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Abstract

In this paper variance stabilizing �lters are discussed. A new �lter with nice proper-
ties is proposed which makes use of moving averages and moving standard deviations,
the latter smoothed with the Hodrick-Prescott �lter. This �lter is compared to a
GARCH-type �lter. An ARIMA model is estimated for the �ltered GDP-series, and
the parameter estimates are used in forecasting the original series. These forecasts
compare well with those of ARIMA, ARFIMA and GARCH models based on the un-
�ltered data. The �lter does not colour white noise.

Keywords: Economic growth, heteroscedasticity, variance stabilizing �lters, the Hodrick-
Prescott �lter.

1. Introduction

Data transformations are made in order to facilitate analysis of empirical time
series. There are a number of reasons why one might want to remove het-
eroscedasticity before modelling. For one thing, it saves on parameters. Another
reason is the fact that most time series models require stationarity. Constant
mean and variance are necessary requirements for (weak) stationarity. In case
the variance is proportional to the level of the series, a logarithmic transforma-
tion may make the series both homoscedastic and stationary in variance. But
many time series do not have constant, or even stationary variance even after
transformations. Often heteroscedasticity is simply ignored and there does not
seem to exist heteroscedasticity removing �lters in the literature. Handling this
problem is still a hot topic, see e.g. Baltagi et. al (2009). Giordani and Villani
(2010) suggested the locally adaptive signal extraction and regression (LASER)
model to capture the dynamics of the signal and noise. The mean and variance
of these components are allowed to slowly or abrubtly shift and the model (using
a normal mixture distribution for each component) is then able to capture these
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movements.

In this paper we present a new �lter designed to remove heteroscedasticity. This
is achieved by dividing the time series with a moving average of its standard de-
viations (STDs), smoothed by a Hodrick-Prescott �lter (HP). Here we apply the
�lter to the logarithmic, quarterly and seasonally adjusted US GDP-series. The
same series of the UK and Australia are also analyzed. All the above time series
are found to be signi�cantly heteroscedastic. After �ltering no heteroscedastic-
ity remains. Moreover, white noise is not coloured.

Within the model building framework, there exists numerous ways to handle
heteroscedasticity such as weighted least squares (WLS) or generalized least
squares (GLS) in regression models, autoregressive conditional heteroscedas-
ticity (ARCH) and generalized ARCH (GARCH) models for time series data.
The most straightforward way to remove heteroscedasticity in the GDP series
above is to divide the heteroscedastic series by the conditional volatility esti-
mated from ARCH/GARCH models or from any of their many generalizations.
A comparison and a discussion of the two approaches will be pursued in this
paper.

Despite the heteroscedasticity in the �rst di¤erenced logarithmic (Di¤ ln) series,
ADF tests do not signal any unit root. This can lead to a statistically correct,
but ine¢ cient use of e.g. ARIMA or ARFIMA models. Hess and Iwata (1997)
conclude that there is no model that better replicates business cycle features
than the simple ARIMA(1,1,0) model. This was contested by Candelon and
Gil-Alana (2004) who considered fractionally integrated models, and showed
that ARFIMA models even more accurately describe the business cycle charac-
teristics in the US and the UK. After applying the proposed �lter, an adequate
ARIMA-model is estimated for the �ltered GDP-series, and the parameter es-
timates are then used in forecasting the original time series. The forecasts are
compared with those from ARIMA, ARFIMA and GARCH models estimated
from un�ltered data, showing that ARFIMA is not the best model. The e¤ect
of the ine¢ ciency is measured.

The data are presented in Section 2 and the e¤ects of heteroscedasticity are
discussed in Section 3. Section 4 contains a discussion about the �lters, where
we also test for possible side e¤ects. Section 5 contains the forecast comparison
and Section 6 concludes.

2. The data

The seasonally adjusted US GDPq (quarterly) series 1947-2005 (n = 236 obser-
vations) can be found on the website of Bureau of Economic Analysis, www.bea.gov.
The seasonally adjusted UK GDPq 1955-2005 (n = 204), and the Australian
GDPq series 1959-2005 (n = 188) were copied from the websites National Sta-
tistics (www.statistics.gov.uk) and of OECD (www.oecd.org), respectively. The

2



Di¤ ln GDP quarterly time series together with its �rst four estimated mo-
ments are shown in Figure 2.1. The results of the augmented Dickey-Fuller
(ADF) test for a unit root and the ARCH-Lagrange multiplier (ARCH-LM)
test for homoscedasticity are also included.

Figure 2.1: The Di¤ ln GDP series and their properties
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Diff ln US GDPq 1947­2005

Mean (b�) 0:017
STD(b�) 0:011
Skewness (b� ) 0:22
Kurtosis (b�) 2:05
ADF (p-value) 0:000
ARCH-LM (p-value) 0:000
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Diff ln UK GDPq 1955­2005

Mean (b�) 0:021
STD(b�) 0:015
Skewness (b� ) 0:99
Kurtosis (b�) 2:07
ADF (p-value) 0:005
ARCH-LM (p-value) 0:000
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Diff ln Aus GDPq 1959­2005

Mean (b�) 0:022
STD(b�) 0:015
Skewness (b� ) 0:49
Kurtosis (b�) 0:45
ADF (p-value) 0:000
ARCH-LM (p-value) 0:005

The skewness is signi�cantly nonzero in the UK and Aus series and signi�cant
leptokurtocity appears in the US and UK series. Unit root tests are highly sensi-
tive to heteroscedasticity. Hamori and Tokihisa (1997) showed that a permanent
STD shift strongly a¤ects the size of Dickey-Fuller type tests. The e¤ect of a
single break in STD on the ADF test has been analyzed by Kim et al. (2002),
who reported risks of over-rejection of the null hypothesis in the presence of
a negative break. This builds on the study by Kim and Schmidt (1993) who
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showed that Dickey-Fuller tests tend to reject too often in the presence of con-
ditional heteroskedasticity. The discussion was extended by Cavaliere (2004),
who came to the same conclusion for other commonly used unit root tests. In
our study, the null hypothesis of a unit root could not be rejected in all original
series, but rejected for the Di¤ ln series, signalling stationarity. However the
persistence in the series in Figure 2.1 may hint at an integrating order between
zero and one, which may be hard to detect due to heteroscedasticity.

3. E¤ects of heteroscedasticity

Often nonstationary economic time series can be made stationary simply by
di¤erencing. But this can remedy only nonstationarity in mean - nonstationarity
in variance must be handled in other ways.

Let the variance of a nonstationary process change with the level, V ar(yt) =
cf(�t), for any positive proportionality constant c, and where f is an increasing
function of the time varying level �t: Then it is possible to �nd a transformation
T so that T (yt) has constant variance by approximating the function by a �rst
order Taylor series around �t

T (yt) � T (�t) + T 0(�t)(yt � �t):

Now
V ar [T (yt)] � [T 0(�t)]

2
V ar(yt) = cf(�t) [T

0(�t)]
2
:

For the variance of T (yt) to be constant the transformation must be chosen so
that

T 0(�t) =
1p
f(�t)

;

that is

T (�t) =

Z
1p
f(�t)

d�t:

If, for example, V ar(yt) = c2�2t , then T (�t) =
R

1p
�2t
d�t = ln�t: Hence, a

logarithmic transformation of the series will have a constant variance.

If instead the variance of the series is linearly proportional to the level so that
V ar(yt) = c�t, then the square root transformation

p
yt will produce a constant

variance. More generally, the Box-Cox transformation (Box and Cox, 1964) that
includes the logarithmic and the square root transformations as special cases,
is often used to stabilize the variance. However the transformations mentioned
above are only de�ned for positive series, and more importantly, what to do
when the standard deviation is not a function of the series?

In regression it is well known that OLS-estimates are not e¢ cient in the presence
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of heteroscedastic disturbances. The problem can be solved using the standard
theory of GLS by simply dividing each observation and each explaining variable
by an estimate of the varying standard deviation of the disturbances. OLS es-
timates of the transformed model would then be e¢ cient.

In the univariate case one likes to preserve the dynamic structure (autocorrela-
tion) while making the series homoscedastic. But, here too, the non-constant
standard deviation �t is unknown and must be estimated. With just one reali-
sation of the series this can not be done. A way out is to estimate �t recursively
using a window of observations1 . As in the GLS case, dividing by appropriate
observation weights would produce estimates that are BLUE.

Consider Figure 3.1 showing the autocorrelation function (ACF) of three time
periods of the US GDP-series, the �rst and last 15 years, and the entire series.

Figure 3.1 ACF of Di¤ ln US GDPq
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There are obvious similarities in autocorrelation structure between the �rst and
most volatile period (1947-1961), and the entire series (1947-2005). The most
recent period (1991-2005), which is crucial for forecasts, does not seem to have
much in�uence on the ACF estimates for the entire period. There has been a
change in the autocorrelation structure, but with equal observation weights the
model estimates will mainly be based on the old structure, because of the high
volatility in the beginning of the time series.

4. Heteroscedasticity �lters

Prior to heteroscedasticity �ltering, the series is stationarised and normalised
to symmetrically vary around zero. Otherwise the �ltered GDP series would
contain a trend. The Di¤ ln series in Figure 2.1 all have a nonzero mean and
despite the rejection of a unit root, they exhibit slowly changing levels. This

1De�ne the variance of a moving window of length 2� + 1; with � even:
V ar(yt) =

1
2�+1

P�
i=�� (yt � �t)

2, where �t =
1

2�+1

P�
i=�� yt
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hints at the possibility of a double root, or the true integrating order could lie
somewhere between I(1) and I(2), suggesting fractionally integrated models,
such as ARFIMA. This is also supported by Candelon and Gil-Alana (2004)
who concluded that the US and UK GDP series are integrated of order around
I(1:4). In the nine cases in the subsequent Section 5, the root is (along with
the other parameters) estimated to lie between 1:27 and 1:47. Taking just one
di¤erence is not enough to extract all trend wheras taking another di¤erence
over-di¤erences the data. One solution to the problem is simply to take a frac-
tional di¤erence of degree d = 1:4 prior to heteroscedasticity �ltering. The local
trends in the series will then be close to eliminated. In general, yet another pa-
rameter (d) needs to be estimated and results based on fractionally integrated
time series are di¢ cult to interpret.

4.1 A simple �lter

Transforming the series by subtracting from each (Di¤ ln) observation a local
mean is a tempting alternative. It is possible to capture integration orders
between I(1) and I(2) using one of the following two operations:

(a) z
(a)
t = �yt �

t+�X
�=t��

�y� /k ; t = � + 1; � + 2; :::; n� �

(4.1)

(b) z
(b)
t = �yt �

t+�X
�=t��

�y��1 /k ; t = � + 2; � + 3; :::; n� � + 1

where the centered �yt = yt � yt�1, yt is the log GDP series at time t, k (odd)
is the window length, � = (k � 1)=2 and even. Using di¤erent values on � in
(4.1), di¤erent degrees of integration are achieved. There are two extremes. For
� = (n� 1)=2; the term

Pt+�
�=t���y� /k equals �y. The other extreme appears

when k equals one; that is � = 0: Operation (4.1b) is used only in the latter
case and is equivalent to a the second di¤erence operation, �2yt. The choice of
� depends on the series studied. If it is close to I(1) then you should just choose
� close to (n� 1)=2, and if the series is close to I(2) then choose � = 0 in (b) or
a small value on � in (a). No matter what choice of �, (4.1) is a high-pass �lter
in that it removes the low frequency movements of the series. The gain is the
change in the output when a step change of unit size hits the input. Figure 4.1
shows the gain for the two extremes.
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Figure 4.1:The gain functions of the special cases one di¤erence, � = (n� 1)=2
(solid line) and two di¤erences, � = 0 (dotted line)

This transformation can be generalized by raising zt to the power d,
�
z
(i)
t

�d
where i = a; b. This enables us to handle integrating orders below one and
above two. However, this is not needed for the series studied in this paper.

Figure 4.2 shows the estimated spectral densities of the (4.1) for the Di¤ ln US,
UK and Aus data, using window length k � n=2, k = 35, k = 15 and k = 1. In
all cases a Parzen window was used to smooth the spectral densities.

Figure 4.2: The spectrum of the ln US, UK and Aus data
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For the extreme of just one di¤erence one gets a spectrum dominated by low
frequency variations, due to the persistence in these series. On the contrary,
using (4.1b) with k = 1 (�2yt) removes all variation at the zero frequency in
these series. Neither of the two extremes is very attractive to use here, the
dominant low or high frequency properties overshadow frequencies in between.
The remaining alternatives all have very similar high frequency properties. As
expected when the windows get shorter the low frequencies are transferred to
higher frequencies. The high frequency variations resulting from even shorter
windows is too dominating. It seems that window length k = 15 is a good
middle course which succeeds in detrending the data without removing business
cycle features. Using k = 15, all three �ltered spectral densities are bimodal
with peaks at around three and ten quarters. The �rst four moments of z(a)t

from (4.1), using k = 15, are reported in Table 4.1.
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Table 4.1: The moments of z(a)t;US ; z
(a)
t;UK and z(a)t;Aus using k = 15

US UK Aus

Mean (b�) 0:000 0:000 0:000
STD(b�) 0:011 0:011 0:012
Skewness (b� ) 0:034 �0:459 0:123
Kurtosis (b�) 2:362 4:681 0:932

The skewness is signi�cantly nonzero in the UK, and signi�cant leptokurtocity
appears in all series, cf. Figure 2.1. Moreover the series are still signi�cantly
heteroscedastic but stationary.

Removing the heteroscedasticity is a matter of dividing (4.1) by estimates of the
changing volatility. It does not seem reasonable to assume that the volatility
changes abrubtly all the time - smoothing is necessary as a compromise between
contrafactual constant STD and unrealistically large volatility changes from one
quarter to the next. Hence we assume that the variance is slowly evolving over
time. Thus, a logical estimate of the volatility at time t is

HP (
)

8>><>>:
vuutPt+�

�=t��

�
z
(i)
�

�2d
2�

9>>=>>; , i = a; b (4.2)

where � = (l� 1)=2 and l is the window length which might not be equal to the
window length, k, in (4.1). In this study however, k = l. HP (
) is the Hodrick-
Prescott (1997) �lter designed to decompose a macroeconomic time series into
a nonstationary trend component and a stationary cyclical residual.

Given a time series xt (in this case the varying variance), the decomposition
into unobserved components is

xt = gt + ct;

where gt denotes the unobserved trend component at time t, and ct the unob-
served cyclical residual at time t. Estimates of the trend and cyclical components
are obtained as the solution to the following minimization problem

min
[gt]

n
t=1

(
nX
t=1

c2t + 

nX
t=3

(42gt)
2

)
; (4.3)

where 4gt = gt�gt�1 and gmin is the HP-�lter. The �rst sum of (4.3) expresses
the closeness between the HP trend and the original series, while the second sum
represents the smoothness of the trend. The positive smoothing parameter 

controls the weight between the two components and is thereby a measure of the
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signal-to-noise variance ratio. As 
 increases, the HP trend becomes smoother
and vice versa. Note that the second sum, (42gt), is an approximation to the
second derivative of g at time t.

Figure 4.3 shows the moving STDs and illustrates the e¤ect of the HP-�lter for
di¤erent values of 
.

Figure 4.3: The moving STDs (thin solid line) and the HP trend using 
 = 100
(dashed), 
 = 1 600 (thick solid) and 
 = 50 000 (dashed/dotted)
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If we would not have made the mean correction in (4.1) a positive trend would
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have resulted in ezt below, cf. Figure 2.1 and 4.3. For quarterly data a commonly
used value is 
 = 1 600, originally proposed in Hodrick and Prescott (1997)2 .
In this study, 
 = 1 600 accords well with the principle "not too rugged - not
too smooth".

Dividing (4.1) by (4.2) and multiplying by the overall STD of the entire period,
sy, and adding the corresponding arithmetic average y, we get the proposed
heteroscedasticity removing �lter

ezt = sy
266664

�
z
(i)
t

�d
HP (
)

 rPt+�
�=t��

�
z
(i)
�

�2d
=2�

!
377775+ y; (4.4)

where t = max[k � �; l � �];max[k � � + 1; l � � + 1]; :::; ezt is the �ltered series
and i = a; b. Dividing (4.1) by the moving STDs directly remains an alternative
hypothesis to be considered later on in this section. Whatever the choice of 

in (4.4), the trend component, gt, of the HP �lter is a low-pass �lter, see Figure
4.4.

Figure 4.4:The gain functions of the HP �lter using 
 = 100 (dotted line),

 = 1600 (solid line) and 
 = 50 000 (dashed line)3

This means that for any parameter values, (4.4) is a high-pass �lter. The �lter
is ad hoc in the same sense as the X11 seasonal adjustment. It is well known
that seasonal adjustment �lters may introduce spurious autocorrelation (as does
X11), see e.g. Wallis (1974). This would be a serious disadvantage of the
�lter and can be tested by feeding white noise into (4.4). The above �lter was
applied on 10 000 simulated i.i.d N(0; 1) series with 200 observations each, the

2" ...a 5 percent cyclical component is moderately large, as is a one-eighth of 1 percent
change in the growth rate in a quarter", yielding

p
� = 5=(1=8), � = 1600:

3The gain function of the HP �lter is G (w; �) = 1
1+4�(1�cosw))2 , where w is the frequency.
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approximate length of the GDP-series in this study. The results are shown in
Table 4.2.

Table 4.2: Filter e¤ects on white noise

White noise 
 = 1 600 
 = 10 000 
 = 100 000
Mean 0:00005 0:00001 0:00002 0:00001
STD 0:99968 0:99244 0:99468 0:99725

Skewness (�) 0:00002 0:00046 0:00035 0:00021
Kurtosis (�) 2:99983 2:94535 2:96130 2:98420
Jarque-Bera 491=10000 488=10000 490=10000 504=10000
Q�0:05(12) 486=10000 651=10000 589=10000 507=10000
Q�0:05(24) 489=10000 691=10000 612=10000 521=10000

The �rst four moments in Table 4.2 are close to identical for the white noise se-
ries, un�ltered and �ltered. The size of the Jarque-Bera test for normality is also
correct at con�dence level 0:05, the size of the Ljung-Box autocorrelation tests
Q�0:05(12) and Q

�
0:05(24) is sligthly too large, but no major distortion appears.

Still, for 
 = 1 600, the right hand tail of the �2�distribution is sligthly too thin.
Thus, for 
 = 1 600 a threshold value of 0:065 (�20:065(12) = 19:85) is more ap-
propriate for the 0:05 signi�cance level, for 12 lags, and 0:07 (�20:07(24) = 35:24)
for 24 lags. When 
 !1, the HP-�lter becomes linear, exactly preserving the
distribution. Figure 4.5 shows the �ltered series ezt with k = l = 15; d = 1 and

 = 1 600: Series of moving STDs (thick solid lines) are also included (using
window length 15), in order to elucidate the e¤ect of the �ltering.

Figure 4.5: The �ltered series
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Filtered series using (4.4) but without HP smoothing of the STDs

ez(no HP)t = sy

2664
�
z
(i)
t

�d
rPt+�

�=t��

�
z
(i)
�

�2d
=2�

3775+ y
are very similar. For the sake of completeness, the two alternatives will be
compared. Figure 4.5 shows that both the mean and the STD look stable in the
�ltered series. As expected these series pass stationarity and homoscedasticity
tests, see Table 4.3. Because of the low power of the ADF and ARCH-LM test
in possible concurrent e¤ects of levelshifts and heteroscedasticity, these tests are
supplemented by the results of the Phillip-Perron (P-P) test for a unit root and
the Breusch-Pagan(B-P) test of homoscedasticity.
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Table 4.3: Testing for a unit root and for homoscedasticity in the �ltered series
(p-values) when (4.1) is divided by un�ltered b�t (no HP) and according to (4.4)
(HP)

US UK Aus
no HP HP no HP HP no HP HP

ADF 0:00 0:00 0:00 0:00 0:00 0:00
P-P 0:00 0:00 0:00 0:00 0:00 0:00
ARCH-LM 0:20 0:71 0:66 0:90 0:81 0:63
B-P 0:03 0:31 0:43 0:89 0:84 0:93

As expected, the null hypotheses of a unit root is rejected in all cases. Also,
�lter (4.4) successfully removes heteroscedasticity from the US, UK and Aus
GDP series, without seriously a¤ecting the dynamics of the series. Note that
the Breusch-Pagan (B-P) test signals heteroscedasticity (at signi�cance level
0:05) in the �ltered US series when no HP �lter has been used to smooth the
volatility.

4.2 A GARCH-type �lter

It is interesting to compare these results to the other approach mentioned earlier,
namely to divide (4.1) by the conditional volatility estimated from GARCH-type
models. Speci�cally, in the presence of asymmetries and leptokurtocity, non-
linear GARCH models must be considered which have the ability to capture
asymmetric e¤ects. Several such models exist in the literature, most notably the
EGARCH model of Nelson (1991), the TGARCH model of Zakoian (1994) and
the GJR-GARCH model of Glosten et. al (1993). These models were originally
introduced to capture the leverage e¤ect of stock returns. The models that are
found adequate and minimize Akaike´s criterion are:

z
(a)
t;US = "t

ln(ht;US) = �0:66
(0:26)

� 0:43
(0:14)

 
"t�1p
ht�1

!
+ 0:42
(0:11)

 ����� "t�1p
ht�1

������ E
 ����� "t�1p

ht�1

�����
!!

+ 0:93
(0:03)

ln(ht�1)

z
(a)
t;UK = 0:22

(0:07)
z
(a)
t�1;UK + "t

ln(ht;UK) = �0:15
(0:08)

� 0:11
(0:02)

 
"t�1p
ht�1

!
+ 0:30
(0:09)

 ����� "t�1p
ht�1

������ E
 ����� "t�1p

ht�1

�����
!!

+ 0:98
(0:02)

ln(ht�1)

z
(a)
t;Aus = "t

ht;Aus = 0:06
(0:03)

"2t�1 + 0:93
(0:04)

ht�1

14



Note that the coe¢ cient estimates of ht�1 are close to one indicating a strong
persistence in the conditional variance, or outright nonstationarity. This is also
seen in Figure 4.6 showing the conditional volatility estimated using the above
models (left panel) and the corresponding �ltered series (right panel).

Figure 4.6: EGARCH/GARCH �ltered series
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Note the rugged shape of the estimated volatility. It seems that HP-�ltering
of the volatility series would be even more needed here than in �lter (4.4), see
Figure 4.3. This is performed in the following subsection showing a comparison
of the above �lters.
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4.3 Comparing the �lters

Figure 4.7 shows a comparison of the HP trends (with 
 = 1 600) of the esti-
mated volatilty using �lter (4.4) and the EGARCH/GARCH �lter.

Figure 4.7: The HP trend of moving STDs of zt for �lter (solid lines) and of
EGARCH/GARCH estimated STDs (dashed lines)
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The amplitude of the HP trend is higher using �lter (4.4) than the alternatives,
rendering a heavier heteroscedasticity �ltering. Also there are phase shifts be-
tween the HP trends, which is due to the fact that �lter (4.4) is centered and the
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EGARCH/GARCH is a causal �lter. This can be corrected for by lagging the
HP trend according to the calculated phase shift or constructing a two-sided �l-
ter, as in model based seasonal adjustment, see Hillmer and Tiao (1982). Here,
the maximum value of the phase spectrum is 12:3, 10:7 and 10:9 quarters for the
US, UK and Aus respectively. After correcting the series, almost identical �lters
are obtained. Note however that this procedure results in losing observations in
the end of each series.

Despite the rather unstable looking moving STDs of the EGARCH/GARCH
�ltered series, the ARCH-LM tests fail to reject the null hypotheses of ho-
moscedasticity, seeTable 4.4

Table 4.4: Test for a unit root and homoscedasticity in the EGARCH/GARCH
�ltered series (p-values)

US UK Aus
no HP HP no HP HP no HP HP

ADF 0:00 0:00 0:00 0:00 0:00 0:00
P-P 0:00 0:00 0:00 0:00 0:00 0:00
ARCH-LM 0:97 0:31 0:39 0:68 0:65 0:80
B-P 0:90 0:11 0:07 0:32 0:44 0:83

Whether the HP �lter renders the heteroscedasticity �ltering more e¤ective or
not is still not clear. The p-values for the UK and Aus are higher using the HP
�lter than without, but it is the other way around for the US. Note, however,
that the p-values for the ARCH-LM and B-P tests of the �ltered series are con-
siderably smaller on average compared to the ones in Table 4.3. To elucidate
the di¤erences, Figure 4.8 presents the moving STDs (again using k = 15) of
each �ltered series. The ezt series without the HP �lter have been omitted in
order to simplify comparisons. Also, to enable graphical comparisons in both
ends, �lter (4.4) has been modi�ed there.

Figure 4.8: The moving STDs using �lter (4.4) (solid line), and the EGARCH/GARCH
�lter (dashed line), with HP (thick line) and without HP(thin line)
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For all three countries it is again evident that �lter (4.4) more e¤ectively removes
heteroscedasticity in these series. The moving STDs of the EGARCH/GARCH
�ltered series all contain a decreasing local trend in the beginning, and after
that the amplitude of the swings seem to be larger. This is especially true
when no HP �lter was used in the �ltering. This result is somewhat surprising,
particularly for the US for which both the ARCH-LM and B-P tests in Table 4.4
report very high p-values compared to the other �lters. According to e.g. the
sign test, the median absolute deviations from the overall STD is signi�cantly
smaller using �lter (4.4) than the EGARCH/GARCH �lter. Applying the HP
�lter on the STDs or not does not change this result. Our recommendations to
apply it are based on logical considerations, see the discussion in Section 4.1.
Also, this way of reasoning is supported by the test results in Table 4.3, 4.4, the
sign test and Figure 4.8.

Figure 4.9 shows that the spectral densities of the �ltered series using (4.4)
or the EGARCH/GARCH �lter, with and without the HP �lter, are almost
identical.
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Figure 4.9: Spectral densities of the �ltered series using (4.4) (solid line), and
the EGARCH/GARCH �lter (dashed line), with HP (thick line) and without
(thin line)

3210 Freq

D
en

si
ty

US

3210 Freq

D
en

si
ty

UK

3210
Index

D
en

si
ty

Aus

Freq

The close similarities of the spectral densities are to some extent due to the
Parzen window and truncation point used, M = 20; which for each country is
between the existing rules-of-thumb values M =

p
n and M = 2

p
n suggested

in the litterature. By reducing M , larger di¤erences will appear in the spectral
densities, but the fundamental features will still be similar. An application of
the simple �lter (4.4) is the subject of the next section.
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5. A forecast competition
In this section we generate 1-20 quarters ex ante forecasts for the original series,
using adequate ARIMA models estimated for the proposed �ltered series ezt;US ;ezt;UK and ezt;Aus. In table 5.1 the results for �ltered data are marked with
an asterisk �. We compare the accuracy of these with forecasts from ARIMA,
ARFIMA and GARCH models for un�ltered (Di¤ ln) data. The accuracy of
the out of sample forecasts is measured by the root mean square forecast error
(RMSFE) divided by the STD, and multiplied by 100. Hence, RMSFE = 100
would signal that the forecast error is of the same size as that of a naive forecast.
The fact that the values are considerably smaller, even for the longest horizons,
is another symptom of the decreasing variance of the time series studied. For
instance for Di¤ ln US GDP the STD of the latest 15 years is just 41 per cent
of the STD of the entire period.

Table 5.1: GDP forecast comparisons4 (RMSFE)/STD

Country ARIMA ARIMA* ARFIMA GARCH Horizon (q)
US 25:5 25:3 37:7 25:6 4
UK 51:2 40:8 55:7 61:2 4
Aus 27:8 19:3 42:7 36:7 4

Country ARIMA ARIMA* ARFIMA GARCH Horizon (q)
US 24:6 36:4 27:2 36:0 8
UK 47:4 38:3 49:1 46:5 8
Aus 50:2 42:1 40:0 46:7 8

Country ARIMA ARIMA* ARFIMA GARCH Horizon (q)
US 46:3 45:9 48:6 41:7 12
UK 39:8 36:7 40:2 38:2 12
Aus 53:7 50:8 44:9 50:2 12

Country ARIMA ARIMA* ARFIMA GARCH Horizon (q)
US 80:5 69:8 71:5 97:9 20
UK 36:9 36:3 46:2 98:2 20
Aus 50:6 45:5 42:3 95:4 20

Bold �gures mark the lowest RMSFE of each row. Table 5.1 o¤ers little support
to Candelon and Gil-Alana (2004); ARFIMA models produce the least accurate
forecasts at the max. one year horizon. For the longer horizons ARFIMA has
the lowest RMSFE only for Australian GDP. Estimating ARIMA models from
the �ltered series, rather than from the un�ltered ones, generates signi�cantly
more accurate forecasts when pooling across all horizons above, according to

4The forecasts with a horizon of four quarters are made for 2005, using data up to
quarter 4 of year 2004 for estimation. Consequently, four point forecasts are compared
to four actual outcomes. Similarly, the outcomes of 2004-2005, 2003-2005 and 2001-
2005, are omitted in the estimation step and used in the comparisons of the 8, 12 and
20 quarter forecast horizon respectively.
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the Diebold-Mariano test of equal forecasting performance (p value = 0:02).
When comparing our method with ARFIMA and GARCH-type models (also
estimated on the un�ltered series) the p values of the Diebold-Mariano test is
0:04 and 0:01; respectively. The superiority of models based on �ltered data is
due to the ine¢ ciency of estimates from heteroscedastic data. The series in this
study can be seen as a worst case scenario, because the volatility of the series
decreases over time. Consequently, parameter estimates are strongly based on
an obsolete structure.

6. Conclusions
In this paper we discussed the issue of removing heteroscedasticity. We also
propose a simple �lter that successfully removes the heteroscedasticity in GDP
series without signi�cantly distorting the dynamics. Unlike the Box-Cox trans-
formation, the �lter does not assume that the heteroscedasticity is proportional
to the level of the series. Dividing the heteroscedastic series by ARCH/GARCH
estimated volatility is much more cumbersome and is signi�cantly less e¤ective
than the proposed �lter.

A mechanical estimation of e.g. ARIMA or ARFIMA models on heteroscedastic
Di¤ ln GDP series is unbiased, but ine¢ cient. Using �ltered data resulted in
better forecasts in a large majority of cases. When pooling acoss all horizons,
the estimated ARIMA models from the �ltered series generated signi�cantly
more accurate forecasts compared with ARIMA, ARFIMA and GARCH on the
un�ltered data. The result is based on only three series, but they are the longest
and the most important quarterly GDP series around. This simple �lter could
be used as a standard method to remove heteroscedasticity, much as seasonality
is suppressed by seasonal adjustment �lters.
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