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AbstratEquilibrium bid funtions in ommon value autions are in general omplexand not easy to analyze. A handful losed form solutions have been derived,but only for quite unrealisti model assumptions. We derive losed formapproximations of the bid funtion for two empirially important modelswithin seond prie ommon value autions. We treat both the ase with aknown number of bidders, and the ase where bidders enter the aution sto-hastially. The approximated bid funtions are of a very simple and easilyinterpretable form. Moreover, the approximate bid funtions an be evalu-ated diretly without time onsuming numerial integration. This is ruialfor speeding up likelihood/Bayesian estimations on aution data. Severalinteresting features are diserned from the bid approximation, e.g. the win-ner's urse e�et is quanti�ed analytially and expliit bidding strategies,as a weighted funtion between a bidder's private information and publiinformation, are identi�ed.Keywords: losed form solution, equilibrium bidding strategies, bid ap-proximation, normal valuations, winner's urse, likelihood estimation
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1 IntrodutionThe theory of autions has developed extensively sine Vikrey's (1961) sem-inal paper, partiularly over the last deades, see e.g. Wolfstetter (1996),Klemperer (1999, 2004), and Milgrom (2004) for reent surveys and a gen-eral introdution. Most of the existing literature on aution theory analyzeseither the private or the ommon value model1. Private value models aredesirable in autions with non-durable goods, where every bidder knows thevalue to himself and knowledge of other bidders' valuation would not a�ethis valuation. In a ommon value aution, the value of the objet, V, isunknown but the same for all bidders. Eah bidder uses his private informa-tion (the signal) of the objet's value to estimate V. Common value autionsour in markets where the market prie is unknown at the time of bidding.For example, the sale of oil rights, timber trats, and markets for Treasurybills.In an in�uential paper, Milgrom and Weber (1982,Theorem 6) derive theequilibrium bid funtion for a seond prie ommon value aution. In pratieit is di�ult, however, to speify distributional assumptions that yield losedform solutions of the bid funtion. The lak of losed form solutions has twomajor drawbaks. First, it is hard to see how the bid funtion dependson various distributional omponents of the model, whih makes it moredi�ult to bring out model harateristis. Seond, to evaluate the bidfuntion one has to make use of numerial integration whih is very timedemanding. This is a ruial step for eonometri analysis of aution data(e.g. likelihood/Bayesian estimation) where the equilibrium bid funtionhas to be evaluated over and over again (Bajari and Hortasu, 2003). Somelosed form solutions exists, though, for spei� distributional assumptions.Kagel and Levin (1986) obtain losed form solutions for values and sig-nals following uniform distributions. Matthews (1984) �nd a losed formsolution for signals as the highest order statisti of θ independent drawsfrom a uniform distribution, and values drawn from a Pareto distribution.Other spei�ations are even more restritive. Thiel (1988) imposes threerestritions whih guarantee the existene of linear strategies. Engelbreht-Wiggans and Weber (1979) and Wilson (1988) note their existene when theprior value distribution is assumed to be di�use (restrition 1), Rothkopf
(1980) and Winkler and Brooks (1980) derive linear bidding strategies whenestimation errors are assumed to be independent of the objet's true value(restrition 2), and Levin and Smith (1991) �nd losed form solutions underall three restritions in a omment on Thiel (1988).However, these restritions rule out most realisti models of empirialinterest. Models with a di�use prior, for example, are not that realisti1Almost every aution inludes both a private and a ommon value element, but modelswith a mixture of both elements are often too omplex to analyze. As suh, these modelsare rare in the literature. 2



sine there are no bounds on the objet's publi value, whih is a naturalingredient in ommon value aution models. To deide between the privateor the ommon value paradigm for a ertain aution, Paarsh (1992) developan empirial framework by using two models of bidding. One of the modelsis build upon the results in Levin and Smith (1991), and the other is a modelby Smiley (1979) with restritions on the signal and value distributions whihyield bid funtions that are proportional to the signal.More reently, Gordy (1997) introdues two more realisti distributionalassumptions and derives nearly losed form solutions of the bid funtion. Aproblem with his setup is that the inverse of the equilibrium bid funtion,an integral part of the likelihood, an not be alulated expliitly. Instead,the need of root �nding algorithms implies time onsuming evaluations ofthe inverse bid funtion and thus slow down likelihood estimation. Probablythe most important model, at least from an empirial point of view, is thehierarhial normal model in Bajari and Hortasu (2003). They assume nor-mal priors for the unknown publi value, as a part of an hierarhial normalvaluation struture, to estimate an eBay aution model.In this paper, we show how onvenient losed form solutions an be ob-tained by approximating the equilibrium bid funtion for two realisti dis-tributional assumptions. First, a linear bid approximation is derived for theNormal-Normal model, de�ned in Bajari and Hortasu (2003), and then anon-linear approximation is obtained for the Gamma-Gamma model, as de-�ned by Gordy (1997). The auray of both approximations is quite good,espeially for the normal model, and yield straightforward and fast expliitsolutions of the equilibrium bid funtions that an be inverted analytially.Furthermore, we also derive a losed form approximation for the normalmodel with a stohasti number of bidders.Setion 2 presents the general equilibrium bid funtion for a seond prieommon value aution together with the distributional assumptions of thenormal and gamma model. In setion 3 we derive a linear approximationfor the normal model, doument approximation auray, and present severalinteresting features that an be diserned from the approximated bid funtionin both an analytial and a graphial way. Using a similar tehnique insetion 4, the approximation of the gamma ase is derived and evaluated.Finally, setion 5 onludes.2 The ModelsFollowing Milgrom and Weber (1982) we onsider a seond prie ommonvalue aution in whih risk-neutral bidders follow the same strategy andompete for a single objet. The value of the objet, V, is unknown and thesame for eah bidder, but a prior distribution for V is shared by the bidders.To estimate V, eah bidder reeives a private signal X drawn independently3



from the same distribution of X|V. We will onsider two ases. First, the asewith a known number of bidders, and further on a model with a stohastinumber of bidders.Sine the aution involves symmetri bidders and a symmetri equilib-rium we an fous on bidder i without loss of generality2. Let Xi be thesignal for bidder i, and let Yi be the highest signal among the other bidders'signals X1, X2, . . . , Xi−1, Xi+1, . . . , Xn. The equilibrium bid is then given by(Milgrom and Weber, 1982, Theorem 6)
b(x) = v(x, x) = E[V |Xi = x, Yi = x].In words, bidder i submits a bid equal to the expeted value of V givenhis own signal and the signal of his worst ompetitor, both equal to x. Let

fV (v) denote the probability density funtion of V, fXi|V (x|v) the ondi-tional probability density funtion of Xi|V, and FXi|V (x|v) the onditionalumulative distribution funtion of Xi|V. Using Bayes' theorem repeatedlywe an rewrite the bid funtion easily as3
b(x) =

∫∞
−∞ v · f2

xi|v(x|v) · Fn−2
xi|v (x|v) · fv(v) dv

∫∞
−∞ f2

xi|v(x|v) · Fn−2
xi|v (x|v) · fv(v)dv

. (1)The announement of a publi reserve prie (minimum bid) is ommonly usedin seond prie autions4. Therefore, assume that the seller sets a minimumbid r ≥ 0. Then, the equilibrium bid funtion beomes
b(x) =







∫∞
−∞ v·f2

xi|v
(x|v)·F n−2

xi|v
(x|v)·fv(v) dv

∫∞
−∞ f2

xi|v
(x|v)·F n−2

xi|v
(x|v)·fv(v)dv

, if x ≥ x⋆

0, if x < x⋆ or if b(x) < 0,

(2)where x⋆ is the uto� signal, above whih bidders partiipate in the autionwith a positive bid. The uto� signal is given in impliit form as (Milgromand Weber, 1982)
x⋆(r) = inf

x
E[v|Xi = x, Yi < x] ≥ r,and by using Bayes' theorem repeatedly as before gives

r(x⋆) =

∫∞
−∞ v · fxi|v(x

⋆|v) · Fn−1
xi|v (x⋆|v) · fv(v) dv

∫∞
−∞ fxi|v(x

⋆|v) · Fn−1
xi|v (x⋆|v) · fv(v) dv

. (3)2Explanations of symmetri bidders/equilibrium are given by Krishna (2002).3Consult Appendix A for details of derivation.4A seret reserve prie an also be set by the seller. Bajari and Hortasu (2003) assumethat the seller sets the seret reserve prie by using the same bid funtion as the bidders,and therefore treat the seller as just another bidder.4



Hene, the minimum bid is an expliit funtion of x⋆.We now turn to the ase with a stohasti number of bidders. Bajariand Hortasu (2003) model an eBay aution as a seond prie aution whereentry into the aution is stohasti. Spei�ally, N potential bidders view apartiular listing for a ommon value objet on eBay and partiipate only ifthey an bear a bid-preparation ost. The probability of bearing this ost isassumed to be idential for eah bidder whih form the stohasti feature ofthe aution. As in Levin and Smith (1994) and Bajari and Hortasu (2003),assume that the unonditional distribution of bidders within an aution isbinomial with the same probability for eah bidder entering the aution.Thus, the model under onsideration fous on the symmetri equilibrium ofthe endogenous-entry game. On eBay, however, the number of potential bid-ders is expeted to be large ompared to the atual bidder partiipation. Asa onsequene, we therefore use the Poisson approximation to the Binomialdistribution.Using the derivation of the equilibrium bid in Bajari and Hortasu (2003)and rewriting by using Bayes' theorem repeatedly, gives the bid funtion fora stohasti number of bidders, with a minimum bid r, as
b(x, λ) =







∑∞
n=2

(n−1)·pi
n(λ)·

∫∞
−∞ v·f2

xi|v
(x|v)·F n−2

xi|v
(x|v)·fv(v) dv

∑∞
n=2

(n−1)·pi
n(λ)·

∫∞
−∞ f2

xi|v
(x|v)·F n−2

xi|v
(x|v)·fv(v) dv

, if x ≥ x⋆

0, if x < x⋆ or if b(x, λ) < 0,

(4)where pi
n(λ) is the poisson probability of (n− 1) bidders in the aution with

λ as the expeted value of the Poisson entry proess5. The uto� signal isnow given in impliit form as (Milgrom and Weber, 1982)
x⋆(r, λ) = inf

x
EnE[v|Xi = x, Yi < x, n] ≥ r,whih gives

r(x⋆, λ) =
∞∑

n=1

pn(λ) ·
∫∞
−∞ v · fxi|v(x

⋆|v) · Fn−1
xi|v (x⋆|v) · fv(v) dv

∫∞
−∞ fxi|v(x

⋆|v) · Fn−1
xi|v (x⋆|v) · fv(v) dv

, (5)where pn(λ) is the poisson probability of n bidders in the aution with ex-peted value λ. Hene, the minimum bid r(x⋆, λ) is an expliit funtion of
x⋆, and λ.Following Bajari and Hortasu (2003), we assume an hierarhial normalmodel for valuations as6

Xi|V ∼ N(v, κσ2)5The poisson probability notation, pi
n(λ), is used here as in Bajari and Hortasu (2003),sine the derivation of the equilibrium bid funtion is onditional on bidder i′s presene.6Negative valuations due to normal distributions are not unreasonable. First, in manyautions there exists administrative osts for a winning bidder. Seond, unreasonablehigh negative signals (in absolute terms) are rare sine the variane ompared to theexpeted value an be assumed to be small, see for example estimation results in Bajariand Hortasu (2003). If a signal gives a negative bid b(x) < 0, however, let b(x) = 0.5



V ∼ N(µ, σ2),where κ sales the variane of the signal distribution relative to the varianeof the ommon value V.In order to aount for other distributional settings, we also derive resultsfor the Gamma-Gamma model in Gordy (1997). Following Gordy (1997) wede�ne the prior distribution of V as a Gamma (α, β) distribution, where
α > 0, β > 0, and

fV (v) =
βα

Γ(α)
vα−1e−βv.To get the integrand of the bid funtion on a tratable form it is onvenientto solve the model in terms of inverse signals S = 1

X . Let S be onditionallyindependent given V = v and identially Gamma (τ, τv) distributed, τ >
0, v > 0, with probability density funtion

gS|V =
(τv)τ

Γ(τ)
sτ−1e−τv·sand distribution funtion GS|V .3 Approximation of the equilibrium bid funtionfor the Normal-Normal modelThe derived equilibrium bid funtions are quite omplex and not easy toanalyze. It is hard to see how the bid funtion depends on x for di�erentdistributional assumptions. In an in�uential paper, Bajari and Hortasu(2003) perform Bayesian estimation of a seond prie ommon value autionwith a stohasti number of bidders. For eah bid b in every aution they �ndthe orresponding signal x by numerial evaluations of integrals. That anbe very time demanding, but by exploiting a linear property aross autionsthey redue the omputational omplexity signi�antly. However, Bajariand Hortasu (2003) argue that the onvenient linear property also holds foruto� signals x⋆, but it an be easily veri�ed numerially that this is nottrue. As a onsequene, one has to make use of a numerial routine likeNewton-Rhapson to ompute eah x⋆ for eah minimum bid, whih is verytime demanding.Instead, we obtain onvenient linear approximations for both the bid andthe minimum bid funtions of signals x and uto� signals x⋆, respetively.The approximation is easily understood and inludes several interesting fea-tures, for example: every signal (uto� signal) onnets to a bid (minimumbid) diretly without numerial evaluations, quantifying the winner's urseis straightforward, and the bid funtion as a weighted funtion of the signal

x and the expeted value µ is identi�ed.6



3.1 Known number of bidders nThe derivation of the linear approximation an roughly be divided into thefollowing steps7:
Step 1 : Substitute t = x−v√

κσ
to get standard normal distributed signals.Then, the bid funtion beomes

b(x) = x −
√

κσ

∫∞
−∞ te−t2Φn−2(t)e−

1
2σ2 (x−√

κσt−µ)2 dt
∫∞
−∞ e−t2Φn−2(t)e−

1
2σ2 (x−√

κσt−µ)2 dt
,where Φ(·) is the standard normal c.d.f.

Step 2 : Approximate Φ(t) with the kernel of a normal probability den-sity funtion over the interval [−a, a] for a = 2.
Step 3 : Complete the squares in the exponents of the exponential fun-tions to rewrite the integrands to one normal density. In the numeratorwe get the expeted value of a normal density and in the denominator thisnormal density integrates to 1. Constants anel out.From this it follows that the bid approximation an be written as

b(x) ≈ c + ωµ + (1 − ω)x, (6)where c = −
√

κσγ̂θ̂(n−2)
γ̂(n−2)+1+ κ

2
, and ω =

κ
2

γ̂(n−2)+1+ κ
2
. Hene, the linear approxi-mation is a weighted funtion of the signal x and the expeted value µ. If

n = 2, then Φn−2(t) = 1, and the bid funtion in equation (1) an be om-puted exatly, in the same way as in step 3 above. The bid funtion thenbeomes
b(x) =

κ
2

1 + κ
2

µ +
1

1 + κ
2

x,whih is exatly what the approximation also gives in this ase.Note, by using the same approximation tehnique as above, the minimumbid funtion in equation (3) an be approximated as
r(x⋆) ≈ cr + ωrµ + (1 − ωr)x, (7)where cr = −

√
κσγ̂θ̂(n−1)

γ̂(n−1)+ 1
2
+κ

2

, and ωr =
κ
2

γ̂(n−1)+ 1
2
+κ

2

. In this ase, the minimumbid funtion an be omputed exatly for n = 1, whih again gives the sameresult as the approximation.Some interesting and valuable features should be noted from the approx-imation of the equilibrium bid funtion. A higher variane of the ommonvalue V implies a higher risk of drawing a large signal value and thus a higherrisk of overestimating the true value of the objet, why bidders should lowertheir bids. The onstant term c of the approximated bid funtion aptures7See Appendix B for detailed explanations in eah step.7



this e�et well, inreasing the value of σ leads to lower bids. Less preision insignals, as κ inreases, gives a bidder inentives to plae more weight on pub-li information, aptured by parameter µ, and less weight on his own privatesignal x. In fat, the weight ω of the approximated bid funtion inreasesmonotonially towards 1 as κ inreases, and
b(x) −→ x if κ −→ 0, and b(x) −→ µ if κ −→ ∞.Intuitively, one ould expet this result. The higher preision in signals themore the bidders trust their private information.3.2 Stohasti number of biddersThe bid funtion for a stohasti number of bidders with a minimum bid

r onsists of b(x, λ) in equation (4), and the orresponding minimum bidfuntion r(x⋆, λ) in equation (5). As for the ase with a known number ofbidders, the minimum bid funtion an be approximated and written as
r(x⋆, λ) ≈

∞∑

n=2

pi
n(λ) (cr + ωrµ + (1 − ωr)x

⋆) .The same way to approximate the bid funtion, b(x, λ), does not hold unfor-tunately. We ould do the approximation term by term, but onstants willnot anel out in this ase sine they are parts of the summation over n, and,more importantly, inverting the bid funtion is not possible. One obviousway to proeed, however, is to extrat the information in λ, the mean of thePoisson proess, by letting n = λ and approximate the bid funtion for astohasti number of bidders with the linear approximation in equation (6).This simple approximation turns out to be surprisingly good, see setion 3.3.3.3 Auray of approximationsThe auray of the approximated bid funtion for a known number of bid-ders depends only on how well the standard normal distribution funtion isapproximated. As we an see in Figure 1, the approximation with a = 2is quite good within the approximation interval and seems to be the mostsuitable value for a by onsidering the whole graph. However, hoosing thevalue of a is somewhat arbitrary. Other values than a = 2 ould also work.For example, the shorter interval with a = 1 gives better approximations on
[−1, 1], but due to worse approximation outside this interval we prefer theapproximation with a = 2.The auray of the bid approximation is a funtion of the bidder's sig-nal x, the parameters (µ, σ, κ), the number of bidders n (λ for the stohastiase), and the minimum bid r if the seller has set a publi reserve prie. Inautions with a minimum bid r, the bid funtions are equal to zero whenever8



the signal x is below the uto� signal x⋆, and idential to the bid funtionswithout a minimum bid for x ≥ x⋆. This fat is illustrated in Figures 2 to
9, where one also an note that the worst bid approximations our for lowvalues of x that gives a positive bid. Thus, the approximations of the bidfuntions with a minimum bid are remarkable better than the approxima-tions without a minimum bid.In Figures 2 to 3 for a known number of bidders, the approximationworks very well for both a small and a large number of bidders8, espeiallyfor κ = 0.25. The somewhat rude approximation for a stohasti number ofbidders, by letting n = λ, works surprisingly good. In Figure 4 for κ = 0.25there are only small di�erenes between the bid funtions, whereas there aresome notable di�erenes for a large number of expeted bidders in Figure 5.However, these di�erenes are espeially for unusual signals, loated almost
2 standard deviations from the expeted value. By onsidering a very largenumber of bidders in Figures 6 to 9, the approximations still works very well.An inrement in the number of bidders implies a shift of the bid funtiondown to the right, and as suh only gives worse bid funtion approximationsfor negative bids, whih we never observe.3.4 Illustrations of the winner's urse e�etThe winner's urse is by far the most highlighted phenomena in ommonvalue autions where bidders fae e�ets from both information and om-petition perspetives9. More bidders leads to more ompetition whih givesa bidder inentives to submit a higher bid (ompetition e�et). However, abidder must also aount for the risk of overestimating the value if he wins,sine his signal is then the highest signal among all bidders. As suh, a biddershould also lower his bid when faing more bidders (overestimation e�et).To illustrate how the approximated bid funtion aptures the winner's ursee�et as a mixture between the ompetition and the overestimation e�et,we split the bid approximation in equation (6) into two parts as

(1 − ω)x =
γ̂(n − 2) + 1

γ̂(n − 2) + 1 + κ
2

· x (I),and
c + ωµ =

κµ
2 −√

κσγ̂θ̂(n − 2)

γ̂(n − 2) + 1 + κ
2

(II).Taking �rst-order derivatives in respet to n of parts (I, II) gives (I ′n, II ′n)as
γ̂κ

2
[
γ̂(n − 2) + 1 + κ

2

]2 x > 0 for x > 0 (I ′n)8Kagel and Levin (1986) mention that 3 − 4 bidders an be onsidered as a smallnumber of bidders, whereas a large number of bidders typially involves 7 − 8 bidders.9See Thaler (1988) for a areful disussion.9



−
√

κσγ̂θ̂(2 + κ) + γ̂κµ

2
[
γ̂(n − 2) + 1 + κ

2

]2 < 0 (II ′n).Hene, inreasing the number of bidders, n, inreases bids for positive signals
x in part (I), re�eting the eonomi e�ets of ompetition, and dereasesbids for all signals in part (II), re�eting the overestimation e�et of drawingthe highest signal among bidders. In equilibrium, the e�et of orreting forthe winner's urse dereases bids (Krishna, 2002), see Figures 10 and 12 foran illustration, whih implies that the overestimation e�et dereases bidsmore than the ompetition e�et inreases bids in equilibrium. However, thee�et of the winner's urse orretion, for the bid funtion approximation inequation (6), does not always derease bids, see Figures 11 and 13 for anillustration. This is not a big problem, though, sine it only ours for fairlyhigh and unreasonable values of the variane sale parameter κ and signals
x, see Appendix D for an analytial result.3.5 Bidder's expeted pro�t and expeted seller revenueFollowing Gordy (1997) one might expet that more ompetition, as thenumber of bidders n inreases, drives expeted seller revenue upwards. Inaddition, by intuition from the mehanism-design literature, one might alsoexpet a bidder's expeted pro�t to inrease with the magnitude of his signal.Nevertheless, ounter-examples are often available. For example, at lowvalues of n, Matthews (1984) shows, in an example where signals follow aPareto distribution, that seller revenue goes down by inreasing the numberof bidders n.Gordy (1997) shows omparative statis for bidder pro�ts and simulateexpeted seller revenue for the Gamma-Gamma model in Setion 2, whihresulted in no evidene of pathologial behaviour. We now perform a similaranalysis for the Normal-Normal model. Comparative statis for a bidder'sexpeted pro�t and expeted seller revenue are illustrated by using both theexat and the approximated bid funtion for a known number of bidders. Tosimulate expeted seller revenue we utilize the same Monte Carlo tehniquesas in Gordy (1997).In a seond prie ommon value aution, a bidder's expeted pro�t for agiven signal x is given by

Π(x) =

∫ x

−∞
(v(x, y) − b(y)) fYi|Xi

(y|x) dy. (8)This integral an be solved by using Gaussian quadrature methods. However,by using the bid approximation tehnique in setion 3.1, we an derive anexpliit approximative solution that yield a muh faster omputation of thebidder's expeted pro�t. The approximation of the expeted pro�t an be10



simpli�ed to
Π(x) ≈ 1

2
(
1 + γ̂(n − 2) + κ

2

)

∫ x

−∞
(x − y)fYi|Xi

(y|x) dy,where fYi|Xi
(y|x) is given by

fYi|Xi
(y|x) = (n − 1)

∫∞
−∞ fxi|v(x|v)fxi|v(y|v)Fn−2

xi|v (y|v)fv(v) dv
∫∞
−∞ fxi|v(x|v)fv(v) dv

.Further simpli�ations requires some tedious algebra whih results in a verymessy and non-intuitive expression. Therefore, the interested reader is ad-vised to onsult Appendix E for a omplete expliit approximative solution.As we an see in Figures 22 and 23, the bidder's expeted pro�t inreaseswith signals x, and dereases with more ompetition as n inreases. However,as we an see in Figure 23, the bidder's expeted pro�ts do not monotoniallyinrease with higher preision in signals as κ dereases. By intuition this is anexpeted result. Gordy (1997) suggests that higher preision in signals onlyinrease Π(x) to a ertain point and will eventually after this point derease
Π(x) when signal preision beomes too high. In the limit, as κ −→ 0,signals beome perfetly preise. Thus, the true unknown value of the objetbeomes ommon knowledge and the bidders fae Bertrand ompetition,whih results in zero expeted pro�ts. To estimate expeted seller revenuewe found that 100000 autions were good enough for onvergene. In Figures
24 and 25 we see that expeted seller revenues inreases with n and E(V ) asexpeted. Overall, we �nd no evidene of pathologial behaviour whatsoever.4 Approximation of the equilibrium bid funtionfor the Gamma-Gamma modelIn order to aount for other distributional settings, we also show how theequilibrium bid funtion an be approximated for the Gamma-Gamma model10. Gordy (1997) obtains a nearly losed form solution for the Gamma-Gamma ase (see B2(x) formula (7)), and mention that omputations goesquite simple and fast. However, it is still time demanding sine the inversebid funtion has to be solved numerially for eah bid, and it is still not easyto see how the bid funtion depends on signals x for di�erent distributionalasssumptions.The bid funtion of signal X beomes

b(x) =

∫∞
−∞ v · (1 − GS|V (1/x|v))n−2 · g2

S|V (1/x|v) · fv(v) dv
∫∞
−∞(1 − GS|V (1/x|v))n−2 · g2

S|V (1/x|v) · fv(v) dv
. (9)10Similar illustrations as in Setion 3.4 and 3.5 an be performed for the Gamma asetoo, but we do not give it here sine it follows the same approah as in previous setion.11



The approximation goes over (1−GS|V (1/x|v)) by using one unique Gammaprobability density funtion with parameters (α̂τ , β̂τ ) as the approximatingfuntion, see Appendix C for a omplete disussion and derivation. Replaing
(1 − GS|V (1/x|v)) with Gamma(α̂τ , β̂τ ) and simplifying, the approximatedbid funtion an be written as

b(x) ≈ [α + 2τ + (n − 2)(α̂τ − 1)] · x
βx + 2τ + (n − 2)β̂τ

. (10)The bid funtion in equation (9) an be omputed exatly for n = 2, as forthe normal ase, and for τ = 1, whih yield the same results as what theapproximation gives. The bid funtion for n = 2 is given by
b(x) =

(α + 2τ) · x
βx + 2τ

.If τ = 1, the onditional distribution of S|V follows the exponential distribu-tion with parameter v. This gives (1−GS|V (1/x|v)) = e−
v
x , whih is exatlythe same result as the Gamma p.d.f. with parameters (α̂τ , β̂τ ) = (1, 1) usedfor approximation. The bid funtion is now equal to

b(x) =
(α + 2)x

βx + n
.4.1 Auray of approximationsIt is not that informative to evaluate the approximation of (1−GS|V (1/x|v))for some values of τ. Instead, the approximated bid funtion, in equation

(10), is ompared to the exat bid funtion, in equation (9), for various setsof parameter values in Figures 14 to 21.Considering Figures 14 and 15 for a known number of bidders, the ap-proximation works pretty well when the number of bidders is small, regard-less the other parameter values. Inreasing the expeted value µ tend togive worse approximations in absolute terms, but by omparing Figure 14up left with Figure 14 up right and Figure 15 up left with Figure 15 up right,there seems to be no di�erenes of how well the approximation performs inrelative terms. The approximated bids, for signals equal to µ, are about 5per ent higher than the exat bids in all these �gures whih is fairly low.Higher values of τ does not seem to hange the auray of approximationsfor n = 4, but for n = 8 there is a small impairment in the approximation.In general, there are notably worse approximations for n = 8. Approximatedbids are about 10 per ent higher than the exat bid funtion for signalsequal to µ.The rude approximation for the stohasti ase works surprisingly goodhere too, as for the Normal-Normal model in the previous setion. Figures 16and 17 indiate that the approximations for the stohasti ases are almost12



as good as the approximations for a known number of bidders, and the bidfuntions hange in a similar way for di�erent sets of parameter values. InFigures 18 to 21 we allow for a very large number of bidders, where one getfurther indiations that the bid approximations get worse as the number ofbidders inreases. Approximated bids are now about 20 per ent higher thanthe exat bid funtion for signals equal to µ, and n = 16.5 ConlusionsIn this paper, we derive approximative losed form solutions of the equilib-rium bid funtion for two realisti models of empirial interest in seond prieommon value autions. The approximations bring out several interestingfeatures whih we divide into three major parts.First, it is straightforward to measure how muh the bid funtion de-pends on the signal for various distributional omponents. Seond, we areable to ompute the inverse of the equilibrium bid funtion (the signal) di-retly without time onsuming numerial integration. This is a ruial stepfor Bayesian/likelihood estimation of aution data, where the inverse bidfuntion has to be evaluated over and over again. Third, the magnitude ofthe winner's urse and the expeted bidder pro�ts an be quanti�ed analyt-ially.We investigate the auray of the approximations and onlude that theapproximation of the bid funtion in the normal model is highly auratefor all parameter values and number of bidders. The approximation forthe gamma model is in general less aurate than the normal ase, but itperforms satisfatory unless the number of bidders is too large. A possibleimprovement of the approximation in the gamma ase, espeially when n islarge, ould be to approximate (1−GS|V (1/x|v))n−2 in equation (9) diretly,rather than approximating (1−G) and then taking the power as we have donehere. The drawbak is, however, that we would have a new approximationfor every n, but polynomial interpolation ould be used to handle this.Finally, possible extensions ould be to derive losed form bid approxi-mations in autions with both a private and a ommon value element of theobjet, multiunit objets, or autions with risk-averse bidders.
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Appendix A: Derivation of the equilibrium bid fun-tion by using Bayes' TheoremThe equilibrium bid funtion is given by
b(x) = v(x, x) = E[v|Xi = x, Yi = y] =

∫ ∞

−∞
v · fv|xi,yi

(Xi = x, Yi = y)dv.Rewriting the density funtion in the integrand gives
fv|xi,yi

(Xi = x, Yi = y) =
fv,xi,yi

(v, x, x)

fxi,yi
(x, x)

=
fyi|v,xi

(x|v, x) · fv,xi
(v, x)

∫∞
−∞ fxi,yi,v(x, x, v)dv

=
fyi|v,xi

(x|v, x) · fv,xi
(v, x)

∫∞
−∞ fyi|v,xi

(x|v, x) · fv,xi
(v, x)dv

=
fyi|v,xi

(x|v, x) · fxi|v(x|v)fv(v)
∫∞
−∞ fyi|v,xi

(x|v, x) · fxi|v(x|v)fv(v)dv

=
[

fyi|v,xi
(x|v, x) depends only on v] =

fyi|v(x|v) · fxi|v(x|v)fv(v)
∫∞
−∞ fyi|v(x|v) · fxi|v(x|v)fv(v)dv

.Thus, b(x) an be written as
b(x) = v(x, x) =

∫ ∞

−∞
v ·

fyi|v(x|v) · fxi|v(x|v)fv(v)
∫∞
−∞ fyi|v(x|v) · fxi|v(x|v)fv(v)dv

dv

=

∫∞
−∞ v · fyi|v(x|v) · fxi|v(x|v)fv(v) dv
∫∞
−∞ fyi|v(x|v) · fxi|v(x|v)fv(v)dv

=

∫∞
−∞ v · (n − 1) · fxi|v(x|v) · Fn−2

xi|v (x|v) · fxi|v(x|v)fv(v) dv
∫∞
−∞(n − 1) · fxi|v(x|v) · Fn−2

xi|v (x|v) · fxi|v(x|v)fv(v)dv

=

∫∞
−∞ v · f2

xi|v(x|v) · Fn−2
xi|v (x|v) · fv(v) dv

∫∞
−∞ ·f2

xi|v(x|v) · Fn−2
xi|v (x|v) · fv(v)dv

,sine the highest order statisti of (n−1) ompeting signals, where ompeti-tors' (bidders') signals are i.i.d. with p.d.f. fxi|v(xi|v), has p.d.f. fyi|v(x|v) =

(n − 1) · fxi|v(x|v) · Fn−2
xi|v (x|v).

14



Appendix B: The linear approximation of the equi-librium bid funtion for the normal aseThe derivation of the linear approximation is divided into four steps. Eahstep is here presentated arefully.Step 1Substitution gives the bid funtion on standard normal form as
b(x) =

∫∞
−∞ v · f2

xi|v(x|v) · Fn−2
xi|v (x|v) · fv(v) dv

∫∞
−∞ f2

xi|v(x|v) · Fn−2
xi|v (x|v) · fv(v) dv

=

[

t =
x − v√

κσ

]

= x −
√

κ · σ ·
∫∞
−∞ t · e−t2 · Fn−2

t (t) · e−
1

2σ2 ·(x−
√

κσt−µ)2 dt
∫∞
−∞ e−t2 · Fn−2

t (t) · e−
1

2σ2 ·(x−
√

κσt−µ)2 dt
,where t ∼ N(0, 1).Step 2Let ht(t|γ, θ) = e−γ·(t−θ)2 be the approximating funtion to the standardnormal distribution funtion Φt(t) on [−a, a]. The funtion ht(t|γ, θ) an beonsidered as the �kernel� of a normal p.d.f. for t and is all we need forthe approximation. Multipliative onstants, not depending on t, will anelout in the numerator and the denumerator. Using a numerial routine11 thebest �tted pair of values (γ̂, θ̂) is obtained on [−a, a] to approximate Φt(t)by a spei�ed minimized funtion. To make things simple, we de�ne a basisuitable minimized funtion, Md, as

Md(γ̂, θ̂) = min
γ,θ

(

max
t

|ht(t|γ, θ) − Φt(t)|
)

,where (γ̂, θ̂) is the minimizing pair of the funtion.As a result of this estimation proedure, we obtained the best �tted pairof values as
(γ̂, θ̂) = (0.1937, 1.9600).The approximation works well, even if the normal p.d.f. is a bell-shapeddensity funtion, ompared to the strit inreasing c.d.f. Figures in Setion

3.3 show that an aeptable approximation within [−a, a], for a = 2.2, isgood enough. Poor approximations for high values above a seems to give noonsiderable e�et on the bid approximation.11For example MatLab's build-in funtion "`fminsearh.m"'15



Step 3Replaing Φt(t) by ht(t|γ̂, θ̂), the approximated bid funtion beomes
b(x) ≈ x −

√
κ · σ ·

∫∞
−∞ t · e−t2 · e−(n−2)γ̂(t−θ̂)2 · e−

1
2σ2 ·(x−

√
κσt−µ)2 dt

∫∞
−∞ e−t2 · e−(n−2)γ̂(t−θ̂)2 · e−

1
2σ2 ·(x−

√
κσt−µ)2 dt

.Expanding the exponent of the exponentialfuntion gives
−
[

t2 + (n − 2) · γ̂ · (t − θ̂)2 +
κ

2
·
(

t − x − µ√
κσ

)2
]

t∝ −
[

t2 ·
(

1 + (n − 2) · γ̂ +
κ

2

)

− 2 · t ·
(

(n − 2) · γ̂ · θ̂ +

√
κ · (x − µ)

2σ

)]

t∝ −
(

1 + (n − 2) · γ̂ +
κ

2

)

︸ ︷︷ ︸

m3

·










t −

m4
︷ ︸︸ ︷
(

(n − 2) · γ̂ · θ̂ +
√

κ·(x−µ)
2σ

)

1 + (n − 2) · γ̂ + κ
2










2

= −m3 · (t − m4)
2.Thus, the bid funtion b(x) an be simpli�ed to

b(x) ≈ x −
√

κ · σ ·
∫∞
−∞ t · e−m3(t−m4)2 dt
∫∞
−∞ e−m3(t−m4)2 dt

.

b(x) ≈ x −
√

κ · σ ·
∫∞
−∞ t · e−m3(t−m4)2 dt
∫∞
−∞ e−m3(t−m4)2 dt

= x −
√

κ · σ · E(t)

1
= x −

√
κ · σ · m4,where m3 = 1+(n−2)γ̂ + κ

2 , and m4 =
(n−2)γ̂θ̂+

√
κ(x−µ)

2σ

1+(n−2)γ̂+κ
2

. Note, the onstantsof the normal kernel of the numerator and the denominator anel out. BySubstituting the expression for m4, the bid approximation an be simpli�edto
b(x) ≈ −

√
κ·σ· (n − 2) · γ̂ · θ̂

(n − 2) · γ̂ + 1 + κ
2

+
κ
2

(n − 2) · γ̂ + 1 + κ
2

·µ +
(n − 2) · γ̂ + 1

(n − 2) · γ̂ + 1 + κ
2

·x.Hene, the linear approximation is a weighted funtion between the signal xand the expeted value µ.

16



Appendix C: Gamma-Gamma approximation by us-ing multivariate regressionThe approximation goes over (1−GS|V (1/x|v)) by using Gamma probabilitydensity funtions. By substitution, the distribution funtion of S|V an bewritten as
GS|V (1/x|v) =

∫ 1/x

−∞

(τv)τ

Γ(τ)
lτ−1e−τv·l dl =

∫ τ · v
x

−∞

1

Γ(τ)
tτ−1e−t dt.Hene, the distribution funtion GS|V depends on the parameter τ throughthe support v

x . Approximation of (1 − GS|V (1/x|v)) with only one uniqueGamma p.d.f. is therefore not possible. Tabulation of Gamma p.d.f. ap-proximations for di�erent values of τ is one way to takle the non-uniquenessfeature, but to get some struture we utilize multivariate regression.Let the dependent variables be the two parameters, (ατ,i, βτ,i), of theGamma p.d.f. approximations for eah value of τi, where NAppr is thenumber of approximations and i = 1, 2, . . . , NAppr. Further, de�ne the in-dependent variables as funtions of τi, e.g. τi, τ
2
i , log(τi), 1/τi

12. Then, byomparing adjusted R-square for eah regression model we hoose and esti-mate the best regression model (α̂τ , β̂τ ) using all subsets of the independentvariables as independent variables. This resulted in the following two bestregression models, estimated as
α̂τ = 1.02 − 0.00488618 · τ + 0.00002205 · τ2 + 0.125789 · log τ,and

β̂τ = 0.448417 + 0.00095877 · τ + 0.496667 · 1

τwith adjusted R2 equal to 98.6% and 99.5%, respetively.Let hv(v|α̂τ , β̂τ ) = ( v
x)α̂τ−1 · e−β̂τ · v

x
v∝ vα̂τ−1 · e−β̂τ · v

x be the �Gammakernel� approximating funtion to (1 − GS|V (1/x|v)). Then, by replaing
(1−GS|V (1/x|v)) with hv(v|α̂τ , β̂τ ), the approximated bid funtion beomes

b(x) ≈
∫∞
−∞ v · v(n−2)(α̂τ−1)+2τ+α−1 · e−( 1

x
(β̂τ (n−2)+2τ)+β)·v dv

∫∞
−∞ v(n−2)(α̂τ−1)+2τ+α−1 · e−( 1

x
(β̂τ (n−2)+2τ)+β)·v dv

.Let α′ = (n− 2)(α̂τ − 1)+2τ +α, and let β′ = 1
x(β̂τ (n− 2)+2τ)+β. Then,we get the approximated bid funtion as

b(x) ≈
∫∞
−∞ Gamma(α′ + 1, β′) dv
∫∞
−∞ Gamma(α′, β′) dv

=
Γ(α′ + 1)

β′α′+1
· β′α′

Γ(α′)

=
α′

β′ =
[α + 2τ + (n − 2)(α̂τ − 1)] · x

βx + 2τ + (n − 2)β̂τ

.12Several funtions of τi were used but we do not list everyone here.17



Appendix D: The winner's urse e�et as a net bidshading e�et of the approximated bid funtionIt is easily veri�ed that the unonditional distribution of signals is given by
X ∼ N(µ, (κ + 1)σ2), and as suh x = µ + dσ

√
κ + 1 represents signals thatdeviate from the expeted value µ with d standard deviations. By replaing

x with µ+dσ
√

κ + 1, the net bid shading e�et, de�ned as the winner's ursee�et by NBS := (−II ′n − I ′n) , an be written as
NBS =

(
−II ′n − I ′n

)
=

√
κσγ̂

[

θ̂(2 + κ) − d
√

κ(κ + 1)
]

2
[
γ̂(n − 2) + 1 + κ

2

]2 ,whih is negative if d > θ̂(2+κ)√
κ(κ+1)

. We ould assume κ = 0.25 aordingto estimation results in Bajari and Hortasu (2003), but in order to allowfor larger values, let κ = 1. Then, the net bid shading e�et only beomesnegative for d > 4.16 (see Figure 11), orresponding to signals more thanfour standard deviations above their expeted value, whih is of ourse veryunlikely.Appendix E: Approximation of the bidder's expetedpro�tBy using the approximation of the standard normal distribution funtion,the bidder's expeted pro�t an be approximated and written as
(n − 1)e−γ̂(n−2)θ̂2√

c2

3c1
√

2πκc1
·
[√

π

c6
Φ[c8(x)]

(

x − c7(x)

2c6

)

+
1

2c6
e−

c28(x)

2

]

·exp [c2c
2
4 −

c3c
2
5(x) + 8

√
κσc2c4c5(x)

8κσ2c1c2
+

c7(x)2

4c6

]

,where
c1 = 1 + γ̂(n − 2) +

k

2
, c2 =

k + 1

2
, c3 = 1 + 2γ̂(n − 2),

c4 = γ̂θ̂(n − 2), c5(x) = x + κµ, c6 =
c3(k + 1)2

8κσ2c1c2
,

c7(x) =
8
√

kσc2c4(k + 1) + 2(k + 1)c3c5(x)

8κσ2c1c2
, c8(x) =

√
2c6

(

x − c7(x)

2c6

)

.
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Figure 14: The exat versus the approximated bid funtion for the Gamma-Gamma model with a known number of bidders. Conerning the dotted linesalong the y-axis, middle lines represent the position of µ, left lines the posi-tion of the 2.5−perentile, and right lines the position of the 97.5−perentile.
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Figure 15: The exat versus the approximated bid funtion for the Gamma-Gamma model with a known number of bidders. Conerning the dotted linesalong the y-axis, middle lines represent the position of µ, left lines the posi-tion of the 2.5−perentile, and right lines the position of the 97.5−perentile.
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Figure 16: The exat versus the approximated bid funtion for the Gamma-Gamma model with a stohasti number of bidders. Conerning the dot-ted lines along the y-axis, middle lines represent the position of µ, leftlines the position of the 2.5−perentile, and right lines the position of the
97.5−perentile.
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Figure 17: The exat versus the approximated bid funtion for the Gamma-Gamma model with a stohasti number of bidders. Conerning the dot-ted lines along the y-axis, middle lines represent the position of µ, leftlines the position of the 2.5−perentile, and right lines the position of the
97.5−perentile.
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Figure 18: The exat versus the approximated bid funtion for the Gamma-Gamma model with a known number of bidders. Conerning the dotted linesalong the y-axis, middle lines represent the position of µ, left lines the posi-tion of the 2.5−perentile, and right lines the position of the 97.5−perentile.
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Figure 19: The exat versus the approximated bid funtion for the Gamma-Gamma model with a known number of bidders. Conerning the dotted linesalong the y-axis, middle lines represent the position of µ, left lines the posi-tion of the 2.5−perentile, and right lines the position of the 97.5−perentile.
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Figure 20: The exat versus the approximated bid funtion for the Gamma-Gamma model with a stohasti number of bidders. Conerning the dot-ted lines along the y-axis, middle lines represent the position of µ, leftlines the position of the 2.5−perentile, and right lines the position of the
97.5−perentile.
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Figure 21: The exat versus the approximated bid funtion for the Gamma-Gamma model with a stohasti number of bidders. Conerning the dot-ted lines along the y-axis, middle lines represent the position of µ, leftlines the position of the 2.5−perentile, and right lines the position of the
97.5−perentile.
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Figure 22: The bidder's expeted pro�t for di�erent number of bidders n.Thinner lines, loated just below assigned thik lines for the exat ases,orrespond to the approximated values of the bidder's expeted pro�ts.
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Figure 23: The bidder's expeted pro�t for di�erent values of κ, the varianesale parameter for signals. Thinner lines, loated just below assigned thiklines for the exat ases, orrespond to the approximated values of the bid-der's expeted pro�ts. The preision in signals when κ = 1.5 was estimatedto give the highest expeted pro�ts for su�ient high values of x. Lower andhigher preision from this point results in a deline of Π(x).
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n = 12Figure 25: Approximated expeted seller revenue for di�erent number ofbidders n. The approximations seem to work well ompared to the exatases above.
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