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Abstract

Two kinds of sequential designs are proposed for finding the point that
maximizes the probability of response assuming a binary response variable
and a quadratic logistic regression model. One is a parametric optimal design
approach and the other one is a nonparametric stochastic approximation
approach. The suggested sequential designs are evaluated and compared in a
simulation study. In summary the parametric approach performed very well
whereas its competitor failed in some cases.
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1 Introduction

Response Surface Methodology (RSM) concerns design and analysis of experiments
with the purpose to study the behavior of a response variable. A response function
can be used to describe the connection between a response variable and the control
variable(s). This function, which is often a polynomial, is assumed to approximate
the true relationship in a restricted region of interest. Experiments are then per-
formed to gain information about the response function. RSM treats all stages of
the experimental design including the initial choices of which control variable(s) to
consider at what levels, the magnitude of the region of interest and the complexity
of the approximating model, through the conduct of the experiment to the analysis
of the data. Reconsiderations will often have to be made along this path making
RSM an iterative procedure. For a full review of these techniques, see Box and
Draper (1987). One of the main interests for RSM is to determine the optimum
operating conditions, i.e. to locate the point of maximum or minimum response.
Examples on response variables are different quality aspects of a product, such as
yield or strength.

In many applications the response variable is binary, the outcome of the experiment
is either response or nonresponse. A product can be good or defect, an answer to
a test is right or wrong and a drug has an effect or not. In such cases the response
function is describing the relationship between the probability of response and the
control variable(s). Generalized Linear Models (GLM) is a class of models that are
suitable for binary data and one of the candidate models is logistic regression which
is the one used in this paper.

The theory of optimal design provides methods to determine at what levels of
the control variable(s) to run an experiment, see for example Atkinson and Donev
(1992). Based on a criterion function that reflects some specific information aspect
an optimal design can be chosen. It is possible to tailor-make optimal designs for the
purpose of estimating the optimum of a response function. However, the optimal
design generally depends on the unknown true model parameters for GLMs. Of
course there would be no point in performing experiments if the true parameters
were known. One approach to solve this problem is to use sequential designs.
Starting with a preliminary estimate or guess of the parameters a locally optimal
design can be constructed. This design is then used to update the parameter
estimates, which in turn leads to another locally optimal design, new parameter
estimates and so on. Sequential designs for binary data with the purpose to estimate
a percentile of the response curve are treated in Wu (1985).

The theory of stochastic approximation provides an alternative method for estima-
tion of the optimum point of a response function. Stochastic approximation started
with the work of Robbins and Monro (1951) and Kiefer and Wolfowitz (1952) and



is a nonparametric sequential approach. The design points are determined succes-
sively according to a recursive scheme such that the resulting sequence will converge
to the point of optimum response. A stochastic approximation method is evalu-
ated for binary data in the case of estimating a percentile of the response curve in
Wu (1985). Wu (1986) goes through the connections and differences between the
stochastic approximation method and a parametric approach based on maximum
likelihood estimation.

A quadratic logistic regression model is considered in this paper and two kinds of
sequential designs are proposed for the purpose of estimating the point of optimum
response. The first sequential design is an adaptive nonparametric stochastic ap-
proximation approach based on the recursion of Kiefer and Wolfowitz. Adaptive
means that all of the information obtained from the previous steps in the recursion is
used to choose the next design point. The second approach is parametric, the model
parameters are estimated at each step and an optimal design is derived assuming
the current parameter estimates to be true. The performances of the two sequential
designs are evaluated through a simulation study. The paper is organized according
to the following. The model is described in the next section. Section 3 starts with
a review of the Robbins-Monro and the Kiefer-Wolfowitz methods, followed by the
details of the proposed nonparametric approach. The problem of finding optimal
designs for the quadratic logistic regression model is treated before the details of
the parametric approach are given. The results of the simulation study can be
found in section 5. The last section contains some concluding remarks.

2 Model

The quadratic logistic regression model belongs to the class of Generalized Linear
Models. GLMs are generally defined by three parts; the random component spec-
ifying the distribution of the responses, the systematic component containing the
linear predictor and the link function relating the expected value of the response
variable to the linear predictor, see McCullagh and Nelder (1989). The link function
is assumed to be monotonic and differentiable. In the current logistic regression
model the responses are Bernoulli distributed, Y; ~ Bern(m;), i = 1,...,n. The
linear predictor is given by
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By

= B+ B1m; + By}

and the logit link function is




The probability of obtaining a response is given by
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The optimum operating conditions for the quadratic logistic model is located at the
point of maximum or minimum response given by 6, see Figure 1. As an example
consider manufacturing a product where defect items have to be discarded and the
probability of a good product is maximized for the right adjustment of machine
speed. The optimum point is found as the solution to 0%77 = 0 (because the link
function is monotonic), that is

B

28,

Because 8‘%7} = 2/, the sign of 3, determines whether the response curve has a
maximum or a minimum. Furthermore, 1 () = 3, — 33/4f3, so that a larger 3,
means that the optimum point is closer to 1. Given a certain height of the response
curve the relative width of the curve is determined by the size of the parameter j3,
and the larger |3,| the more narrow is the response curve. Two specific parameter
sets are considered in this paper, both are given in Table 1 and displayed in Figure
1. Because (3, is negative both optimum points are maxima. Since J; = 0 the
optimum point is given by ¢ = 0 in both cases. The height of the response curve is
also the same for the two models. However, the response curve is wider for model
A than for model B.
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Figure 1: Two response curves 7 (z) for the quadratic logistic model with maximum
at 0 = 0.



Table 1: Two parameter sets.

Model Parameter set

A B=(2 0 -01 )T
T

B B = (2 0 —4)

3 Sequential designs

Under comparison are a nonparametric sequential approach and two variants of a
parametric sequential approach with the purpose of estimating the maximum of the
response function 7 (z) = P (Y = 1|z). It is equivalent to search for the optimum
operating conditions in the RSM context.

3.1 A nonparametric sequential design

Let f (x) denote a response function that is unknown. Robbins and Monro (1951)
gives a stochastic approximation method for finding the solution x = 6 to the
equation f(x) = d, where d is a constant. It is assumed that f(x) = d has a
unique solution ¢ and that for every x observations can be made on a random
variable Y (z) such that F[Y (z)] = f (x). Starting at an arbitrary x; consecutive
observations are made on Y (x) at xo, 23, ... in such a way that x, converges to 6
as r — 00. At z, the next design point, x,,1, is chosen according to the following
scheme

Tr41 = Tp + Gy (yr - d) ’ (1)
where {a,} is a fixed sequence of decreasing positive constants satisfying > >, a2 <

0o. The choice of the constants {a,} is important for the performance of the
sequence {z,} . In the sense of achieving minimal asymptotic variance it is optimal
to set a, equal to — [rf’ (A)] ", see e.g. Chung (1954) and Sacks (1958). However,
f’(0) is generally unknown and needs to be estimated. One possible estimator is
the least squares estimator of the slope in the regression Y on z. An adaptive
version of the Robbins-Monro procedure where the estimate of f’(6) is updated in
each step by using the least squares estimator is given by

~ -1
Tr41 = Ty — (Tﬁr> (yr - d) ) (2)
where BT _ Yo Vi (v —Ty) T, = D i1 xi‘

22:1 ("Ez - ET)Q ’ r
This procedure is described by Anbar (1978) and was reviewed and evaluated for
binary data in Wu (1985). The adaptive procedure (2) was proven to be asymp-
totically equivalent to the nonadaptive Robbins-Monro procedure (1) with a, =

—[rf ()] by Anbar (1978) and Lai and Robbins (1979).

4



The Robbins-Monro procedure was further developed by Kiefer and Wolfowitz
(1952) and extended to the case of estimating the maximum of a response function.
The unknown response function f (z) has its maximum at the point 6 and f (x)
is assumed to be strictly increasing (decreasing) for z < 6 (z > 6). Furthermore,
it is assumed that observations can be taken on the random variable Y (z) at any
level = and that E[Y (z)] = f (z). The principle is the same as for the Robbins-
Monro procedure, that is successive observations are made on Y (z) according to
a specified scheme. The difference is that observations are made in pairs at each
step. Starting at an arbitrary x;, the following s, x3,... are obtained by making
observations at x, + ¢, i.e. both Y (z, — ¢,) and Y (z, + ¢,) are observed at each
step. The sequence {z,} is defined as

Tr+Cp) —Yylx, —Cp

Tr41 :$r+ary( ) y( ) =T, + a, 2, (3)
2c,

and converges to 0 as r — 00. {a,} and {¢,} are preassigned infinite sequences of

positive numbers such that

¢ —
21?11 ar = )
Doy arey < )
Yo aic? < oo

r=1"r"r

=

8 8

For example a, = r~* and ¢, = r~ /3 satisfy these conditions. The random variable
Zy =Y (v, +c¢)—=Y (x, +¢)]/(2¢,) can be viewed as an approximation to the
derivative of the response function at z,. This reduces the problem to find the
maximum of f (x) to that of finding the solution to the equation f’(x) = 0. The
recursion (3) can then be thought of as a special case of the Robbins-Monro method
for finding the solution z = 6 to f’(x) = 0 by making successive observations on
Z.

In this paper the procedure of Kiefer and Wolfowitz is combined with the adaptive
Robbins-Monro procedure (2) described above for estimating the maximum of the
response function 7 (x), abbreviated as KW hereafter. At each step m observations
are taken at x, &+ ¢ so that the numerical derivative becomes
Z, = [Y(x, +¢) =Y (z,+c)] / (2me,) where Y (2, 4+ ¢.) ~ bin(m, 7 (x,. +¢.))
and Y (z, — ¢,) ~ bin(m, 7 (z, — ¢;)). A graphical illustration is given in Figure
2. Starting at an arbitrary x;, the value on z, is then updated via the adaptive
Robbins-Monro procedure

~\ 1
Tr41 = Tp — (Tﬁr> Zr

where BT is the least squares estimator of the slope in the regression Z on x. The
estimate of the optimum point at the r : th step will then be given by

~

0, = x,.



Kiefer and Wolfowitz put some conditions on the response function that prevents
it from being too steep or too flat (outside the neighborhood of #). If the curve
is too steep it may cause unduly large changes in x. If the curve is too flat (at a
distance from 6) it is impossible to know in which direction to take the next step.
They comment however that it will be sufficient if the conditions are fulfilled in an
interval [D;, Ds]. No observations will be taken outside the limits of this interval.
The flatness of the logistic response curve may pose some problems unless there is
knowledge about an appropriate interval before the experiment is started. In some
situations it may be the case that such information is not available. The success
of this procedure is also dependent upon good choices of the starting values z, (3,
and c;. If the starting point is too far off there will be nearly zero probability of
obtaining a response so that no information can be gained. The starting value for
¢, should be small enough to avoid unduly large changes in x and large enough to
enable the sequence to move away from a bad starting point. The relation between
the number of observations taken at each step (m) and the number of steps (r) is
another aspect that probably will be important.

1
0.9 -
0.8 ! -
\
0.7 : i
0.6 : m obs on Y(xr+cr) -
p(X) | with P(Y:1):p(xr+cr
0.5 ‘ -
R
0.4 | -
- 2~ Y06, 0)-Y(x o )Y 2me) \ 7
\
0.2 \ T B
***** \
0.1 \\ m obs on Y(x-c ) -
! ! with P(Y=1)=p(x -c )
| |

Figure 2: A graphical illustration of the KW approach.



3.2 c-optimal sequential designs

A design point represents a specific level of the control variable, e.g. a specific ad-
justment of the machine speed in the manufacturing experiment. An experimental
design specifies the number of design points (n), the number of replicates at each
design point (m) and the placing of the design points. Let a design denoted as &
be summarized as

é_:{.flfl Tog - xn}7 Z’LUZ:]_
=1

wl w2 .. wn

where the design weight w; = m;/N is the proportion of the total number of
observations allocated to the design point x;. The amount of information in a design
¢ is reflected by the size of the standardized information matrix M (£). Let X be
the n x p matrix with x! as rows and let W be the n x n diagonal matrix containing
the design weights. Also let V be a diagonal matrix with GLM weights defined as

U(xa—w%m)(?;fy

The standardized information matrix for any GLM can then be expressed as

M (¢) = XTWVX.

A criterion function ¥ {M (£)} is a function of the information matrix that repre-
sents some specific information aspect of a design. The criterion function should be
chosen to match the aim of the experiment. The optimal design is then the choice
of points and corresponding weights that optimize the selected criterion function.
The criterion function is commonly related in some way to the precision of the para-
meter estimates, such as the size of a confidence region or the sum of the variances
of the parameter estimates. It can concern estimation of all parameters, a subset
or some function of the parameters.

In the case of estimating the point of optimum response; § = —f,/ (2f3,) , interest
is in a function of two of the parameters. Estimating # with minimum variance
would be desirable justifying the following criterion function to be minimized

T{M(§)} = "M (e,
with ¢?' = (0 —ﬁ ’6—12)

because var (5) o ™M™ (€) c. A design that minimizes ¢ M™! (£) c is a so called

c-optimal design. The General Equivalence Theorem (Kiefer and Wolfowitz (1959)
and Kiefer (1961)) states that the following holds for a c-optimal design &

v(@) {x'M () e} <M e (4)
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for all x. This theorem provides an opportunity to check whether a suggested design
is c-optimal or not.

The GLM weights for the logistic model are v (x;) = my;m; (1 — m;) so that the
standardized information matrix is given by

11 1 Wi mymy (L—m) ] [1 21 af

" B !

M (57 B) = |x1 X2 .. x,| diag u.)2 diag mam2 (1 7T2) 1 :1:‘2 x5
2 2 2 B :

Ty Ty .. Ty W, M7 (1 —75) 1 z, 22

The notation M (&, B) is used to stress the fact that the information matrix depends
on the unknown model parameters. Assuming that a design consists of n points
the minimization of ¥ {M (¢, 3)} = ¢c"TM™! (£, B) c can be achieved with numerical
methods. Sometimes the problem with a singular information matrix causes trouble
in the derivation of c-optimal designs. Atkinson and Donev (1992) show that this
problem can be worked out by adding a small number ¢ to the diagonal elements
of M (¢, 0) before inversion. A 2-point design was assumed for the two parameter
sets presented in Table 1 in the previous section, 3, and 35. Due to the symmetry
property of the response curve that 7 (z + 60) = 7 (—x + 6) one might expect that
the optimal design is symmetric as well. The minimization of ¥ {M (¢, 3)} for the
models A and B was carried out with the help of the program Mathcad 12, resulting
in two sets of weights and design points. After checking the condition given by (4)
the c-optimal designs were verified and found to be

e~ [ 52529 52529
A 0.5 0.5
¢ — [ —0.8306 08306
B 0.5 0.5

As expected both designs consist of two points with equal weights that are symmet-
ric around the maximum 6 = 0. It may also be noted that the optimal designs are
distinct for the two parameter sets. c-optimal designs were derived for several other
parameter sets and all of them turned out to be equally weighted 2-point designs
with the points symmetric around 6. Henceforth it is assumed that the c-optimal
designs consist of two points with equal weight.

The proposed sequential design is an attempt to deal with the problem of pa-
rameter dependence for the logistic model. The idea is to combine the features
of c-optimality with the updating knowledge feature of a sequential design. Two
points are taken at a certain distance from each other, a distance that does not
necessarily decrease as opposed to the KW approach. This parametric sequential
approach, called COPT, can be described by the following steps:



1. Choose an initial design &pian

~ (initial
2. Estimate the parameters 6( :

~ (initial)

3. Minimize ¢’M™! (5 0 )E to find the locally c-optimal design given

~ (initial) _ r1 T2
p ﬁgr‘{0505}

4. Take m observations at the design points in £} and estimate the parameters
O
B

5. Minimize ¢’ M~} (5 , B(1)> ¢ to find the locally c-optimal design given ,[Ai(l) —
* €3 Xyq
6=103 0h )
etc.

The parameters are estimated with the maximum likelihood method. Maximum
likelihood estimates for GLMs can be obtained with the method of scoring, which is
iterative, as described in for example Dobson (2002). The estimate of the optimum
point after r steps is then given by

~(r)
3 _ B4
eNOR
20,

If the initial design contains N* observations and 2m observations are taken at each
step there are N* 4+ 2mr = N* + N = N,,; observations in total after r steps. The
observed standardized information matrix can then be expressed as

o~ o~ 2
11 1 w1 mmy (1 —71) 1 = m%
~ v , , mma (1 — 72) 1z x5
Mps (§Obs,ﬁ) = x% wg . xévtot diag diag )
Ty T3 . Ty, ~ LA 2
tot WN ot TNT N0t (1 - ﬂ-Nt,ot) 1 TNiot TN,

where 7; = (exiTB ) / (1 + X! B ) . Another version of the previous sequential design,
called COPT2, makes use of the observed information matrix in the following way.
M <§ , B) is replaced by a weighted information matrix computed as

o~

My (5;3) = %Mobs (§ob575) + #M (&B)

and ETM;Vl (5 , B) C is minimized instead. M, is the information matrix from all

observations up to this point and &, is the design consisting of these observations.
This is potentially an improvement because it also takes into account the informa-
tion from the preceding steps. Besides the changed information matrix everything
is the same as for COPT.



4 A simulation study

The efficiencies of the suggested sequential designs are to be evaluated in a simula-
tion study. There are many questions to bring clarity about including: Is any of the
approaches superior? Is there an optimal choice of ¢ for the KW approach? Is the
weighted version of the information matrix preferred over the unweighted? What
is best, taking few steps with many observations at each step, or taking many steps
with fewer observations? Are the performances robust to misspecifications of the
model?

All three approaches: KW, COPT and COPT2, are started from the same initial
design before they take separate paths. Two different initial designs are used, see
Table 2. Design 1 is constructed to be better than Design 2 for estimation of the
optimum point in models like A and B where § = 0. The c-optimal designs are
characterized by two symmetric points and design 1 adopts this property, although
it is nothing like a c-optimal design considering the number of points. It might
be a reasonable strategy at the initial stage of the experiment not to focus on just
two points. Design 2 is constructed based on the same principle but pushed aside,
intended to represent a beforehand assumption that # is close to 2. The initial
designs consist of a fairly large amount of observations (N* = 150) to avoid the
problem of non-existing maximum likelihood estimates, which is also a motive for
choosing many design points.

Table 2: Two initial designs.

. -5 -3 -1 -05 0.5 1 3 5
Design 1 5 10 20 40 40 20 10 5
Q150 150 150 150 150 150 150
. -3 -1 1 1.5 2.5 3 5 7
Design 2 5 10 20 40 40 20 10 5
150 150 150 150 150 150 150 150

In the beginning observations are made on the response variable Y at the de-
sign points specified by the initial design. Initial maximum likelihood estimates
glmined are then calculated. Both the COPT and COPT2 approaches are now
ready to start from step 3 (as described in section 3.2 above) with the min-
imization of ¢’M~! (f,,@(mmal) ¢. The fminsearch function in Matlab is used
to carry out this task. The KW approach needs at least two observations on
Z=[Y(r+c)=Y (z+c)]/(2mc) before a least squares estimate of the slope pa-
rameter in the Z on x regression can be obtained. As discussed before the KW
approach is also sensitive to the choices of z; and ;. Some effort is therefore put
in selecting good starting values. A first estimate of the optimum point is

~(initial)
e S

~(initial)’

2

-~

eim'tial = -
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and the first design point in KW is set equal to this point:
1 = Oinitial -

This point plus the two points given by 0.77 <§im’tz‘al>7 as depicted in Figure 3,
comprise a start design for the KW approach. There is no elaborate reason for
choosing 0.7 specifically, other than that it seemed to work good in comparison
with several alternatives. Pairs of observations are made at these three design
points that will result in three observations on Z which then can be used to obtain
the starting value 3. For r = 2,3, ... the design points are obtained according to
(3) from section 3.1. Several values on ¢, are tested, namely ¢, = cr~'/3 with
c=1,3,57,9,11,13,15. Three different number of observations to be made at
every design point are considered: m = 5, m = 10 and m = 20.

1
0.9F Re
0.8f
0.7f !

S e -y = ,
0.6f
05F
0.4f
0.3f

0.2 1

0.1 /

OI———- !

-15 -10 -5 0 5 10 15

Figure 3: A representation of the choice of first design points for the KW approach.
The true response curve is given by the solid line and the estimated curve is given
by the broken line.

To examine the effects of a misspecified model another model with a different linear
predictor is also evaluated. Model C defined according to

n;, = —abs (xl> )
eni
=g + e’
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is displayed in Figure 4 together with models A and B. The optimum point has
the same location as for the logistic models but the response curve is lower at the
maximum and it has a different shape. The responses are generated according to
this model while the COPT and COPT2 approaches still (incorrectly) assume that
the three parameter logistic model is true. The KW approach is nonparametric
apart from the initial stage where the (inaccurate) logistic assumption remains
unchanged.

0.8
0.7+
0.6[
p(x)
0.5
0.4+
0.3

0.2

0.1

0 ‘ . ‘
-15 -10 -5 0 5 10 15

x

Figure 4: Models A (broken line), B (dotted line) and C (solid line).

4.1 Simulation results

The simulation results are presented in Tables 3 to 7. Each table shows the mean
squared error (mse) of 6 based on 500 simulated samples. The mse of 6 before
any of the sequential procedures is started, which is based on the initial maximum
likelihood estimates of the parameters, is presented in the second column. In the
following columns the mse of # is given after in turn N = 200, N = 600 and
N = 1000 observations in the sequential designs, in addition to the N* = 150
observations that was made at the initial stage. If ;i is a "bad" point that is
far from @ it may cause difficulties. For the parametric approaches there may be
numerical problems related to the parameter estimation. These problems appear in
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either that the maximum number of iterations is reached or that the computations
results in Na/N. NaN stands for "not a number" and turns up in Matlab when
the computations do not produce a numerical result. Being at a position where the
probability to obtain a response is nearly zero it is impossible for the KW approach
to know in which direction to take next step; for such cases this approach never
leaves the starting point. It can also happen that the KW sequence ends up at such
a position even though the starting point is "good". 6 is considered deteriorated

when ‘/9\‘ > 10. The number of deteriorated starting points is shown in brackets in

the second column. The simulation samples that failed, either because of numerical
problems or because 6 is deteriorated are discarded and the number of such samples
is shown in brackets. In each table there are four sections; a — d where a,b and
¢ contain the results for m = 20, m = 10 and m = 5. As a reference section d
contains the mse of § based on taking all N* + N observations at the initial design
and making one maximum likelihood estimate of #. The N* + N observations are
divided among the initial design points according to the same distribution as for
the case with N* observations. This nonsequential alternative is tested to make
certain that one cannot do just as good without bothering about any sequential
issues.

Model A, design 1. The mse for the two parametric approaches; COPT and COPT2,
are remarkably similar for all N. The choice between different values of m does not
seem to have any impact on the mse. For the KW approach it is evident that the
constant ¢ is important, the best choice of ¢ varies from 7 to 11. If ¢ is too small
or too large there is a greater risk that the sequence degenerates to a point that
is too far off from where it cannot recover. This happens more often when m is
small. The best KW approach has about twice the mse of the COPT approaches
for m = 20 and m = 10 and up to three times for m = 5. Both the sequential
procedures beat the alternative of making all observations at one time.

Model A, design 2. The number of "bad" starting points has increased compared
to the previous case because initial design 2 is inferior to design 1. The COPT
approaches manage to sort out some of these problematic cases whereas the number
stays the same or even increases for the KW approach. The mse for COPT and
COPT?2 are still similar. Although the mse is greater compared to when design
1 was used at the initial stage it is about the same size as before for all N. For
the KW method the best choice of ¢ seems to be somewhere between 9 and 13.
The mse for the KW approach does not differ that much compared to when initial
design 1 was used for the well-behaved cases. However, it should be noted that the
problematic cases have increased in number compared to the previous case. The
COPT approaches are preferred over the KW approach for all N. The sequential
procedures are still performing better than the non-sequential alternative for all NV
with mse in view, while there exist no failing cases when all observations are made
at the same time. All three alternatives for m give about the same results.

Model B, design 1. The mse is lower even at the initial stage for this model and
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it decreases even more as IV increases for the COP'T approaches. The KW scheme
remains at 0, almost every time which is also reflected in the fact that the mse
is not changing. The COPT routines are associated with the lowest mse followed
by the non-sequential alternative. The results are also the same regardless of the
size of m.

Model B, design 2. Another problem that can occur is that of nonexisting maximum
likelihood estimates. If the data pattern is such that the responses are separated
from the nonresponses it is not possible to obtain any maximum likelihood esti-
mates, see Albert and Anderson (1984). It is only when data are overlapped, that
is it is not possible to separate the two different response types, that parameter
estimates exist. For design 2 there are mainly two data points (£1) where both
responses and nonresponses can be observed, in all other design points the proba-
bility of a response is nearly zero. Almost all samples will therefore be separated,
only about 2 percent of the samples are overlapped which is the reason for not
presenting these results. This shows how important it is to take the problems with
non-existing estimates seriously.

Model C, design 1. The mse of 0 at the initial design is lower when compared
to model A but higher in comparison with model B. The COPT and COPT2
procedures continue to perform equally well. As more observations are made the
mse decreases although the reduction is not as large as for model A, so the mse is
a little higher than for the other two models for all N. It would be surprising if the
parametric approaches were completely unaffected by the misspecification of the
model. The nonparametric approach on the other hand, that would be expected
to handle the erroneous model the best, works no good. For m = 20 the mse even
increases with IV for some constants ¢ and for some c it is unchanged. For m = 10
or m = 5 the mse is at best slightly reduced. The response curve for model C is
lower and has a different shape which results in that z becomes equal to zero more
often. As a consequence it is more common that the sequence gets stuck at some
point. The descending order of performance turned out to be as follows; parametric
sequential > parametric nonsequential >nonparametric sequential.

Model C, design 2. The fact that design 2 is poor is reflected in a higher mse at the
initial stage. COPT and COPT2 recover to almost the same level as when design 1
was used in the following steps. The results for the nonparametric procedure show
the same tendency that the mse sometimes gets even higher as N grows or just de-
creases a little. The same order of performance that puts the parametric sequential
design before the parametric nonsequential followed by the nonparametric method
prevails.
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Table 3: Simulation results of three sequential designs for estimating the optimum
point in model A with initial design 1, mse based on 500 samples.

Design ;nlt.lal N =200 N =600 N = 1000
esign

a) m=20
COPT 041 (1) 0.020 (1) 0.0075 (0) 0.0044 (0)
COPT?2 041 (1) 0.023 (1) 0.0071 (0) 0.0043 (0)
KW,c=1 041 (1) 1.25 (1) 087 (1) 084 (1)
KW,c=3 041 (1) 027 (1) 011 (1)  0.088 (1)
KW,c=5 041 (1) 0075 (1) 0.043 (1) 0.037 (1)
KW,c=1 041 (1) 0.040 (1) 0.020 (1) 0.017 (1)
KW,c=9 041 (1) 0.08 (1) 0.015 (1) 0.010 (1)
KW,c=11 041 (1) 024 (1) 0.023 (1) 0011 (1)
KW,c =13 041 (1) 035 (1) 0072 (1) 0.021 (1)
KW,c =15 041 (1) 040 (1) 017 (1)  0.057 (1)

b) m=10
COPT 0.55 (1) 0.024 (0) 0.0084 (0) 0.0048 (0)
COPT?2 055 (1) 0.022 (0) 0.0071 (0) 0.0044 (0)
KW,c=1 055 (1) 240 (10) 1.73 (14) 1.91 (14)
KW,c=3 055 (1) 021 (4) 016 (4) 014 (4)
KW,c=5 0.55 (1) 0.10 (5) 0.060 (5) 0.056 (5)
KW,c=1 055 (1) 0.047 (2) 0.029 (2) 0.025 (2)
KW,c=9 055 (1) 0.034 (2) 0.019 (2) 0013 (2)
KW,c=11 055 (1) 0.072 (2) 0015 (2) 0.011 (2)
KW,c=13 055 (1) 0.20 (1) 0.020 (1) 0.011 (1)
KW,c=15 055 (1) 033 (1) 0.040 (1) 0.014 (1)

c) m=5
COPT 051 (1) 0.021 (0) 0.0075 (0) 0.0045 (0)
COPT?2 051 (1) 0.023 (0) 0.0071 (0) 0.0047 (0)
KW,c=1 051 (1) 4.66 (35) 3.67 (40) 3.87 (46)
KW,c=3 051 (1) 047 (3) 027 (3) 024 (3)
KW,c=5 051 (1) 015 (8) 0.1 (8)  0.085 (8)
KW,c=1 051 (1) 010 (4) 0.052 (4) 0.050 (4)
KW,c=9 051 (1) 0.048 (3) 0.030 (3) 0.025 (3)
KW,c=11 051 (1) 0.099 (3) 0.022 (3) 0.016 (3)
KW,c=13 051 (1) 0.16 (1) 0.043 (1) 0.041 (1)
KW,c =15 051 (1) 010 (2) 0017 (2) 0.012 (2)

d) all N observations at the initial design

045 (1) 0.14 (0) 0.055 (0) 0.037 (0)
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Table 4: Simulation results of three sequential designs for estimating the optimum
point in model A with initial design 2, mse based on 500 samples.

Design :imt.lal N=200 N=600 N =1000
esign

a) m=20
COPT 2.67 (14) 0.021 (14) 0.016 (10) 0.0043 (9)
COPT?2 2.67 (14) 0.022 (13) 0.0081 (9) 0.0046 (8)
KW,c=1 2.67 (14) 1.92 (32) 118 (32) 1.07 (32)
KW,c=3 2.67 (14) 055 (20) 029 (29) 0.27 (29)
KW,c=5 2.67 (14) 025 (23) 021 (22) 020 (22)
KW,e=17 2.67 (14) 027 (20) 0.8 (20) 0.18 (20)
KW,c=9 2.67 (14) 0.12 (20) 0.022 (20) 0.013 (20)
KW,e=11 267 (14) 068 (16) 0.19 (16) 0.17 (16)
KW,e=13 267 (14) 098 (18) 025 (18) 0.18 (18)
KW,e=15 267 (14) 1.38 (16) 042 (16) 0.23

b) m=10
COPT 2.86 (23) 0.022 (10) 0.0080 (4) 0.0042 (4)
COPT?2 2.86 (23) 0.023 (11) 0.0068 (2) 0.0044 (2)
KW,c=1 2.86 (23) 4.02 (48) 3.14 (53) 2.59 (57)
KW,c=3 2.86 (23) 025 (42) 019 (42) 0.17 (42)
KW,c=5 2.86 (23) 0.099 (32) 0.27 (31) 0.27 (31)
KW,c=7 2.86 (23) 0.067 (24) 0.038 (23) 0.040 (23)
KW,c=9 2.86 (23) 0.11 (24) 0.030 (24) 0.020 (24)
KW,e=11 286 (23) 0.11 (21) 0.022 (21) 0.018 (21)
KW,e=13 286 (23) 025 (23) 0.035 (23) 0.017 (23)
KW,c=15 2.86 (23) 0.55 (23) 0.052 (23) 0.021 (23)

c) m=5
COPT 2.26 (21) 0.10 (8) 0.0080 (7) 0.0044 (7)
COPT?2 226 (21) 0.021 (9) 0.0069 (9) 0.0041 (9)
KW,e=1 226 (21) 4.99 (66) 5.02 (75) 5.08 (82)
KW,c=3 226 (21) 0.60 (33) 0.31 (34) 0.30 (34)
KW,c=5 226 (21) 0.14 (32) 010 (32) 0.099 (32)
KW,e=1 226 (21) 022 (27) 025 (27) 0.24 (27)
KW,c=9 226 (21) 0.10 (28) 0.080 (28) 0.076 (28)
KW,e=11 226 (21) 0.053 (26) 0.033 (26) 0.025 (26)
KW,c=13 2.26 (21) 0.17 (26) 0.019 (26) 0.016 (26)
KW,e=15 226 (21) 0.16 (26) 0.024 (26) 0.020 (26)

d) all N observations at the initial design
2.67 (12) 087 (1) 021 (0) 0.1 (0)
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Table 5: Simulation results of three sequential designs for estimating the optimum
point in model B with initial design 1, mse based on 500 samples.

Design ;nlt.lal N = 200 N = 600 N = 1000
esign

a) m=20
COPT 0.0019 (1) 0.00041 (0) 0.00015 (1) 0.00010 (1)
COPT?2 0.0019 (1) 0.00040 (0) 0.00015 (1) 9.8-107° (1)
KW,c=1 0.0019 (1) 0.020 (1) 024 (1) 0.30 (1)
KW,c=3 0.0019 (1) 0.0019 (1) 0.0019 (1) 0.0018 (1)
KW,c=5 0.0019 (1) 0.0019 (1) 0.0019 (1) 0.0019 (1)
KW,c=1 0.0019 (1) 0.0019 (1) 0.0019 (1) 0.0019 (1)
KW,c=9 0.0019 (1) 0.0019 (1) 0.0019 (1) 0.0019 (1)
KW,c=11 0.0019 (1) 0.0019 (1) 0.0019 (1) 0.0019 (1)
KW,c =13 0.0019 (1) 0.0019 (1) 0.0019 (1) 0.0019 (1)
KW,c=15 0.0019 (1) 0.0019 (1) 0.0019 (1) 0.0019 (1)

b) m=10
COPT 0.0020 (1) 0.00046 (1) 0.00018 (1) 9.3-1075 (1)
COPT?2 0.0020 (1) 0.00048 (1) 0.00016 (1) 9.8-107° (1)
KW,c=1 0.0020 (1) 0.39 (3) 0.71 (3) 0.76 (3)
KW,c=3 0.0020 (1) 0.0020 (1) 0.0021 (1) 0.0014 (1)
KW,c=5 0.0020 (1) 0.0020 (1) 0.0020 (1) 0.0020 (1)
KW,c=7 0.0020 (1) 0.0020 (1) 0.0020 (1)  0.0020 (1)
KW,c=9 0.0020 (1) 0.0020 (1) 0.0020 (1)  0.0020 (1)
KW,c=11 0.0020 (1) 0.0020 (1) 0.0020 (1) 0.0020 (1)
KW,c=13 0.0020 (1) 0.0020 (1) 0.0020 (1) 0.0020 (1)
KW,c =15 0.0020 (1) 0.0020 (1) 0.0020 (1) 0.0020 (1)

c) m=5
COPT 0.0019 (3) 0.00041 (3) 0.00015 (3) 0.00011 (3)
COPT?2 0.0019 (3) 0.00048 (3) 0.00017 (3) 9.9-107° (3)
KW,c=1 0.0019 (3) 0.13 (6) 0.20 (7) 0.21 (7)
KW,c=3 0.0019 (3) 0.0019 (3) 0.0027 (3) 0.0048 (3)
KW,c=5 0.0019 (3) 0.0019 (3) 0.0019 (3) 0.0018 (3)
KW,c=17 0.0019 (3) 0.0019 (3) 0.0019 (3) 0.0019 (3)
KW,c=9 0.0019 (3) 0.0019 (3) 0.0019 (3) 0.0019 (3)
KW,c=11 0.0019 (3) 0.0019 (3) 0.0019 (3) 0.0019 (3)
KW,c =13 0.0019 (3) 0.0019 (3) 0.0019 (3) 0.0019 (3)
KW,c =15 0.0019 (3) 0.0019 (3) 0.0019 (3) 0.0019 (3)

0.0020 (3)

0.00080 (0)

0.00043 (0)

d) all N observations at the initial design

0.00024 (0)
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Table 6: Simulation results of three sequential designs for estimating the optimum
point in model C with initial design 1, mse based on 500 samples.

initial

Design design N =200 N =600 N = 1000
a) m=20
COPT 0.13 (0) 0.035 (0) 0.014 (0) 0.0087 (0)
COPT?2 0.13 (0) 0.036 (0) 0.015 (0) 0.0096 (0)
KW,ce=1 0.13 (0) 098 (4) 1.34 (5) 1.31 (6)
KW,c=3 0.13 (0) 0.9 (0) 021 (0) 0.19 (0)
KW,c=5 0.13 (0) 021 (0) 024 (0) 022 (0)
KW,c=7 0.13 (0) 0.14 (0) 0.17 (0) 0.16 (0)
KW,c=9 0.13 (0) 0.13 (0) 0.12 (0) 0.10 (0)
KW,e=11 013 (0) 013 (0) 013 (0) 0.12 (0)
KW,e=13 013 (0) 0.13 (0) 0.13 (0) 0.13 (0)
KW,e=15 013 (0) 013 (0) 0.3 (0) 0.13 (0)
b) m=10
COPT 0.12 (0) 0.030 (0) 0.013 (0) 0.0084 (0)
COPT?2 0.12 (0) 0.032 (0) 0.013 (0) 0.0090 (0)
KW,c=1 0.12 (0) 1.14 (6) 135 (8) 149 (9)
KW,c=3 0.12 (0) 021 (2) 0.23 (3) 030 (3)
KW,c=5 0.12 (0) 0.0 (0) 034 (2) 046 (2)
KW,c=7 0.12 (0) 0.10 (0) 0.060 (1) 0.052 (1)
KW,c=9 0.12 (0) 0.12 (0) 0.097 (0) 0.082 (0)
KW,e=11 012 (0) 0.12 (0) 0.10 (0) 0.091 (0)
KW,e=13 012 (0) 012 (0) 011 (0) 0.11 (0)
KW,e=15 012 (0) 012 (0) 012 (0) 0.11 (0)
c) m=5
COPT 0.13 (0) 0.033 (0) 0.012 (0) 0.0079 (0)
COPT?2 0.13 (0) 0.034 (0) 0.014 (0) 0.0082 (0)
KW,c=1 0.13 (0) 270 (13) 2.95 (18) 2.86 (19)
KW,c=3 0.13 (0) 0.63 (3) 10l (4) 109 (4)
KW,c=5 0.13 (0) 025 (0) 054 (3) 061 (3)
KW,e=17 0.13 (0) 0.11 (0) 0.15 (0) 0.14 (1)
KW,c=9 0.13 (0) 0.2 (0) 010 (0) 0.084 (0)
KW,e=11 013 (0) 0.3 (0) 0.10 (0) 0.098 (0)
KW,e=13 0.3 (0) 013 (0) 012 (0) 0.11 (0)
KW,e=15 0.3 (0) 013 (0) 012 (0) 0.11 (0)

d) all N observations at the initial design

0.13 (0) 0.067 (0) 0.031 (0) 0.022 (0)
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Table 7: Simulation results of three sequential designs for estimating the optimum
point in model C with initial design 2, mse based on 500 samples.

initial

Design design N =200 N =600 N = 1000
a) m=20
COPT 0.59 (2) 0.047 (0) 0.015 (0) 0.010 (0)
COPT?2 0.59 (2) 0.042 (0) 0.015 (0) 0.0097 (0)
KW,ce=1 059 (2) 223 (9) 209 (9) 204 (9)
KW,c=3 0.59 (2) 0.63 (6) 061 (6) 0.69 (6)
KW,e=5 059 (2) 0.51 (5) 046 (5) 041 (5)
KW,e=17 0.59 (2) 0.66 (2) 056 (2) 0.58 (2)
KW,c=9 059 (2) 049 (3) 051 (3) 048 (3)
KW,e=11 059 (2) 054 (2) 053 (2) 046 (2)
KW,e=13 059 (2) 057 (2) 054 (2) 052 (2)
KW,e=15 059 (2) 059 (2) 055 (2) 049 (2)
b) m=10
COPT 0.63 (0) 0.044 (0) 0.015 (0) 0.0091 (0)
COPT2 0.63 (0) 0.046 (0) 0.016 (0) 0.010 (0)
KW,c=1 0.63 (0) 2.63 (11) 2.82 (14) 2.82 (14)
KW,c=3 0.63 (0) 0.76 (4) 0.90 (4) 1.09 (4)
KW,c=5 0.63 (0) 054 (3) 055 (4) 0.55 (4)
KW,e=17 0.63 (0) 0.53 (0) 044 (0) 044 (1)
KW,e=9 0.63 (0) 041 (1) 032 (1) 0.27 (1)
KW,e=11 063 (0) 038 (2) 028 (3) 024 (3)
KW,e=13 063 (0) 053 (1) 046 (1) 042 (1)
KW,e=15 063 (0) 054 (1) 049 (1) 046 (1)
c) m=5
COPT 0.52 (2) 0.045 (0) 0.016 (0) 0.0095 (0)
COPT?2 052 (2) 0.035 (0) 0.014 (0) 0.0088 (0)
KW,c=1 0.52 (2) 5.00 (16) 5.19 (19) 5.32 (20)
KW,c=3 0.52 (2) 154 (7) 198 (10) 2.05 (10)
KW,c=5 052 (2) 071 (2) 089 (2) 092 (4)
KW,e=17 0.52 (2) 036 (2) 045 (2) 0.50 (2)
KW,c=9 052 (2) 030 (4) 024 (4) 047 (5)
KW,e=11 052 (2) 056 (2) 050 (2) 048 (2)
KW,e=13 052 (2) 050 (2) 044 (2) 040 (2)
KW,c=15 052 (2) 062 (2) 0.60 (2) 066 (2)

d) all N observations at the initial design

0.65 (1) 0.20 (0) 0.070 (0) 0.040 (0)

19



5 Concluding remarks

The parametric approach based on constructing a c-optimal design at each step was
superior in all cases that were examined here. It even excelled the nonparametric
approach in the case with an incorrect model. The results suggest that the problems
of parameter dependence can be worked out by using any of the two parametric
approaches. The effect of having the wrong beforehand idea of the location of the
optimum point almost disappeared after taking 200 observations sequentially. The
sequential parametric approaches always outperformed the nonsequential strategy
of maximum likelihood estimation of # based on making all observations at once.
The potential improvement from using the observed information matrix in the con-
struction of designs failed to appear. In fact the performances of COPT and COPT2
were almost identical.

Choosing a good constant ¢ is of crucial importance for the success of the KW
approach. In this setting a good choice turned out to be choosing ¢ somewhere
around 10. The main advantage with the nonparametric approach is its simplicity,
that is not having to make any distributional assumptions. Opposite to what might
be expected it was more sensitive to the misspecified model than the parametric
approaches. There were several cases where the KW approach was outperformed by
the nonsequential alternative of making all observations at the initial stage. It was
dependent upon good initial estimates and thereby on a good initial design in the
sense of avoiding a large number of degenerated estimates. There were also many
cases for which the KW approach did not leave the starting point at all. Perhaps
an interval with appropriate limits that prevents the sequence to degenerate is
required.

Non-existing maximum likelihood estimates may cause problems as was apparent
by the lack of results for model B in combination with design 2. There were no such
problems for model A in combination with design 2 and the only difference between
these two response curves is the scale on the control variable. This implies that
considering the measurement scale of the control variable might be worthwhile.

The different combinations of the number of observations taken at each step, m,
and the number of steps, r, did not have that large impact on the results for neither
of the approaches, though the problems with degenerated cases tended to be more
frequent for m = 5.

No general conclusions should be drawn but the empirical results imply that there
are gains to be made by using a sequential c-optimal approach for finding the point
of optimum response. More extensive evaluations and evaluations of theoretical
nature are required.
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