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Abstract
A Bayesian, model-based approach to clustering is presented. We study

a mixture model where each distribution represents a cluster with its speci�c
covariance matrix. The method can identify groups that are overlapping and
of various sizes and shapes. This opens for the possibility of introducing a
deviant cluster into the structure. In a data set there are often observations
unsuitable for classi�cation. These outlier objects are collected in one cluster
of much larger variance that the others. We estimate the cluster parameters
by simulating from their joint posterior distribution using Gibbs sampler.
Di¤erent models are compared using an approximation of Bayes factor.

It answers the question of how many clusters the data should be divided into
to best describe its nature. It also gives guidance whether or not a deviant
cluster should be introduced. Two simulated examples with di¤erent cluster
structures are given to show the e¢ ciency of the method.

Keywords: Clustering, Classi�cation, Model-Based, Deviant group, MCMC,
BIC.
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1 Introduction

We present an approach to cluster analysis based on Bayesian inference through
MCMC simulation. Our aim is to identify a number of subgroups or clusters by
estimating their model parameters. Data are assumed to come from a mixture
distribution of J clusters. All clusters have a multivariate normal distribution, but
each with its speci�c mean vector and covariance matrix. Along with the means and
variances/covariances, the probabilities between clusters, and the probability for a
single observation to belong to a given cluster, are estimated. MCMC simulation
is suitable in situations where the joint distribution p(�; �) of the parameters of
interest (illustrated here with two unknowns � and �) is di¢ cult to calculate but the
conditional distributions p(� j�; y ) and p(� j�; y ) are possible to simulate from. An
iterative procedure makes the process approach the equilibrium p(�; � jy ). We use
the iterative resampling approach called Gibbs sampler. Convergence is obtained
through successive updating of the parameters. Casella and George (1992) give a
detailed explanation of Gibbs sampler. A similar approach to the cluster analysis
presented in this paper can also be seen in Lavine and West (1992) and Bensmail
et al. (1995).

Model-based clustering has several advantages compared to traditional, determin-
istic clustering methods. Deterministic methods use di¤erent measures between
objects, and between objects and centroids to create cohesive and homogenous
groups. However, they assume equal structure among clusters and lack the pos-
sibility to handle clusters of di¤erent shapes, sizes, and directions. Model-based
clustering has an increased ability to handle overlapping groups by taking into ac-
count cluster membership probabilities in these areas. These features create new
possibilities. In some situations there may be a number of observations not suit-
able for classi�cation. These outlier objects are present in many real data sets. The
approach in this paper is to create a cluster containing these deviant observations.
Among a more or less given cluster structure we introduce one cluster with a much
larger variance than the others. The deviant cluster contains objects showing no
resemblance with other cluster structures. It can be spread over part of, or the
whole sample space.

The Bayesian inference used in this paper brings additional advantages. We are
able to compare models with di¤erent parametrization and number of distributions.
We use an approximation of Bayes factor for pairwise comparisons between models
to choose the number of clusters best describing data. It may also be used to
decide if a deviant group is to prefer in the cluster solution. Moreover, we can
estimate the probabilities for a single observation being derived from all the di¤erent
distributions in the model.

An alternative frequentist approach to handle clustering based om mixture models
is the EM algorithm. Several maximum likelihood algorithms are to be found in
the literature, but the EM algorithm is the one used most frequently in this area.
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Examples can be seen in Fraley and Raftery (1998), Wehrens et al. (2003), and
Dasgupta and Raftery (1998). The aim is to maximize the likelihood,

l (�;�;P j y) =
nY
i=1

JX
j=1

pjfj(yi
���vi ;�vi )

where the means and covariances for cluster 1 to J are expressed by � = (�1; :::;�J)
and � = (�1; :::;�J): The proportion vector P = (p1; :::; pJ); where pj is the
probability that an observation belongs to cluster j:

The EM algorithm is advanced in the sense of allowing for di¤erent sizes, shapes,
and orientations among the clusters. Still, it comes with some limitations that we
can overcome with the Bayesian approach. The MCMC technique will eventually
reach the target distribution, even if it takes some time. The maximum likelihood
estimator runs the risk of getting stuck in a local maximum, if present. In addi-
tion, the method only gives point estimates and produces no estimates about the
uncertainty of the parameters.

In Section 2, the mixture model is presented and prior and posterior distributions
for the unknown parameters are described. The simulation procedure is explained
in Section 3. Section 4 contains a discussion on how the Markov chains converge to
the true posterior distributions. Section 5 gives a presentation on how to use Bayes
factors to determine the number of clusters. In Section 6, we apply the method on
two simulated data sets to show the e¢ ciency of the method. Finally, in Section 7,
a discussion is given.

2 Mixture Model

We consider n independent and multivariate observations y = fy1; :::;yng from the
mixture distribution f(yi j� ) of J multivariate normal components inK dimensions.
We let � denote the totality of the unknown parameters �; �; and P.

f(yi j� ) =
JX
j=1

pjfj(yi
���j;�j)) i = 1; :::; n (1)

where the proportions 0 < pj < 1 satisfy
JP
j=1

pj = 1 and where �j is a mean vector

of length K, �j is a K �K covariance matrix, and P = (p1; ::; pJ) is a vector with
classi�cation probabilities for the J clusters.

Speci�cally, yi comes from the distribution fj(yi
���j;�j) � NM(�j;�j) with prob-

ability pj for each j = 1; :::; J . We are about to estimate the parameters �j and �j

for each cluster j, and the proportions between clusters fp1; :::; pJg. We introduce
a classi�cation vector V = (v1; :::; vn); where vi = j implies that observation yi is
classi�ed into cluster j. The classi�cation vector is regarded as unknown parameter
and is included in �.
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2.1 Prior Distributions

We use conjugate priors for the parameters �, �; and P of the mixture model
according to Lavine and West (1992). The inverse wishart distribution, with mj

degrees of freedom and scale matrix  j, is used to describe the prior distribution
of �j, given in (2). All �j are assumed to be mutually independent.

�j � W�1 �mj; j
�

(2)

The inverse wishart distribution is the multivariate generalization of the inverse-
�2; which is the conjugate distribution for the univariate normal distribution, with
unknown mean and variance. No limitations are put on variability between clusters,
i.e. we allow for each cluster to have its own speci�c covariance matrix in terms of
volume, shape, and orientation. This makes it possible to work with cases where
one cluster (or more) may have a distinguishing characteristic in terms of large
variance. A higher variance of one cluster s is modelled by a larger  s >>  j;
j 6= s. The strength of our prior belief for �j is adjusted with mj.

The conjugate prior distribution for �j is the multivariate normal distribution with
known covariance matrix �j=� j, for some precision parameters � j, speci�ed in (3).
The mean is expressed with a dependency on the covariance. We assume

�
�j;�j

�
to be mutually independent over clusters.

�j j�j � NM
�
�j;�j=� j

�
(3)

The prior probability vector P is assumed to be independent of � and �. The
likelihood for y jP is the multinomial distribution given in (4), which is a multi-
variate generalization of the binomial distribution. The indicator function I is used
to count the number of observations in the J di¤erent clusters. The sum of the

probabilities,
JP
j=1

pj, is 1:

f (y jP) /
JY
j=1

p

nP
i=1

I(vi=j)

j (4)

The conjugate prior distribution for P =(p1; :::; pJ) is a multivariate generaliza-
tion of the Beta distribution, known as the dirichlet distribution, (p1; :::; pJ) �
D(�1; :::; �J), fully speci�ed in (5). The relative sizes of the dirichlet parameters
�j describe the mean of the prior distribution of P, and the sum of the �j�s is a
measure of the strength of the prior distribution. The prior distribution is math-

ematically equivalent to a likelihood resulting from
JP
j=1

(�j � 1) observations with

�j � 1 observations of the j:th group.

f (P) =
� (�1 + :::+ �J)

� (�1) � ::: � � (�J)
p�1�11 :::p�J�1J (5)
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3 Posterior Derivation

The likelihood from (1) and a joint prior distribution g(�) for the unknowns gen-
erates the joint posterior distribution,

�(� jy ) _
nY
i=1

f(yi j� )g(�)

With the introduction of the classi�cation vector V, we are able to simplify the
problem to a large extent, by working with conditional distributions. Under the
speci�ed mode, the joint distribution of (�, �, P, V) has the following conditional
posterior distributions, derived from the conjugate prior distributions above.

The standard Gaussian mixture model used to describe data, generates the posterior
of �j and �j. The posterior distribution of �j is the inverse wishart distribution
given conditional on y and V, further expressed in (6). The degrees of freedom is
the sum of the prior degrees of freedom, and the number of observations in cluster
j. The scale matrix has three components - the prior opinion of �j, namely  j, the
sum of squares Qj, and the deviation between prior- and estimated mean values.

�j jy;V � W�1
�
nj+mj; j +Qj +

nj� j
nj + � j

(yj � �j)(yj � �j)t
�

(6)

where Qj =
P
i2j
(yi � yj)(yi � yj)t

The posterior distribution for �j is the multivariate normal conditional on y, �j,
and V given in (7). The mean vector is a weighted sum of the prior- and, by data,
estimated mean values.

�j jy;�j;V � NM
�
�j;�j=(� j + nj)

�
(7)

where �j =
� j�j + njyj
(nj + � j)

Given V, the probability vector P is conditionally independent of (y, �, �). The
multinomial likelihood times the conjugate dirichlet prior in (5) generate the dirich-
let posterior distribution,

(p1; :::; pJ jV ) � D
�
�1 +

nP
i=1

I (vi = 1) ; :::; �J +
nP
i=1

I (vi = J)

�

fully speci�ed in (8). The prior speci�cation �1; :::; �J , and the classi�cation of the
observations I (vi = j) ; i = 1; :::; n; j = 1; :::; J; constitute the ingredients of the
posterior parameters.
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f(P jV) =
�

  
�1+

nP
i=1

I(vi=1)

!
+::::::+

 
�J+

nP
i=1

I(vi=J)

!!

�

 
�1+

nP
i=1

I(vi=1)

!
::::::�

 
�J+

nP
i=1

I(vi=J)

! JY
j=1

p
�j+

nP
i=1

I(vi=j)�1

j (8)

The posterior probability tij for observation yi, to belong to cluster j is calculated
according to Bayes theorem conditionally on y, �j, and �j. The probabilities are
the basis for the simulation of the classi�cation vector V.

tij
���j;�j;P =

pjf
�
yi
���j�j

�
JP
j=1

pjf
�
yi
���j�j � i = 1; :::; n (9)

4 Simulation Method

In Bayesian inference, one often needs to calculate integrals of di¤erent functions
g(�); for example with respect to the posterior density p(�) = p(� jy ), where � de-
notes the unknown parameter vector. These posterior integrals, or expected values,
have often no explicit solutions, and numerical integration schemes are required.
In high dimensional parameter spaces, Monte Carlo integration is a useful method.
The integration is done by simulating a sample f�i; i = 1; :::; ng from the posterior
distribution p(�) and estimating the posterior integral g =

R
g(�)p(�)d� by the

sample mean
Pn

i=1 g(�i)=n.

Some Monte Carlo schemes generate the Monte Carlo samples from p(�) by simu-
lating a Markov chain, which is de�ned such that the posterior p(�) is the stationary
distribution. This procedure is commonly called Markov Chain Monte Carlo simula-
tion (MCMC). There is a vast literature on MCMC, encompassing both theory and
applications, see for example Gamerman (1997) and Gilks et al. (1996). MCMC
methods can be traced back to at least Metropolis et al. (1953) and was further
developed by Hastings (1970). Other important contributions along the way are
Geman and Geman (1984,) and Gelfand and Smith (1990).

Gibbs sampler is used to estimate the model parameters �, �, P, and the classi-
�cation vector V. Gibbs sampler works by iteratively drawing samples from the
full conditional distributions of the parameters of interest. The full conditional
distribution of a parameter is the distribution of that parameter, given current or
known values for all the other parameters. The parameter value simulated from its
posterior distribution in one iteration step is used as conditional value in the next
step. Replicating the process, consisting of step 1 through 4 below, provides for an
approximate random sample to be drawn from the posterior distribution, forming
the basis of a Monte Carlo analysis. The fact that the Markov chains converge to
the true posterior distributions, is discussed in Section 5.
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We begin the simulation by doing a preliminary clustering to generate start values
for the parameters. The start values could be settled in an easier way, for example
through a quali�ed guess, or neutral values, but clustering is preferred since the
Markov chains converge faster. A nonhierarchical clustering is used, with an itera-
tive algorithm that minimizes the sum of distances from each object to its cluster
centroid, over all clusters. This algorithm moves objects between clusters until the
sum cannot be decreased further. The result is a set of clusters which are compact
and well-separated. Since we are interested in �nding one deviant cluster, which in
contrast from being compact, could be scattered over the whole sample space, we
use the nonhierarchical clustering to create J � 1 clusters. Out of those, we create
the last cluster consisting of the 20 observations with the largest sum of distances
to its centroids.

Each iteration consists of the following four steps. After one iteration the new
updated parameter values are used in the next iteration.

1. New values for �j, j = 1; :::; J , are simulated from the inverse wishart poste-
rior distributions, conditional on y and the previous V.

2. New values for �j, j = 1; :::; J , are simulated from the multivariate normal
posterior distributions, conditional on y and the previous values of �j and
V. The new covariance matrices simulated in step 1, are seen as known in
step 2:

3. A new vector probability P is simulated from the dirichlet posterior distrib-
ution, conditional on the previous V:

4. In the last step new classi�cation variables vi are simulated according to their
posterior probabilities tij, conditional on the new �, �, and P. The element
vi = j with probability tij, independent of all other vi0 i0 6= i.

The order of the four steps matters for the convergence. The generation of the
classi�cation variables are to be put either �rst or last. The �rst three steps can
be put in any order, but to get a faster convergence one should generate �j before
�j. This has to do with the fact that �j is generated conditional on �j. Thus,
the algorithm appears as a special case of Gibbs sampler called Data Augmenta-
tion. Data Augmentation possesses certain convergence advantages and are further
discussed in Section 5.

5 Convergence Results

The Gibbs sampler was introduced in Geman and Geman (1984) as an approxima-
tion method in order to e¢ ciently compute Bayes estimators. It was also presented
in Tanner and Wong (1987) under the name of data augmentation for missing

6



value problems. A mixture model can be expressed in terms of missing or incom-
plete data. The data augmentation method generates the parameters �(m), and the
missing data z(m) iteratively according to �(�

��y; z(m) ) and �(z ���y; �(m+1) ). Here
�(m) and z(m) denote the values of the parameters and missing data after iteration
m has been completed. By including the missing data into the set of parameters
of the mixture distribution, data augmentation appears as a special case of Gibbs
sampler.

Both papers mentioned above, present proof on how the Gibbs sequence converges
to the parameter�s posterior distribution. In Geman and Geman (1984) the proof
only apply to �nite state models, and in Tanner andWong (1987) several restrictions
and regularity assumptions are imposed. Diebolt and Robert (1990) and (1994)
establish convergence without requiring these restrictions. They show how to obtain
convergence results using a duality principle. This is shown in the context of one-
dimensional normal mixtures for data augmentation.

Since the algorithm used in this paper is a data augmentation algorithm, a brief
overview of the convergence proof of Diebolt and Robert is given. The princi-
ple works for cases when one chain of interest, �(m), is associated with a sec-
ondary (or dual) chain, z(m), such that the distribution of interest, �, is the mar-
ginal distribution of the invariant probability distribution of (�(m); z(m)), namely
�(�(m); z(m)) = f(�(m)

��z(m) )g(z(m)). The duality principle �borrows strength� from
the simplest chain z(m).

A general form of data augmentation for one dimensional data is given in (10).
The � parameters in (10) correspond to �, �, and � in Section 2, and z to the
classi�cation vector V.

Step m 1 Generate �
(m+1)
1 � �

�
�1
��y; z(m) �

1:2 Generate �
(m+1)
2 � �

�
�2

���y; z(m); �(m+1)1

�
:::

1:s Generate �(m+1)s � �
�
�s

���y; z(m); �(m+1)1 ; :::; �
(m+1)
s�1

�
2: Generate z(m+1) � f

�
z
���y; �(m+1)1 ; :::; �(m+1)s

�
(10)

Theoretically, the algorithm is composed of only two steps, the �rst to generate �,
and the second to generate z, i.e. dual sampling according to (11).

1: Generate z(m) � f(z
���y; �(m) ):

2: Generate �(m+1) � �(�
��y; z(m) ): (11)

In our case, the simplest chain z(m) will be an aperiodic and recurrent �nite Markov
chain. It may be easy to show that z(m) is ergodic, and that its distribution con-
verges towards equilibrium in an exponential way. The more complicated chain
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�(m), only depends on previous values through z(m), and according to the duality
principle, most properties of z(m) can be transferred to �(m), including geomet-
ric ergodicity. Geometric ergodicity guarantees fast convergence to the posterior
distribution. The distribution of �(m) converges in the same rate as z(m).

As mentioned before, data augmentation appears as a special case of Gibbs sam-
pler. The procedure for a general Gibbs sampler algorithm is given in (12). The
di¤erence from data augmentation is that the generation of random variables is to-
tally circular. The generation is conditional on all the previous values of the other
parameters, while for data augmentation, there is a dichotomy between z and �.
If s = 1, or if �(m+1) can be split into s components, mutually independent and
expressed conditional on (y; z(m)), data augmentation and Gibbs sampler are the
same.

Step m 1 Generate �
(m+1)
1 � �

�
�1

���y; z(m); �(m)2 ; :::; �(m)s

�
1:2 Generate �

(m+1)
2 � �

�
�2

���y; z(m); �(m+1)1 ; �
(m)
3 ; :::; �(m)s

�
:::

1:s Generate �(m+1)s � �
�
�s

���y; z(m); �(m+1)1 ; :::; �
(m+1)
s�1

�
2: Generate z(m+1) � f

�
z
���y; �(m+1)1 ; :::; �(m+1)s

�
(12)

The convergence properties for general Gibbs sampler, when the duality principle
can not be used, are much more di¢ cult to obtain, and more dependent on the
sample distribution. For further reading about this, see Diebolt and Robert (1990).
It should be mentioned that the data augmentation algorithm performs better in
terms of convergence and speed than the Gibbs sampler algorithm. This is be-
cause the Gibbs sampler algorithm leaves more room for randomness than the data
augmentation algorithm.

6 Model Selection by Bayes Factor

By Bayes factor, we can determine how many clusters the data should be divided
into to best describe its structure, and if a solution with a deviant group is to be
preferred. Bayesian model selection via Bayes factors, is a tool to select not only the
number of clusters, but also the parameterization of the model. If several models
M1; :::;MK , are considered with prior probabilities p(Mk), k = 1; :::; K, then by
Bayes theorem, the posterior probability of model Mk given data D is,

p(Mk jD) / p(D jMk )p(Mk)

The ratio between models i and j is,

p(Mi jD)
p(Mj jD)

=
p(D jMi )p(Mi)

p(D jMj )p(Mj)

8



The model with the highest posterior probability is chosen. If the prior probabilities
are the same for the two models Mi and Mj, the ratio simpli�es to Bayes factor
Bij between model i and j. The Bayes factor is the posterior odds for one model
against another, assuming neither is favored a priori.

Bij =
p(D jMi )

p(D jMj )

By the law of total probability, p(D jMk ) is obtained by integrating over the un-
known parameters �.

p(D jMk ) =
R
p(D j�k;Mk )p(�k jMk )d�k

The evaluation of the integrated likelihood I =
R
p(D j�k;Mk )p(�k jMk )d�k is not

straightforward. It is only in elementary cases the integral may be evaluated an-
alytically. The use of Bayes factors mostly calls for an approximation. Laplace�s
Method, which can be studied in De Bruijn (1970) and Tierney and Kadane (1986),
suggests the approximation,

bI = (2�)d=2 ���e����1=2 p(D ���e�;Mk )p(e� jMk )

where d is the dimension on �; e� is the posterior mode of � under Mk, and e� =
(�D2el(e�))�1 is the negative inverse Hessian matrix of second derivatives. The
likelihood at the approximate posterior mode is,

p(D
���e�k;Mk ) =

nQ
i=1

JP
j=1

epjf(yi ���e�j; e�j )

Kass and Raftery (1995) maintain that the method in general provides adequate
approximation for well-behaved problems, meaning those in which the likelihood
functions are not grossly non-normal, and the dimensionality is modest.

A more frequently used approximation of the Bayes factor is the Bayesian Informa-
tion Criterion, BIC. It is an approximation of twice the logarithm of the integrated
likelihood derived from,

2 log

�
p(D jM1 )

p(D jM2 )

�
= 2 log p(D jM1 )� 2 log p(D jM2 )

where

2 log p(D jMk ) � 2 log p(D
���e�;Mk )� vk log(n) = BIC (13)

vk is the number of parameters to be estimated in model Mk, and n is the number
of observations.
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A full derivation of the BIC approximation is given in Raftery (1995). It should
be mentioned that �nite mixture models do not satisfy the regularity conditions
underlying the proof of (13), given in Schwarz (1978), and Haugton (1988). How-
ever, there are both theoretical and practical support for its use in model-based
examples. See for example Leroux (1992), Roeder and Wasserman (1997), Cambell
et al. (1999), Stanford and Raftery (2000), and Keribin (1998).

Bayes factor is a summary of the evidence provided by data of one model against
another. An interpretation of Bayes factor, and twice the logarithm of the same,
are suggested by Kass and Raftery (1995) and given in Table 1.

B12 2log(B12) Evidence for Model 1 against 2
1-3 0-2 Not worth more than a mention
3-20 2-6 Positive
20-150 6-10 Strong
>150 >10 Very strong

Table 1: Guidelines for Bayes factor provided by Kass and Raftery (1995).

7 Examples

We constructed two examples with simulated data to test and verify the method.
In the examples a deviant cluster, in form of smaller size and larger variance than
the others, is created and observed. The computations were performed in Matlab,
version 7.

7.1 Example 1

350 data points were simulated from three di¤erent multivariate normal distribu-
tions, all in three dimensions. 100 data points were generated from a distribution
with mean vector [4 0 2] and covariance matrix I, where I is the identity matrix.
200 data points came from a distribution with mean vector [0 1 � 1] and covari-
ance matrix I. The last 50 data points are much more scattered. They are spread
around the mean vector [0 0 0], with a covariance matrix � = Diag [9 9 25]. Data
is shown in Figure 1, and mean vectors and covariance matrices are given in Ap-
pendix, Table 8. Multidimensional scaling (MDS) is used to give a two dimensional
presentation of our three dimensional data. MDS places objects in a Euclidean
space, reduced in dimensions, while preserving the distance between them as well
as possible (Oh and Raftery (2003)).

A vague prior is used to show the e¢ ciency of the program. The dirichlet parameters
�j are set to 5 for all j, corresponding to a prior belief of equal size for all clusters.
The choice of putting �j to 5 instead of a higher value, gives us a wider range for
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Figure 1: 350 data points in three dimensions, simulated from three di¤erent mul-
tivariate normal distributions. The data points are presented in a two dimensional
plot, after they are rescaled using MDS.

the prior belief of pj. In this case, a 95 percent interval lies approximately between
0.1 and 0.55. We use the mean and covariance matrix for the whole data set of
350 points as the prior for each separate cluster (for numerical values, see the Prior
row in Table 2). The precision parameters � j = 1; j = 1; :::; J . The prior for �j

times its degrees of freedom mj, gives us 	j. The degrees of freedom mj is set to
2, giving a wide enough prior for �j.

It is important to determine how long the simulation should be and to discard a
number of burn-in iterations. If the iterations have not proceeded long enough,
the simulations may be grossly unrepresentative of the target distribution. Even
when the simulation has reached approximate convergence, the early iterations are
still in�uenced by the starting approximation rather than the target distribution.
The length of the burn-in can be determined theoretically, see for instance Gilks
et al. (1996), chapter 1, but we settle for a visual inspection of the Monte Carlo
output. It is clear from Figure 2 that convergence is rapidly attained for � and p
values. The same goes for variance and covariance values although they are not
shown here. The burn-in in this example is practically nonexistent. Therefore, only
200 iterations were discarded.
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Figure 2: Top Figure - 3000 iterations for the proportions between clusters. Bottom
Figure - 3000 iterations for the mean values. One graph for each cluster.

To determine the number of iterations we rely on trial and error, and run several
chains in parallel and compare the estimates. If they do not agree adequately, the
number of iterations is increased. 3000 iterations seemed to be su¢ cient for this
example. Several simulations were run with di¤erent prior values. The sensitivity
of the results due to reasonable changes in the prior, were found to be small.

Despite the vague prior information, the posterior variables are estimated in a
satisfactory way. The computations manage to discern the clusters into the right
proportions. The deviant cluster with large variance is well distinguished despite its
location over the other two clusters. It is clear from the posterior columns of Table
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2 that all mean and covariance values also lie fairly close to the values desired. The
variances of the two last dimensions of the deviant cluster lie a little lower than they
should. This is partly due to the relatively low prior variances. The histograms
presented in Figure 3 give a perception of the posterior distributions of a few of the
parameters. The posteriors for the mean values have a normal distribution. The
covariance matrix has an inverse wishart distribution while a single parameter in
the diagonal, i.e. the variance parameters, has an Inverse �2�distribution, shown
in Figure 3b.
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Figure 3: Histograms for the last 2800 simulations for a) The mean values for each
cluster (row) and variable (column) b) The variances for each cluster (row) and
variable (column) c) The proportions between clusters.
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Prior
Cluster Mean Covariance Proportion

1,2 and 3

0@ 1:10
0:52
�0:10

1A 0@ 5:21 �0:40 1:83
2:05 �0:64

5:89

1A 1=3

Posterior Estimates
Cluster Mean Covariance Proportion

1

0@ 3:96
�0:03
1:86

1A0@ 4
0
2

1A 0@ 1:28 0:03 0:14
0:98 0:00

1:14

1A0@ 1 0 0
1 0
1

1A 0:30 (0:29)

2

0@ �0:06
0:99
�1:04

1A0@ 0
1
�1

1A 0@ 1:11 0:22 0:06
0:96 0:12

0:97

1A0@ 1 0 0
1 0
1

1A 0:56 (0:57)

3

0@ �0:25
�0:31
�0:39

1A0@ 0
0
0

1A 0@ 9:59 1:37 �8:26
6:97 �1:76

22:58

1A0@ 9 0 0
9 0
25

1A 0:14 (0:14)

Table 2: The prior parameters are equal for all clusters. The posterior variables are
the mean of the 2800 last simulations. In parenthesis to the right, are the "true"
values.

Five models consisting of di¤erent number of clusters are compared using the two
approximations of Bayes factor, presented in Section 6. Table 3 shows the values
for the Integrated likelihood and the Bayesian Information Criteria. According to
the boundaries in Table 1, both methods show a �very strong� preference for the
three cluster solution, in comparison to all other models.

BIC bI
2 clusters incl. 1 deviant -4221 -2102
3 clusters incl. 1 deviant -4002 -1985
4 clusters incl. 1 deviant -4282 -2099
5 clusters incl. 1 deviant -4540 -2204
6 clusters incl. 1 deviant -4666 -2243

Table 3: Two di¤erent approximations of Bayes factor for model comparison. The
three cluster solution is preferred.

Due to the use of simulated data, we are able to evaluate and examine our results.
One way is by investigating how objects, originated from the three clusters, are
classi�ed throughout the iteration process. The percent of the times objects from
each cluster is classi�ed into its true group, or into one of the two other groups, are
shown in Table 4. Objects from cluster 1 and 2 are to a very high extent classi�ed
into the right group. The objects of the deviant group have a somewhat lower
percentage for the right group. The fact that this cluster is spread over the other
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two increases the risk of misclassi�cation. Cluster 2, which mean vector lies closest
to that of the deviant cluster, attracts the most objects from the deviant group.

Originated from
Cluster

1 2 3
Classi�ed 1 98 1 8
into 2 1 95 22

Cluster 3 2 4 70
Total 100 100 100

Table 4: The percent of the times, objects originated from the three clusters, are
classi�ed into the right cluster, or misclassi�ed into one of the other two.

7.2 Example 2

In the second example, we simulate 500 data points in three dimensions from four
multivariate normal distributions with di¤erent shapes, sizes, and directions. Yet
again, one of the clusters is deviant, with a larger variance than the others. The
cluster structure is more di¤use compared to Example 1. The clusters lie closer to-
gether and are also overlapping to a higher extent. Clusters 1 through 3, all contain
150 data points. Cluster 1 is generated from a distribution with mean vector [1 0 0]
and covariance matrix �1 = I, cluster 2 is generated from a distribution with mean
vector [�1 � 2 0] and covariance matrix �2 = Diag [4 1 1]. Cluster 3 comes from
a distribution with mean vector [�2 1 1] and covariance matrix �3 = Diag [1 1 4].
The last deviant cluster consists of 50 data points from a distribution with mean
vector [0 0 0] and covariance matrix �4 = Diag [9 9 9]. Multidimensional scaling
is once again used to show data in a two dimensional graph, see Figure 4. Actual
mean vectors and covariance matrices can be seen in Table 9 in Appendix.

We use the mean vector for the whole data set as the prior for �j. The precision
parameters � j = 1. The variances for the whole data set lie around 3. We make a
prior assumption that the non-deviant clusters all have smaller variances, and the
deviant cluster has larger variances, than 3. The mean prior covariance matrices for
cluster 1 through 3, 	1;2;3 = Diag [1:5 1:5 1:5] and for cluster 4, 	4 = Diag [5 5 5].
The degrees of freedom mj are set to 10 for all clusters. This gives an approximate
95 percent prior interval for the variances between 0:2 � 2:8 for the �rst three
clusters, and between 0:5 � 9:5 for the deviant cluster. The dirichlet parameters
�1;2;3 = 10 and �4 = 5. This corresponds to equal expected size between cluster
1, 2, and 3 and half the size for the deviant cluster. A 95 percent interval for the
proportions are 0:15� 0:44 for cluster 1 through 3, and 0:02� 0:26 for the deviant
cluster.

The BIC values in Table 5 show positive evidence for the four cluster solution,
compared to the three cluster solution which is the second best. The same prior
speci�cation for the deviant and the non-deviant clusters, is used for all solutions.
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Figure 4: 500 data points in three dimensions simulated from four di¤erent multi-
variate normal distributions. The data points are presented in a two dimensional
plot after they are rescaled using MDS.

BIC
2 clusters incl. 1 deviant -6121
3 clusters incl. 1 deviant -6093
4 clusters incl. 1 deviant -6088
5 clusters incl. 1 deviant -6242
6 clusters incl. 1 deviant -6409

Table 5: BIC values for model comparison. The four cluster solution is preferred.

We used 5000 iterations in this example. Convergence was rapidly attained for
all parameters and graphs are shown for mean and variance values in Appendix.
Histograms over the mean values are found in Figure 5. 200 iterations were dis-
carded. The simulation result is summarized in numbers, in Table 6, together with
the prior speci�cations. The method manages once again to satisfactory estimate
the parameters and proportions.
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Figure 5: Histograms for the mean values after 4800 simulations. Rows correspond
to clusters and columns to variables.

Prior
Cluster Mean Covariance Proportion

1,2,3

0@ �0:67
�0:30
0:30

1A 0@ 1:5 0 0

1:5 0

1:5

1A 0:29

4

0@ �0:67
�0:30
0:30

1A 0@ 5 0 0

5 0

5

1A 0:14

Posterior Estimates
Cluster Mean Covariance Proportion

1

0@ 0:97

0:05

0:13

1A0@ 1

0

0

1A 0@ 0:99 �0:06 �0:05
1:07 �0:09

0:91

1A0@ 1 0 0

1 0

1

1A 0:29 (0:30)

2

0@ �1:30
�1:74
0:06

1A0@ �1
�2
0

1A 0@ 3:77 �0:26 �0:06
1:27 �0:07

1:05

1A0@ 4 0 0

1 0

1

1A 0:34 (0:30)

3

0@ �1:98
1:05

1:11

1A0@ �2
1

1

1A 0@ 1:51 �0:05 �0:21
0:99 0:00

4:31

1A0@ 1 0 0

1 0

4

1A 0:28 (0:30)

4

0@ 0:54

�0:28
�0:79

1A0@ 0

0

0

1A 0@ 9:57 �1:97 1:68

10:55 0:62

8:67

1A0@ 9 0 0

9 0

9

1A 0:09 (0:10)

Table 6: The prior mean parameters are equal for all clusters, while the prior
variance parameters are higher for the deviant cluster. The posterior variables are
the mean of the 4800 last simulations. In parenthesis to the right, are the "true"
values.
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The percent of the times objects, originated from each cluster, is classi�ed into its
true group, or one of the other three can be seen in Table 7. Objects from cluster
1 through 3 are to a high extent classi�ed into their right groups. The objects
originated from cluster 4, have a harder time �nding their origin. It should be
mentioned that when each observation is classi�ed into the cluster it ended up in
most of the times during the last 4800 simulations, the percent of misclassi�cation
is lower for all clusters (not reported).

Originated from
Cluster

1 2 3 4
Classi�ed 1 73 13 6 12
into 2 17 78 11 22

Cluster 3 6 4 77 19
4 4 5 6 47

Total 100 100 100 100

Table 7: The percent of the times, objects originated from the four clusters, are
classi�ed into the right cluster, or misclassi�ed into one of the other three.

8 Discussion

We have presented a Bayesian, model-based clustering methodology. A mixture
model is used, where each distribution represents a cluster. Each cluster has a
multivariate normal distribution with its own parametrization. As opposed to the
deterministic approach, the model-based approach has several advantages. It comes
with the possibility to handle groups of di¤erent shapes, volumes, and directions,
and also overlapping groups. This opens up for the possibility of including outlier
objects into the cluster solution by creating a deviant cluster with large variance.
The use of Bayesian inference add additional advantages. As we know, Bayesian
inference does not only provide point estimates, but gives the whole posterior dis-
tributions, and therefore gives a picture of the uncertainty of the estimated para-
meters. In traditional cluster analysis each object is assigned to a cluster without
speci�cation of cluster membership probabilities for other clusters. The Bayesian
approach are able to provide probabilities for single objects coming from a spe-
ci�c cluster. This is especially interesting for objects in overlapping areas. Each
combination of di¤erent number of clusters and speci�cation of the covariance ma-
trices corresponds to a speci�c model. In the Bayesian approach we can choose the
number of clusters by model comparison, using an approximation of Bayes factor.

Two simulated data sets are used to test and verify the method. We are able to
satisfactory separate data into their original distributions, estimate the distribution
parameters and the proportions between clusters. This goes for the non-deviant
clusters as well as the deviant. The model with the correct number of clusters is
chosen by model selection, approximated by BIC.
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The model-based approach with Bayesian inference works well in the situations
described in this paper. Further improvements and developments of the method
may, nevertheless be of interest. Normality is assumed for data in all clusters.
Other distributions, and also di¤erent distributions in one mixture model can open
up for new situations and applications. Stanford and Raftery (2000) show promising
research in �nding curvilinear clusters by assuming other distributions. In real data
sets, it may not be optimal to assume normality for the deviant objects.

A structure with a deviant cluster is only one of many special structures our model-
based approach can handle. In other applications, one might want to handle other
structures in data. The method leaves room for tailored solutions, by di¤erent
prior speci�cations. If knowledge about a speci�c structure is available a priori,
it should be used in the analysis. There is a wide range of possibilities to model
di¤erent prior speci�cations. Besides di¤erent sizes and shapes of the clusters there
might, for example, be information on the variables used. We might know that
some variables are of the same kind or the variables may refer to di¤erent time
points with di¤erent prior knowledge.

Gibbs sampler is a rather simple algorithm in MCMC simulations. More com-
plicated algorithms may improve the results and can open for new possibilities.
Richardson and Green (1997), for example, use a more complicated �reversible
jump� algorithm in addition to Gibbs sampler, in their work with mixture models.
The algorithm is able to split or merge clusters throughout the simulations, and
can also allow for birth or death of an empty cluster. The number of clusters are
therefore decided during the simulations and makes Bayes factor, as an instrument
of choosing the number of clusters, redundant.
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Appendix

Cluster Mean Covariance Proportion

1

0@ 4:01
�0:03
1:91

1A 0@ 0:93 0:10 0:06
0:91 �0:02

1:04

1A 1=3

2

0@ �0:00
1:03
�1:01

1A 0@ 0:97 0:18 0:07
0:92 0:08

0:95

1A 1=3

3

0@ �0:29
�0:42
�0:47

1A 0@ 7:08 0:42 �3:90
6:42 �1:08

24:27

1A 1=3

Table 8: Simulated values used in Example 1.

Cluster Mean Covariance Proportion

1

0@ 0:94
0:06
�0:01

1A 0@ 0:82 0:01 0� 0:07
0:85 �0:15

0:87

1A 0:30

2

0@ �0:66
�1:47
0:17

1A 0@ 4:19 0:58 �0:04
1:65 0:06

0:89

1A 0:30

3

0@ �2:04
0:95
0:95

1A 0@ 1:15 0:02 �0:05
1:01 0:18

4:33

1A 0:30

4

0@ 0:15
�0:16
�0:54

1A 0@ 10:96 �2:07 1:05
10:69 1:06

9:14

1A 0:10

Table 9: Simulated values used in Example 2.
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Figure 6: 5000 iterations from Example 2. Mean values on top, and the variance
values at the bottom - one graph for each cluster.
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