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Abstract. We consider Bayesian inference about the dimensionality in the multi-
variate reduced rank regression framework, which encompasses several models such as
MANOVA, simultaneous equations, factor analysis and cointegration models for mul-
tiple time series. The fractional Bayes approach is used to derive an approximation
to the posterior distribution of the dimensionality. To investigate the finite sample
properties of our solution, we have applied it to a wide variety of real and simulated
data sets. The proposed approach compares favorably to other established estimators
of the dimensionality.

1. Introduction

A common situation in multivariate analysis involves exploration of the relationships
between sets of variables, either by explicit parametric models or by descriptive methods
such as principal components and canonical correlations. Although it was early under-
stood that these instances may be jointly represented in terms of multivariate regression
obeying a so called reduced rank structure for certain parameters (see, e.g., the pioneer-
ing work by Anderson, 1951), such an approach has only recently been fully appreciated
by a larger statistical community.

One essential strength of the reduced rank regression (RRR) framework is its gener-
ality, as it encompasses several well-known models such that MANOVA, simultaneous
equations, factor analysis and several popular models for multiple time series. For a
thorough treatment concerning the last of the mentioned fields, see Ahn and Reinsel
(1990), Johansen (1995), Velu, Reinsel and Wichern (1986) and for the others, see An-
derson (1984, 1994) and the references therein. An excellent review of various issues
may also be found in Reinsel and Velu (1998).

The typical model uncertainty in regular full rank multivariate regression is about the
choice of relevant predictor variables. Several reasonable solutions are available for this
latter model choice problem, see, e.g., Brown et al. (1999) or George and Foster (2000).
It has been more of a challenge to produce sensible inferences on the dimensionality of the
subspace of regression coefficients for a fixed set of predictor variables. Geweke (1996)
and Kleibergen and Paap (forthcoming) both propose computationally demanding semi-
Bayesian approaches to assessing dimensionality in RRR. The methods employed in
applied work are based on asymptotic approximations, such as the information theoretic
criteria, e.g., Akaike (1974), approximate logarithmic Bayes factor (Schwarz, 1978) or
sequential tests (Anderson, 1951; Izenman, 1980). There have also been some proposals
within a specific class of reduced rank models, see e.g. Chao and Phillips (1999) for a
criterion tailored to cointegration models.
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Among the mentioned approximations, only the approach of Schwarz (1978) aims at
approximating the posterior distribution of the dimensionality. This is an important
point as the posterior distribution forms an attractive representation of the uncertainty
in the dimensionality inference. The Schwarz approximation is known to be rather rough,
however, and it underestimates the underlying model dimension in many instances (Kass
and Raftery, 1995).

We utilize the fractional marginal likelihood (FML) approach of O’Hagan (1995, 1997)
to derive the approximate posterior distribution for the dimension of the RRR param-
eter structure. Our method provides an analytically tractable default solution, and is
applicable without subjective input from the user. Its properties are investigated both
theoretically and by applying it to both real and simulated data sets.

The present paper is structured as follows. In the next section we define formally the
RRR model and in Section 3 we derive the posterior distribution for the dimensionality.
Numerical results are provided in terms of examples with real data sets and simulations
in the two sections thereafter, respectively. Some concluding remarks are given in the
final section.

2. Reduced rank regression

Consider the following multivariate regression

(2.1) yi = Πxi + Γzi + εi,

where xi and zi are q1 and q2-dimensional vectors of predictors, respectively, Π and Γ
are p × q1 and p × q2 coefficient matrices and εi

iid∼ Np(0,Σ) are the model errors, for
i = 1, ..., n.

The reduced rank regression introduced by Anderson (1951) allows for the possibility
that Π has less than full rank, and the rank of Π will be termed the regression di-
mensionality. The other coefficient matrix Γ, could also be rank deficient (Velu, 1991),
but we shall here retain the assumption of a full rank for Γ; see also Remark 2 below,
however.

A reduced rank r of Π can be modelled explicitly by writing Π = ΨΛ, where Ψ and Λ
are p× r and r× q1 matrices, respectively. Inserting this decomposition into (2.1) gives

(2.2) yi = ΨΛxi + Γzi + εi,

where Λxi may now be considered as a new set of r predictors with regression coefficient
matrix Ψ. One would expect that Λ is related to the canonical variates between yi

and xi, corrected for zi, and that Ψ is related to the corresponding (partial) canonical
correlations, and this is indeed so (see Reinsel and Velu, 1998). In the sequel, we let
rmax = min(p, q1) denote the maximal rank of Π.

As ΨUU−1Λ = ΨΛ, for any r× r non-singular matrix U , the model (2.2) is not iden-
tified. In this paper we impose exactly identifying restrictions on Λ, see, e.g., Johansen
(1995), for a simple set of possible restrictions. It will be evident that our proposed
inference tool is invariant to the choice of restrictions.

3. Posterior distribution of the regression dimensionality

The question of dimensionality in RRR is essentially a model inference problem. Given
a class of available models, Bayesian paradigm provides in principle a solution to any
model assessment problem, by quantifying the model uncertainty in terms of posterior
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probabilities (see Bernardo and Smith, 1994), and has been successfully applied to a
wide range of problems; for a general review, see Robert and Casella (1999). More
specifically, let M1, ...,Mh ∈ M denote the models under comparison, x the available
data, Li(x|θi) and πi(θi) the likelihood and prior given Mi, respectively. The posterior
distribution over M is then given by

p(Mi|x) ∝ m(Mi)p(Mi)
where m(Mi) =

∫
Li(x|θi)πi(θi)dθi is the marginal likelihood of model Mi and p(Mi) is

the prior probability of the ith model.
However, the intrinsic complexity of the parameter structure in general RRR models

brings two impediments to a successful practical implementation of the Bayes solu-
tion. First, Bayesian inference about dimensionality is a very laborious computational
exercise, even in the presence of modern computing facilities (see Geweke, 1996 and
Kleibergen and Paap, forthcoming). Secondly, the reduced rank restriction makes the
elicitation of prior distributions for the model parameters far from straight-forward.

The fractional Bayes approach was proposed by O’Hagan (1995, 1997) as a default
method to handle Bayesian model inference based on improper, non-subjective, priors.
Fractional Bayes approximates the usual marginal likelihood with the marginal likeli-
hood conditional on a ’idealized’ training sample. The resulting quantity is called the
fractional marginal likelihood (FML) and is defined as

(3.1) mb(Mi) =
∫

Li(x|θi)πi(θi)dθi∫
Li(x|θi)bπi(θi)dθi

where 0 < b < 1 is the fraction of the data used implicitly to ’train’ the improper prior
πi(θi) into a proper distribution. It will be assumed here that b is minimal, i.e. b = m/n,
where m is the smallest possible number of observations necessary to convert πi(θi) into
a proper distribution for the largest model in M. For further details on the fractional
Bayes approach, we refer to O’Hagan (1995, 1997).

Conditional on Λ, the RRR model is a regular full rank multivariate regression. This
proves to be a good starting point as the FML of a full rank multivariate regression,
stated in the next lemma, is a simple expression. In the following lemma, let

Sxz = n−1
n∑

i=1

xiz
′
i.

Lemma 1. The fractional marginal likelihood of the multivariate regression yi = Πxi +
εi, where yi is a p-dimensional response vector, xi a d-dimensional vector of predictors,
given the prior π(·) ∝ |Σ|−(p+1)/2, is

(3.2) mb(d) =
Γp(n− d)
Γp(m− d)

∣∣∣Σ̂∣∣∣−(n−m)/2

where Γp(a) = Πp
i=1Γ[(a− i + 1)/2], for integer a ≥ p, Σ̂ = Syy − SyxS−1

xx Sxy is the ML
estimate of Σ and m = p + d is the size of the minimal sample. A constant which does
not depend on xi has been discarded in (3.2).

Proof. This lemma is a trivial extension of Theorem 3.1 in Villani (2001). �

Inference about lag length in multivariate autoregressive processes based on the FML
was in Villani (2001) shown to yield consistently more reliable results than the various
asymptotic default criteria proposed in the statistical literature.
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If Λ in (2.2) was known, the model would be an ordinary multivariate regression with
predictors Λxi and zi, and consequently, Lemma 1 could be applied directly to compute
the FML. Since Λ is generally unknown, a naive approach would be to replace Λ by an
estimate Λ̂, and use Lemma 1 with d = q2 + r. This entirely ignores the uncertainty in
Λ is therefore easily seen to favor smaller r.

The integrals in (3.1) with respect to Λ seem intractable for any imaginable prior.
Therefore, we suggest an approximate FML of rank r, using (3.2) with a correction for
the degrees of freedom lost in the estimation of Λ. Notice that d in (3.2) equals the
number of parameters in each response equation. The number of parameters in each
equation of the reduced rank regression depends on the arbitrarily chosen identifying
restrictions and cannot thus be directly used as a correction term. However, as the
number of free parameters in Λ is (q1 − r)r, the average number of parameters in each
equation of (2.2) is cr = q2 + r + (q1 − r)(r/p), which is well defined and a natural
proposal as the correction term. Note that the extra penalty for the uncertainty in Λ
compared to the naive approach is (q1 − r)(r/p). This quantity is always positive for
r = 1, ..., rmax− 1 and zero for r = 0 and r = rmax, which is sensible as the models with
r = 0 and r = rmax are full rank multivariate regressions, and Lemma 1 holds exactly.

By applying established results in multivariate theory (e.g. Anderson, 1984), it can
be shown that

∣∣∣Σ̂∣∣∣ =
∣∣Syy − SyzS

−1
zz Szy

∣∣ ∏r
i=1(1− ρ2

i ), where ρi is the ith largest partial
canonical correlation between y and x, corrected for z, and the first factor is independent
of r. Using the above, make the following definition.

Definition 1. The approximate fractional marginal likelihood of rank r is proportional
to

(3.3)
Γp(n− cr)
Γp(m− cr)

r∏
j=1

(1− ρ2
j )

−(n−m)/2,

where ρj is the jth largest partial canonical correlation between yi and xi, cr = q2 + r +
(q1 − r)(r/p), m = p + q1 + q2.

Remark 1. The approximate FML of the rank generalizes immediately to a joint assess-
ment criterion for r and the set of relevant predictors in x and z. If z varies across the
models under consideration, the factor

∣∣Syy − SyzS
−1
zz Szy

∣∣ in the expression for
∣∣∣Σ̂∣∣∣ must

be retained as it depends on z. The aspects of joint assessment will be illustrated in the
numerical examples.

Remark 2. Several generalizations of the RRR model in (2.2) have been presented in
the literature, see Reinsel and Velu (1998) for the relevant references. Velu (1991), for
example, allows also Γ to be rank deficient. The way we have defined the approximate
FML in Definition 1 makes it straightforward to cover such extensions. The fact that
dimensionality inference based on likelihood ratio tests is intractable in many of the
extended models makes this point especially important.

The asymptotic properties of (3.3) are established in the following theorem.

Theorem 1. The posterior mode estimator of the regression dimensionality based on
the approximate FML in Definition 1 is consistent. Furthermore, (3.3) is an Op(1)
approximation of the log marginal likelihood if and only if cr = q2 + r + (q1 − r)(r/p),
otherwise it is an Op(log n) approximation.
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Proof. In general, the marginal likelihood of a model Mi with likelihood Li(·|θi), where
ki is the number of free parameters in θi, can be written (Gelfand and Dey, 1994)

(3.4) log m(Mi) = log Li(·|θ̂i)−
ki log n

2
+ Op(1),

where θ̂i is the maximum likelihood estimator of θi. A straightforward modification of
Theorem 3.2 in Villani (2001) gives

(3.5) log mb(cr) = −n

2

r∑
i=1

(1− ρ2
i )−

crp log n

2
+ Op(1).

As −n
2

∑r
i=1(1−ρ2

i ) is proportional to the maximized log likelihood and crp = pq2+pr+
(q1−r)r is the number of free parameters in the rank r model, standard Bayesian asymp-
totics (Gelfand and Dey, 1994) show the consistency. The proof of the last statement of
the theorem is immediate by comparing (3.4) and (3.5). �

Theorem 1 deserves two comments. First, the leading term of log m(Mi) is of order n
so that the approximation error of order 1 diminishes in importance as the sample size
increases. Secondly, the Schwarz (1978) approximation is also Op(1), but with a general
tendency to support too small models (Kass and Raftery, 1995). Our approximation
seems to improve on the one in Schwarz (1978), see Section 5.

4. Numerical examples with real data

Example 1. Assessing dimensionality in growth curve analysis.

Growth curve analysis, or GMANOVA, was introduced by Potthoff and Roy (1964)
as a framework for analyzing repeated measurements on a response variable over time.
The basic model is of the form

(4.1) yi = ΨΛxi + εi,

where xi is a set of time-invariant predictor variables. The model in (4.1) is exactly the
RRR model without z-predictors. In the original setting of Porthoff and Roy (1964),
Ψ was assumed to be a known matrix, completely specified in terms of a parametric
function of time, e.g. a polynomial of degree r− 1, which determines the general shape
of the mean response profiles over time. Here, Λxi are the coefficients of the parametric
function for the ith individual. A natural extension of the model is to let Ψ be any
unknown matrix and to infer the dimensionality of Ψ from data as in the RRR model
(Reinsel and Velu, forthcoming). As Reinsel and Velu point out, the columns of Ψ then
represent unknown basis functions for the mean response profiles over time.

To illustrate dimensionality determination in the context of growth curve analysis, we
use a bioassay data set from Volund (1980), subsequently analyzed in Reinsel and Velu
(forthcoming). The response comprises measurements of blood sugar concentration on
n = 36 rabbits at 1, 2, 3, 4 and 5 hours after the administration of an insulin dose; the
response is thus 5-dimensional. The 36 rabbits were divided in four balanced groups
according to a 2×2 design with factors insulin type and dose level. Four predictors were
used: Indicators for insulin type and dose level, initial blood sugar concentration and
an interaction variable between dose level and initial concentration. A constant term
was also added to the model.

In this and all other examples we use a uniform prior for the regression dimension-
ality. The other candidate default methods are those widely used in the statistical
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literature, AIC (Akaike, 1974), SBC (Schwarz, 1978) and the sequential likelihood ratio
test (Anderson, 1951).

Using definition 1, the posterior distribution of the rank is p(r|y, x) = .000, .117,
.808, .073, .002 and .001, which clearly indicates that the most likely value of r on the
basis of data is 2, although there is a non-negligible degree of uncertainty related to the
choice of the rank. As a comparison, the p-values for asymptotic likelihood ratio tests
of H0 : r = 0, 1, ..., rmax − 1 against H1 : r = p are .000, .022, 0.473, 0.919 and 0.680,
respectively. Thus, 1% and 5% significance levels lead to choices r = 1 and r = 2,
respectively. The other default criteria choose r = 1 (SBC) and r = 2 (AIC). Using
SBC to approximate the posterior distribution gives pSBC(r|y, x) = .000, .587, .408,
.005, .000 and .000. As expected, the SBC approximation puts more probability mass
on smaller r.

Reinsel and Velu (forthcoming) also raise the question of whether any of the predictor
variables is redundant for the response. In particular, there was reasons for believing
in the absence of an insulin type effect a priori. Let Aj denote the event that the jth
predictor in x is redundant. The answer to whether or not a variable is redundant is
given by the posterior probability of this event

p(Aj |y, x) =
rmax∑
r=1

p(Aj |r, y, x)p(r|, y, x),

where p(Aj |r, y, x) is obtained from the posterior distribution over the models with
different subsets of predictors conditional on rank r and p(r|y, x) is the posterior dis-
tribution of the rank stated above. In the blood sugar data, p(Aj |y, x) = .000, .444,
.023, .003, .152 for j = 1, 2, ..., 5 (first predictor is the constant). Thus, the predictors
insulin type effect and interaction between dose level and initial concentration have non-
negligible redundancy probability, whereas dose level and initial concentration seem to
be important predictors, which is in accordance with the results of Reinsel and Velu
(forthcoming).

Example 2. Assessing dimensionality for cointegrated time series.

Next we consider the case of the cointegrated vector autoregressive process

(4.2) ∆wt = ΨΛwt−1 +
k∑

i=1

Γi∆wt−i + Φdt + εt, t = 1, ..., n,

where wt is an observation on a p-dimensional process at time t, ∆ is the time difference
operator, dt is a vector of deterministic trends and εt

iid∼ N(0,Σ). The r rows of Λ are
the cointegration vectors which determine r stationary linear combinations between the
otherwise non-stationary components of wt. Here, Ψ is a p × r matrix of adjustment
coefficients. The model in (4.2) can be put in RRR form by defining yt = ∆wt, xt = wt−1,
zt = (w′

t−1, ..., w
′
t−k, d

′
t)
′ and Γ = (Γ1, ...,Γk,Φ).

It has been customary to consider five different forms for the deterministic trends
in dt, depending on the desired trending behavior of both the original process and the
cointegration relations, Λwt−1. The first trend model has a quadratic trend in the
original series and linear trend in the cointegration relations, whereas the second trend
model has a linear trend in both the original series and the cointegration relations and
so on to the fifth and last model where both processes has neither constant nor trend.
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The different trend types are obtained by adding either 1 or t, or both, to wt−1 and dt,
see Johansen (1995) for a detailed description.

The dimensionality determination in cointegrated processes thus involves a wider
variety of quantities: the number of lags in the process (k = 0, 1, ...) the number of coin-
tegration relationships (r = 0, 1, ..., rmax) and the choice of trend type (s = 1, 2, ..., 5).
As an illustration we use the five variable data from Johansen (1995), which consists of
log prices in Australia and US, the exchange rate and a bond rate from each country.
Data are in quarterly observations during the period 1972:1 to 1991:1.

To keep the range of different models at a reasonable level, we restrict the number
of lags to be no larger than four. If this upper limit should prove to be too small, the
posterior mass would be concentrated on the largest values, and the model class could
thereby be extended after the initial analysis. The (k, r, s)-combinations with highest
posterior probabilities are listed in Table 1.

Table 1

The most probable (k, r, s) combinations in the Johansen data.

k 1 1 1 1 1 1 1 1 1 1
r 3 4 5 5 4 3 2 3 4 4
s 1 2 2 1 1 2 1 5 5 4

p(k, r, s|y, x, z) .156 .154 .147 .147 .115 .090 .040 .018 .017 .017

First, we notice that the posterior of the number of lags in the process is concentrated
on k = 1, suggesting that there is no need to enlarge the initial class of models in this
respect. It is also clear that the uncertainty about the cointegration rank is prominent.
For comparison, the asymptotic criteria choose the following models: SBC (k = 0, r = 2,
s = 5), AIC (k = 1, r = 5, s = 2), which further illustrates the uncertainty related to
the choice of a model. Guided by sequential likelihood testing and residual diagnostics,
Johansen (1995) decided to use (k = 1, r = 2, s = 3); the test of r = 2 against r = 3 was
almost significant on the 5% level, making r = 3 a possible alternative for the number
of cointegration relations. See Johansen (1995) for parameter estimates conditional on
(k = 1, r = 2, s = 3) and further analyses.

5. Simulation results

A small scale simulation study was conducted to learn more about the properties of
the approximate FML in Definition 1. To be able to compare our results with meth-
ods used in typical applications, we confine our investigation to point estimates of the
dimensionality. The posterior mode estimator is chosen as the Bayesian estimator.

First, we consider models where p = q1, q2 = 0 and r = 0 or 1, given as

yi = Πxi + εi,

where xi
iid∼ Nq1(0, Iq1). The reduced rank of Π is made explicit by the singular value

decomposition of Π,
Π = uλv′,

where u and v are p-dimensional vectors of unit length and λ ≥ 0 is the single non-zero
singular value of Π, i.e. rank(Π) ≤ 1. This parametric setup enables us to systematically
investigate the behavior of model assessment criteria as a function of the informativeness
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INSERT FIGURE HERE

Figure 1. Relative frequency of choice r = 1 in 10.000 simulations as a
function of λ for three samples sizes, n = 25, 50, 100. Graphs in the first
row correspond to the model with p = 2 and graphs in the second row
to p = 4. FML (− • −), SBC (−�−), LRT α = .01 (—), LRT α = .05
(· · ·) and AIC (- - -).

INSERT FIGURE HERE

Figure 2. Relative frequency of choice r = 2 in 5.000 simulations as a
function of the sample size. FML (− • −), SBC (−�−), LRT α = .01
(—), LRT α = .05 (· · ·) and AIC (- - -).

of the sample data, which increases with both λ and n. To make the results less depen-
dent of specific choices of parameter values, we let u and v be uniformly distributed on
the unit p-sphere (see e.g. Muirhead, 1982, p. 38) and let the error covariance Σ have
an outspread Wishart distribution Wp(Ip, p).

Figure 1 below shows the relative frequencies of choosing r = 1 in 10.000 simulated
configurations as a function of λ. Each subgraph corresponds to a (n, p)-pair as indicated
in the figure. A striking feature of Figure 1 is the bad performance of AIC, especially
when data are relatively informative. The posterior mode estimator compares favor-
ably to the other estimators in general and to SBC in particular. This latter point is
important as SBC is the only competing approximation of the posterior distribution.
The largest difference between posterior mode estimator and other methods appears for
p = 4 and n = 25. The sample size n = 25 should in no way be regarded as unimportant
from an applied viewpoint, it is probably a fair representation of the uncertainty in
many real world applications where the sample size is substantially larger but the data
are much less tidy than those resulting from our generating model.

To illustrate the rank assessment in more detail for a specific parameter setting, as a
function of n, we consider an RRR model with p = 3, q1 = 4, q2 = 0 and r = 2, specified
by

yi =

1 0
.5 1
.5 2

 (
1 0 −1 −1
0 1 0 −1

)
+ εi

where the entries of xi are independent standard normal variates and the error terms
follow the N(0,Σ) distribution with

Σ =

3 · ·
2 3 ·
.5 1 1


Here we adopt a similar strategy as O’Hagan (1995, p.108). Data sets of size 200

observations were generated from the model and the rank was determined using n =
20, ..., 200 first observations. The rank assessment process was replicated 5.000 times
for each n, to estimate the (relative frequency) probabilities of different rank choices.
The relative frequency of choosing the true rank for n = 20, ..., 70 is shown in Figure 2.
This range of sample sizes captures the essential differences between the methods, while
keeping details in the plot distinguishable.

We see here that, for small sample sizes, the sequential likelihood ratio (LR) tests do
not choose the right dimensionality very often and as n increases, their error probabilities
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approach the chosen significance level α. AIC yields slightly higher probabilities of
choosing the true rank than the posterior mode estimator for the smallest sample sizes,
but it also overestimates r with relatively high probability as n grows. For instance,
AIC gives probability .155 to the choice r = 3, even for n = 200 (not shown in the
figure). The relative frequency of r = 2 for the posterior mode estimator and SBC was
very close to one for n = 200, thus confirming their consistency.

6. Concluding remarks

We have presented a default Bayesian approach to dimensionality assessment in re-
duced rank regression, i.e. with a minimum of subjective elicitation of prior opinions
on the part of the user.

The proposed approximate Bayes approach gave reasonable results in two real data
sets and performed well in a simulation study. In particular it seems to offer an improve-
ment of the well known approximate Bayes solution derived by Schwarz (1978). It was
also demonstrated how the method can be extended to cover simultaneous inferences of
the regression dimensionality and other features of the model, such as the set of relevant
predictors.

Finally, we want to stress the importance of a proper quantification of the uncertainty
in the rank inference. A Bayesian approach, approximate or not, delivers, through the
posterior distribution over the regression dimensionality, exactly the relevant informa-
tion. This is in sharp contrast to non-Bayesian approaches which at best offer a rough
and hard-to-interpret description of the uncertainty in a form which is often unsuitable
for further analyses, e.g. prediction exercises or parametric hypothesis testing.

References

Ahn, S. K. and Reinsel, G. C. (1990). Estimation for partially nonstationary multivariate autoregressive
models, J. Amer. Stat. Assoc. 85, 813-23.

Akaike, H. (1974). A new look at the statistical model identification, IEEE Trans. Automatic Control,
19, 716-727.

Anderson, T. W. (1951). Estimating linear restriction on regression coefficients for multivariate normal
distributions, Ann. Stat. Math. Stat., 22, 327-51.

Anderson, T. W. (1984). An Introduction to Multivariate Statistical Analysis, New York: Wiley.

Anderson, T. W. (1994). Inference in linear models, in Multivariate Analysis and Its Applications
(Anderson, T. W., Fang, K. T. and Olkin, L, ed.), IMS Lecture Notes - Monograph Series, 24, 1-20.

Bernardo, J. M. and Smith, A. F. M. (1994). Bayesian theory. Chichester: Wiley.

Brown, P. J., Fearn, T. and Vannucci, M. (1999). The choice of variables in multivariate regression: A
non-conjugate Bayesian decision theory approach. Biometrika, 86, 635-648.

Chao, J. C. and Phillips, P. C. B. (1999). Model selection in partially nonstationary vector autoregres-
sive processes with reduced rank structure, Jo. Econometrics, 91, 227-271.

Gelfand, A. E. and Dey, D. K. (1994). Bayesian model choice: Asymptotics and exact calculations. J.
Roy. Statist. Soc., B 56, 501-514.

George, E. I. and Foster, D. P. (2000). Calibration and empirical Bayes variable selection. Biometrika,
87, 731-747.

Geweke, J. (1996). Bayesian reduced rank regression in econometrics, J. Econometrics, 75, 121-146.

Johansen , S. (1995). Likelihood-based Inference in Cointegrated Vector Autoregressive Models, Oxford
University Press, New York.

Kass, R. E. and Raftery, A. E. (1995). Bayes factors. J. Amer. Stat. Assoc. 90, 773-795.

Kleibergen, F. and Paap, R. (forthcoming). Priors, posteriors and Bayes factors for a Bayesian analysis
of cointegration, J. Econometrics.



10 JUKKA CORANDER AND MATTIAS VILLANI

Muirhead, R. J. (1982). Aspects of Multivariate Statistical Theory. New York: Wiley.

O’Hagan, A. (1995). Fractional Bayes factors for model comparisons. J. Roy. Statist. Soc. B 57, 99-138.

O’Hagan, A. (1997). Properties of intrinsic and fractional Bayes factors, Test, 6, 101-118.

Potthoff, R. F. and Roy, S. N. (1964). A generalized multivariate analysis of variance model useful
especially for growth curve problems, Biometrika, 51, 313-26.

Reinsel, G. C. and Velu, R. P. (1998). Multivariate reduced-rank regression: Theory and applications.
New York: Springer-Verlag.

Reinsel, G. C. and Velu, R. P. (forthcoming). Reduced-rank growth curve models, J. Statist. Plann.
Inference.

Robert, C. P. and Casella, G. (1999). Monte Carlo statistical methods. New York: Springer-Verlag.

Schwarz, G. (1978). Estimating the dimension of a model. Ann. Stat., 6, 461-464.

Velu, R. P. (1991). Reduced rank models with two sets of regressors, Appl. Statist., 40, 159-170.

Velu, R. P., Reinsel, G. C. and Wichern, D. W. (1986). Reduced rank models for multiple time series,
Biometrika, 73, 105-118.

Villani, M. (2001). Fractional Bayesian lag length inference in multivariate autoregressive processes, J.
Time Ser. Anal., 22, 67-86.

Volund, A. (1980). Multivariate bioassay, Biometrics, 36, 225-236.

Rolf Nevanlinna Institute, P.O. Box 4, Fin-00014, Finland
E-mail address: jukka.corander@rni.helsinki.fi

Department of Statistics, Stockholm University, S-106 91 Stockholm, Sweden
E-mail address: mattias.villani@stat.su.se



0
0.

5
1

0

0.
2

0.
4

0.
6

0.
81

λ

p(r=1|y,x)

p=
2,

 n
=

25

0
0.

5
1

0

0.
2

0.
4

0.
6

0.
81

λ

p=
2,

 n
=

50

0
0.

5
1

0

0.
2

0.
4

0.
6

0.
81

λ

p=
2,

 n
=

10
0

0
0.

5
1

0

0.
2

0.
4

0.
6

0.
81

λ

p(r=1|y,x)

p=
4,

 n
=

25

0
0.

5
1

0

0.
2

0.
4

0.
6

0.
81

λ

p=
4,

 n
=

50

0
0.

5
1

0

0.
2

0.
4

0.
6

0.
81

λ

p=
4,

 n
=

10
0



20 25 30 35 40 45 50 55 60 65 70
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

p(
r=

2|
y,

x)


