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Abstract. The notion of causality in multiple time series is addressed from a Bayesian
graphical modelling perspective in the class of vector autoregressive (VAR) processes.
Due to the very large number of graph structures that may be considered, simulation
based inference, such as Markov chain Monte Carlo, is not feasible. Therefore, we
derive an approximate joint posterior distribution of the number of lags in the autore-
gression and the causality structure represented by graphs using a fractional Bayes
approach. Some properties of the approximation are derived and the analysis is illus-
trated on a four-dimensional macroeconomic system and …ve-dimensional air pollution
data.

1. Introduction

The vector autoregression (VAR) can be written as

xt =
kX
i=1

¦ixt¡i + "t, t = 1; :::; n;(1.1)

where xt is a p-dimensional vector of time series observations at time t, ¦i are p £ p
coe¢cient matrices determining the dynamics of the system and "1; :::; "n

iid» Np(0;§).
Deterministic variables can be added to the model, leading only to trivial modi…cations
of the results obtained here.
The statistical properties of the VAR model are by now well explored, see e.g. Lütke-

pohl (1993). The number of parameters in the VAR model is typically very large and
it is complicated to investigate the dynamic relations between the time series simply by
looking at estimates of ¦1; ::;¦k and §. Several tools have been suggested to aid in the
interpretation of VARmodels, most notably the impulse response functions methodology
introduced by Sims (1980), and causality tests (Granger, 1969; Sims, 1972).
Our focus here is on causality relations modelled by mathematical graphs. Graphical

models, i.e. models which use mathematical graphs to represent multivariate relations,
have become widely known and used statistical tools in cross-sectional data analysis, see
e.g. Whittaker (1990), Lauritzen (1996) and Wermuth (1998). A typical graph consists
of a set of vertices representing the variables and a set of edges between these vertices.
The presence of an edge between a pair of vertices means that the variables are, in some
sense, related. In multivariate cross-sectional data the graph usually represents the
conditional independence structure of the system and, as independence is a symmetric
relation, the edges are undirected. The time dimension of a process makes it possible
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to consider directed ‡ow, or causality, and it is therefore natural to set up a graph for
a time series system with this notion de…ning the relations between variables, i.e. the
presence of an edge from one variable to another implies a causal relation in the direction
indicated by the edge.
A majority of the research concerning graphical models has concentrated on modelling

cross-sectional multivariate observations and only recently have more systematic e¤orts
been made to utilize graph concepts in the context of stochastic processes (Eichler,
1999, Dahlhaus, 2000, Dahlhaus and Eichler, 2001). These works have focused on the
development of fundamental probabilistic properties of graphical models for multivariate
time series in a general context, while leaving the inference aspects more open for further
research. In particular, there have not been any attempts to use Bayesian methods.
As inference in graphical models is essentially a model determination problem, a …eld
where Bayesian methods have dominated during the last decade, the lack of Bayesian
research in this area is surprising. In the cross-sectional data domain, on the other
hand, the potential of Bayesian analysis has been rapidly recognized, and there is a
large literature on Bayesian inference for graphical models of cross-sectional data, see
e.g. Dawid and Lauritzen (1993), Madigan and Raftery (1994), Madigan and York
(1995), Dellaportas and Forster (1999), Giudici and Green (1999), and Corander (2001).
Convincing arguments for a Bayesian approach in a more general setting may be found
in the many books on the subject, see e.g. Bernardo and Smith (1994) and the references
therein.
We concentrate here on the class of VAR-processes for mainly two reasons: …rst, the

VAR process is widely used in applied time series analysis, and second, statistical in-
ference proves to be tractable for this class of models. In contrast to the traditional
graphical modelling of cross-sectional data, the widely used Markov chain Monte Carlo
(MCMC) techniques do not provide a practical solution for the graphical models con-
sidered here, mainly due to the much larger space of possible graph structures. To make
inference jointly about the causality structure and the lag length of the process, we use
the fractional Bayes approach of O’Hagan (1995), which has proven to be well suited
for multiple time series analysis (Villani, 2001a).
The paper is organized as follows. In Section 2 we discuss various types of graphical

models together with necessary concepts and results from graph theory. In Section 3
the joint posterior distribution for the lag length and the causality structure is derived.
The inference procedure is illustrated numerically in Section 4, and some concluding
remarks are given in the …nal section.

2. Graphical VAR models

2.1. Independence graphs for cross-sectional data. We begin by presenting the
traditional independence graph for cross-sectional data together with a review of the
necessary concepts from graph theory, see Whittaker (1990) and Lauritzen (1996) for
a detailed treatment. A visual representation of conditional independencies is given by
an independence graph, G, which consists of two sets, a set of vertices, V = f1; :::; pg,
and a set of edges E µ f(i; j) 2 V £ V g, connecting some of the vertices. The variables
are represented by vertices in the graph and the absence of an edge between a pair
of vertices implies that the corresponding variables are independent conditional on the
other variables in the system. A precise de…nition is as follows.
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De…nition 1. A conditional independence graph G = (V;E) on a set of random variables
X1; :::;Xp is de…ned by the relation

(i; j) =2 E () Xi ? Xj j XV nfi;jg;
where ? denotes independence and V na = fv 2 V : v =2 ag for any a µ V .
A graph is called undirected if (i; j) 2 E , (j; i) 2 E, i.e. if the presence of an edge

between vertex i and j implies that there is also an edge in the reverse direction. As
independence is a symmetric relation, independence graphs are undirected. A subset
a µ V of vertices separates two vertices i and j if every path from i to j crosses at least
one vertex in a. A subset a µ V separates two subsets b; c µ V if it separates every pair
of vertices i 2 b and j 2 c. The induced subgraph of a µ V , Ga, is obtained by removing
from V all vertices not in a together with all edges which do not join two vertices in
a. A graph is complete if it has maximum number of edges. A subset a µ V is called
a clique if it is maximally complete, i.e. if its induced subgraph is complete but the
induced subgraph of any extension of a is incomplete.
An undirected graph is said to be decomposable or triangulated if it has no chordless

cycles of length larger than three, which implies that G can be broken into a sequence of
its cliques by certain basic operations. From this sequence, the separators of a decom-
posable graph can be obtained as intersections of successive cliques. The joint density of
a set of random variables X1; :::;Xp with decomposable independence graph factorizes
as follows (Whittaker, 1990; Lauritzen, 1996)

p(x1; :::; xp) =

Q
c2C(G) p(x

(c))Q
s2S(G) p(x(s))

;(2.1)

where C(G) and S(G) are the sets of cliques and separators, respectively, in the graph,
and x(c) and x(s) are subsets of variables in clique c and separator s, respectively. The
decomposition in (2.1), realizable by the assumed decomposability of the graph, splits the
density, in a sense, into conditionally independent pieces. It is precisely this property
which makes the class of decomposable graphical models especially attractive from a
Bayesian point of view, see e.g. Dawid and Lauritzen (1993), Madigan and Raftery
(1994), Madigan and York (1995), Giudici and Green (1999).
For independent Gaussian observations with covariance matrix § it is well known that

the independence graph can be characterized by the relation (i; j) =2 E , ­(i; j) = 0,
where ­(i; j) is the (i; j)th element of ­ = §¡1. By assuming that E is decomposable,
traditional methods (see the references in the previous paragraph) may be used directly
on the "t-sequence in (1.1), with a missing edge between node i and j signifying that
the two time series Xi and Xj are contemporaneously independent conditional on the
other variables. Contemporaneous independence is of course only part of the dependence
structure for time series and the next section describes a graph structure developed by
Dahlhaus (2000) which takes the time dimension of time series data into account.

2.2. Partial correlation graphs for time-series data. The undirected partial cor-
relation graph for a multivariate process may be de…ned as follows.

De…nition 2. A partial correlation graph G = (V;E) on a set of p stationary time series
X1; :::;Xp is de…ned by the relation

(i; j) =2 E () rij(¸) = 0; 8 ¸ 2 (¡¼; ¼);
where rij(¸) denotes partial spectral coherence of Xi and Xj (Brillinger, 1981).
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The partial correlation graph was …rst de…ned by Dahlhaus (2000), who actually
proved our de…nition using an alternative de…nition based on orthogonality of the resid-
uals of Xi and Xj with the e¤ect of XV nfi;jg and linear trends removed.
For Gaussian processes, and for the VAR process (1.1) in particular, the partial

correlation graph has a conditional independence interpretation and may rightly be
called a generalized independence graph. However, the partial correlation graph need
not be as informative as one would expect; this is illustrated in the next section, after
the introduction of yet another graph type: the causality graph.

2.3. Causality graphs for time-series data. A relatively detailed representation of
the dependence structure is obtained by supplementing the decomposable independence
graph on "t-sequence in (1.1) with some notion of directed ‡ow or causality. Here we
follow Eichler (1999) and Dahlhaus and Eichler (2001) in the use of Granger causality
(Granger, 1969) and in the restriction of attention to stationary time series. Loosely
de…ned, the time series Xj Granger-causes another series Xi if and only if the addition
of Xj to the (existing) predictor set improves the predictions of Xi in a mean square
sense; see Granger (1969) for an exact de…nition. It is clear that any causality relation is
directed; the presence of a directed edge between Xi and Xj does not imply the existence
of an edge in the opposite direction.
Graphs consisting of both directed and undirected edges are usually referred to as

mixed. The edge set E of a mixed graph G is the union E = E1 [E2; where edges in E1
and E2 are directed and undirected, respectively. Such mixed graphs will be denoted by
G
¡!» = (V;E1; E2), whereas undirected graphs will be denoted by G» to make a clear

distinction between the two graph types. There are 2(
p
2) undirected and 23(

p
2) mixed

graphs, respectively, for a set of p vertices.
De…nition 2.4 in Dahlhaus and Eichler (2001), reinterpreted in our setting, reads:

De…nition 3. A causality graph G¡!» = (V;E1; E2) on a set of stationary time series
X1; :::;Xp is de…ned by the relations

(i; j) =2 E1 () Xi is non-causal for Xj conditional on XV nfi;jg
(i; j) =2 E2 () Xi and Xj are contemporaneously independent conditional on XV nfi;jg

If, in addition, E2 de…nes a decomposable graph, then X1; :::;Xp is said to have a
decomposable causality graph.

Lemma 1. IfX1; :::; Xp follows a p-dimensional VAR process with causality graph G
¡!» =

(V;E1; E2), then the following holds

(i; j) =2 E1 () ¦l(i; j) = 0, for all l = 1; :::; k;

(i; j) =2 E2 () ­(i; j) = 0;
where ¦l(i; j) is the (i; j)th element of ¦l and ­ = §¡1.

Proof. Follows directly from Corollary 2.2.1 in Lütkepohl (1993) and Corollary 6.3.4 in
Whittaker (1990).

A VAR process satisfying the conditions in Lemma 1 will be called a graphical causal
VAR model, or GCVAR(G¡!» ; k) for short.
As shown in Dahlhaus and Eichler (2001), the graph theoretic concept of moralization

which refers to conversion of the directed edges into undirected ones and addition of
eventual further undirected edges according to certain rules, may be used for deriving
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Figure 1. Causality graph of the VAR process speci…ed in Eqn. 2.2.

1 2

4 3

Figure 2. Partial correlation graph of the VAR process speci…ed in Eqn. 2.2.

the edges of the partial correlation graph from the causality graph (see also Andersson
et al., 2001). Using this relationship between the two types of graphs, we now illustrate
that partial correlation graphs may disregard important aspects of dependence structure
of a multivariate process.
LetG¡!» = (V;E1; E2) be speci…ed according to the graph in Figure 1. In Figure 1, and

in the other illustrations we have used double-headed arrows to indicate the presence of
a directed edge in both directions within a pair of vertices. Also, to clearly distinguish
between directed and undirected edges, the latter are shown as dashed lines. Assuming
further the lag length k = 1, the GCVAR(G¡!» ; k) model is given by

¦1 =

0BB@
¼11 ¼12 0 0
¼21 ¼22 ¼23 0
0 ¼32 ¼33 ¼34
0 0 ¼43 ¼44

1CCA and ­ =

0BB@
!11
!21 !22
0 !32 !33
0 0 !43 !44

1CCA :(2.2)

The conditional independence graph for this model equals the complete graph (Figure
2) and therefore carries no information regarding the rather pronounced variable order
revealed by the causality graph.

3. Bayesian model assessment in GCVARs

The unknown quantities of a GCVAR(G¡!» ; k) process are: the underlying causality
graph, G¡!» , the number of lags, k, and, conditional on a (G¡!» ; k)-pair, the elements in
¦1; :::;¦k and § which are unrestricted under G¡!» . For notational simplicity we use
µ as a shorthand for the free parameters of the GCVAR process; a more correct, but
cumbersome, notation would be µ(G¡!» ; k). Clearly, inference on G¡!» and k must be
settled before µ can be considered.
The main purpose of this paper is to derive the joint posterior distribution of (G¡!» ; k)

conditional on the observed time series, which are for simplicity denoted by X. Let K
be an a priori speci…ed upper bound for the value of k. Using Bayes rule, the joint
posterior distribution of G¡!» and k then reads

¼(G
¡!» ; kjX) = m(G

¡!» ; k;X)¼(G¡!» ; k)P
G2G

PK
k=0m(G

¡!» ; k;X)¼(G¡!» ; k)
;(3.1)
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where ¼(G¡!» ; k) is the joint prior of G¡!» and k, G is the class of models under consider-
ation, and

m(G
¡!» ; k;X) =

Z
L(Xjµ;G¡!» ; k)¼(µjG¡!» ; k)dµ;

is the marginal likelihood of the observed time series X, where L(Xjµ;G¡!» ; k) is the
usual likelihood function under model (G¡!» ; k) with parameters µ and ¼(µjG¡!» ; k) is the
prior distribution of µ. The joint prior of k and G¡!» is over a discrete set and can be
chosen in many ways, e.g., if there is no reason for favoring any particular graph in G a
priori one may use

¼(G
¡!» ; k) = ¼(k)=jGj;(3.2)

where ¼(k) is some discrete distribution over the integers k = 0; 1; :::;K. The symbol j¢j
will be used to represent both the cardinality of a set and the determinant of a matrix.
In the sequel, let G denote the class of decomposable GCVAR(G¡!» ; k) models. As µ

varies with G¡!» and k, elicitation of subjective priors for µ can be a di¢cult and time-
consuming task. In many problems one can …nd a relatively rich parametric family of
distributions which both leads to a tractable posterior distribution and at the same is
quite easily speci…ed via a few hyperparameters. This is not the case for the Gaussian
graphical models, including the model here, see, e.g., the discussion in Giudici and
Green (1999). Here we use a model-based reference prior, which can be utilized without
further subjective assessment of prior hyper parameters. Using §a to denote the jaj£jaj
submatrix of § formed by the rows and columns of § corresponding to the set a, the
prior is of the form

¼(µjG¡!» ; k) /
Q
c2C(G») j§cj¡(jcj+1)=2Q
s2S(G») j§sj¡(jsj+1)=2

:(3.3)

The prior in (3.3) is obtained as a limit of a hyper inverse Wishart distribution (see
Dawid and Lauritzen, 1993, or Giudici and Green, 1999) for § with degrees of freedom
approaching zero (Geisser, 1965).
The prior in (3.3) is improper and is therefore not directly usable for deriving the

joint posterior of G¡!» and k, as explained by e.g. O’Hagan (1995). A solution to this
problem is to sacri…ce a small part of the sample in updating the improper prior to a
proper posterior and subsequently use this posterior as a new prior for the remaining
observations. To avoid the arbitrary choice of training observations, O’Hagan (1995,
1997) suggested that the likelihood of the training sample could be approximated by a
fraction of the likelihood for the whole sample, thereby replacing the choice of speci…c
training observations to the much easier choice of training fraction. Thus, in the frac-
tional Bayes approach to model inference the marginal likelihood in (3.1) is replaced by
the fractional marginal likelihood (FML)

mb(G
¡!» ; k;X) =

R
L(Xjµ;G¡!» ; k)¼(µjG¡!» ; k)dµR
L(Xjµ;G¡!» ; k)b¼(µjG¡!» ; k)dµ ;(3.4)

where 0 < b < 1 is the fraction of the data used to convert the improper prior to a
proper posterior.
The fractional Bayes approach was in Villani (2001a) shown to produce favorable re-

sults in inference about k in the traditional VAR setting, compared to earlier established
default solutions. As in Villani (2001a), it will be assumed here that b is minimal, i.e.
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b = m=n, where m is the smallest number of observations yielding a proper posterior
under the largest model in G (which is the complete graph).
The following lemma, which speci…es the FML for a subclass of G, will be used as a

starting point for the FML in all of G. In the lemma, X denotes the n £ p matrix of
row-stacked observations on the p time series, Xc is the n£jcj submatrix of X consisting
of the columns corresponding to the variables in clique c and Xc(¡l) is Xc lagged l time
periods.

Lemma 2. Assuming the prior (3.3), the fractional marginal likelihood of a p-dimensional
GCVAR(G¡!» ; k) process with S(G») = ? and G¡!»c complete for each c 2 C(G») is

mb(G
¡!» ; k;X) =

Y
c2C(G»)

¡jcj(n)
¡jcj(m)

¯̄̄
§̂c

¯̄̄¡(n¡m)=2
;

where ¡jcj(l) =
Qjcj
j=1 ¡[(l ¡ k jcj ¡ j + 1)=2], ¡(¢) is the ordinary gamma function,

§̂c = n
¡1(Xc ¡ Zc¤̂c)0(Xc ¡ Zc¤̂c)

Zc = (Xc(¡1); :::; Xc(¡k));

¤̂c = (Z
0
cZc)

¡1Z 0cXc;

a multiplicative constant, common to all graphs and k, has been discarded, and m =
p(K + 1) yields the minimal training fraction b = m=n.

Proof. The lemma is a straightforward extension of Theorem 3.1 in Villani (2001a),
applied to independent clique processes.

Unfortunately, the marginal likelihood does not factorize under a general GCVAR(G¡!» ; k)
model with overlapping cliques in G» as it does for ordinary Gaussian graphical mod-
els (see Dawid and Lauritzen, 1993, or Giudici and Green, 1999). This is due to the
discordance between the inference for a separator s 2 S(G») within a clique c 2 C(G»)
and the inference where all cliques in C(G») containing s are considered jointly. For a
detailed discussion of this model marginalization issue at a general level, see Lauritzen
(1996). To enable at least an approximate solution to the model assessment problem
within the class G with a non-empty separator set, we follow Corander and Villani (2001)
and propose an approximation of the FML.
In the sequel, let the subset speci…c in-degree of vertex i in a µ V be de…ned as

the di¤erence da(i) between cardinalities jj 2 V : (j; i) 2 E1j-jfj 2 V na : (i; j) 2
E2g\ f(j; i) 2 E1gj. That is, da(i) counts the total number of directed edges to i minus
the number of directed edges to i from vertices j outside a such that j is adjacent to
i in G» = (V;E2). Notice that the sum of the subset speci…c in-degrees

Pjaj
j=1 da(j)

equals the total number directed edges in G¡!»a . Furthermore, §̂(G
¡!» ; k) denotes the

maximum likelihood (ML) estimate of § under the restrictions given by G¡!» and k. To
simplify notation, we will not write out explicitly which model the parameters and their
estimates refer to when this is evident from the discussion.
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De…nition 4. Assuming the prior (3.3), the approximate fractional marginal likelihood
of a p-dimensional GCVAR(G¡!» ; k) is

mb(G
¡!» ; k;X) =

Q
c2C(G»)

¡¤jcj(n)
¡¤jcj(m)

¯̄̄
§̂c

¯̄̄¡(n¡m)=2
Q
s2S(G»)

¡¤jsj(n)
¡¤jsj(m)

¯̄̄
§̂s

¯̄̄¡(n¡m)=2 ;
where §̂a is the submatrix of the maximum likelihood estimate of § under the restric-
tions given by G¡!» formed by the rows and columns corresponding to a and ¡¤jaj(l) =Qjaj
j=1 ¡[(l ¡ k(da(j) + 1) ¡ j + 1)=2], with da(j) equal to the subset speci…c in-degree

of vertex j in a. A multiplicative constant, common to all graphs and k, has been
discarded, and m = p(K + 1) yields the minimal training fraction b = m=n.

The maximum likelihood estimate §̂ of § under the restrictions imposed byG¡!» can be
computed as follows. Conditional on §, the ML estimate of free parameters of ¦1; :::;¦k
under G¡!» is given in Lütkepohl (1993, Sect. 5.2.3) and the ML estimate of § under
the restrictions in G¡!» conditional on ¦1; :::;¦k is given in Lauritzen (1996, Proposition
5.9). The ML estimate §̂ is thus obtained by iterating between these two conditional
estimators until convergence. In the empirical illustrations in Section 4 convergence was
generally reached within a few iterations.
In at least two cases the approximate FML is equal to the exact FML: …rst, within

the subclass of G treated in Lemma 2 we have dc(j) + 1 = jcj for all c 2 C(G») and the
approximate FML is thus equal to the exact FML; second, conditional on the complete
graph, the approximate FML of the lag length reduces to the exact FML in Villani
(2001a). The following theorem further supports the validity of our approximation.

Theorem 3. The posterior mode estimator of (G¡!» ; k) based on the approximate FML
is weakly consistent.

Proof. See the appendix.

4. Illustrative examples

Example 1. Macroeconomic data

We illustrate the graphical VAR approach on the four-dimensional macroeconomic
system of the Danish economy in Johansen (1995). The data consist of 55 quarterly
detrended observations from 1974:1 to 1987:3 on log real money, measured by M2, (m),
log real GDP (y), the bond rate (b) and bank deposit rate (d). The modulus of the
largest eigenvalues of the VAR companion matrix for k = 2 are :921, :748 and :748,
indicating a stationarity process.
The upper bound for the lag length was set to four and the joint posterior distribution

of G and k was computed using the approximate FML. For a …xed lag length there are
262144 possible GCVAR models and 249856 of them are decomposable. The marginal
posterior distribution of k is p(k = 0jX) = :000; p(k = 1jX) = :043, p(k = 2jX) = :830,
p(k = 3jX) = :118 and p(k = 4jX) = :010, so the upper bound k = 4, does not
appear to be restrictive. It is interesting to compare this marginal distribution with
the posterior distribution of k conditional on the complete causality graph, which is the
model under which the lag length is usually determined. Conditional on the complete
graph, p(k = 1jX) = :559, p(k = 2jX) = :441 and essentially zero probability for other
k. A simultaneous analysis of lag length and graph structure thus shifts the probability



CAUSALITY IN VECTOR AUTOREGRESSIONS 9

m y

b d

p(G¡!» jX)=:0033

m y

b d

p(G¡!» jX)=:0028

m y

b d

p(G¡!» jX)=:0025

Figure 3. Causality graphs with highest posterior probability for the
macroeconomic data

Directed edges Undirected edges

m y b d
m ¡ :263 :996 :292
y :733 ¡ :322 :631
b :347 :721 ¡ :251
d :396 :245 :987 ¡

m y b d
m ¡ :956 :966 :696
y ¡ :460 :419
b ¡ :481
d ¡

Table 1. Marginal posterior probabilities of the presence of edges in the
macroeconomic data. The directed edges are directed from the variables
in the column labels to the variables in the row labels.

mass to larger k compared to the usual analysis conditional on the complete graph. This
is of course entirely natural: increasing the lag length under a less than complete graph
is not as costly in terms of lost degrees of freedom as under the complete graph where
every increase in lag length adds another p2 parameters to the model. The standard
practice of testing zero restrictions, e.g. causality restrictions, on the parameters after
a lag length has been selected is thus likely to be suboptimal.
The most probable causality graphs and their marginal posterior probabilities are

displayed in Figure 3. The posterior probabilities of the most probable graphs are not
as small as they may seem at …rst sight when the size of the model space is taken into
consideration. A useful benchmark for comparison is the uniform distribution over the
set of all causality graphs (for a …xed k) which assigns a probability of roughly 4 ¢ 10¡6
to each causality graph. Another measure of precision in the posterior distribution of
G
¡!» is that 5% of the graphs account for approximately 93% of the total probability

mass.
Perhaps the most striking feature of Figure 3 is the appearance of the same simple

structure of the E2-graph in all three causality graphs, conveying the message that
conditional on a money innovation, all other innovations are independent. The marginal
posterior probability of this particular E2-graph is :131 which should be compared to
the benchmark of 1=61 ¼ :016 in the uniform distribution. The second, third and fourth
most probable E2-graphs were all extensions of the simple structure in Figure 3 with
exactly one of the undirected edges between y; b and d added to the graph. The posterior
probabilities of these graphs were all around :08.
The presence of an edge between any two speci…c variables is most accurately in-

ferred from the marginal posterior probability of this hypothesis. Table 1 displays these
posterior probabilities, both for directed and undirected edges.
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m y b d
m ¡ :931 :002 :968
y :017 ¡ :135 :079
b :542 :093 ¡ :713
d :322 :882 :000 ¡

Table 2. p-values from Granger non-causality tests conditional on k = 2
for the macroeconomic data.

An important issue in macroeconomics is whether or not money has any e¤ect on
real variables such as real GDP; see Walsh (1998, Ch. 1) for a review of some empirical
evidence and further references. The posterior probability p(m! yjX) = :733 in Table
1 indicates that money probably does matter for real activity. Furthermore, there is
much weaker support for the reverse causality from y to m, which is in line with the
results of Sims (1972).
It can also be seen from Table 1 that the bond rate is almost certain to be causal for

both money and the deposit rate. One way to interpret this …nding is that the bond
rate is acting as a proxy for expected future in‡ation. The central bank acts on signals
of changes in the in‡ation rate and their interventions causes movements in both the
money stock and the deposit rate.
It is interesting to compare the posterior probabilities of directed edges in Table 1 with

classical hypothesis test of non-causality with the absence of a particular directed edge
as the null hypothesis (Lütkepohl, 1993). The p-values in Table 2 agree fairly well with
the marginal posterior in Table 1. The main di¤erence concerns the relative evidence
of the two edges m! y and y ! b, where the p-value of the latter hypothesis is larger
than the p-value of the former even though the two hypothesis receive almost the same
posterior probability. It should be kept in mind, however, that the hypothesis tests are
conditional on k = 2 whereas the Bayesian analysis is marginalized with respect to k.

Example 2. Air pollution data.

As a second example, we reconsider here the dependence structure of an air pollu-
tion data set investigated earlier in Dahlhaus (2000) using partial correlation graphs.
The data involves 4386 daily (4-hour interval) measurements of CO, NO, NO2, O3 and
the global radiation intensity GRI; for a detailed description of the data, see Dahlhaus
(2000). A nonparametric causal analysis of air pollution using 30-minute interval obser-
vations can be found in Dahlhaus and Eichler (2001).
Due to the astronomic size of the model space, we investigated whether the lag length

could be settled prior to the analysis of the graph structure. The fractional posterior
distribution of k (Villani, 2001a) under a uniform prior on f0; 1; :::; 10g for k, has its mass
completely concentrated on the value 7, which re‡ects the daily cycle of the observations.
The concentration is quite expectable given the large number of observations, and the
graph structure is thereby investigated conditional on k = 7.
Results of a classical Granger causality tests, are given in Table 3 conditional on k = 7.

According to these values, only three directed edges can be excluded at a 5%-signi…cance
level. However, the battery of tests is subject to the multiple hypothesis testing problem
and it is di¢cult to assess the reasonability of a model where several edges are excluded
as a whole. Furthermore, the controversial behavior of p-values for large data sets noticed
in the statistical literature, makes their interpretation problematic, see e.g. Berger and
Sellke (1987).
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CO NO NO2 O3 GRI
CO ¡ :000 :000 :003 :000
NO :000 ¡ :038 :073 :000
NO2 :000 :000 ¡ :000 :000
O3 :052 :849 :000 ¡ :000
GRI :000 :000 :016 0:000 ¡

Table 3. p-values from Granger non-causality tests conditional on k = 7
for the air pollution data.

CO

NO

NO2
O3

GRI

p(G¡!» jX)=:248

CO

NO

NO2
O3

GRI

p(G¡!» jX)=:181

Figure 4. The two models with highest posterior probabilities in the
class of plausible models for the air pollution data.

For a given lag length, the number of possible causality graph on …ve time series is 230,
which is currently beyond the capability of commonly used computers. Also, the MCMC
methods frequently applied in the more traditional graphical modelling are not expected
to provide a practical solution to the current inference problem. Nevertheless, several
‡exible heuristic search algorithms along the lines of Madigan and Raftery (1994) may
be used. One possible algorithm will be illustrated here, taking the complete graph as a
benchmark for comparison. De…ne a model to be plausible when its approximate FML
is higher than that of the complete graph. For each model found to be plausible, the
plausibility of submodels with exactly one directed or undirected edge less is investigated,
unless they have already been investigated as submodels of some other model during
the execution of the algorithm. The algorithm iteratively adds models to the class of
plausible models, investigates the submodels of the new models, and terminates when
no further plausible submodel can be found.
For the air pollution data, a total of 3744 investigated models were found to be

plausible, and the two models with the highest posterior probabilities are presented
in Figure 4. To summarize the results of the heuristic model search, the marginal
posterior probability of the presence of each edge is also given in Table 4. A rather clear
conclusion is that NO and ozone are not directly impacting each other, re‡ected by the
low probability of a directed edge in either direction.
Di¤erent conclusions are reached when edges are excluded one at a time. We computed

the approximate FMLs of each individual model where exactly one directed or undirected
edge is excluded. In Figure 5, we have jointly excluded all edges for which the comparison
with the complete graph leads to a larger marginal likelihood for the simpler model. This
leads to a considerably simpler graph structure. Notice, that none of the directed edges
corresponding to a high p-value appear in the graph in Figure 5. However, several of the
absent edges correspond to a very low p-value (<.0001), which is well in concordance
with the controversial behavior of p-values.
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Directed edges Undirected edges

CO NO NO2 O3 GRI
CO ¡ 1:00 1:00 :810 1:00
NO 1:00 ¡ 1:00 :083 1:00
NO2 1:00 1:00 ¡ 1:00 1:00
O3 :701 :003 1:00 ¡ 1:00
GRI :975 :984 :022 1:00 ¡

CO NO NO2 O3 GRI
CO ¡ 1:00 1:00 :910 :999
NO ¡ :099 :662 :626
NO2 ¡ 1:00 1:00
O3 ¡ 1:00
GRI ¡

Table 4. Marginal posterior probabilities of the presence of edges in the
air pollution data. The directed edges are directed from the variables in
the column labels to the variables in the row labels.

CO

NO

NO2 O3

GRI

Figure 5. Causal graph for the air pollution data based on pairwise
exclusion of edges.

5. Concluding remarks

The posterior distribution over G¡!» and k should be useful for forecasting based
on VAR’s. The documented poor forecasting performance of VAR models is usually
attributed to over-parametrization. One way to combat the resulting erratic parame-
ter estimates and prediction paths was proposed by Litterman (1986) who designed a
shrinkage prior on the VAR coe¢cients which only required modest amounts of sub-
jective inputs from the user. Another way to smooth the VAR predictions is to use
Bayesian model averaging (Draper, 1995) to produce a forecast path as a weighted av-
erage of the prediction paths under each model G¡!» and lag length k, where the weights
are the posterior probability of the corresponding pair (G¡!» ; k). Measures of prediction
uncertainty may be averaged in the same fashion, see Villani (2001b) in the context of
cointegration models.
Extensions of graphical models which includes latent variables have recently been

proposed in the sphere of cross-sectional analysis, see e.g. the graphical factor analysis
models in Giudici and Stanghellini (2002). We are currently working on similar exten-
sions within the …elds of time series analysis with particular emphasis on the common
trends model for partially non-stationary processes (Stock and Watson, 1988).
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Appendix A. Proof of Theorem 3.

To prove the weak consistency of the posterior mode estimator we …rst establish the
asymptotic behavior of the approximate FML. Let §̂ denote the maximum likelihood
estimate of § under the graph with cliques C(G») and separators S(G»). Using that
j§̂j is Op(1) and the following identity (Lauritzen, 1996, p. 145)X

c2C(G»)
log
¯̄̄
§̂c(k)

¯̄̄
¡

X
s2S(G»)

log
¯̄̄
§̂s(k)

¯̄̄
= log j§̂j:

the logarithm of the approximate FML can be written

logmb(G
¡!» ; k;X) / ¡n¡m

2

0@ X
c2C(G»)

log
¯̄̄
§̂c(k)

¯̄̄
¡

X
s2S(G»)

log
¯̄̄
§̂s(k)

¯̄̄1A
+

X
c2C(G»)

log

Ã
¡¤jcj(n)

¡¤jcj(m)

!
¡

X
s2S(G»)

log

Ã
¡¤jsj(n)

¡¤jsj(m)

!
(A.1)

= ¡n
2
log j§̂j+

X
c2C(G»)

log ¡¤jcj(n)¡
X

s2S(G»)
log ¡¤jsj(n) +Op(1);

where the proportionality sign signals that unimportant additive constants, not depend-
ing on either the graph structure or the lag length, have been discarded. Following
Villani (2001a), we may use Stirling’s formula to approximate ¡¤jaj(h) =

Qjaj
j=1 ¡[(h ¡

k(da(j) + 1)¡ j + 1)=2] as follows

log ¡¤jaj(h) =
1

2

jajX
j=1

[h¡ k(da(j) + 1)¡ j] log
µ
h¡ k(da(j) + 1)¡ j + 1

2

¶

¡1
2

jajX
j=1

h¡ k(da(j) + 1)¡ j + 1 +O(1)

/ ¡1
2

jajX
j=1

[k(da(j) + 1) + j] log h¡ h(1¡ log h)jaj
2

+O(1): (A.2)

By de…ning r(µa) as the numbers of unrestricted parameters in the marginal model for
subset a, the total number of unrestricted parameters in the model with (G¡!» ; k) may
be written

r(µ) =
X

c2C(G»)
r(µc)¡

X
s2S(G»)

r(µs);

since
P
s2S(G») r(µs) subtracts the number of parameters counted multiple times inP

c2C(G») r(µc). By noting that
Pjaj
j=1 j equals the number of non-redundant elements

in §a, and that k
Pjaj
j=1(da(j)+ 1) equals the number of predictors used in the marginal

model for subset a, we have from (A.1) and (A.2) that

logmb(G
¡!» ; k;X) / ¡n

2
log j§̂j ¡ r(µ)

2
logn¡ n(1¡ logn)

2

0@ X
c2C(G»)

jcj ¡
X

s2S(G»)
jsj
1A+Op(1):
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Using that
P
c2C(G») jcj ¡

P
s2S(G») jsj = p we obtain the following asymptotic formula

for the approximate FML

logmb(G
¡!» ; k;X) / ¡n

2
log j§̂j ¡ r(µ)

2
logn+Op(1)(A.3)

Kim (1998) shows that a weakly consistent criterion for model determination in a
rather general framework, including the current one, is given by selecting the model
which maximizes the expression

logL(Xjµ̂; G¡!» ; k)¡ log
0@r(µ)Y
l=1

hl(n)

1A ;(A.4)

where µ̂ is the ML estimate of the model parameter vector µ, hl(n) is the rate of conver-
gence of the maximum likelihood estimate, µ̂l, of the lth component of µ̂. The models
in this paper have

p
n-convergence on all the free parameters under the graph restric-

tions (see Lütkepohl, 1993, Theorem 5.5 and Lauritzen 1996, formula 5.50), so that
hl(n) =

p
n, for l = 1; :::; r(µ): Since logL(Xjµ̂; G¡!» ; k) / ¡n

2 log j§̂j, the weakly con-
sistent criterion of Kim (1998) in (A.4) reduces to the asymptotic expression of the
approximate FML in (A.3), which in turn shows the weak consistency of the posterior
mode estimator based on the approximate FML in De…nition 4.
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