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A consistent negative correlation between sibship size and cognitive ability 
has been observed in past empirical studies (e.g. Anastasi, 1956; Higgins, 
Reed, & Reed, 1962; Belmont & Marolla, 1973; Nisbet & Entwistle, 1967; 
Page & Grandon, 1979; Velandia, Grandon, & Page, 1978; Zajonc & Markus, 
1975; Zajonc, Markus, Berbaum, Bargh & Moreland, 1991). If cognitive abil-
ity in children is negatively affected by sibship size, there should be a change 
following the birth of a sibling. Extending previous longitudinal work (e.g. 
Guo & VanWey, 1999; McCall, 1984), this paper uses longitudinal multilevel 
modeling to test for effects of sibship size and birth of a sibling in a large 
American probability sample: the children of the NLSY79. Consistent effects 
of sibship size on scores from three PIAT subtests measuring verbal and 
mathematical abilities in children are found. The effects are larger for closely 
spaced siblings. Results from longitudinal models however suggest that sib-
ling birth has no causal effect on cognitive ability in children over age five. 

 
Key words: sibship size; birth of a sibling; intelligence; cognitive ability; birth order; multi-
level models. 
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1. Introduction 
 
Are children’s cognitive/intellectual abilities affected negatively by having 
many siblings? Does their intelligence decline after the birth of a sibling? A 
consistent negative correlation between sibship size and cognitive ability has 
been observed in past empirical studies. Children with more siblings have on 
average lower measured intelligence than children with fewer siblings, as 
measured by IQ tests and other mental aptitude tests (see e.g. Anastasi, 1956; 
Higgins, Reed, & Reed, 1962; Belmont & Marolla, 1973; Nisbet & En-
twistle, 1967; Page & Grandon, 1979; Velandia, Grandon, & Page, 1978; 
Zajonc & Markus, 1975; Zajonc, Markus, Berbaum, Bargh & Moreland, 
1991).  
 
Several theories have been developed to explain this negative correlation. 
Some of them assume causality, or partial causality, whereas others attribute 
the association to extraneous factors. Studies based on cross-sectional de-
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signs have consistently found a negative association between sibship size 
and cognitive ability, although it gets weaker after controlling for confound-
ing variables. Guo and VanWey (1999) examined the causality of this asso-
ciation on a large national longitudinal sample: the children of The National 
Longitudinal Survey of Youth (NLSY-children). They regressed changes in 
cognitive ability scores onto changes in sibship size and concluded that the 
cross-sectional effect was spurious. They were criticized for not allowing 
enough time for large additions to the family, as well as for only looking at 
widely spaced siblings (Downey, Powell, Steelman & Pribesh, 1999).  
 
The purpose of this paper is to expand both the database and the analytic 
approach by testing the effect of the birth of a sibling on a larger part of the 
NLSY-children data, thus allowing for more children to be examined and for 
larger additions to the family, in the context of longitudinal multilevel mod-
els that have not been applied to this problem in the past. We will model the 
cognitive growth of children from ages five through 14, a period in which up 
to four siblings have been born into the families in which these children 
grow up.   
 

2. Theoretical framework 
 
Social scientists have long been interested in the relationship between family 
structure and cognitive development (see, among many others, Anastasi, 
1956; Belmont & Marolla, 1973; Downey, 2001; Guo & Van Wey, 1999; 
Rodgers, Cleveland, van den Oord & Rowe, 2000; Steelman & Mercy, 
1980). Higgins et al. (1962) reported that correlations between sibship size 
and intelligence typically lie between -.20 and -.30. Scholars have carefully 
examined this relationship, within various datasets and using different statis-
tical techniques, in order to determine whether or not it is causal, partly 
causal, or spurious. Three major theories have emerged from these attempts: 
the confluence model, the resource dilution theory, and the admixture hy-
pothesis. We note that these theories, and most empirical studies, combine 
family (or sibship) size with birth order in building models of intellectual 
development. This is, in a sense, an unfortunate pairing. The two measures 
are necessarily correlated, but derive from different theoretical sources. Birth 
order is a measure that accounts for within-family variance; that is, it meas-
ures and relates to differences between siblings in the same family.  On the 
other hand, sibship size measures differences between families, and is shared 
by siblings in the family once the family is complete (barring divorce or 
other disruption). We review each of these theories as they account for these 
processes in explaining cognitive/intellectual development within the context 
of the family environment. 
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2.1 The confluence model 
 
The confluence model (Zajonc & Markus, 1975; Zajonc, 2001) is a mathe-
matical model that predicts absolute intellectual level from sibship size, birth 
order, and sibling tutoring. The latter was added to account for a lastborn 
deficit in empirical aggregate data. Children from smaller families and chil-
dren born earlier, i.e. children with lower birth orders, are predicted to have 
higher IQs than children in larger families and/or with higher birth orders.  
 
Confluence theorists propose that the intellectual environment is important 
for every family member’s absolute intellectual level, and that each child 
and parent contributes to this environment. For example, each parent may be 
given the arbitrary absolute intellectual level of 30, while the child is given 
an intellectual level measure of approximately zero at his/her birth (see e.g. 
Zajonc, 2001). The intellectual environment for the first child, as well as for 
the parents, is then considered to be (30+30+0)/3 = 20 at the time of the 
birth. The child’s intellectual level increases as he/she grows older, and the 
confluence algebra implies that the intellectual environment necessarily gets 
weaker at the birth of the next child. Although the second child is born into a 
weaker intellectual environment, he or she will pass the first using conflu-
ence arithmetic1. The first-born benefits from tutoring the second-born, how-
ever, and by 11 + 2 years the benefit of the tutoring function will outweigh 
the lower intellectual environment for the first-born (Zajonc and Mullally, 
1997). Spacing is also important because smaller birth gaps between children 
lead to a lower intellectual environment than larger gaps at the time of each 
birth. The confluence model also implies that children in single-parent 
households have a disadvantage, as can be seen from the formulation above, 
whereas children who live in households with many adults are at an advan-
tage. 
 
2.2 The resource dilution theory 
 
The resource dilution theory (Blake, 1981; Downey, 1995; 2001; Armor, 
2001) focuses on family structure and how it may benefit or disadvantage 
children. The theory explains the negative relationship between sibship size 
and cognitive ability by positing that parental resources are fixed and divided 
among children. Parents have many different resources that they provide, 
and Blake (1981) has described three of them: environments or settings, e.g. 
shelter, food, and cultural objects; opportunities, e.g. travel; and treatments, 

                               
1 As an example, say that the second child is born when the first is four. The intellectual envi-
ronment is then (30+30+4+0)/4=16. The intellectual environment at birth is thus lower for the 
second child. When the first child is eight and the second is four, the intellectual environment 
is (30+30+8+4)/4=18. Thus, the second child has a higher intellectual environment at the age 
of four (18) compared to the first child’s intellectual environment at his/her age of four (16), 
in our example.  
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e.g. attention, teaching, and intervention. The more children there are in a 
family, the less of these resources will be allocated to each individual child. 
There is a “dilution” of resources in that children in large families get less 
attention, instruction, affection etc. from parents than children in small fami-
lies, and the birth of a sibling will influence the cognitive ability of the chil-
dren in a family negatively.  
 
Some resources will be diluted more than others however, depending on how 
well they can be shared. Books and computers may be shared broadly, for 
example, whereas parental attention is shared only partially, and money may 
be very easily diluted. Parents may also differ in how they allocate non-
shared resources, such as money. Downey (2001) has pointed out that one 
family may decrease their college savings per child after the birth of an addi-
tional child, whereas another family may choose less expensive vacations 
instead. He also distinguished between base resources and surplus resources 
and has suggested that an additional child will only affect the amount saved 
for college (surplus) if all base needs (food, shelter etc.) are met.  
 
Although resource dilution theorists assume that parental resources affect the 
quality of the environment for each child, they do not assume any feedback 
from the children to the parents, i.e. family variables such as SES are not 
changed by the number of children that a couple have (Blake, 1981). How-
ever, Downey (2001) suggested that the addition of the first child would 
dilute resources more than the second. He also suggested that siblings might 
serve as resources in some ways, and not just dilute resources. In this way, 
having more siblings may reduce the effects of having “bad” parents. 
 
Just as the confluence model, the resource dilution theory may predict some 
birth order effects depending on the types of resources, and close spacing has 
a more negative effect than wide spacing (see e.g. Powell & Steelman, 
1990). This theory also extends to the period after the children leave their 
parental homes, when they may have to compete for gifts, loans etc. 
(Downey, 2001).  

2.3 The admixture hypothesis 
 
The admixture hypothesis (Page & Grandon, 1979; Velandia, Grandon, & 
Page, 1978; Rodgers et al., 2000; Rodgers, 2001) is a hypothesis about popu-
lation admixtures that suggests that the relationship between sibship size and 
cognitive ability is due to certain admixtures. The relationship between fam-
ily structure and intellectual development is believed to be spurious and 
caused by the difference between parents of different population strata in 
how many children they have. Page and Grandon (1979) were among the 
first to suggest that population admixtures might be the cause of the relation-
ship between sibship size and cognitive ability. They tested the confluence 



 5 

model using the National Longitudinal Study of Educational Effects (NLS) 
data as well as a Colombian dataset and found a strong negative relationship 
between sibship size and cognitive ability when they analyzed the data 
through multiple regressions on cell means. However, when they analyzed 
the data individually, the relationship got weaker, and when they further 
included race and SES into the analyses, they concluded that sibship size had 
a small influence on ability compared to race and SES. When they further 
looked at the relationship between sibship size and cognitive ability within 
different races and SES groups they found that it was different for different 
groups. They further noted that there was a strong association between the 
SES admixtures and the abilities of different size families. They thus con-
cluded that different fertility patterns in different SES groups could explain a 
large amount of the relationship between sibship size and cognitive ability.  
 
Rodgers et al. (2000) suggested that the negative family structure-IQ correla-
tions were caused by parents with lower IQs having more children than par-
ents with higher IQs, so that parental IQ is correlated both with sibship size 
and child IQ, causing a spurious relationship between these variables. They 
presented tables, which are reproduced in Table 1, with mean Peabody Indi-
vidual Achievement Test scores for children from intact families2, showing 
that children of different birth orders have statistically the same mean scores, 
whereas means of children from different family sizes differed. Higgins et al. 
(1962) found earlier empirical support for this hypothesis when they studied 
a cross-section of 1,026 families and found a correlation of -.30 between 
sibship size and children’s IQ, their mean IQs being similar for family sizes 
up to five, followed by a drop. They also found correlations between -.08 
and -.11 between parental IQ and sibship size, with parental mean IQs fol-
lowing the same pattern as child IQs, indicating parental IQ as a possible 
confounding variable in studies about sibship size and cognitive ability. 
Thus, the admixture hypothesis, in contrast to the confluence model and the 
resource dilution theory, does not assume a relationship between sibship size 
and cognitive ability, but instead attributes the empirical correlation to con-
founding variables. Page and Grandon (1979) have focused on SES and race 
as possible confounds, whereas Higgins et al. (1962) and Rodgers et al. 
(2000) suggested parental IQ.  
 
 
 
 
 

                               
2 i.e. only families in which all children had valid scores were included. 
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Table 1a. PIAT-Composite Scores by Birth Order and Family Size for the 
1990/1992 NLSY-Children Sample  

 
Family size and type 
of score 

First  
sibling 

Second 
sibling 

Third 
sibling 

Fourth 
sibling 

Fifth 
sibling 

One child      
Mean 102.3     
SD 11.7     
N 443     
Two children      
Mean 101.2 101.2    
SD 11.4 10.8    
N 565 565    
Three children      
Mean 98.6 98.0 98.4   
SD 12.1 11.9 11.3   
N 233 233 233   
Four children      
Mean 92.7 94.8 92.9 95.9  
SD 11.7 11.0 10.1 10.6  
N 56 56 56 56  
Five children      
Mean 86.4 91.1 91.4 91.2 98.0 
SD 13.7 11.6 14.4 13.4 20.1 
N 14 14 14 14 14 
 
Table 1b. PIAT-Composite Scores by Birth Order and Family Size for the 

1994/1996 NLSY-Children Sample  
 
Family size and type 
of score 

First  
sibling 

Second 
sibling 

Third 
sibling 

Fourth 
sibling 

 

One child     
Mean 103.5    
SD 11.4    
N 417    
Two children     
Mean 102.5 102.9   
SD 11.4 11.1   
N 597 597   
Three children     
Mean 100.5 99.5 100.8  
SD 12.1 11.4 11.0  
N 242 242 242  
Four children     
Mean 99.0 98.6 98.1 99.3 
SD 12.5 11.6 12.2 11.0 
N 51 51 51 51 
Note. PIAT = Peabody Individual Achievement Test; NLSY = National Longitudinal Survey of Youth. 
Reproduced with permission from Rodgers, Cleveland, van den Oord, and Rowe (2000). 
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3. Previous studies 
 
3.1 Cross-sectional studies 
 
As noted above, the confluence model and the resource dilution theory claim 
a causal, or partly causal, relationship between sibship size and cognitive 
ability, whereas the admixture hypothesis attributes the relationship to other 
factors. Scholars have reached very different conclusions in this debate, 
sometimes by analyzing the same data but using different methods. Scholars 
using cross-sectional data, i.e. a cross-section of data from a population col-
lected at approximately one point in time, have mostly used different types 
of regression techniques on aggregate- or individual-, mostly between-
family, data. They have typically found negative correlations between sib-
ship size and cognitive ability (e.g. Higgins et al., 1962; Nisbet and En-
twistle, 1967; Belmont & Marolla, 1973; Zajonc and Markus, 1975; Velan-
dia, Grandon, and Page, 1978; Page and Grandon, 1979; Zajonc et al., 1991) 
or related outcomes, such as educational attainment (e.g. Blake, 1981; Kuo 
and Hauser, 1997; Pong, 1997), and they have dealt with possible confound-
ing variables by controlling for them in various ways, for example by includ-
ing covariates into the models, or by holding variable levels constant. Bel-
mont and Marolla (1973) and Zajonc and colleagues (e.g. Zajonc et al., 
1991), for example, controlled for SES and birth order and found that the 
negative relationship between sibship size and cognitive ability persisted. 
Nisbet and Entwistle (1967) and Steelman and Mercy (1980) also found 
sibship size effects controlling for SES and other background factors, al-
though Steelman et al. found that they were weaker for economically advan-
taged children. Others have found that correlations weakened or disappeared 
after controlling for SES (Velandia, Grandon, and Page, 1978; Page and 
Grandon, 1979; Mascie-Taylor, 1980) and race (Page and Grandon, 1979). 
Rankin, Gaite, and Heiry (1979) found that for American Samoan families, 
where the mean sibship size is much larger than for American families, the 
relationship was non-linear: children in sibship sizes close to the mean had 
higher cognitive abilities than both smaller and larger sizes, indicating a 
possible confound of parental child-planning or value systems (Steelman, 
1985). Downey (2001) also suggested the possibility that there may be more 
adults that play an important role in the lives of children where larger fami-
lies are the norm, resulting in lower correlations between sibship size and 
cognitive or educational outcomes.  
 
Other techniques, such as structural equation modeling (SEM), have also 
been used. Mercy and Steelman (1982) used SEM to investigate possible 
mediating effects of the number of older and younger siblings on the rela-
tionship between socioeconomic status and cognitive ability in a sample of 
six to eleven year old children. They studied White children from unbroken 
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homes and found that, controlling for SES, the number of older siblings had 
a negative effect on a vocabulary subtest, whereas the number of younger 
siblings was negatively related to both the vocabulary and a block design 
subtest. 
 
Kuo and Hauser (1997) studied sibship size, several family background vari-
ables, and educational attainment in a cohort of siblings from the 1975 sur-
vey of the Wisconsin Longitudinal Study through SEM. They found that 
siblings from smaller families had more years of education, and that the ef-
fects of the measured family background variables did not vary for different 
sibship sizes, although the effects of the unmeasured between-family vari-
ance did. They also found that gender mattered within families and that 
smaller families were more heterogeneous in educational attainment than 
larger families.  
 
Many scholars provide causal conclusions regarding the relationship be-
tween sibship size and cognitive ability. There may, however, be differences 
between families that, for one reason or another, have one child, two chil-
dren etc. and the factor or factors causing these differences may be unknown 
or for other reasons unmeasured. As described above, researchers using 
cross-sectional data often control for various variables thought to confound 
the relationship. However, as Guo and VanWey (1999) have pointed out, 
some of these variables are very hard to measure, and it is also impossible to 
know all of them in order to measure them. Rodgers et al. (2000) and Hig-
gins et al. (1962) found that parents that have many children had lower IQs 
compared to those that have fewer children. Due to possible confounding 
variables, most cross-sectional designs are not well suited for longitudinal 
inferences. McCall (1985) and Guo and VanWey (1999), for example, sug-
gested examining cognitive development in children, with longitudinal data, 
after the birth of an additional sibling.  
 
3.2 Longitudinal studies 
 
Scholars who have used longitudinal designs have generally used regression 
techniques on some type of change scores, or multiple regressions covarying 
out prior ability. Some have found significant effects of the birth of a sibling 
on cognitive ability (Baydar, Greek & Brooks-Gunn, 1997; Baydar, Hyle, 
and Brooks-Gunn, 1997; McCall, 1984). McCall (1984) examined 45 chil-
dren born between 1930 and 1938 from the Fels Longitudinal Study. He 
tested the effect of the birth of a sibling by comparing Stanford-Binet scores 
of children who did not have any older siblings, but had a younger sibling 
born before their 7th birthday, to children with older, younger or no siblings 
at all while covarying out their Stanford-Binet scores at the first assessment. 
He also controlled for gender, sibship size, and age of assessment. He found 
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a negative effect of the birth of a sibling, however this effect had decreased 
and was no longer significant after 17 years.  
 
Baydar and colleagues investigated the effects of the birth of a sibling during 
the first six years of life (Baydar, Greek and Brooks-Gunn, 1997) as well as 
during preschool and early grade school years (Baydar, Hyle and Brooks-
Gunn, 1997) on several developmental outcomes, including cognitive ability, 
on a European-American subsample of the NLSY-children. They used re-
gression models with residualized change scores as the outcome and found 
that younger children who had at least one sibling born between 1986 and 
1988 had significantly lower scores on the Peabody Picture Vocabulary sub-
test than those who did not have an additional sibling, controlling for motor 
and social development scores at baseline. After four years, these children 
also had significantly lower scores on the PIAT reading recognition and 
mathematics subtests than children who had not had a sibling. They also 
found a negative effect of the birth of a sibling on reading achievement for 
early elementary school aged economically disadvantaged children (this, 
however, had disappeared after four years) and a positive effect for children 
who were not economically disadvantaged.  
 
Guo and VanWey (1999) examined the effects of the birth of a sibling on 
cognitive ability in the NLSY-children as well. They used both conventional 
regression analyses and change score analyses on siblings and repeated 
measures and hypothesized that the negative relationship between sibship 
size and cognitive ability would get weaker, or disappear, in moving from 
conventional to change score analyses. This would happen because, as they 
pointed out, change analyses control for unknown time-invariant between-
family variation. They measured cognitive ability change by the PPVT and 
the PIAT Math and Reading Recognition subtests in 1986 and 1992 and used 
sibship size change between the same years as the factor of interest, and their 
results agreed with their hypotheses. They concluded that the negative rela-
tionship between sibship size and cognitive ability was spurious and possibly 
due to one or more of the automatically controlled family variables. 
 
Some of the differences between Baydar et al. (1997) and Guo and Van-
Wey’s (1999) study were that Baydar and colleagues looked at the first six 
years of life and preschool and early grade school years separately, and in-
cluded only Whites in their sample, whereas Guo and VanWey looked at 
ages three (or five) through fifteen, and examined both majority and minor-
ity groups. Baydar and colleagues also compared different tests over time, 
e.g. they compared scores of the PPVT with PIAT scores at two different 
time points. Guo and VanWey’s (1999) study suffered some limitations, as 
Downey et al. (1999) and Phillips (1999) pointed out, making it hard to 
compare their longitudinal analysis with cross-sectional analyses. For exam-
ple, they did not allow for large additions of children to the family or for 
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closely spaced siblings in the sample. As Downey et al. (1999) noted, if 
children are first tested at three, four, or five years of age, and the purpose is 
to measure the cognitive abilities before and after the birth of a sibling, this 
only allows for comparisons among widely spaced siblings, which may yield 
biased results. Spacing might be important as mentioned previously (see also 
Powell and Steelman, 1990, and Zajonc and Mullally, 1997).  
 
It is difficult to draw any general conclusions about the effects of sibship 
size and birth of a sibling on cognitive ability from the cross-sectional as 
well as the longitudinal studies that have investigated these effects so far. 
There is a substantial advantage to using the birth of a sibling to investigate 
effects of sibship size. This type of design comes much closer to capturing 
the mechanisms underlying a potential sibship size effect than designs that 
only measure sibship size. Studies of sibship size, per se, leave open many 
possible interpretations, including many between-family interpretations. 
Though it has seldom been used, a design based on the birth of a sibling can 
be used to account for both within-family and between-family variance, and 
finding this type of effect would identify more focused and identifiable 
mechanisms for further investigation. If the consistently found negative ef-
fect of sibship size can be attributed to causes within the family and not only 
to between family differences (e.g. higher IQ parents have fewer children), 
there should be a change in the intellectual ability following the birth of a 
sibling.  
 

4. The present study 
 
The purpose of this study is to investigate the effects of sibship size on vari-
ous cognitive ability tests in the NLSY-children dataset, using both the stan-
dard sibship size index, and also indicators of birth of a sibling. Our goal is 
to study both sibship size effects and to study different method effects. First, 
negative effects of sibship size will be established for cross-sections of the 
data. Children from intact families measured during the last survey years 
will then be studied, and the results will be compared to Rodgers et al.’s 
(2000) tables. Secondly, the sibship size effect will be investigated using the 
longitudinal structure of the data. The sibship size measure will be divided 
into two between-child measures: the number of siblings at birth of the re-
spondent child and the number of additional siblings at age five, and a 
within-child measure: the number of siblings born since age five at each 
assessment. These analyses will account for the longitudinal structure of the 
data by estimating random intercepts and slopes. Third, models with inter-
cepts and slopes that are random between families will be fitted to account 
for correlations between children with the same mothers, and differences 
between families (such as maternal IQ) will be accounted for. Finally, the 
number of older and younger siblings will be partitioned further to examine 
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differential effects of closely and widely spaced older and younger siblings. 
The analyses in this paper will test for the birth of one (or more) sibling ef-
fect. The children in the NLSY have been measured up to five times, be-
tween the ages of five and 14. This is a duration of 10 years, and up to four3 
siblings have been born during these times.  
 
Thus, there are several differences between this study and Guo and Van-
Wey’s (1999) study. Guo and VanWey only examined children with scores 
in 1986 and 1992, and this is a limited sample, both because it only spans 
over six years, but also because it only consists of a small proportion of all 
assessed children. In the present study, we will include children with at least 
one valid score between 1986 and 2004. Secondly, Guo and VanWey exam-
ined change scores, whereas the present study will model the growth over 
time by fitting random intercepts and slopes that vary between children. 
Change scores only capture the difference between scores at two points in 
time, whereas multiple scores can be used to model the growth curves. 
Third, several of the children are siblings, and this will be accounted for by 
also fitting models with random intercepts and slopes for families. Doing 
this, it is possible to see the proportion of variance that is attributed to varia-
tion within children (over time), to variation between children within fami-
lies, and to variation between families. 
 

5. Method 
 
5.1 Data 
 
The NLSY79 2004 Child and Young Adult Data (which we will call the 
NLSY-children) were used for all analyses in this paper. This is an ongoing 
longitudinal study that contains within-family information on 11,428 chil-
dren and their mothers from whom many sibling relationships can be de-
fined. It originated as a multi-stage stratified area probability sample. Spon-
sored by the Bureau of Labor Statistics (BLS), the National Opinion Re-
search Center randomly selected two samples of households from a list of 
housing units in areas, which included almost all 50 states, and the District 
of Columbia, in the U.S. in 1978. One of the samples was designed to over-
sample minority groups and economically disadvantaged groups. Interview-
ers visited the selected households and collected information such as age, 
sex, and race on the members, resulting in information on over 155,000 indi-
viduals. Using this information, all individuals who were between 14 and 21 
years old on December 31st, 1978, were assigned to each sample. They also 
selected a random sample of military members (from the Department of 
Defense records). All individuals who completed the first interview when 
visited a second time were then included in the original NLSY79 sample. 
                               
3 One child actually had five siblings born during this time. 
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This resulted in 6111 (90%) individuals from sample one, 5295 (89%) indi-
viduals from sample two (the minority oversample), and 1280 (72%) indi-
viduals from sample three (the military sample). Table 2 shows response 
rates for the original NLSY respondents between 1979 and 2004. The 6403 
males and 6283 females interviewed in 1979 constituted 87% of the total 
intended sample. A little more than 80% of the original respondents still 
eligible4 for interviews were interviewed in 2004. More information about 
the sampling process and response rates can be found in the NLSY79 users 
guide (Center for Human Resource Research (CHRR), 2006). 
 
 
Table 2. Response rates, number of children born to interviewed mothers, and PIAT 

completion rates for assessment years 1979-2004. 
 

Year 1979 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 
            
Response 
ratea 

100 92.6 91.2 91.1 91.9 91.1 88.88 86.7 83.2 80.3 80.1 

Number of 
children 
bornb  

 5255 6543 6427 7255 7862 
6622c 

8125 
6010  

8395 
5343  

8323 
4438  

8100 
3502  

8267 
2755  

Completion 
rated               M 

        
83.4 

  
81.4 

 
80.3 

RR        83.3  81.5 80.9 
RC        82.5  80.8 80.8 

Note: PIAT=Peabody Individual Achievement Test, M = PIAT math, RR = PIAT reading recognition, 
RC = PIAT reading comprehension. This table is based on tables in the NLSY79- and NLSY79 child & 
young adult users guides (CHRR, 2006). 
a Percentage interviewed of 1979 respondents remaining eligible and not known to be deceased. 
The original NLSY79 sample consisted of 6403 males and 6283 females interviewed in 1979. They 
constituted 87% of the total intended sample. 
bThe number of children born to interviewed mothers. 
cNumber of children ages 0 – 14 born to interviewed mothers. 
dPercentage of eligible children born to interviewed mothers with valid test scores for M, RR, and RC. 

 
 
Starting in 1986, assessments were administered to the biological children of 
the 6283 females included in the survey. In Table 2 we can see the number 
of children born to the interviewed females each year. The number of chil-
dren born to the females interviewed in 2004 was 8267, of which 2755 were 
between 0 and 14 years old. The NLSY-children represent a cross-section of 
children born to an approximately representative sample of mothers in the 
U.S. who were between 14 and 21 years old on December 31st, 1978, al-
though minority groups are overrepresented. More information about the 
NLSY-children can be found in the NLSY79 child and young adult data 
users guide (CHRR, 2006). 
 

                               
4 Much of the military sample as well as economically disadvantaged non-Black non-
Hispanics from the minority oversample was dropped because of economic constraints.  
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The NLSY-children data are particularly suitable for the current analyses 
because the children have been cognitively assessed biannually starting in 
1986 until the present time. The NLSY data also contain background infor-
mation about the children and their families, such as race, maternal IQ, ma-
ternal age at the birth of the first child, and whether the father is present in 
the household or not. One limitation of the NLSY sample is that all mothers 
have not finished reproducing. However, in 2004, the mothers were between 
39 and 47 years old and they had had over 90% of their children (NLSY79 
child and young adult data users guide, CHRR, 2006).  

5.2 Cognitive ability assessments  
 
The Peabody Individual Achievement Test (PIAT) subtests were adminis-
tered to children ages five to 14 biannually starting in 1986. They measure 
academic achievement and have high test-retest reliability and concurrent 
validity. They have also been found to be predicted by and to predict other 
assessment tests.  
 
The Mathematics (M) subtest consists of 85 multiple-choice questions of 
increasing difficulty, assessing skills such as numerals recognition, geome-
try, and trigonometry. The child answers each problem by pointing to or 
naming one of four options. The Reading Recognition (RR) subtest is de-
signed to measure word recognition and pronunciation ability and consists of 
84 multiple-choice questions of increasing difficulty where children match 
letters, name names, and read words out loud. The Reading Comprehension 
(RC) subtest is designed to measure ability to derive meaning from silently 
read sentences by children who scored at least 19 (15 between 1986 and 
1992) on the Reading Recognition subtest. Children who scored lower were 
assigned their Reading Recognition score. The subtest consists of 66 multi-
ple-choice questions of increasing difficulty.  
 
Table 2 shows completion rates for some years. We can see that the comple-
tion rates for M, RR, and RC are over 80% in 2004. More information on the 
PIAT subtests can be found in the NLSY79 child and young adult data users 
guide (CHRR, 2006). 

5.3 Sibship size measures 
 
We included several sibship size measures in our analyses. Sibship size at a 
certain assessment year (SSS) was measured by the total number of children 
born to the mother up to that particular assessment. In some analyses we 
divided SSS into the number of siblings born at birth of the respondent child 
(OLD), the number of additional siblings born at age five (YOUNG), and the 
number of additional siblings born at each assessment (BIRTH). A child who 
was first assessed at age five (60 months) will thus have a “0” as a first 
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BIRTH score, whereas a child first measured after 60 months can have a first 
score greater than 0. BIRTH will then increase by 1 for each additional sib-
ling born since the previous assessment. We chose the age five for YOUNG 
because this is the age that the children could first be assessed with the PIAT 
subtests. Around 28% of the children with at least one valid PIAT score had 
at least one sibling born between age five and their last assessment. The per-
centage for children with five valid scores is higher. Thus, BIRTH is ex-
pected to capture longitudinal effects of the birth of a sibling that happens 
after age five, however it will also pick up some between-child effects be-
cause some children had one or more siblings born between the age of five 
and their first assessment.  
 
In some analyses, we further divided OLD into the number of siblings at 
least 24 months older (OLD2+), and the number of siblings less than 24 
months older than the child (OLD0-2). In these analyses, we also divided 
YOUNG into the number of siblings less than 24 months younger than the 
child (YOUNG0-2), and the number of additional siblings born at age five 
(YOUNG2+). 

5.4 Family- and other background variables 
 
Because the PIAT scores increase over time, we included AGE (age of the 
child in months - centered at 108 months) in the analyses. Further, COHORT 
(birth year - centered at 1980) was included because the scores of children in 
later cohorts have been found to be higher than the scores of children in ear-
lier cohorts in the NLSY (Rodgers & Wänström, 2007) referred to as the 
Flynn effect (e.g. Flynn, 1984; 1987). It is known that the data contain more 
young mothers than the population in general. We will therefore control for 
M.AGE (maternal age at the birth of the first child - centered at 22), which 
can also be used as a proxy for socioeconomic status. A closely related vari-
able is maternal age at the birth of the respondent child (the correlation be-
tween M.AGE and maternal age at birth of child is .70 for children with at 
least one PIAT M score). Steelman (1985) pointed out the importance of 
considering this varaible in family structure and intelligence studies. Older 
mothers may, for example, be better emotionally prepared for children. Also, 
due to the increasing ages of the mothers in later years, the sample of young 
children in later years may not be comparable to the sample of young chil-
dren in earlier years (NLSY79 child and young adult users guide, CHRR, 
2006). We will focus on M.AGE in this paper, which controls for differences 
between families, however we included maternal age at the birth of the re-
spondent child in some analyses as well. It was mostly non-significant and it 
did not change any of the conclusions, and is thus not presented in the result 
section.  
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We included M.IQ (maternal IQ measured by the Armed Forces Qualifica-
tion Test in percentiles centered at 35) in the analyses because maternal IQ 
has been found to negatively relate to sibship size (e.g. Rodgers et al., 2000). 
Minorities were oversampled in the original NLSY sample, and we included 
RACE(1) (1 =  Hispanic mother, 0 =  non-Hispanic mother), and RACE(2) (1 
=  Black mother, 0 =  non-Black mother) to control for, and investigate, dif-
ferential levels for different racial groups. Finally, FATHER (1 = father pre-
sent in household, 0 = father non–present in household) was included. Both 
the dilution theory and the confluence model predict higher intelligence for 
children in households with both parents present.  

5.5 The samples 
 
We constructed three samples from the NLSY children sample: the M-, RR-, 
and RC- samples. The children who had at least one valid score on the PIAT 
math (M), reading recognition (RR), or reading comprehension (RC) sub-
tests, who lived most of their times with their mothers, and who were non-
twins, were included in each respective sample. We also excluded families in 
which one or more of the biological children5 died prior to, or during the 
span of the study. Because children with at least one score were included, 
some children contribute with only one assessment score, whereas others 
contribute with two, three, four, or five assessment scores. The time intervals 
between consecutive assessments need not be the same for different children. 
Table 3 shows some background information for the children in the samples6 
as well as for all children in the NLSY eligible for the PIAT assessments. 
We can see that the proportion of children with Hispanic and Black mothers, 
as well as average birth orders, maternal ages at birth of first child, and ma-
ternal IQ for the children are similar in the samples and for all children in the 
NLSY. As shown, there are about 50% non-Black non-Hispanic children in 
the samples, and as mentioned previously, these proportions are not repre-
sentative of the whole U.S. population.  
 
 
 
 
 
 
 
 
 
 
 

                               
5 i.e. children born to the mother. 
6 Means, standard deviations, and proportions were very similar in the three samples, and are 
here shown only for the M-sample. 
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Table 3. Proportions, means, standard deviations, and sample sizes for the M-
sample as well as the entire NLSY sample 

 
 M  NLSY  

Hispanic P=.21 P=.21 
Black P=.30 P=.30 

Race 

Non-B non-H P=.48, Nchild =8135 P=.49, Nchild =8882 
Birth order M=1.9, SD=1.0, Nchild =8135 M=1.9, SD=1.1, Nchild =8882 
Maternal age at birth of 
first child 

M=21.7, SD=4.8, Nchild =8135  M=21.6, SD=4.9, Nchild =8882 

Maternal IQ M=35.0, SD=26.9, Nchild =7796 M=34.4, SD=26.8, Nchild =8483 
Note: M = PIAT math, NLSY = NLSY-children sample (all children within age range, who reside most 
of their times with their mother, and who are non-twins), P = proportion, non-B non-H = non-Black non-
Hispanic. 

 
 
Table 4 shows mean M-, RR-, and RC scores for children at different ages. 
We can see that all PIAT scores increase for older ages. The table also shows 
mean sibship sizes and proportions of children who have their fathers present 
in the household in the M-sample. Five to six year olds have 1.6 siblings on 
average, whereas 13 to 14 year olds have 1.8 siblings on average. The pro-
portion of children who have their fathers present are higher among younger 
children, whereas less than 50% of the 13 to 14 year olds have fathers  

 
 
Table 4.  Means, standard deviations, and proportions for selected variables by age 

in the M-, RR-, and RC-samples 
 

Age M-Score RR-Score RC-Score Sibship Sizee Father Presencef 
5-6 M=15.6 

SD=6.7 
Nchild=6225 

M=17.4 
SD=7.1 
Nchild =6115 

M=16.7 
SD=6.3 
Nchild=5886 

M=1.6  
SD=1.2 
Nchild=6225 

P=.65  
Nchild =6196 

7-8 M=30.2 
SD=10.5 
Nchild =6208 

M=33.2 
SD=10.8 
Nchild =6193 

M=31.0 
SD=10.1 
Nchild =5954 

M=1.7  
SD=1.2 
Nchild =6208 

P=.60 
Nchild=6190 

9-10 M=43.2 
SD=10.4 
Nchild =5899 

M=45.5 
SD=12.5 
Nchild =5897 

M=41.5 
SD=10.8 
Nchild =5827 

M=1.7  
SD=1.2 
Nchild =5899 

P=.55  
Nchild =5879 

11-12 M=50.2 
SD=10.3 
Nchild =5319 

M=54.3 
SD=13.8 
Nchild =5307 

M=48.4 
SD=11.5 
Nchild =5266 

M=1.8  
SD=1.2 
Nchild =5319 

P=.51  
Nchild =5306 

13-14 M=54.0 
SD=11.1 
Nchild =3718 

M=59.9 
SD=14.1 
Nchild =3724 

M=52.4 
SD=12.1 
Nchild =3699 

M=1.8  
SD=1.2 
Nchild =3718 

P=.47  
Nchild =3709 

Note: M = PIAT math, RR = PIAT reading recognition, RC = PIAT reading comprehension, Score = 
score on PIAT subtest, Father Presence = father presence in household, P = proportion of children with 
father present in the household. 
eMeans and standard deviations were very similar for all samples, and descriptive statistics are therefore 
only shown for the M-sample. 
f Proportions were very similar for all samples, and are therefore only shown for the M-sample. 
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present. More children, in general, have valid scores on M, followed by RR, 
and RC. Some discrepancies can be explained by children being assessed 
with one test first, and then getting tired and not being able to complete a 
second or third test. The generally lower sample sizes for RC can be ex-
plained, at least partly, by younger children not being able to read (RC), 
although they may still be able to understand and recognize some words 
(RR).  
 
Table 5 shows, by race, the number of children with 1, 2, 3, 4, and 5 valid 
scores in the three samples respectively. As shown, the average number of 
valid scores are fairly similar across races, although Black children have 
been assessed more times, on average. 
 
 
Table 5.  The number of children with 1, 2, 3, 4 and 5 valid PIAT scores in the M-, 

RR-, and RC-samples, by race. 
 
Score M RR RC 
Race H B n-B 

n-H 
Sum H B n-B 

n-H 
Sum H B n-B 

n-H 
Sum 

1 240 226 633 1099 238 221 642 1101 236 235 671 1142 
2 219 361 747 1327 222 364 745 1331 234 378 745 1357 
3 298 485 625 1408 296 498 617 1411 329 620 655 1604 
4 525 678 910 2113 533 683 939 2155 530 585 966 2081 
5 414 664 1110 2188 401 644 1079 2124 352 584 972 1908 
 
Sum 

 
1696 

 
2414 

 
4025 

 
8135 

 
1690 

 
2410 

 
4022 

 
8122 

 
1681 

 
2402 

 
4009 

 
8092 

Meang  3.4 3.5 3.3 3.4 3.0 3.5 3.3 3.4 3.3 3.4 3.2 3.3 
Note: PIAT = Peabody Individual Achievement Test, M = PIAT math, RR = PIAT reading recognition, 
RC = PIAT reading comprehension, H = Hispanic mother, B = Black mother, n-B n-H = non-Black non-
Hispanic mother.  
gThe mean number of scores. 

 
 

6. Statistical Models 
 
We used multilevel models (see e.g. Goldstein, 2003) for our cross-sectional 
and longitudinal analyses7. Multilevel models can be used when data are 
structured in different levels. In our case, measurements are nested within 
children which are nested within families. We can therefore use a three level 
model with the repeated measures, children, and families at our first, second, 
and third levels. Correlations among repeated measures within children as 
well as among siblings within families can be handled by specifying a ran-
dom intercept and time slope that vary between children and between fami-
lies. We use four models with increasing complexity. 

                               
7 see Wichman, Rodgers & MacCallum (2006) for an application of multilevel modeling 
to the NLSY-children data, in the context of a different design than the current study. 
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6.1 Cross-sectional models 
 
First, let SCOREij be the PIAT test score from the math (M)-, reading recog-
nition (RR)-, or reading comprehension (RC) subtests, for the ith child in the 
jth family for a cross-section of the data. We can specify the following two-
level model: 
 

,2
020100 ijijijjij AGEAGESCORE εγγγ +++=             

 
),,0( 2

εσε iidNij ∈   
 

(model I) 

,0000100000 jjj uSSS ++= ββγ                                     
 

),0( 2
00 0uj iidNu σ∈  

 

 
where AGE2 is AGE squared and the other variables are as defined in the 
method section. We will use subscripts (e.g. ij ) in the equations, however we 
will drop them, for simplicity, when we discuss variables in the text. As seen 
in model I, the intercept is random with variance 2

0uσ to account for correla-

tions among children within the same families.  

6.2 Longitudinal models  
 
In order to investigate the effect of sibship size longitudinally, we used three 
models. The first and simplest model (see model II below) included sibship 
size at the time of each assessment (SSS), AGE, AGE2, and COHORT. Let 
SCOREti be the PIAT M-, RR-, or RC- score for the tth observation on the 
ith child. Model II is specified as follows 
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The first row in model II specifies the first level, with time varying variables 
(AGE, AGE2, and SSS), and the second and third rows specify the second 
level with child varying variables (COHORT). Note that the sibship size 
(SSS) variable in the first row is assumed to have identical effects within and 
across children. Because longitudinal effects are often not the same as cohort 
effects (e.g. Diggle, Heagerty, Liang, & Zeger, 2002), we tested a third 
model in which we divided SSS into variables that vary between children, 
OLD and YOUNG, and within children, BIRTH. Model III is specified as 
follows  
 

,3
2

210 titititiiiti BIRTHAGEAGESCORE εππππ ++++=  ),0( 2
εσε iidNti ∈     

 

 

iiiii rYOUNGOLDCOHORT 0030201000 ++++= γγγγπ   

 

iiii rYOUNGOLD 11211101 +++= γγγπ  
(model III) 
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As noted, we have included OLD and YOUNG in both the equations for the 
intercept (row 2) and the slope (row 3). We can thus investigate whether the 
age slope is different for children with different number of older and 
younger siblings. 
 
We also introduced a fourth model in which we included a third level with 
family variables. Let SCOREtij be the PIAT M-, RR-, or RC- score for the tth 
observation on the ith child in the jth family. Model IV is specified as fol-
lows 
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Presence of the father (FATHER) is included at the first level because this 
variable can change over time. Maternal age at the birth of the first child 
(M.AGE), maternal IQ (M.IQ), and race (RACE(1), RACE(2)) are included as 
family varying variables at the third level, and the intercept and AGE slope 
are random across children and families.  
 
All multilevel analyses were conducted in SAS PROC MIXED (Littell, Mil-
liken, Stroup, Wolfinger, Schabenberger, 2006). Introductory descriptions of 
how to use SAS PROC MIXED for multilevel models can be found, for 
example, in Singer (1998).  
 

7. Results 
 
7.1 Cross-sectional analyses 
 
To replicate previous cross-sectional analyses, and to show that there is a 
consistent cross-sectional negative effect of sibship size on test score in the 
NLSY-children data, we plotted cross-sectional means for each subtest for 
sibship sizes one to five for ages 5-6, 7-8, 9-10, 11-12, and 13-14 in Figures 
1 - 3. We can see that children with no siblings or one sibling scored highest, 
on average, for all age groups, followed by those that had two, three, four, or 
five siblings at the time of the assessment. We can also see that there appears 
to be a quadratic as well as a linear effect of age. These results replicate 
when test score is regressed onto age and sibship size as in model I – see 
Table 6. We can see that sibship size has a significant negative effect on all 
PIAT subtests across all years. 
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Figure 1. Cross-sectional PIAT Math means for different ages and sibship sizes. 
 

Figure 2.  Cross-sectional PIAT Reading Recognition means for different ages and 
sibship sizes. 
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Figure 3.  Cross-sectional PIAT Reading Comprehension means for different ages 
and sibship sizes. 

 
 
 
Table 6.  Model I: SSS regression slopes (β) from multilevel regression models 

controlling for AGE and AGE2 by PIAT score and cross-section. 
 
Cross section M RR RC 
1986 β = -1.21(0.19)*** 

Nfamily= 1208, Nchild= 1671 
β = -1.43(0.21)*** 
Nfamily= 1202, Nchild= 1662 

β = -1.41(0.20)*** 
Nfamily= 1120, Nchild= 1530 

1988 β = -1.11(0.15)*** 
Nfamily= 1861, Nchild= 2824 

β = -1.42(0.18)*** 
Nfamily= 1850, Nchild= 2803 

β = -1.25(0.17)*** 
Nfamily= 1805, Nchild= 2705 

1990 β = -1.05(0.16)*** 
Nfamily= 1845, Nchild= 2968 

β = -1.60(0.19)*** 
Nfamily= 1828, Nchild= 2919 

β = -152(0.18)*** 
Nfamily= 1807, Nchild= 2865 

1992 β = -0.96(0.15)*** 
Nfamily= 2052, Nchild= 3382 

β = -1.41(0.19)*** 
Nfamily= 2030, Nchild= 3327 

β = -1.25(0.17)*** 
Nfamily= 1984, Nchild= 3187 

1994 β = -1.04(0.15)*** 
Nfamily= 2207, Nchild= 3606 

β = -1.76(0.19)*** 
Nfamily= 2202, Nchild= 3597 

β = -1.52(0.16)*** 
Nfamily= 2176, Nchild= 3525 

1996 β = -1.02(0.16)*** 
Nfamily= 2087, Nchild= 3358 

β = -1.32(0.20)*** 
Nfamily= 2079, Nchild= 3349 

β = -1.36(0.17)*** 
Nfamily= 2067, Nchild= 3307 

1998 β = -1.15(0.17)*** 
Nfamily= 1984, Nchild= 3108 

β = -1.57(0.20)*** 
Nfamily= 1983, Nchild= 3107 

β = -1.48(0.17)*** 
Nfamily= 1972, Nchild= 3077 

2000 β = -1.45(0.21)*** 
Nfamily= 1488, Nchild= 2289 

β = -1.45(0.25)*** 
Nfamily= 1489, Nchild= 2290 

β = -1.46(0.22)*** 
Nfamily= 1487, Nchild= 2278 

2002 β = -1.53(0.19)*** 
Nfamily= 1532, Nchild= 2307 

β = -1.43(0.23)*** 
Nfamily= 1533, Nchild= 2310 

β = -1.62(0.19)*** 
Nfamily= 1522, Nchild= 2289 

2004 β = -1.65(0.22)*** 
Nfamily= 1283, Nchild= 1856 

β = -1.55(0.26)*** 
Nfamily= 1291, Nchild= 1872 

β = -1.71(0.22)*** 
Nfamily= 1290, Nchild= 1869 

Note. ***p<.001, ** p<.01, * p<.05 
SSS = sibship size, PIAT = Peabody Individual Achievement Test, M = PIAT math, RR = PIAT reading 
recognition, RC = PIAT reading comprehension. Standard errors are shown in parentheses. 
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Rodgers et al. (2000) presented mean composite age normed PIAT scores 
(average scores across M, RR, and RC) for subsamples of the NLSY-
children for different sibship sizes and birth orders and showed that the mean 
scores of children from intact families (i.e. families in which all siblings 
have PIAT scores) are statistically the same for different birth orders. The 
means differed, on the other hand, between children from different size fami-
lies. They presented tables for two subsamples: children from intact families 
in 1990/1992 and children from intact families in 1994/1996. Their tables 
were reproduced in Table 1. As mentioned previously, the females in the 
original NLSY sample have had most of their children as of 2004, and we 
replicated Rodgers et al.’s analyses for 2002/2004, however with separate 
estimates for the subtests, by computing the average age-normed score8 
across 2002 and 2004 for each subtest. The means, standard deviations, and 
sample sizes are shown in Table 7. As shown, the means do not decrease for 
increasing birth orders. These results, together with the results from Rodgers 
et al. (2000) in Table 1, indicate that cross-sections of children from intact 
families do not differ in their age-normed PIAT scores across birth orders.  
 
Table 7. PIAT Scores by Birth Order, Family Size, and Test Type for the 2002/2004 

NLSY-Children Sample 
 
Family 
size and 
type of 
score 

First sibling Second sibling Third sibling Fourth sibling 

One 
child 

M RR RC M RR RC M RR RC M RR RC 

Mean 106.1 110.0 104.6          
SD 13.8 14.2 13.2          
N 236 238 225          
Two 
children 

            

Mean 107.7 110.0 103.9 109.3 110.3 106.8       
SD 13.5 13.9 12.1 12.0 13.1 12.2       
N 315 316 289 315 316 289       
Three 
children 

            

Mean 107.6 113.3 105.5 107.2 110.1 105.5 107.2 110.3 107.1    
SD 12.4 11.9 13.0 12.5 13.8 12.5 13.4 12.1 13.2    
N 80 80 72 80 80 72 80 80 72    
Four 
children 

            

Mean 111.3 112.2 103.0 113.0 113.2 105.6 109.9 107.6 106.1 107.3 108.9 109.1 
SD 16.6 14.3 13.1 12.2 12.3 11.2 10.0 10.0 10.7 14.1 14.1 12.6 
N 23 23 15 23 23 15 23 23 15 23 23 15 
Note. PIAT = Peabody Individual Achievement Test, NLSY = National Longitudinal Survey of Youth, M 
= PIAT math, RR = PIAT reading recognition, RC = PIAT reading comprehension. 

                               
8 There are age-normed PIAT scores available in the NLSY-children dataset. These scores 
have been normed against an external norming sample. For more information on the norming 
process, see the NLSY79 child and young adult users guide (CHRR, 2006). 
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Table 7 also indicates, however, that children from larger sibship sizes do 
not have lower scores. This is in contrast to what Rodgers et al. (2000) 
found, although it follows a trend noted in their tables. Mean differences for 
different sibship sizes are larger for the 1990/1992 sample than for the 
1994/1996 sample. Maternal age at birth of child is necessarily higher for 
children who are five to 14 in 2002/2004 compared to earlier years. For ex-
ample, children between five and 14 in 1992 were born to mothers who were 
at most 30 years old, whereas children between five and 14 in 2004 were 
born to mothers at least 32 years old. These differences can thus be due to 
differences in the samples. It is noteworthy, however, that the 2002 and 2004 
cross-sections (see Table 6) show significant effects of sibship size when all 
children, and not just children of intact families and sibship sizes one to four, 
are included. 
 
Most results from the cross-sectional analyses presented here indicate that 
sibship size is negatively related to PIAT scores. A possible causal interpre-
tation is that a child’s intelligence is affected negatively by having many 
siblings, and in particular that his or her intelligence declines, compared to 
what it would otherwise be, after an additional child is born into the family. 
We will now investigate this latter statement by conducting longitudinal 
analyses.  
 
7.2 Longitudinal analyses 
 
We first tested model II and the results are shown in Table 8. We can see 
that M-, RR-, and RC scores increase over time and sibship size (SSS) shows 
negative and significant effects for all three subtests. The intercepts and age 
slopes vary significantly among children9. Table 9 shows results from model 
III. When SSS is divided into between- and within child effects, the between 
child effects of the number of older siblings (OLD) are large, negative, and 
significant for all tests. The number of younger siblings at age five 
(YOUNG), as well as the number of additional siblings born at each assess-
ment (BIRTH) also show negative and significant effects, although smaller 
than OLD. There are also two interactions included in Table 9 – the interac-
tion between OLD and AGE (OLD.AGE) and between YOUNG and AGE 
(YOUNG.AGE). The logic of including these interactions into the model can 
be understood by substituting the second and third rows in model III into the 
first row (see e.g. Singer, 1998). These interactions are negative and signifi-

                               
9 The random components are significantly different from zero as seen in Table 8. However a 
better test is to examine the difference in deviance (-2lnLikelihood) between nested models, 
which is asymptotically distributed as χ2 where the degrees of freedom are the number of 
additional estimated variance components. For M, the difference in deviance between a model 
with no variance components for the intercept and slope and model II is 198762.4 – 
187472.79 = 11289.61 which indicates that the variance components are significant. For RR, 
the difference is 18149.7 and for RC, it is 10636, and these differences are also significant. 
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cant, with the exception of YOUNG.AGE for M. Children with more older 
and younger siblings thus have smaller AGE slopes on average for most 
PIAT subtests. The part of the explainable variance that is attributed to dif-
ferences between children is 53.8%, 68.8%, and 49.0% for the M, RR, and 
RC tests respectively10.  
 
 
Table 8. Model II: SSS regression slopes from longitudinal multilevel regression 

models controlling for AGE, AGE2, and COHORT by PIAT score. 
 

M RR RC Effects 
Nfamily=3770 
Nchild=8135 

Nfamily=3767 
Nchild=8122 

Nfamily=3759  
Nchild=8092 

 CONS  37.54 (0.15)*** 40.19 (0.17)*** 37.50 (0.15)*** 
 AGE  0.49 (0.001)*** 0.52 (0.002)*** 0.44 (0.002)*** 
 AGE2  -0.003 (0.00004)*** -0.003 (0.00004)*** -0.003 (0.00004)*** 
 COHORT  0.29 (0.01)*** 0.23 (0.01)*** 0.18 (0.01)*** 
Sibship size    
 SSS -1.03 (0.06)*** -0.95 (0.06)*** -1.07 (0.06)*** 
Residuals    
 2

0r
σ  38.90 (0.72)*** 69.40 (1.32)*** 36.85 (0.70)*** 

 
10rrσ  0.32h 0.89 (0.02)*** 0.39h 

 2

1r
σ  0.003 (0.0002)*** 0.01 (0.0004)*** 0.004 (0.0002)*** 

 2
εσ  33.49 (0.40)*** 31.46 (0.39)*** 37.96 (0.46)*** 

-2lnL 187472.79 189753.47 185474.15 
Note. ***p<.001, ** p<.01, * p<.05 
PIAT = Peabody Individual Achievement Test, CONS=constant, SSS = sibship size, M = PIAT math, RR 
= PIAT reading recognition, RC = PIAT reading comprehension. Standard errors are shown in parenthe-
ses. 
hThe correlation between the intercept and slope was estimated to be over one and was fixed to one. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                               
10 e.g. for M:( ) ( ) 538.049.33003.031.0244.38003.031.0244.38 =++×++×+ . 
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Table 9. Model III: Sibship size regression slopes from longitudinal multilevel re-
gression models controlling for AGE, AGE2, and COHORT by PIAT score. 

 
M RR RC Effects 
Nfamily=3770 
Nchild=8135 

Nfamily=3767 
Nchild=8122 

Nfamily=3759 
 Nchild=8092 

 CONS  37.44 (0.16)*** 40.41 (0.19)*** 37.52 (0.16)*** 
 AGE  0.50 (0.002)*** 0.54 (0.003)*** 0.46 (0.003)*** 
 AGE2  -0.003 (0.00004)*** -0.003 (0.00004)*** -0.003 (0.00004)*** 
 COHORT  0.33 (0.01)*** 0.29 (0.02)*** 0.25 (0.01)*** 
Sibship size    
 OLD -1.58 (0.08)*** -1.97 (0.10)*** -2.08 (0.08)*** 
 YOUNG  -0.60 (0.12)*** -0.60 (0.15)*** -0.53 (0.12)*** 
 BIRTH -0.72 (0.12)*** -0.47 (0.14)** -0.50 (0.13)*** 
Interactions    
 OLD.AGE -0.008 (0.001)*** -0.01 (0.002)*** -0.02 (0.002)*** 
 YOUNG.AGE -0.002 (0.002) -0.01 (0.003)*** -0.006 (0.002)** 
Residuals    
 2

0r
σ  38.44 (0.71)*** 67.78 (1.29)*** 35.63 (0.69)*** 

 
10rrσ  0.31h 0.87 (0.02)*** 0.37h 

 2

1r
σ  0.003 (0.0002)*** 0.01 (0.0004)*** 0.004 (0.0002)*** 

 2
εσ  

33.49 (0.40)*** 31.46 (0.39)*** 37.90 (0.46)*** 

-2lnL
 

187419.62 189608.24 185245.27 
Note. ***p<.001, ** p<.01, * p<.05 
PIAT = Peabody Individual Achievement Test, M = PIAT math, RR = PIAT reading recognition, RC = 
PIAT reading comprehension, CONS=constant, OLD = number of siblings at birth, YOUNG = number of 
additional siblings at age 5, BIRTH = number of children born since age 5. Standard errors are shown in 
parentheses. 
hThe correlation between the intercept and slope was estimated to be over one and was fixed to one. 
 
 
When variance attributed to differences between families is introduced in 
model IV (see Table 10), the BIRTH effect decreases, but is still significant 
for M. Effects of the number of older (OLD) and younger (YOUNG) siblings 
also decrease but are still significant for all subtests. We can also see that 
maternal age at birth of first child (M.AGE) has positive effects on M and 
RR, and maternal IQ (M.IQ) has positive effects on all subtests. Children 
with Hispanic mothers have on average lower M scores, but higher RR 
scores, compared to children with non-Black non-Hispanic mothers (see 
RACE(1)), whereas children with Black mothers have lower scores on M and 
RC (see RACE(2)) when all variables are included. Presence of the father 
(FATHER) is positive and significant for RR and RC, however not for M. 
The variances due to differences between children within families are now 
27.5%, 35.8%, 23.7%, and the variances due to differences between families  
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Table 10. Model IV: Sibship size regression slopes from longitudinal multilevel 
regression models controlling for AGE, AGE2, COHORT, and family vari-
ables by PIAT score. 

 
M RR RC Effects 
Nfamily=3616  
Nchild=7787 

Nfamily=3612  
Nchild=7776 

Nfamily= 3604 
Nchild=7747 

 CONS 38.49 (0.20)*** 40.03 (0.25)*** 37.66 (0.21)*** 
 AGE  0.50 (0.003)*** 0.54 (0.004)*** 0.47 (0.003)*** 
 AGE2  -0.003 (0.00004)*** -0.003 (0.00004)*** -0.003 (0.00004)*** 
 COHORT  0.11 (0.02)*** 0.13 (0.03)*** 0.06 (0.02)** 
Sibship size    
 OLD -0.57 (0.11)*** -1.05 (0.13)*** -1.24 (0.11)*** 
 YOUNG  -0.56 (0.11)*** -0.36 (0.14)** -0.49 (0.12)*** 
 BIRTH -0.32 (0.12)** -0.16 (0.14) -0.23 (0.13) 
Family variables    
 M.AGE 0.13 (0.03)*** 0.10 (0.04)** 0.05 (0.03) 
 M.IQ 0.11 (0.004)*** 0.12 (0.005)*** 0.11 (0.004)*** 
 RACE(1)  -1.08 (0.25)*** 0.65 (0.32)* 0.12 (0.26) 
 RACE(2) -1.84 (0.23)*** -0.19 (0.30) -0.48 (0.24)* 
 FATHER 0.14 (0.14) 0.60 (0.14)*** 0.54 (0.14)*** 
Interactions    
 OLD.AGE 0.00005 (0.002) -0.005 (0.002)* -0.01 (0.002)*** 
 YOUNG.AGE 0.002 (0.002) -0.004 (0.003) -0.003 (0.002) 
 M.AGE.AGE 0.002 (0.0004)*** 0.001 (0.0005)** -0.0004 (0.0004) 
 M.IQ.AGE 0.0008 (0.00007)*** 0.001 (0.00009)*** 0.001 (0.00008)*** 
 RACE(1).AGE -0.005 (0.004) 0.02 (0.006)*** 0.004 (0.005) 
 RACE(2).AGE -0.02 (0.004)*** -0.04 (0.005)*** -0.05 (0.004)*** 
Residuals    
 2

0r
σ  17.20  (0.60)*** 29.79 (0.73)*** 15.80 (0.62)*** 

 
10rrσ  0.11h 0.37h  0.13h 

 2

1r
σ  0.0007 (0.0002)*** 0.005 (0.0003)*** 0.001 (0.0003)*** 

 2

0uσ  12.47  (0.68)*** 22.85 (1.10)*** 13.62 (0.72)*** 

 
10uuσ  0.13 (0.008)*** 0.28 (0.01)*** 0.17 (0.009)*** 

 2

1uσ  0.002 (0.0002)*** 0.005 (0.0003)*** 0.002 (0.0002)*** 

 2
εσ  33.15 (0.40)*** 31.29 (0.39)*** 37.82 (0.46)*** 

-2lnL
 

177670.90 180027.07 175818.57 
Note. ***p<.001, ** p<.01, * p<.05 
PIAT = Peabody Individual Achievement Test, M = PIAT math, RR = PIAT reading recognition, RC = 
PIAT reading comprehension, CONS=constant, OLD = number of siblings at birth, YOUNG = number of 
additional siblings at age 5, BIRTH = number of children born since age 5, M.AGE = maternal age at 
birth of first child, M.IQ = maternal IQ, RACE(1) = mother Hispanic (1) or not (0), RACE (2) =  mother 
Black (1) or not (0), FATHER = father present in household. Standard errors are shown in parentheses. 
hThe correlation between the intercept and slope was estimated to be over one and was fixed to one. 
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are 20.1%, 27.5%, and 20.6% respectively for the three tests11. Because not 
all children in our samples had measurements on all background variables, 
the sample sizes are smaller for model IV compared to model III, however. 
 

Results from model IV show that there are still some significant birth-of-a-
sibling effects after age five when family variables are included in the 
model. As mentioned in the method section, however, this variable (BIRTH) 
picks up some between child effects because several children had siblings 
born between age five and their first assessment. We thus reanalyzed model 
IV excluding children who had siblings born between age five and their first 
assessment. This left 3532 families with 6774 children for M, 3527 families 
with 6758 children for RR, and 3519 families with 6708 children for RC 
respectively. The regression coefficients are still significant for OLD (for M: 
-0.57, p < .001, for RR: -1.10, p < .001, for RC: -1.28, p < .001) and YOUNG 
(for M: -0.53, p < .001, for RR: -0.33, p < .05, for RC: -0.40, p < .01) but 
they decrease and are no longer significant for either subtest for BIRTH (for 
M: -0.17, p = .289, for RR: -0.02, p = .900, for RC: -0.15, p = .384). We also 
ran analyses in which we defined YOUNG as the number of younger siblings 
born to the mother (as answered by the mother) at the assessment year that 
the child was five or six. BIRTH is thus the additional number of siblings 
born since the assessment year that the child was five or six years old12. 
These analyses also showed negative and significant effects of the number of 
older and younger children, however even smaller, non-significant, effects of 
the birth of a sibling. 
 
As mentioned above, effects of the number of siblings at birth (OLD), as 
well as the additional number of siblings at five (YOUNG) were negative and 
significant in the above analyses. Because children were assessed no earlier 
than age five with the PIAT subtests, we cannot investigate birth of a sibling 
effects longitudinally prior to age five for these tests. We instead tested a 
new model, model V, where we divided OLD into the number of siblings at 
most 23 months older (OLD0-2) and the number of siblings 24 months or 
older (OLD2+) than the child. We also divided YOUNG into the number of 
siblings at most 23 months younger (YOUNG0-2) and the number of addi-
tional siblings born at age five (YOUNG2+). The results are shown in Table 
11. We can see that the number of older siblings have negative and signifi-
cant effects on all subtests, as has the number of closely spaced younger 
siblings (YOUNG0-2). In addition, the slopes for the number of closely 

                               
11 Because the original NLSY sample consisted of households, some children in the M-, RR-, 
and RC-samples are cousins. To account for this, we also tested a model in which we added a 
fourth level accounting for different levels across original households. The coefficients did 
not change much, however, and the conclusions remain the same. We therefore do not present 
these results here. 
12 These ages were chosen because assessments took place every second year, and children 
were thus 5 or 6 years old at their first possible assessment. 
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spaced older siblings (OLD0-2) are larger than the slopes for the number of 
widely spaced older siblings (OLD2+). The part of the explainable variance 
that is attributed to differences between children is 53.7%, 68.8%, and 
48.9% for the M, RR, and RC tests respectively.  
 
 
Table 11. Model V: Sibship size regression slopes from longitudinal multilevel 

regression models controlling for AGE, AGE2, and COHORT by PIAT 
score. 

 
 M RR RC 
Effects Nfamily=3770 

Nchild=8135 
Nfamily=3767 
Nchild=8122 

Nfamily=3759 
Nchild=8092 

 CONS 37.41 (0.16)*** 40.38 (0.19)*** 37.49 (0.16)*** 
 AGE  0.50 (0.002)*** 0.54 (0.003)*** 0.46 (0.003)*** 
 AGE2  -0.003 (0.0004)*** -0.003 (0.0004)*** -0.003 (0.0004)*** 
 COHORT 0.33 (0.01)*** 0.29 (0.02)*** 0.25 (0.01)*** 
Sibshipsize    
 OLD(2+) -1.51 (0.09)*** -1.84 (0.11)*** -2.03 (0.09)*** 
 OLD(0-2) -1.78 (0.22)*** -2.54 (0.27)*** -2.19 (0.21)*** 
 YOUNG (0-2) -1.47 (0.21)*** -1.56 (0.27)*** -1.35 (0.21)*** 
 YOUNG (2+) -0.19 (0.14) -0.12 (0.18) -0.15 (0.14) 
 BIRTH -0.72 (0.12)*** -0.46 (0.14)** -0.50 (0.13)*** 
Interactions    
 OLD(2+).AGE -0.006 (0.002)*** -0.01 (0.002)*** -0.02 (0.002)*** 
 OLD(0-2).AGE -0.02 (0.004)*** -0.03 (0.005)*** -0.03 (0.004)*** 
 YOUNG(0-2).AGE -0.005 (0.004) -0.02 (0.005)*** -0.01 (0.004)*** 
 YOUNG(2+).AGE 0.00009 (0.002) -0.003 (0.003)*** -0.002 (0.003) 
Residuals    
 2

0r
σ  38.29 (0.71)*** 67.56 (1.29)*** 35.51 (0.69)*** 

 
10rrσ  0.31h 0.87 (0.02)*** 0.37h 

 2

1r
σ  0.003 (0.0002)*** 0.01 (0.0004)*** 0.004 (0.0002)*** 

 2
εσ  33.49 (0.40)*** 31.46 (0.39)*** 37.90 (0.46)*** 

-2lnL 187403.51 189587.24 185244.08 
Note. ***p<.001, ** p<.01, * p<.05 
PIAT = Peabody Individual Achievement Test, M = PIAT math, RR = PIAT reading recognition, RC = 
PIAT reading comprehension, CONS=constant, OLD(2+) = number of siblings at least 24 months older, 
OLD(0-2) = number of siblings at most 23 months older, YOUNG(0-2) = number of siblings at most 23 
months younger, YOUNG(2+)= number of additonal children born at age 5, BIRTH = number of children 
born since age 5. Standard errors are shown in parentheses. 
hThe correlation between the intercept and slope was estimated to be over one and was fixed to one. 

 
Table 12 shows results for an additional model, model VI, where we also 
entered family variables. We can now see that all sibship size slopes have 
decreased, and the BIRTH effects are no longer significant for RR and RC. 
The variances due to differences between children within families are now 
27.6%, 35.0%, 23.6%, and the variances due to differences between families 
are 20.1%, 27.8%, and 20.6%. 
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Table 12. Model VI: Sibship size regression slopes from longitudinal multilevel 
regression models controlling for AGE, AGE2, COHORT, and family vari-
ables by PIAT score. 

 
 M RR RC 
Effects Nfamily=3616 

Nchild=7787 
Nfamily=3612 
Nchild=7776 

Nfamily=3604 
Nchild=7747 

 CONS 38.52 (0.21)*** 40.06 (0.25)*** 37.69 (0.21)*** 
 AGE  0.50 (0.003)*** 0.54 (0.004)*** 0.47 (0.003)*** 
 AGE2  -0.003 (0.0004)*** -0.003 (0.0004)*** -0.003 (0.0004)*** 
 COHORT 0.10 (0.02)*** 0.12 (0.03)*** 0.05 (0.02)* 
Sibshipsize    
 OLD(2+) -0.45 (0.12)*** -0.90 (0.14)*** -1.16 (0.12)*** 
 OLD(0-2) -1.05 (0.19)*** -1.82 (0.24)*** -1.57 (0.20)*** 
 YOUNG (0-2) -0.91 (0.19)*** -0.94 (0.23)*** -0.85 (0.19)*** 
 YOUNG (2+) -0.42 (0.13)** -0.13 (0.16) -0.34 (0.13)* 
 BIRTH -0.29 (0.12)* -0.12 (0.14) -0.21 (0.13) 
Family variables    
 M.AGE 0.14 (0.03)*** 0.11 (0.04)** 0.06 (0.03) 
 M.IQ 0.11 (0.004)*** 0.12 (0.005)*** 0.11 (0.004)*** 
 RACE(1) -1.07 (0.25)*** 0.66 (0.32)* 0.13 (0.26) 
 RACE(2) -1.83 (0.23)*** -0.16 (0.30) -0.46 (0.24) 
 FATHER 0.14 (0.14) 0.60 (0.14)*** 0.54 (0.14)*** 
Interactions    
 OLD(2+).AGE 0.002 (0.002) -0.002 (0.002) -0.01 (0.002)*** 
 OLD(0-2).AGE -0.01 (0.004)** -0.02 (0.004)*** -0.02 (0.004)*** 
 YOUNG(0-2).AGE 0.004 (0.004) -0.01 (0.004)* -0.006 (0.004) 
 YOUNG(2+).AGE 0.0008 (0.002) -0.001 (0.003) -0.002 (0.003) 
 M.AGE.AGE 0.002 (0.0004)*** 0.002 (0.0005)** -0.0003 (0.0004) 
 M.IQ.AGE 0.0008 (0.00007)*** 0.001 (0.00009)*** 0.001 (0.00008)*** 
 RACE(1).AGE -0.003 (0.004) 0.02 (0.006)*** 0.004 (0.005) 
 RACE(2).AGE -0.02 (0.004)*** -0.04 (0.005)*** -0.05 (0.004)*** 
Residuals    
 2

0r
σ  

17.21 (0.60)*** 28.75 (0.73)*** 15.77 (0.62)*** 

 
10rrσ  0.11h 0.37h 0.13h 

 2

1r
σ  

0.0007 (0.0002)*** 0.004 (0.0003)*** 0.001 (0.0003)*** 

 2

0uσ  
12.43 (0.68)*** 22.83 (1.10)*** 13.62 (0.72)*** 

 
10uuσ  0.13 (0.008)*** 0.28 (0.01)*** 0.17 (0.009)*** 

 2

1uσ  
0.002 (0.0002)*** 0.005 (0.0003)*** 0.002 (0.0002)*** 

 2
εσ  

33.14 (0.40)*** 31.29 (0.39)*** 37.81 (0.46)*** 

-2lnL 177674.28 180019.68 175831.05 
Note. ***p<.001, ** p<.01, * p<.05 
PIAT = Peabody Individual Achievement Test, M = PIAT math, RR = PIAT reading recognition, RC = 
PIAT reading comprehension, CONS=constant, OLD(2+) = number of siblings at least 24 months older, 
OLD(0-2) = number of siblings at most 23 months older, YOUNG(0-2) = number of siblings at most 23 
months younger, YOUNG(2+)= number of additonal children born at age 5, BIRTH = number of children 
born since age 5, M.AGE = maternal age at birth of first child, M.IQ = maternal IQ, RACE(1) = mother 
Hispanic (1) or not (0), RACE (2) =  mother Black (1) or not (0), FATHER = father present in household.  
Standard errors are shown in parentheses. 
hThe correlation between the intercept and slope was estimated to be over one and was fixed to one. 
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To control for some differential parental values, we also included desired 
family size as answered by the mother in 1979 in models IV and VI. This 
variable showed no significant effects, however, and is therefore not re-
ported here. The females were between 14 and 21 in 1979 and their re-
sponses to this question may therefore not be very indicative of future de-
sires or actions. It is also likely that desired family size responses of 14 year 
olds have different meanings than responses of 21 year olds. 

 
8. Discussion 
 
This study extended previous longitudinal work (e.g. Baydar, Greek, & 
Brooks-Gunn, 1997; McCall, 1984; Guo & VanWey, 1999) that has tried to 
examine whether the consistent negative correlation between sibship size 
and cognitive ability found cross-sectionally still holds when looked at lon-
gitudinally, that is whether the birth of a sibling negatively affects children’s 
cognitive abilities. We used multilevel models to account for the longitudinal 
structure of the data as well as for children nested within families. There 
were up to four siblings born during the span of the current study. We ac-
counted for fairly large additions to family size, and larger additions com-
pared to Guo and VanWey (1999). We also included all children with at 
least one valid PIAT score between the years 1986 and 2004. We found a 
consistent negative relationship between sibship size and cognitive ability 
across different years for three cognitive ability tests: PIAT math, PIAT 
reading recognition, and PIAT reading comprehension. When the sibship 
size measure was partitioned into between- and within child variables, how-
ever, the between child variables, such as the number of older and younger 
siblings, still had significant effects on the subtests, whereas the within vari-
able, birth-of-a-sibling13, had no such effects once differences between fami-
lies were controlled.  
 
8.1 Conclusions 
 
In general, the results of the longitudinal analyses support Guo and Van-
Wey’s (1999) findings of no negative birth effects, providing further support 
to the notion that the observed cross-sectional effects may be due to uncon-
trolled differences between large and small families. This, in turn, supports 
the admixture hypothesis (Page & Grandon, 1979; Velandia, Grandon, & 
Page, 1978; Rodgers et al., 2000; Rodgers, 2001).  
 
Downey et al. (1999) suggested that the sibship size effect might only be 
present for closely spaced siblings, and should thus be examined for young 

                               
13 When we excluded children with siblings born after age 5 but before their first assessment, 
no birth-of-a-sibling effects were significant.  
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children. As they pointed out, closely spaced siblings are incorporated into 
cross-sectional analyses, but sometimes not in longitudinal analyses if the 
children had to be several years old at their first cognitive assessment. It is 
difficult to conduct longitudinal analyses testing the birth of a sibling on 
cognitive ability for closely spaced siblings because the child of interest then 
must be cognitively assessed at a very young age. Cognitive measures at 
very young ages are not very reliable, making it hard to use them as cogni-
tive ability indicators in longitudinal studies. This study tried to account for 
some of this close spacing problem cross-sectionally by dividing the number 
of older and younger siblings into closely spaced siblings (less than two 
years older or younger) and widely spaced siblings. We could see that the 
magnitudes of the slopes for the number of closely spaced siblings were 
larger than for the number of widely spaced siblings.  
 
The mean tables reproduced from Rodgers et al. (2000) and replicated here 
several years later show, however, that effects of older and younger siblings 
do not lie within the family, at least not within the intact families assessed in 
these tables. There may thus be other reasons for the above results. Families 
that have closely spaced siblings may differ from other families, for example 
by differential planning, delaying of education for the mother etc. There was 
an interesting pattern in the tables, however. Differences in means of differ-
ent size families are larger for earlier years, and appear to have vanished in 
2002/2004. In contrast, the sibship size slopes in Table 6 show negative ef-
fects of sibship size for all cross-sections, and the magnitude of the slopes 
does not appear to decrease for later years. Tables 1 and 7 only include chil-
dren from intact families, i.e. children from families in which all children 
were cognitively assessed in certain years. Families with very widely spaced 
siblings are therefore not included, and family sizes larger than four or five 
are also not included (because of sample sizes). In addition, maternal ages at 
birth of the respondent child, as well as at the birth of the first child, are 
higher for later cross-sections because the ages of the children in the families 
are restricted to be between five and 14 years. A possible conclusion may 
thus be that family size (0 to 4) and cognitive ability are not related for chil-
dren born to slightly older mothers, and whose mothers also were at least 23 
years old when they had their first child. This should be investigated further, 
however. 
 
Baydar, Greek, and Brooks-Gunn (1997) found that young children who had 
at least one sibling born during an early age had lower scores on a cognitive 
test compared to those who did not have an additional sibling, controlling for 
another test, completed by the mother at baseline, designed to measure so-
cial, motor, and cognitive development in young children. They concluded 
that these lower scores were associated with a decline in positive interactions 
with the mother, and an increase in a punishing parenting style. They also 
found that these children had lower scores on the PIAT math and reading 
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recognition tests after four years. Our results also showed lower scores for 
children who had a sibling born during the first couple of years in life, al-
though we did not control for motor and social development scores. The 
results in the present paper however agree with their findings that children 
who have closely spaced younger siblings have lower scores on average.  
 
As expected, we found effects of several family variables on PIAT scores. 
Children whose mothers were older when they had their first child had 
higher scores on average, as did children whose mothers had higher IQ 
scores. Children with Black mothers had in general lower scores, whereas 
children with Hispanic mothers had higher scores on average on the PIAT 
reading recognition subtest, after controlling for other family variables. We 
investigated this further, and found that the previously positive and signifi-
cant slope for RACE(1) (see Table 10) became negative and significant when 
maternal IQ was dropped from the model. Children with fathers living in 
their households also had significantly higher scores except for the math 
subtest. The proportion of variance attributed to differences between chil-
dren was reduced when these family variables were accounted for, and all 
sibship size effects decreased. Although we acknowledge that there may be 
some real changes in cognitive ability following the birth of a sibling, espe-
cially if that sibling is born early in life, large proportions of the relationship 
between sibship size and cognitive ability can be attributed to differences 
between families. 

8.2 Limitations of the current study and suggestions for future work 
 
In generalizing these results to other children, we need to take into consid-
eration that children from minority groups were oversampled. Also, attrition 
rates in Table 2 show that 20% of the children of interviewed mothers did 
not obtain valid PIAT scores in 2004. In addition, around 20% of the eligible 
females were not interviewed in 2004 as well. Although mentally handi-
capped children were not excluded from PIAT assessments per se, in prac-
tice, several of these children may have failed to obtain valid scores either 
because the mother requested they not be assessed, or because they failed to 
complete the test. We cannot say how additional siblings may affect men-
tally handicapped children from the present study.  
 
We can also see, from Table 4, that the proportion of children, in the three 
samples, with different numbers of valid scores differs slightly across race. 
The NLSY79 child and young adult users guide (CHRR, 2006) report gener-
ally higher completion rates for children with Black mothers and generally 
lower completion rates for children with Hispanic mothers for the PIAT 
math, reading recognition, and reading comprehension subtests. We did not 
include any sampling weights in our analyses, which were necessarily differ-
ent for children at different assessment years because they represented a 
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different proportion of children depending on response rates. It should there-
fore be noted that minority groups are overrepresented in our analyses.  
 
The present study included several family variables that accounted for parts 
of the family variance, although several other variables could be considered 
as well. Desired family size was included, although it was not found to affect 
the cognitive ability measures and therefore not presented. Future studies 
might instead look at whether or not the children were planned and thus try 
to control for more possible family differences. Phillips (1999) suggested 
that parents’ mental health or temperament might affect both family size and 
cognitive ability. She suggested that parents’ self-esteem or ability to plan 
for the future might influence birth control, rather than parental values. In 
addition, she proposed that children’s temperaments might affect parents’ 
choices to have more children. Certain dimensions of temperament have 
been found to correlate with certain dimensions of cognitive ability (e.g. 
Strelau, Zawadsky, and Piotrowska, 2001), which could be investigated fur-
ther in the NLSY because the mothers of the children were given tempera-
ment questionnaires about their children during several years.  
 
Guo and VanWey (1999) suggested that home environment may be one of 
the between family factors that may cause a spurious relationship between 
sibship size and cognitive ability. This can be investigated further in the 
NLSY because home environment scales are available for the children. Fac-
tors outside of the home, such as the influence of school, friends, and leisure 
activities on children’s cognitive abilities, as well as interactions between 
home environments, birth of a sibling, and outside environments, can also be 
examined. It is possible that those that experience “negative” effects at home 
may be buffered if they have a good school and peer environment and vice 
versa. Home environments may play a more important role early in life, 
whereas outside environments may play more important roles as the child 
grows.  
 
The effects of additional siblings may not be linear. We found cross-
sectional effects of closely spaced siblings, in particular. Birth of a sibling 
effects on cognitive ability may depend both on the child’s age, but also on 
whether it is the first, second, or third etc. younger sibling being born into 
the family. This can be investigated further by including both the child’s age 
at the birth of each sibling, but also dummy variables indicating whether it is 
the first, second, third etc. younger sibling.  
 
We looked at three PIAT subtests separately. Intelligence is a construct that 
preferably can be measured by several indicators. We have conducted some 
preliminary factor analytic studies on parts of the data, however, which indi-
cated that the three subtests did not show factorial invariance over time (see 
e.g. Sayer & Cumsille, 2002 for a description of factorial invariance over 
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time). Because of this, and because sibling effects appeared to be different 
for the subtests, we decided to analyze them separately. Future studies might 
investigate this further, however, possibly looking at individual items of the 
subtests that might be used for factor analytic studies14. 
 
We only included biological (children born to the mother) siblings in our 
study, partly because exact ages of these siblings could be obtained. How-
ever, birth of a sibling effects can also include other children living in the 
household, such as stepchildren, foster-children etc. Future studies can in-
clude all children living in a household, and also investigate possible 
changes in cognitive abilities as other children (such as step-children) move 
into the household, move out etc. Because such transitions often occur fol-
lowing marriages or divorces or the like, factors such as these should be 
considered as well.  
 
Sibling death is another factor that changes the family composition, however 
this can be more difficult to study. A test assessing the cognitive ability of a 
child that recently experienced the death of a sibling is probably not very 
reliable, making it hard to compare the child’s score before and after his or 
her sibling died. Kristensen and Bjerkedal (2007) used a very clever design 
to study effects of birth order on intelligence. They studied first- second- and 
third-born Norwegian male conscripts who had no, one, or two older siblings 
who died in infancy. They found that the birth orders of males who had had 
older siblings that died behaved as their “social” birth orders, i.e. second-
borns with an older sibling who died had average intelligence scores on the 
same level as first-borns etc. They compared males from different families, 
however, and families that experience deaths may be different from other 
families. 
 
The dilution theory suggests that parental resources are diluted as more sib-
lings are born. Children with various handicaps, and who are in need of extra 
attention, might dilute parental resources more than other siblings. Future 
research might investigate differential effects of siblings with handicaps. 
Downey (2001) also suggested that the only birth-of-a-sibling effect might 
be with additions of five or more siblings. The children in the present study 
had at most four siblings born during their assessment span, making this hard 
to study. Downey (2001) also pointed out the necessity to study possible 
long-term sibling effects. Holmgren, Molander, and Nilsson (2007) investi-
gated long-term (although cross-sectional) effects of sibship size in adult-
hood, and found that the relationship was affected by the respondent’s edu-
cation, although they noted that cognitive ability could affect educational 
level as well. As mentioned previously, Kuo and Hauser (1997) found that 

                               
14 Second order latent curve models (Duncan & Duncan, 1996; McArdle, 1988) can, for ex-
ample, be used to analyze growth in latent constructs. 
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siblings from smaller families had more years of education. We studied sib-
ship size and birth-of-a-sibling effects on a sample of children with a re-
stricted age range, and effects after 14 years of age, such as effects on educa-
tional outcomes (e.g. college attendance) were therefore not studied. It may 
be possible to look at long-term effects of sibship size in the NLSY-children 
sample and to include the respondent’s educational level by examining the 
children as they grow older and complete their education.  
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