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An algebraic expression for the variance of the estimate of slope differences 
in latent growth curve models was presented in Wänström (2007). This ex-
pression can be used in formulas to determine needed sample sizes. In this 
paper, we present more general algebraic variance expressions that allow re-
searchers to evaluate factors such as spacing of occasions, indicator reliabil-
ities, factor variances and covariances, as well as attrition. Not surprisingly, 
sample sizes decrease with indicator reliabilities and number of indicators, 
and increase with loss of observations, e.g with attrition. Observations close 
to the end points are more important than middle observations, and later ob-
servations are more important than earlier observations in cases of equal 
baseline levels in groups. Correlations between baseline levels and growth 
as well as between indicator residuals may either increase or decrease 
needed sample size.  

 
Key words: sample size; latent growth curve models; slope differences; sample size calcula-
tions. 

 
 
1. Introduction 
 
Researchers are often interested in the nature of change in a population, the 
average individual growth or decline of one or several variables, the varia-
tion around this change, as well as differences in change between groups. 
Consider for example the IQ scores of a group of children followed over 
time. One may want to examine the children’s average change in IQ per 
year, look at variations in change across all children, or at differences be-
tween groups such as boys or girls, or children randomized to a treatment 
group and a control group.  
 
There are advantages to conducting longitudinal studies as opposed to cross-
sectional studies when the aim is to study change. Assessing units, e.g. indi-
viduals, repeatedly allows us to distinguish between variation between indi-
viduals at one point in time as well as variation within individuals over time 
(e.g. Diggle, Heagerty, Liang, & Zeger, 2002). Longitudinal studies can be 
more expensive, however, because we assess individuals several times. Ob-
serving a small number of individuals, on the other hand, can result in poor 
power and meaningful effects may be neglected (see e.g. discussion in Tran, 
1997). Sample size calculations can be used to aid in determining the num-
ber of individuals to observe as well as the number of occasions that they 
should be observed. 
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In this paper, we will present algebraic variance expressions that can be used 
in sample size calculations when the aim is to examine group differences in 
slope means using latent growth curve models. These expressions can be 
used for multiple indicator designs, for designs in which we assume equal 
baseline levels in the groups, as well as for designs with individually varying 
times of observation. We will illustrate the expressions in sample size calcu-
lations and discuss various effects on sample size. Before looking at the for-
mulas, however, we will provide some background on LGC models and 
sample size estimation. 
 

2. Background 
 
2.1 Latent growth curve (LGC) models 
 
Latent growth curve (LGC) models (McArdle, 1988; Meredith & Tisak, 
1990; Rao, 1958; Tucker, 1958), also referred to as latent trajectory models, 
have been widely used in the study of average change as well as variation 
around the change. They can be thought of as confirmatory factor analysis 
models where individual growth or decline is captured by latent factors with 
(usually) non-zero means and some fixed loadings (Meredith & Tisak, 1990; 
Muthén & Curran, 1997). Observed scores at repeated occasions are thought 
to reflect the underlying latent variables. For example, assuming linear 
growth, an individual’s score at each occasion is the result of his or her latent 
level, latent growth, and latent “error”.  
 
LGC models are closely related to multilevel models, hierarchical linear 
models, random effects and other similar models (for descriptions of these 
models, see e.g. Goldstein, 2003; Bryk & Raudenbush, 1992; Longford, 
1993) and the factor means in the LGC models correspond to the fixed ef-
fects, whereas the factor variances and covariances correspond to the random 
effects in these models. Comparisons among LGC and multilevel models can 
be found e.g. in Hox and Stoel (2005), Stoel, van der Wittenboer and Hox  
(2003), and Raudenbush (2002). LGC model parameters can be estimated 
through structural equation modeling methods (SEM: Bollen, 1989; Jöreskog 
& Sörbom, 1979, 1993; Loehlin, 1992) and SEM software can be used (e.g. 
LISREL, Mplus, Amos, Mx etc.). Parameters can also be estimated through 
multilevel software (e.g. HLM and MLwiN). 
 
When growth in latent constructs is considered, second order LGC models 
(Duncan & Duncan, 1996; McArdle, 1988) can be employed. A construct, 
such as cognitive ability, is then measured by one or several indicators at 
each occasion. Assuming linear growth, an individual’s score on each indi-
cator is the result of an underlying (first order) factor as well as an error 
term. In turn, his or her score on the underlying (first order) factor is the 
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result of an underlying level and growth factor as well as an error term. 
These models enable researchers to estimate reliabilities of the indicators, 
and also to test for measurement equalities over time and across groups (see 
e.g. Sayer and Cumsille (2002) for a description of factorial invariance test-
ing over time for second order LGC models). They decompose the residual 
variance at each occasion into variance around the growth curve and vari-
ance specific to measurement.  
 
A description of a second order LGC model will be given below, however 
for more thorough descriptions of first order models, see e.g. Duncan, Dun-
can, Strycker, Li, and Alpert (1999), McArdle (1988), McArdle and Bell 
(2000), Raykov (2000), and Willet and Sayer (1994). Also, see Sayer and 
Cumsille (2002) for descriptions of second order models. 
 
2.2. Sample size 
 
We might be interested in knowing the number of individuals needed to de-
tect group differences in levels or growth. We might also be interested in 
knowing how the number of measurement occasions and their spacing, the 
number of indicators and their reliabilities, expected attrition of participants 
over time etc. will affect the total number of individuals needed. Power and 
sample sizes in LGC models have been studied, for example, by Curran and 
Muthén (1999), Fan and Fan (2005), Fan (2003), Hertzog, Ghisletta, Lin-
denberger and Oertzen (2006), Muthén and Curran (1997), and Wänström 
(2007). Commonly used techniques for doing this include Monte Carlo 
simulations and approximations using Satorra and Saris’ (1985) technique. 
Descriptions of Satorra and Saris’ technique can be found in e.g. Duncan et 
al. (1999) and Muthén and Curran (1997).  
 
Researchers have also developed sample size formulas to aid in decisions 
about sample size for various models. Sample size formulas for cross-
sectional designs are widely developed (see e.g. Desu & Raghavarao, 1990). 
Algebraic formulas have also been provided for longitudinal models (e.g. 
Diggle, Heagerty, Liang, & Zeger, 2002; Liu & Liang, 1997; Liu, Boyett & 
Xiong, 2000; Liu, Shih, & Gehan, 2002; Rochon, 1991). Raudenbush and 
Liu (2000; 2001) developed variance formulas for group differences in 
means and trends in hierarchical linear models that they used to study the 
power of these models. Their formulas allow researchers to explore the ef-
fects of duration of the study and frequency of observations, among other 
factors, on sample size. Wänström (2007) extended their variance formulas 
for slope differences to account for growth in latent constructs. In addition, 
the formulas in Wänström (2007) can be used in situations where baseline 
levels can be assumed equal for the groups. These formulas are useful for 
designs in which participants are observed at equal and equidistant occa-
sions. In this paper we will present more general algebraic variance formulas 
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that can be used for arbitrary measurement occasions, and for arbitrary factor 
and residual variances.  
 
Measuring the construct of interest with high reliability usually results in 
lower needed sample sizes. For example, Wänström (2007) noted that 
needed sample sizes decreased for higher reliabilities and that more indica-
tors can make up some for lower reliabilities. The variance formulas pre-
sented in this paper allow for unequal reliabilities of indicators and we can 
explore effects of adding indicators with various reliabilities to models. 
 
An intervention may affect the slope mean for the treatment group, however 
it may also affect the variance of the slope or the covariance between the 
intercept and the slope (e.g. Muthén & Curran, 1997). A treatment may for 
example work differently for different individuals and increase the variance 
in the treatment group, or it may work differently for individuals at different 
levels, producing different covariances between intercepts and slopes for 
treatment and control. Our formula allows for general and unequal factor 
variances and covariances. 
 
In second order LGC models, the indicator residuals (measurement errors) 
may be correlated over time such that the residual for indicator one at the 
first occasion is correlated with the residual for indicator one at the second 
occasion etc. We will look at a simple case of autocorrelated residuals. Re-
sults for longitudinal models in which the covariance structure of the re-
peated measures is compound symmetric have observed that variance and 
sample size decreases for higher correlations between the repeated measures 
(e.g. Diggle, Heagerty, Liang, & Zeger, 2002). Results for models with 
AR(1) structures, however, have found that the relationship is more com-
plex. For example, Yi & Panzarella (2002) noted that variance decreased for 
increases in the correlation for models with few occasions, and that the vari-
ance first increases with increases in the correlation, and then decreases, for 
models with more occasions, the maximum being obtained later for more 
occasions. 
 
Not surprisingly, power increases (or equivalently, sample size decreases) as 
intermittent observations are added (e.g. Maxwell, 1998; Raudenbush & Liu, 
2001; Wänström, 2007; Yi & Panzarella, 2002). Power and sample size will 
also depend on the spacing of the added observations. The formulas pre-
sented in this paper allow for exploration of effects of spacing on sample 
size for LGC models. We will look at some illustrations and examine de-
signs with several different spacings. 
 
All participants may not be observed at all occasions, by design or because 
of dropout for instance. Effects of attrition on power and sample size have 
been studied in longitudinal models (e.g. Rochon, 1998; Yi & Panzarella, 
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2002; Zucker & Denne, 2002). For example, Muthén and Muthén (2002) 
showed how to use simulations to study effects of attrition on power and 
sample size requirements for latent variable models. Rochon (1998) pre-
sented matrix variance formulas based on GEE methodology and showed 
how to incorporate expected attrition into sample size formulas. Yi and Pan-
zarella (2002) studied effects of attrition on sample size requirements for 
random effect models, and they also presented matrix variance formulas. 
They noted that attrition increases the required sample sizes, and simulations 
also suggested that missing observations at the end of the study have larger 
effects on sample size. Our formula allows for an unequal number of meas-
urements for individuals, and we can explore effects of attrition on sample 
size in LGC models. In addition, we can evaluate some simple rules of 
thumb for sample size adjustment in cases of attrition, as well as evaluate 
effects of listwise deletion on sample size.  
 

3. The model 
 
3.1 One group 
 
We described a second order LGC model in Wänström (2007), however we 
assumed that all individuals were observed on all occasions. Let us now 
assume that we will observe individuals on occasions 1, …, T, but that all 
individuals may not be observed on all occasions. We observe individual i, i 
= 1, …, n, with K indicators on Ti occasions. Let xti be the elapsed time since 
the start of the study for individual i at occasion t. Further, let yitk denote the 
observed value for individual i on indicator k at occasion t.  
 
A second order LGC model consists of two types of latent variables: T first 
order factors ηh=(η1, …, ηT)’, and J second order factors Π=(π1, …, πJ)'. The 
model may be written in terms of a structural model that describes the struc-
ture among the latent variables, and a measurement model that relates the 
measurements to the latent variables. A structural model, where Π and ηh are 
stacked above each other, may look as follows for individual i 
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(1) 

 
where ηh is a column vector with the individual’s latent level at the Ti meas-
urement occasions, αh is an intercept vector, Bh is a matrix with TixJ factor 
loadings and ζh is a random residual vector with mean 0 and covariance ma-
trix Σηi that may be different between individuals because of different meas-
urement occasions. The J latent growth factors in Π are assumed to come 
from a normal distribution with mean vector αp=(α1, …, αJ)' and covariance 
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matrix Σπ containing the variances and covariances of the growth factors. 
Since we cannot estimate both αh and αp separately, we will set αh = 0. 
 
We can write (1) as1  
 

ζηαη ++= B  (2) 
 
where the column vector η contains the Ti+J latent factors, α is a Ti+J vec-
tor of factor means, B is a (Ti+J)× (Ti+J) matrix of factor loadings and ζ  is a 
Ti+J vector of latent residuals which is normal with zero mean and covari-
ance matrix Ψi.   
 
A measurement model relates the measurements to the latent variables 
 

,εητ +Λ+=Y  (3) 

where Y is the column vector containing the KTi observed measurements, 
τ  is the column vector containing the corresponding KTi measurement inter-
cepts and Λ is a KTi× (Ti+J) matrix containing the factor loadings λ relating 
the measurements to the factors. We must set the scale of the factors, and 
one way of doing this is to fix one factor loading for each latent factor to 1. 
The corresponding intercept in τ can be fixed to 0 for identification pur-
poses. The column vector ε contains KTi normal error terms with zero mean 
and covariance matrix Θi. We assume that the covariance matrices Θi are 
identical for individuals except for differences caused by different times of 
measurements. 
 
3.1 An example 
 
Let us consider the simple case where all individuals have been observed on 
T = 4 equidistant occasions2. Consider the path diagram in Figure 1 of a sec-
ond order LGC model. The two latent growth factors, an intercept and a 
slope, describe linear growth: tt x21 ππη += .  
 
 
 
 
 
 
 
 

                               
1 See also Sayer and Cumsille (2002). 
2 This case was also considered in Wänströn (2007). 
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Figure 1. Path diagram of a second order LGC model. Circles indicate latent vari-

ables, squares indicate observed variables, one-headed arrows indicate re-
gression coefficients, and double headed arrows indicate covariances. 

 
 
 

The structural model corresponding to Figure 1 can be written 
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where 
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The measurement model can be written 
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where cov(ε) = Θ. 
 
3.3 Indicator reliability 
 
As mentioned previously, second order LGC models can model change in 
latent constructs. The variance in Ytk can be divided into two parts; the vari-
ance explained by the structural model and error variance. The reliability Rtk 
of indicator k at time t can be defined as the variance in Ytk that is explained 
by the structural model divided by the total variance, which corresponds to 
reliability in classical test theory (e.g. McDonald, 1999).  
 

( ) ( )( )222
tkttkttktk VVR εσηληλ +=  (4) 

 
where λtk

2 is the indicator factor loading, V(ηt) is the first order factor vari-
ance at time t, and σεtk

2 is the residual variance of indicator k at time t.  
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3.4 Two or more groups 
 
Sometimes we want to compare the growth of different populations, such as 
boys and girls, individuals living in urban and rural areas, or different treat-
ment groups in an experimental setting. We extend our notations by adding a 
superscript (g), g = 1, …, G, denoting group. Equation (2) becomes3  
 

( ) ( ) ( ) ( ) ( )ggggg B ζηαη ++=  (5) 

 
and equation (3) becomes 
 

( ) ( ) ( ) ( ) ( )gggggY εητ +Λ+=  (6) 

 
where vectors and matrices containing parameters that may differ between 
groups are indexed by g. Multiple group analyses may be conducted and 
parameters may be estimated simultaneously for the groups (e.g. Jöreskog & 
Sörbom, 1979). 
 
3.5 Analysis of the LGC model 
 
The expected value of η from (2) is E(η) = (I – B)-1 α and the variance is 
V(η) = (I – B)-1 Ψ (I – B)-1’. The expected value of the observed values is 
thus from (3) 
 

( ) ( ) ατ 1−−Λ+= BIYE  (7) 

 
and the covariance structure is 
 

( ) ( ) ( ) .''11 Θ+Λ−Ψ−Λ= −− BIBIYV  (8) 

 
Since the last J columns of Λ are zero vectors, we may write (7) as  
 

.)( phh BYE ατ Λ+=  (9) 

 
Further, (9) may be rewritten E(Y) = Λ0(αp,τ0)' where Λ0 = (ΛhBh, I). 
 

We may also write (8) as 
 

( ) .''' Θ+ΛΣΛ+ΛΣΛ= Π hhhhhh BBYV η  (10) 

 

                               
3 see e.g. Muthén & Curran (1997). 
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In Wänström (2007), we presented well known generalized least squares 
estimates of parameters along with variances of the estimates. When indi-
viduals have been measured on unequal occasions, these will not be the 
same. For each individual, the generalized least square estimate of the pa-

rameter (αp,τ0)' is ( ) iiiiii YVV 1'
0

1

0
1'

0
−−− ΛΛΛ  with variance ( ) 1

0
1'

0

−− ΛΛ iiiV where 
Vi is the variance in (8), assuming that all parameters are estimable and that 
Vi has full rank. For n individuals, the estimate is 

( ) i

n

i iii

n

i ii YVV ∑∑ =
−−

=
− ΛΛΛ

1

1'

0

1

01

1'

0 . The variance of the estimate is  

 

( ) ( ) 1
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1

1

'

00 'ˆ,ˆ
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= ΛΛ= ∑ ii

n

i ip VVar τα  (11) 

 

which simplifies to ( ) nV
1

0
1'

0

−− ΛΛ  if all matrices are equal between indi-

viduals.  
 
When we have two or more groups, we might be interested in differences 
between group parameters. When we have two groups with no common pa-
rameters, the estimate of the difference between their parameters is the dif-
ference between the corresponding group estimates and the variance is the 
sum of the variances in the groups 
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which simplifies to ( ) ( ) ( )( ) ( ) ( ) ( )( ) )2(12

0
122

0
)1(11

0
111

0 '' nVnV
−−−− ΛΛ+ΛΛ  if all 

matrices are equal for individuals within groups and to ( ) nV
1

0
1'

02
−− ΛΛ  if 

all matrices and sample sizes are equal in the two groups as well.  
 
In some cases, we may assume that some parameters are equal in the groups. 
This is often the case in experimental situations when the groups should be 
equal at baseline, t = 1. Assume, for example, that we have two groups. Let 
αc be the common parameters and α (1) and α (2) be the group-specific pa-
rameters. In each group ( )( )'ˆ,ˆ g

c αα  is normal with mean (αc, α(g))’ and vari-

ance ( ) ( ) ( )( ) 1

1 0
1'

0

−

=
− 





 ΛΛ∑

gn

i

g
i

g
i

g

i
V .  We can stack these expressions above each 

other and we have that ( ) ( )( )'ˆ,ˆ,ˆ,ˆ 21 αααα cc is normal with mean (αc, α(1), αc, 

α(2))’ and the covariance matrix is block diagonal with blocks 
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( ) ( ) ( )( ) 1

1 0
1'

0

−

=
− 





 ΛΛ∑

gn

i

g
i

g
i

g

i
V . We can combine these to form a least squares esti-

mate of the parameters and to find its variance (see also Wänström, 2007). 
 

4. Sample size, variance, and standardized effect size 
 
4.1 Sample size 
 
In case of normality and known covariance matrix, the usual sample size 
formula4 can be used to determine the group sample size needed for tests 
 

( )
2

22

2/

..se
n

σλλ βα +
=  

 
(13) 

 
where n is the sample size per group, α is the significance level, 1-β  the 

power, 2/αλ  and βλ  quantiles of the normal curve, n/2σ  the variance of the 

estimate, and e.s. the effect size or the difference between the alternative and 
the null hypotheses.  
 
If we want to find the group sample size needed for a certain length of a 
confidence interval, h, formula (13) is changed to 
 

( )
.

2
2

22

2/

h
n

σλα=
 

(14) 

 
Multiple group analyses may be conducted for two or more groups. How-
ever, from now on, we will concentrate on two groups where the structural 
part is linear, ( ) ( ) ( )

t
ggg

t xE 21)( ααη += . Our focus will be on finding the sam-
ple size needed to detect differences in slopes between two groups. The fac-
tor of interest will be ( ) ( )1

2
2

23 πππ −= , with mean ( ) ( )1
2

2
23 ααα −=  in a model 

with two growth factors, an intercept and a slope, such as the model in Fig-
ure 1.  
 
4.2 Variance  
 
Several researchers have presented algebraic expressions for the variance of 
the estimate of slope differences between two groups that applies to first 
order LGC models when we have equally spaced measurements for all indi-
viduals, equal variances and sample sizes in the groups, and no assumptions 

                               
4 This formula can be found in many statistics books, see e.g. Desu & Raghavarao (1990) for 
an overview of sample size formulas. 
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on baseline level equalities (Friedman, Furberg, & DeMets, 1985; Rauden-
bush & Liu, 2001). Wänström (2007) presented an algebraic expression that 
applies to second order models as well. Assuming that measurements are 
obtained at times 0, 1, 2, …, T-1, the variance of the estimate is  
 

( ) ( )2
23 2

2
ˆ πσπ += V

n
Var

 
 
(15) 

 
where  
 

( ) .
12/

/
3

22

2 TT

K
V

−
+

= εη σσ
 

 
The first term inside the brackets, V2, is the conditional variance of the least 
squares estimate of the individual slope, and the second term inside the 
bracket is variance between individuals. K is the number of indicators, T is 
the number of equally spaced measurements for all individuals, σ2

η is the 
common first order factor residual variance, and σ2

ε is the common indicator 
residual variance. 
 
Wänström (2007) also presented an expression that can be used if we have 
reason to assume that the groups have the same baseline levels (intercept 
means) and the two factors π1 and π2 are independent. In that case, the vari-
ance of the estimate is 
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(16) 

 
where  
 

.
/22

1 T

K
V

εη σσ +
=

 
The numerators in formulas (15) and (16) can be used in (13) or (14) to find 
the required sample sizes. These formulas were explored in Wänström 
(2007) and required sample sizes decreased for larger effect sizes, indicator 
reliabilities, number of indicators, frequency of observation, and duration of 
study. Sample sizes were also larger in designs with no assumptions on 
equality of baseline levels.

 

 



13 

4.3 Standardized effect size  
 
When our interest is in slope differences between groups, the effect size is 
the mean difference in slopes between groups, α3. Sometimes it is valuable 
to standardize the effect. Cohen (1988) suggested that a standardized effects 
size, d = .2, is small, whereas d = .5 and d = .8 correspond to medium and 
large respectively. There are different ways in which effects can be standard-
ized in longitudinal models. For example, Raudenbush and Liu (2001) used 
the group slope difference divided by the population standard deviation of 
the slope 
 

2
3 2πσα=d  (17) 

 
whereas Muthén & Curran (1997) and Wänström (2007) used the difference 
between groups at the last time point divided by the standard deviation at the 
last time point  
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(18) 

 
where D is the intended duration of the study. This will be T – 1 if we have 
measurements at times 0, 1, …, T-1.  
 
4.4 Numerical example 
 
We will now use variance formulas (15) and (16) to examine the sample 
sizes needed for detecting a small slope difference with significance level 
.05 and power5 .8. Consider again Figure 1. We will base this as well as 
coming numerical illustrations on this basic second order LGC model. We 
will assume K = 3 indicators, all with reliability R = .9 at t = 1 (we assume 
that σε

2 = 1/9 and λ = 1). In addition, we will use T = 4 occasions, and we 
will assume equal first order factor residual variances 5.02 =ησ , and second 

order factor variances 5.02

1
=πσ , 1.02

2
=πσ , and 0

21
=ππσ  (which provides 

a commonly seen intercept/slope variance ratio (Muthén & Muthén, 2002)). 
We will use effect size, e.s. = α3 = 0.092, obtained from assuming a small 
standardized effect size d = .2 in (18). This corresponds to d = .29 using the 
definition in (17). These parameter values were also used in numerical illus-
trations in Wänström (2007). 
 

                               
5 a power level recommended by Cohen (1988) for the social sciences. 
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With no assumptions on equality in baseline levels, we substitute the nu-
merator in (15) for σ2 in (13)  
 

( ) ( )
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Assuming equal baseline levels, we substitute the numerator in (16) for σ2,  
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and  
 

.1343.0
4

3/111.05.0
1 =+=V  

 
 
As noted, sample sizes are smaller if we can assume equal baseline levels, in 
which case we will need 330 individuals per group compared to 385.  
 
As mentioned previously, formulas (15) and (16) can be used in situations 
with equally spaced measurements for all individuals as well as equal resid-
ual variances at each time point and for each indicator. We will now extend 



15 

these to situations with arbitrary factor and/or residual variances and covari-
ances or situations with varying measurement occasions. Our formulas and 
illustrations will be based on the model in Figure 1 but we will make differ-
ent changes in the assumptions, such as allowing for unequal residual vari-
ances or varying measurement occasions.  
 

5. Arbitrary factor variances and covariances 
 
5.1 Arbitrary reliabilities and residual variances 
 
When the reliabilities of different indicators are unequal, K/2

εσ in (15) and 

(16) should be replaced by ( ) 1
2

1
/1

−

=∑ kt

K

k εσ . When first order factor residual 

variances 2

tησ are unequal at each time point as well, formula (16) extends to  
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(19) 

 

where 

∑
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xt is the elapsed time since the start of the study, and n is the common sample 
size per group. If we cannot assume equal baseline levels in groups, the sec-
ond term in the denominator inside the bracket disappears and the variance 
increases.  
 
Let us illustrate this formula by examining sample sizes for designs with 
different number of indicators and indicator reliabilities. Using the parameter 
values from section 4.4, Figure 2 shows the required group sample sizes 
when adding one or three indicators of varying reliabilities to a one-indicator 
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model with reliability .9 or .6. The bottom horizontal line (K = 1, R(1) = .9) 
shows the sample sizes for a one-indicator model with reliability .9. The 
bottom curves (K = 2 and K = 4) show the sample sizes needed when adding 
one or three indicators of varying reliabilities, keeping the first at R = .9. As 
shown, sample sizes do not decrease much when one indicator of low reli-
ability is added to this model. Adding three indicators results in a larger re-
duction in needed sample sizes, although the decrease is still not large for 
low reliabilities.  

 
Figure 2. Required group sample sizes for models with different number of indica-

tors of varying reliabilities. The horizontal lines show sample sizes for a 
one-indicator (K = 1) model with reliability, R, of .6 or .9. The curves 
show sample sizes for the same models where one or three indicators with 
varying reliabilities have been added. 

 
 
 
The top horizontal line shows sample sizes for a one-indicator model with 
reliability .6. Not surprisingly, the reduction in sample sizes are larger when 
one or three indicators are added, even with small reliabilities. We can also 
see that all curves intersect at one point for reliabilities of 1. We only need 
one indicator if it has perfect reliability. 
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We can easily check the number of indicators and reliabilities that are 

needed for a certain sample size. Models in which ( )∑ =

K

k kt1

211 εσ  is the same 

will give the same sample size. For example, a model with one indicator 
with reliability .9 (and thus σ2

εkt = 1/9) will yield the same sample size as a 
model with 6 indicators with .6 reliability each: (2/(3×6) )= 1/9.  
 
5.2 Arbitrary intercept-slope covariances and unequal variances in groups   
 
Often, there is reason to believe that the covariance between the intercept 
and slope is positive, indicating that those with higher than average scores at 
baseline also have a higher than average growth. When 0

21
≠ππσ , the vari-

ance formula (16) should be replaced by (see also Wänström, 2007)  
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(20) 

 
where V1 and V2 are given after formulas (15) and (16). 
 
Figure 3 shows required group sample sizes for a model with varying indica-

tor reliabilities and intercept – slope correlations ( 22

2121 ππππ σσσ=r ) using 

parameter values from section 4.4. As seen, sample sizes increase for posi-
tive correlations, especially for models with low reliability indicators. For 
large reliabilities, the sample sizes first increase and then decrease some.  
 
We can see from (20) that the maximum sample size is needed when 

( )
21

2/12 ππσ=−TV , as was also noted in Wänström (2007). For example, 

when the reliability R = 1, this occurs for 15.
21

=ππσ which corresponds to r 

= .67. When R is smaller, the maximum occurs for larger covariances and 
correlations. A minimum sample size is reached for r = -1.  
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Figure 3. Required group sample sizes for varying, but equal for groups, intercept- 

and slope correlations, r, and varying reliabilities, R. 
 

 
Formula (20) can be used when we assume equal variances and covariances 
in the groups, thus the factor “2” in the denominator. However variances 
may differ between groups, such as when the treatment produces variance 
increases. In addition, the intercept-slope covariance may differ between 
groups. A treatment might work very well for the already above average 
individuals. We might then have unequal covariances between the intercept 
and slope in the groups. We can easily change the formula to handle unequal 
variances or covariances. A formula in which we assume that the slope vari-
ances as well as the intercept-slope covariances differ between groups can be 
written  
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(21) 

 
where the terms are as defined previously and the superscript in parenthesis 
refers to group one or two.  
 
Figure 4 shows group sample sizes for different intercept – slope correlations 
for the groups using parameter values from section 4.4 as previously. The 
middle curve shows situations where group two has zero correlation, 
whereas the correlation varies for group one. Because only the sum of the 
covariances matters, all else being equal (see (21)), this middle curve 
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Figure 4. Required group sample sizes for varying intercept- and slope correlations 
in the groups. Group 1 has intercept – slope correlations r(1) varying be-
tween –1 and 1, and group 2 has intercept – slope correlations r(2) =  

 -0.5 (bottom curve), r(2) = 0 (middle curve), and r(2) = 0.5 (top curve). 
 
 
 
corresponds to the R = .9 curve in Figure 3 for the interval 5.05.0 ≤≤− r . 
For example, a group one correlation of -1, together with a group two corre-
lation of 0 results in sample sizes 227. This can be found either from Figure 
3 for a common intercept – slope correlation of -0.5 and R = .9 (the sum of 
the correlations is -1), or from the middle curve in Figure 4 for r(1)= -1 
(r(2)=0), or the bottom curve in Figure 4 for r(1) = -0.5 (r(2)= -0.5).  
 
5.3 Unequal allocation to groups 
 
Sometimes we want the sample sizes in the groups to be unequal, for cost- or 
other reasons. Several authors have discussed sample sizes in cases of differ-
ential allocation to groups (e.g. Liu, Boyett, & Xiong, 2000; Rochon, 1998). 
If n(1) and n(2) denote the required number of individuals in group one and 
two respectively, and if n(1) = cn(2) then the required sample size n(1) can be 
calculated by the formulas in this paper but the factor 2 is replaced by 1 + c.  
 
If the variances in the groups are not equal, we may sample more individuals 
from the group with the larger variance. For example, Muthén and Curran 
(1997) examined power for LGC models, and noted that it was greatest for 
designs that were nearly balanced but with slightly more participants in the 

0

50

100

150

200

250

300

350

400

450

-1 -0,8 -0,6 -0,4 -0,2 0 0,2 0,4 0,6 0,8 1

Group 1 Intercept - Slope Correlation: r(1)

G
ro

u
p

 S
am

p
le

 S
iz

e

r(2)=0.5

r(2)=0

r(2)=-0.5



20 

group with the larger variance. Using Neyman allocation6, and given the 
total sample size, n, we should choose n(1) = nσ(1) /(σ(1) + σ(2)), and  n(2) 
= nσ(2) /(σ(1) + σ(2)) for optimal allocation, where σ(g) is the standard devia-
tion in group g.  
 
5.4 Correlated errors of measurement 
 
Indicator residuals (errors of measurement) may be correlated over time. The 
variance of the slope difference estimate can be found as element (3,3) in the 
matrix 
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and R is a block diagonal matrix with blocks containing the covariance ma-
trix of the parameter estimates in each group (see Wänström (2007)for more 
details).  
 
Any error covariance structure can be specified and used with (22). We will 
illustrate the formula in a simple case where the residual of indicator one at 
time one is correlated with the residual of indicator one at time two etc. As-
sume that K = 1, that 02 =ησ , and that 12 =εσ . Also assume that an autocor-

relation coefficient can be written || lj xx −ρ , where |xj-xl| is the distance be-
tween time points j and l. For equally spaced measurements at times 0, 1, …, 
T-1, the error covariance matrix is  
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6 see most statistics books on sampling methodology, e.g. Scheaffer, Mendenhall and Ott 
(1996). 
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Figure 5 shows the required group sample sizes for varying number of occa-
sions, T, and varying correlations between the indicator residuals, ρ . When 

T = 2, the maximum sample size is reached for ρ = 0 (not shown in the fig-
ure). When T > 2, the sample size first increases and then decreases for in-
creasing values of ρ. The maximum is reached for larger values ofρ the 
larger T is. This agrees with results for models with AR(1) structures (e.g. Yi 
& Panzarella, 2002). We can also see that the minimum sample size is 
reached for 1=ρ , and that the curves intersect at that point. This corre-
sponds to a situation in which we perfectly measure the slope means. 
 

 
Figure 5. Required group sample sizes for autocorrelated residuals with number of 

occasions, T, and autocorrelation coefficient ρ for a one indicator model 
with σε

2 = 1 and ση
2 = 0. 

 
 
 
Although not shown in Figure 5, the sample sizes will be 330, 330, and 326 
for ρ = .1, .5, and .9 respectively for the model in Figure 1 (with K = 3 indi-
cators, reliability R = .9, residual variances ση

2 = .5 at each time point, and 
autocorrelated errors). The required sample sizes are 472, 486, and 404 re-
spectively for R = .3. These may be compared to n = 330 for R = .9 and ρ = 
0, and 464 for R = .3 and ρ = 0.  
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As mentioned, (22) covers any error covariance structure. A special case is 
when the indicator residuals are correlated with correlation ρ  within the 

same time point but independent between time points. In that case, K/2
εσ  in 

the formulas from the previous sections is replaced by 
( )( ) KK /1 22

εε ρσσ −+ . More generally, if the covariance matrix of the indi-

cators at time t is ktεΣ one should use ( ) 11' 11
−−Σ tkε .  

 

6. General measurement occasions  
 
6.1 General and equal measurement occasions 
 
When we have generally spaced measurement occasions which occur at the 
same time points for all individuals, the variance formula (16) extends to 
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xt is the elapsed time since the start of the study, and V1 is as defined previ-
ously. If there are no assumptions of equal baselines in groups, the second 
term in the denominator inside the bracket disappears.  
 
It is easily seen that the variance (23) decreases with increases in 

( )∑ = −T

t t xx
1

2  and ∑ =

T

t tx
1

2)( . The first expression indicates that it might be 

beneficial to place measurement occasions closer to the beginning and end. 
The second expression indicates that the later the measurement occasion the 
better. The optimal plan is a compromise between these two factors. If it is 
unknown whether the groups start at the same level, there is no 

∑ =

T

t tx
1

2)( term in the denominator and only the first term remains.  
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Figure 6 shows required sample sizes where values of xt (the elapsed time 
since the start of the study) are 0, .5, 1, 1.5, 2, 2.5, and 3. The top bar shows 
the required sample size for these 7 equally spaced measurements. The seven 
“x’s” (“xxxxxxx”) illustrate this situation. The second bar from above shows 
the case where we remove the second measurement occasion and thus have 
measurements at times 0, 1, 1.5, 2, 2.5, and 3. The notation “xoxxxxx”  
 
 

Figure 6. Required group sample sizes for unequally spaced occasions. The top bar 
shows the “starting model” with 7 equally spaced occasions (where “x” 
indicates a measurement), and the remaining bars show situations where 
some occasions have been removed (“o” indicates no measurement).  

 
 
 
illustrates this situation where “o” indicates no measurement. In the same 
manner, the remaining bars show different situations where we have re-
moved different number of occasions at varying places.  
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In Figure 6, we can see that removing measurement occasions close to the 
middle does not affect sample size much, whereas the effect is somewhat 
larger when removing measurement occasions close to the start point. It is 
worst to remove measurement occasions close to the end point. We can also 
see, however, that the differences between required sample sizes are not 
large, most sample sizes are between 300 and 350.  
 
6.2 General and unequal measurement occasions 
 
The formulas above deal, in some sense, with ideal situations where all par-
ticipants have been observed on all occasions. Using the theory from section 
3.5, the variance of the estimate of the slope difference can be calculated 
when we have individually varying occasions. This is done in the appendix, 
and the result is  
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where n is the group sample size, xti is the elapsed time since the start of the 
study for individual i at time t, 
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and ( )∑ == i

tii

T

t YY
V
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2
ˆ11 σ . 

 
Variance formula (24) also includes arbitrary factor variances and covari-
ances within groups, and arbitrary residual variances over time as well as 
arbitrary indicator residual variances. It can be shown that formulas (15) and 
(16) presented in Wänström (2007), as well as formulas (19), (20), and (23) 
are special cases of (24). 
 
Formula (24) can for instance be used to find the needed sample sizes when 
we expect attrition during the duration of the study. 
 
6.3 Attrition 
 
Even though we plan to observe individuals on all occasions, we may expect 
that some individuals will be lost during the study due to attrition. For ex-
ample, we might expect that individuals will provide a complete set of 
measurements with a certain probability. We might also expect others to 
drop out at different time points with certain probabilities.  
 
Assume that the elapsed time since the start of the study is xt, t = 1, …, T. 
We also assume that individuals that drop out are lost to further study. In 
each group, we will then have one subgroup of individuals that has been 
observed on occasion 1, one that has been observed on occasions 1 and 2, 
one that has been observed on occasions 1, 2, 3 etc. and one subgroup that 
has been observed on occasions 1, 2, …, T. Let pm be the probability that 
individuals are observed exactly the first m occasions where 1

1
=∑ =

T

m mp  

(see also Rochon, 1998). For simplicity, we also assume that attrition occurs 
equally in both groups, and that attrition is MAR (see Little & Rubin, 1987). 
We also assume that variances are equal in the groups and that the intercept-
covariances are zero. For groups with m measurements, the variance of the 
estimate is 
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Figure 7 shows required group sample sizes for our usual situation with T = 
4 equally spaced occasions. The bottom bar shows a situation with no attri-
tion (a response rate of 100% throughout the study), and the remaining bars 
show some situations with different expectations on attrition. With a 100% 
response rate, the required sample size per group is 330 as we have found 
previously.  
 
If we define an observation to be a measurement on an individual at one 
occasion, bars 2 to 5 from below show situations where we expect 7.5% of 
the observations to be lost throughout the study but at varying occasions. 
The second bar from below shows the case where 30% of the individuals 
drop out at the fourth occasion (we lose 7.5% of the observations at the 
fourth occasion). The third bar from below shows the case where 15% of the 
individuals drop out at the third occasion (we lose 3.75% of the observations 
at the third occasion and 3.75% at the fourth). In the same manner, the fourth 
bar from below shows the case where 10% drop out at the second occasion, 
and the fifth bar shows the case where 5% drop out at occasions two, three, 
and four respectively. We can see that the required sample size increases 
with attrition, and that the increase depends somewhat on when and how the 
attrition occurs. For example, loosing all 7.5% of the observations at the last 
time point (second bar from below) results in a sample size of 375, whereas 
loosing 2.5% at occasions 2, 3, and 4 respectively (fourth bar from below) 
results in a sample size of 367. Bars 6 to 9 from below show situations 
where we expect 15% of the observations to be lost. The same pattern is seen 
here.  
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 Figure 7. Required group sample sizes for studies with attrition. The X-axis shows 
the percentage of participants expected to stay in the study at each of four 
occasions (response rate) and the Y-axis shows the required group sample 
size. 

 
 
 
We can also see, from (26), that individuals who only participate at the first 
time point do not add any precision to the estimation of differences in slope 
means across groups. The fourth bar from below, with a 90% response rate 
at occasions 2, 3, and 4, shows the same sample size as a response rate of 
90% at all four occasions: 67.3669./330 = . This can be understood by real-
izing that participants who are measured at one occasion only add precision 
to the estimation of the intercept and not to the slope. Even if we could 
measure the intercept perfectly in the two groups, this would not help us in 
estimating the difference in slopes. This bar, and the third bar from above, 
thus also show the required sample size if we were to use listwise deletion, 
i.e. only keep the 90% or 70% of the individuals respectively who were ob-
served on all occasions. The third bar from above can be compared to the 
second bar from below where we keep all available individuals. As shown, 
the difference in required sample size is fairly large, and the required sample 
size increases substantially if we plan to use only individuals with a com-
plete set of measurements. The increase in sample size is not as large if we 
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use listwise deletion in situations where we loose participants earlier on in 
the study (compare e.g. bars three and four from above). 
 
Formula (26) is quite complex, especially when the number of measurement 
occasions, T, is large. Overall, Shobaki, Shivakumar, and Steele (1998) sug-
gested using a simple rule of thumb to adjust the originally computed re-
quired sample size for expected attrition: n* = n (1 + DRP), where n* is the 
adjusted sample size, n is the sample size obtained from calculations based 
on zero attrition, and DRP is the dropout rate expected to occur randomly 
across measurements. Using this rule of thumb we obtain n = 330 for the 
case with no attrition. Adjusting this expecting 15% attrition scattered ran-
domly throughout the measurement occasions give n* = 330 (1 + .15) = 
379.5 individuals per group. This can be compared to n = 371 obtained from 
(26) – see the fifth bar from below. In the same manner, we have n* = 429 
(compared to n = 423) for 30% attrition – see the fourth bar from above, and 
n* = 528 (compared to n = 589) for 60% attrition – see the second bar from 
above. As noticed, there are some discrepancies, especially for the case with 
60% attrition in which the rule of thumb technique underestimates the re-
quired sample size by more than 10%. Overall, Tonidandel, and Starbuck 
(2006) recommended that this rule of thumb be used when 5≥T  equally 
spaced measurements, and when expected attrition is no more than 40%, 
however.  
 
If attrition occurs uniformly throughout the study, we suggest to use a cor-
rection where n* = n/(1- c DRP). This is based on a theoretical consideration 
and assumes that attrition occurs uniformly. If the aim is to compare two 
group level means, we should choose c = 1/2. If the aim is to compare two 
slope means with no assumptions on equal baseline levels, we should choose 
c = 3/4. In cases where we assume equality of baseline levels, c should be 
between 2/3 and 3/4. Using c = 3/4 to obtain conservative sample sizes, we 
obtain n* = 330 /(1 – 3× .15/4) = 371.8 for 15% attrition, n* = 425.8 for 30% 
attrition, and n* = 600 for 60% attrition, and these sample sizes are very 
close to those obtained by the formula (371, 423, and 589).  
 

7. Discussion 
 
7.1 Summary and conclusions 
 
We presented algebraic expressions for the variance of the estimate of slope 
differences between two groups for LGC models. They allow researchers to 
evaluate effects of the number of measurement occasions, effect size, num-
ber of indicators and their reliabilities, factor variances and covariances, 
correlated errors, and attrition on needed sample size. Results from numeri-
cal illustrations agree with suggestions from Yi and Panzarella (2002) that 
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researchers should focus on obtaining measurements at the end of the study. 
As long as we have measurements at the end points, dropping intermittent 
occasions does not make a big difference. Although this is of course depend-
ent on the variance around the individual regression lines.  
 
If groups can be assumed to have equal baseline levels, observations at the 
end are more important than early observations. In cases of attrition, we lose 
observations at the end, and attrition can therefore increase sample sizes 
needed substantially. Individuals who are only measured at the start of the 
study do not add to the precision of measuring the slope difference between 
groups. Using listwise deletion, i.e. using only those individuals with a com-
plete set of measurements, can substantially increase the required sample 
size, and more so if the attrition occurs primarily at the end. Overall et al. 
(2006) recommended a rule of thumb that can be used to correct the original 
computed sample size for expected dropout. It appeared to work fairly well 
in our examples although it underestimated sample sizes in some cases. They 
recommended it for designs with more than four occasions and a dropout 
rate of less than 40% however. We suggested using another correction if 
attrition occurs uniformly, and it appeared to work for our examples. With 
only 4 occasions, as in our examples, attrition does not occur uniformly, 
however, and this correction should work better the more occasions we have.  
 
Even though observations at the beginning and end are more important than 
middle observations, there are several reasons to use designs with intermit-
tent observations. If we only obtain measurements at two occasions say, we 
will not be able to test linearity assumptions. If we want to test for higher 
order trends, we will need even more occasions. We should also keep in 
mind that although spacing measurement occasions unequally so that indi-
viduals are observed more often at the end can be beneficial in regards to 
needed sample size, this might result in problems, such as memory effects. 
 
A treatment may increase or decrease the variance in the treatment group. A 
program aimed at stimulating cognitive abilities in children may stimulate 
already gifted children more than other children for example, and increase 
the variance in the treatment group. On the other hand, the program may be 
geared towards raising scores of disadvantaged children, and thus decrease 
the variance. If we suspect that treatment will have an effect on the variance, 
we should account for this in computing the needed sample sizes. In addi-
tion, a treatment may affect the covariance between the growth factors. A 
program that will keep on stimulating already gifted children may increase 
the covariance between the intercept and slope factors in the treatment group 
relative to the control group. Factor covariances may decrease or increase 
the required sample size and should therefore be considered in the design 
phase as well.  
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Correlations between errors of measurements also increase or decrease 
needed sample sizes. These correlations may arise because of memory ef-
fects, for example, if the same indicators are used repeatedly (e.g. Jöreskog 
& Sörbom, 1979). Correlated errors of measurements indicate that we meas-
ure our constructs with lower measurement precision. When the correlation 
between residuals at the first and last occasion is large, this makes up for 
lower measurement precision however. We will thus need larger sample 
sizes for small positive correlations when we have more than two occasions 
(compared to zero correlations), and smaller sample sizes for larger correla-
tions. We examined the correlation between adjacent measurements, and an 
auto correlation of 0.5 for a two-occasion design means that the endpoint 
residuals are correlated 0.5, whereas a six occasion design with autocorrela-
tion 0.5 means that the end point residuals are correlated 0.55 = 0.03. The 
decrease in sample size is thus reached sooner for designs with few meas-
urement occasions in our illustrations. It might sometimes be more appropri-
ate to keep the correlation between the endpoints constant if one is to com-
pare designs with different number of measurement occasions.  
 
Although we did not specifically evaluate duration of the study, keeping the 
number of measurement occasions constant, this was specifically evaluated 
in Raudenbush and Liu (2001) and Wänström (2007). Our formulas include 
xt, the elapsed time since the start of the study. If we want to evaluate effects 
of duration of the study or frequency of observation, keeping one or the 
other constant, we can compare models using appropriate values of xt.  
 
We used Cohen’s (1988) standardized effect standards (e.g. d = .2 for a 
small effect size) in this paper. However, as discussed in Hancock (2001), 
Cohen’s (1988) standards refer to observed variables, and these may be ad-
justed to apply to latent variables. Hancock (2001) showed how the stan-
dardized effect sizes could be adjusted for reliabilities of the indicators of 
latent constructs. We used observed variable standards in this paper because 
one of the aims was to explore reliability effects on sample size. However, 
researchers may use latent variable standards instead. For effect size stan-
dards of latent variables, see Hancock (2001). 
 
As mentioned previously, several researchers have studied power and sam-
ple sizes of LGC models using either simulations or Satorra and Saris (1985) 
power approximation technique. The sample size formulas presented in 
Wänström (2007) were found to be practically equivalent to both simulations 
and Satorra-Saris approximations. Our formulas are a reasonable choice 
when choosing a technique for deciding required sample size. They hold 
approximately in cases of nonnormality and unknown covariance matrices as 
long as sample sizes are large. However, in cases of unknown covariance 
matrices, parameter values need to be guessed. Values from previous studies, 
pilot studies, or theory can be used as estimates in the formulas. Because 
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estimates used in sample size formulas may not be very accurate, sample 
size boundaries may be computed from ranges of hypothetical parameter 
values.  
 
7.2 Future work 
 
Our formulas can be applied to slope differences between groups. Rauden-
bush and Liu (2001) presented formulas for trends in general, i.e. for linear 
slopes, quadratic slopes etc. Future work may look at extending our formulas 
to incorporate higher order polynomials. Another way of handling nonlinear 
growth in LGC models is to estimate some of the slope factor loadings. In 
other words, we may set xt to be 0, 1, 2, X, where X is estimated (see e.g. 
Meredith & Tisak, 1990; Raykov, 2000). In this way, we can either constrain 
the estimated factor loading(s) to be equal across groups or we can estimate 
them in both groups. Effects of estimated factor loadings on sample sizes can 
be explored. 
 
Our formulas can be extended in various other ways. For example, covari-
ates may be included in the models, additional levels may be added, differ-
ences between more than two groups may be examined. In addition, other 
aspects than mean differences may be considered. As mentioned previously, 
a treatment may affect the variances and/or covariances in the treatment 
group. Muthén and Curran (1997) noted that larger sample sizes were gener-
ally needed to detect baseline-treatment interactions compared to detecting 
differences in slope means between groups. In addition, Hertzog et al. (2006) 
noted that power to detect differences in covariances between slopes in sin-
gle groups were generally low. Future studies may investigate factors that 
will affect sample sizes needed when we are interested in variances or co-
variances in addition to (or instead of) means.  
 
In conclusion, we extended work by Wänström (2007) and presented alge-
braic variance expressions that can be used to compute needed sample sizes 
for detection of differences in group slope means in second order LGC mod-
els. We found that observations at the beginning and end are more important 
than middle observations, that observations at the end are most important if 
we assume equal baseline means, and that attrition can substantially increase 
the needed starting sample size. We also suggested a correction to needed 
sample size that can be used when attrition occurs uniformly. In addition, we 
found that correlations between factors may increase or decrease needed 
sample size. Our formulas can be used for arbitrary variances, and in designs 
with generally spaced and individually varying measurement occasions 
when baseline levels may be assumed equal in groups. 
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Appendix  
 
Assume that individual i, i = 1, …, n, is observed on each indicator k, k = 1, 
…, K, at each occasion t, t = 1, …, Ti where xti is the elapsed time since the 
start of the study for individual i at time t. Let Ykti denote individual i’s score 
on indicator k at occasion t. We assume, for simplicity, that all indicator 
factor loadings, λktε, are 1. Conditional on his or her intercept and slope pa-
rameters α1i and α2i,  
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and iY  and ri are independent. 

 
Unconditionally,  
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and 
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We can create a new variable, zi, that is independent of ri, 
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We can estimate 2α , the mean slope, from all zi :  
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These two estimates are combined:  
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Assume now that we have two groups. We then have, from each group, an 

estimate of the mean that is independent of zb̂  and rb̂  
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where the superscript (g) refers to group. In randomized designs, it is rea-
sonable to assume that the intercepts are equal between groups, ( ) ( )2
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If we, for simplicity, assume that ( ) ( )21 xx =  and that we have equal vari-
ances between groups, then 
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Combining (b) and (c) gives 
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