gives an explanation and proposals for other solutions to this particular
problem.
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4.4 Other Problems

The programs in the MBCA package are prepared for a number of problems and
deviations that may occur in the simulation process. However, it is not possible
to account for every possible situation that may occur for all types of data set.
The program may be interrupted for some reason other than when the user has
made a wrong entry. When this happens, one should try to run the program again
and see if an odd situation was created by chance. In that case it would probably
not be repeated in another run. The whole idea with MCMC simulation is to
base the inference on randomness. This is an e¤ective method but may also create
unexpected situations.
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