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Abstract

A Bayesian, model-based approach to clustering is presented. We study
a mixture model where each distribution represents a cluster with its speci�c
covariance matrix. The method can identify groups that are overlapping and
of various sizes and shapes. This opens for the possibility of introducing a
deviant cluster into the structure. In a data set there are often observa-
tions unsuitable for classi�cation. These outlier objects are collected in one
cluster of much larger variance than the others. We estimate the cluster
parameters by simulating from their joint posterior distribution using the
Gibbs sampler. Two simulated examples with di¤erent cluster structures
are given to show the e¢ ciency of the method.
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1 Introduction

We present an approach to cluster analysis based on Bayesian inference through
MCMC simulation. Our aim is to identify a number of subgroups or clusters
by estimating their model parameters. Data is assumed to come from a mixture
model of J distributions, where each distribution represents a cluster. All clusters
have a multivariate normal distribution, but each with its speci�c mean vector
and covariance matrix. Along with the means and variances/covariances, the
probabilities for each cluster, and the probability of a single observation�s belonging
to a given cluster, are estimated.

MCMC simulation is suitable in situations where the joint distribution p(�; �) of
the parameters of interest (illustrated here with two unknowns � and �) is dif-
�cult or impossible to calculate but the conditional distributions p(� j�; y ) and
p(� j�; y ), where y is the data set, are possible to simulate from. An iterative
procedure generates samples from the conditional distributions, and makes the
process approach the equilibrium p(�; � jy ). We use the iterative resampling ap-
proach called the Gibbs sampler. Convergence is obtained through successive
updating of the parameters.

There is a vast literature on mixture models starting with Pearson (1894), who
estimated the parameters of a mixture model consisting of two univariate normal
distributions. More recent publications with a thorough explanation of mixture
models include Titterington et al. (1985) and McLachlan and Peel (2000). Some
key papers on Bayesian analysis of mixture models are Diebolt and Robert (1994),
Escobar and West (1995), Richardson and Green (1997), Lavine and West (1992)
and Bensmail et al. (1997).

Model-based clustering has several advantages compared to traditional, determin-
istic clustering methods. Deterministic methods use di¤erent measures between
objects, and between objects and centroids, to create cohesive and homogenous
groups. However, they assume equal structure among clusters, and cannot handle
clusters of di¤erent shapes, sizes, and directions. Model-based clustering is bet-
ter able to handle overlapping groups by taking into account cluster membership
probabilities in these areas. These features create new possibilities. In some situa-
tions there may be a number of observations not suitable for classi�cation. These
outlier objects are present in many real data sets. The approach in this paper is
to create a cluster containing these deviant observations. Among a more or less
given cluster structure, we introduce one cluster with a much larger variance than
the others. The deviant cluster contains objects showing no resemblance to other
cluster structures. It can be spread over part or the whole of sample space.

In this paper, Bayesian inference is used. An alternative frequentist approach to
handle clustering based on mixture models is the EM algorithm. Several maximum
likelihood algorithms are to be found in the literature, but the EM algorithm is
used most frequently in this area. Examples can be seen in Fraley and Raftery
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(1998), Wehrens et al. (2003), and Dasgupta and Raftery (1998). The aim is to
maximize the likelihood

l (�;�;
 j y) =
nY
i=1

JX
j=1

!jfj(yi
���j;�j )

where the means and covariances for cluster 1 to J are expressed by� = (�1; :::;�J)
and � = (�1; :::;�J): The probability vector 
 = (!1; :::; !J); where !j is the
probability that an observation belongs to cluster j:

The EM algorithm is advanced in the sense of allowing for di¤erent sizes, shapes,
and orientations among the clusters. Still, it comes with some limitations that
we can overcome with the Bayesian approach. The MCMC technique will even-
tually reach the target distribution, even if it takes some time. The maximum
likelihood estimator runs the risk of getting stuck in a local maximum, if present.
In addition, the method only gives point estimates, and produces no estimates
concerning the uncertainty of the parameters. The Bayesian approach generates
point estimates for all variables as well as associated uncertainty in the form of
the whole estimates�posterior distribution. Moreover, the method generates pos-
terior predictive probabilities for a single observation�s being derived from all the
di¤erent distributions (clusters) in the model.

In Section 2, the mixture model is presented, and prior and posterior distributions
for the unknown parameters are described. The simulation procedure is explained
in Section 3. Section 4 contains a discussion of how the Markov chains converge
to the true posterior distributions. In Section 5, we apply the method to two
simulated data sets to show its e¢ ciency. Finally, in Section 6, there is a discussion.

2 Mixture Model

We consider n independent and multivariate observations y = fy1; :::;yng from
the mixture distribution f(yi j� ) of J multivariate normal components in K di-
mensions. We assume that the number of clusters, J , is known. We let � denote
the totality of the unknown parameters, which include �; �; and 
. We may
express the mixture distribution as

f(yi j� ) =
JX
j=1

!jfj(yi
���j;�j ) i = 1; :::; n (1)

where the probabilities satisfy 0 < !j < 1 and
PJ

j=1 !j = 1, and where �j is a
mean vector of length K, �j is a K �K covariance matrix, and 
 = (!1; ::; !J)
is a vector with classi�cation probabilities for the J clusters.

Speci�cally, yi comes from the distribution fj(yi
���j;�j) � NM(�j;�j) with

probability !j for each j = 1; :::; J . We are about to estimate the parameters �j
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and �j for each cluster j, and the cluster probabilities f!1; :::; !Jg. We introduce
a classi�cation vector V = (v1; :::; vn); where vi = j implies that observation yi
is classi�ed into cluster j. The classi�cation vector is regarded as an unknown
parameter and is included in �.

2.1 Prior Distributions

We use conjugate priors for the parameters �, �; and 
 of the mixture model
according to Lavine and West (1992). The inverse Wishart distribution, with mj

degrees of freedom and scale matrix  j,

�j � W�1 �mj; j
�

is used to describe the prior distribution of �j. All �j are assumed to be mutually
independent.

The inverse Wishart distribution is the multivariate generalization of the inverse-
�2. No limitations are put on variability between clusters, i.e. we allow each
cluster to have its own speci�c covariance matrix in terms of volume, shape and
orientation. This makes it possible to work with cases where one cluster (or more)
may have a distinguishing characteristic in terms of large variance. A higher
variance of one cluster, s; is modelled by a larger  s >>  j; j 6= s. The strength
of our prior belief for �j is adjusted with mj.

The conditionally conjugate prior distribution for �j is the multivariate normal
distribution with known covariance matrix �j=� j, for some precision parameters
� j. That is,

�j j�j � NM
�
�j;�j=� j

�
The mean is expressed with a dependency on the covariance. We assume

�
�j;�j

�
to be mutually independent over clusters.

The prior probability vector 
 = (!1; :::; !J) is assumed to be independent of
� and �. The conjugate prior distribution for 
 is a multivariate generaliza-
tion of the beta distribution, known as the Dirichlet distribution, (!1; :::; !J) �
D(�1; :::; �J). This is fully speci�ed as

f (
) =
� (�1 + :::+ �J)

� (�1) � ::: � � (�J)
!�1�11 � ::: � !�J�1J (2)

The relative sizes of the Dirichlet parameters �j describe the mean of the prior
distribution of 
, and the sum of the �j�s is a measure of the strength of the prior
distribution. The prior distribution is mathematically equivalent to a likelihood
resulting from

PJ
j=1 (�j � 1) observations with �j � 1 observations of the j:th

group.

3



2.2 Posterior Derivation

The likelihood from (1) and a joint prior distribution g(�) for the unknowns,
generate the joint posterior distribution

�(� jy ) _
nY
i=1

f(yi j� )g(�)

With the introduction of the classi�cation vector V we are able to simplify the
problem to a large extent by working with conditional distributions. Under the
speci�ed mode, the joint distribution of (�, �, 
, V) has the following conditional
posterior distributions, derived from the conjugate prior distributions above.

The posterior distribution of �j is the inverse Wishart distribution given condi-
tional on y and V,

�j jy;V � W�1
�
nj+mj; j +�j +

nj� j
nj + � j

(yj � �j)(yj � �j)t
�

where �j =
P
i2j
(yi � yj)(yi � yj)t

The degrees of freedom equal the sum of the prior degrees of freedom mj, and the
number of observations in cluster j, nj. The scale matrix has three components
- the prior opinion of �j, namely  j, the sum of squares �j, and the deviation
between prior and estimated mean values.

The posterior distribution for �j is the multivariate normal, which is expressed
conditional on y, �j, and V, namely

�j jy;�j;V � NM
�
�j;�j=(� j + nj)

�
where �j =

� j�j + njyj
(nj + � j)

The mean vector �j in the posterior distribution is a weighted sum of the prior
and, by data, estimated mean values.

For the derivation of the posterior distribution of the probability vector 
, we give
the likelihood for V j
 ; which is the multinomial distribution according to

f (V j
) /
JY
j=1

!

nP
i=1

I(vi=j)

j
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This is a multivariate generalization of the binomial distribution. The indicator
function I is used to count the number of observations in the J di¤erent clusters.
The sum of the probabilities,

PJ
j=1 !j, is 1. The multinomial likelihood times the

conjugate Dirichlet prior in (2) generates the Dirichlet posterior distribution,

(!1; :::; !J jV ) � D
�
�1 +

nP
i=1

I (vi = 1) ; :::; �J +
nP
i=1

I (vi = J)

�

fully speci�ed as,

f(
 jV) =
�

  
�1+

nP
i=1

I(vi=1)

!
+ ::: +

 
�J+

nP
i=1

I(vi=J)

!!

�

 
�1+

nP
i=1

I(vi=1)

!
�:::��

 
�J+

nP
i=1

I(vi=J)

! JY
j=1

!
�j+

nP
i=1

I(vi=j)�1

j

The prior speci�cation �1; :::; �J , and the classi�cation of the observations I (vi = j) ;
i = 1; :::; n; j = 1; :::; J; constitute the ingredients of the posterior parameters.
Given V, the probability vector 
 is conditionally independent of (y, �, �):

The posterior probability tij for observation yi, to belong to cluster j is calculated
according to Bayes theorem conditionally on y, �j, and �j:

tij
���j;�j;
 =

!jf
�
yi
���j�j

�
JP
j=1

!jf
�
yi
���j�j � i = 1; :::; n

The probabilities are the basis for the simulation of the classi�cation vector V.

3 Simulation Method

In Bayesian inference, one often needs to calculate integrals of di¤erent functions,
say g(�); with respect to the posterior density p(� jy ), where � denotes the un-
known parameter vector. These posterior integrals, or expected values, often have
no explicit solutions, and numerical integration schemes are required. In high
dimension parameter spaces, Monte Carlo integration is a useful method. The in-
tegration is performed by simulating a sample f�i; i = 1; :::; ng from the posterior
distribution p(� jy ); and estimating the posterior integral g =

R
g(�)p(� jy )d� by

the ergodic mean
Pn

i=1 g(�i)=n.

Some Monte Carlo schemes generate the Monte Carlo samples from p(� jy ) by
simulating a Markov chain, which is de�ned such that the posterior is the sta-
tionary distribution. This procedure is commonly called Markov Chain Monte
Carlo simulation (MCMC). There is a vast literature on MCMC, encompassing
both theory and applications: see for example Gamerman (1997) and Gilks et al.
(1999). MCMC methods can be traced back at least to Metropolis et al. (1953),
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and were further developed by Hastings (1970). Other important contributions
along the way were Geman and Geman (1984) and Gelfand and Smith (1990).

Gibbs sampler is a frequently used MCMC algorithm, and is used here to estimate
the model parameters �, �, 
, and the classi�cation vector V. Gibbs sampler
works by iteratively drawing samples from the full conditional posterior distribu-
tions of the parameters of interest, given in subsection 2.2. The full conditional
distribution of a parameter is the distribution of that parameter given current or
known values for all the other parameters. The parameter value simulated from its
posterior distribution in one iteration step is used as the conditional value in the
next step. Repeating the process, consisting of steps 1 through 4 below, provides
for an approximate random sample to be drawn from the posterior distribution,
forming the basis of a Monte Carlo analysis. Casella and George (1992) give a
detailed explanation of Gibbs sampler.

We begin the simulation by creating a preliminary clustering to generate start
values for the parameters. The start values could be determined in an easier
way, for example through a quali�ed guess, or using neutral values. Clustering is
however preferred since the Markov chains converge faster when the start values
are closer to their target values. A non-hierarchical clustering is used with an
iterative algorithm that minimizes the sum of distances from each object to its
cluster centroid, over all clusters. This algorithm moves objects between clusters
until the sum cannot be decreased further. The result is a set of clusters which are
compact and well-separated. Since we are interested in �nding one deviant cluster
which in contrast to being compact, could be scattered over the whole sample
space, we use the non-hierarchical clustering to create J�1 clusters. Out of these,
we create the last cluster consisting of the 20 observations with the largest sum of
distances to its centroids.

Each iteration consists of the following four steps. After one iteration the new
updated parameter values are used in the next iteration.

1. New values for �j, j = 1; :::; J , are simulated from the inverse Wishart
posterior distributions, conditional on y and the previous V.

2. New values for �j, j = 1; :::; J , are simulated from the multivariate normal
posterior distributions, conditional on y and the previous values of �j and
V. The new covariance matrices simulated in step 1 are taken as known in
step 2:

3. A new probability vector 
 is simulated from the Dirichlet posterior distri-
bution, conditional on the previous V:

4. In the last step, new classi�cation variables vi are simulated according to
their posterior probabilities tij, conditional on the new �, �, and 
. The
element vi is equal to j; with probability tij, independent of all other vi0
i0 6= i.
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The order of the four steps matters for the convergence. The generations of the
classi�cation variables are to be put either �rst or last. The �rst three steps
can be made in any order, but to get a faster convergence one should generate
�j before �j. This has to do with the fact that �j is generated conditional on
�j. Thus, the algorithm appears as a special case of Gibbs sampler called Data
Augmentation. Data Augmentation possesses certain convergence advantages; it
is further discussed in the next section.

4 Convergence Results

The Gibbs sampler was introduced in Geman and Geman (1984) as an approx-
imation method in order to e¢ ciently compute Bayes estimators. It was also
presented in Tanner and Wong (1987) under the name of data augmentation for
missing value problems. A mixture model can be expressed in terms of missing or
incomplete data. The data augmentation method generates the parameters �(m)

and the missing data z(m) iteratively according to �(�
��y; z(m) ) and �(z ���y; �(m+1) ).

Here �(m) and z(m) denote the values of the parameters and missing data after
iteration m has been completed. By including the missing data into the set of
parameters of the mixture distribution, data augmentation appears as a special
case of the Gibbs sampler.

Each of the papers mentioned above presents a proof of how the Gibbs sequence
converges to the parameter�s posterior distribution. In Geman and Geman (1984)
the proof only applies to �nite state models, and in Tanner and Wong (1987)
several restrictions and regularity assumptions are imposed. Diebolt and Robert
(1990) and (1994) establish convergence without requiring these restrictions. They
show how to obtain convergence results using a duality principle. This is shown
in the context of one-dimensional normal mixtures for data augmentation.

Since the algorithm used in this paper is a data augmentation algorithm, a brief
overview of the convergence proof of Diebolt and Robert is given. The princi-
ple works for cases when one chain of interest, �(m), is associated with a sec-
ondary (or dual) chain, z(m), such that the distribution of interest, �, is the mar-
ginal distribution of the invariant probability distribution of (�(m); z(m)), namely
�(�(m); z(m)) = f(�(m)

��z(m) )g(z(m)). The duality principle �borrows strength�
from the simplest chain z(m).

A general form of data augmentation for one dimensional data is given in (3). The
� parameters correspond to �, �, and 
 in Section 2, and z to the classi�cation
vector V.
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Step m 1: Generate �
(m+1)
1 � �

�
�1
��y; z(m) �

1:2 Generate �
(m+1)
2 � �

�
�2

���y; z(m); �(m+1)1

�
:::

1:s Generate �(m+1)s � �
�
�s

���y; z(m); �(m+1)1 ; :::; �
(m+1)
s�1

�
2: Generate z(m+1) � f

�
z
���y; �(m+1)1 ; :::; �(m+1)s

�
(3)

Theoretically, the algorithm is composed of only two steps, the �rst to generate �,
and the second to generate z, i.e. dual sampling according to (4).

1: Generate z(m) � f(z
���y; �(m) )

2: Generate �(m+1) � �(�
��y; z(m) ) (4)

In our case, the simplest chain z(m) will be an aperiodic and recurrent �nite Markov
chain. It is easy to show that z(m) is ergodic, and that its distribution converges
towards equilibrium in an exponential way. The more complicated chain �(m), only
depends on previous values through z(m), and according to the duality principle
most properties of z(m) can be transferred to �(m), including geometric ergodicity.
Geometric ergodicity guarantees fast convergence to the posterior distribution.
The distribution of �(m) converges at the same rate as z(m).

As mentioned before, data augmentation appears as a special case of the Gibbs
sampler. The procedure for a general Gibbs sampler algorithm is given in (5).
The di¤erence from data augmentation is that the generation of random variables
is totally circular. The generation is conditional on all the previous values of the
other parameters, while for data augmentation there is a dichotomy between z and
�. If s = 1, or if �(m+1) can be split into s components, mutually independent and
expressed conditional on (y; z(m)), data augmentation and the Gibbs sampler are
the same.

Step m 1: Generate �
(m+1)
1 � �

�
�1

���y; z(m); �(m)2 ; :::; �(m)s

�
1:2 Generate �

(m+1)
2 � �

�
�2

���y; z(m); �(m+1)1 ; �
(m)
3 ; :::; �(m)s

�
:::

1:s Generate �(m+1)s � �
�
�s

���y; z(m); �(m+1)1 ; :::; �
(m+1)
s�1

�
2: Generate z(m+1) � f

�
z
���y; �(m+1)1 ; :::; �(m+1)s

�
(5)

The convergence properties for the general Gibbs sampler, when the duality prin-
ciple can not be used, are much more di¢ cult to obtain, and more dependent on
the sample distribution. For further reading about this, see Diebolt and Robert
(1990). It should be mentioned that the data augmentation algorithm performs
better in terms of convergence and speed than the Gibbs sampler algorithm. This
is because the Gibbs sampler algorithm leaves more room for randomness.
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5 Examples

We constructed two examples with simulated data to test the method. In the
examples a deviant cluster, in form of smaller size and larger variance than the
others, is created and observed. The computations were performed in Matlab, ver-
sion 7. The program used is available for downloading together with instructions
on www.statistics.su.se/forskning/MBCA.

5.1 Example 1

350 data points were simulated from three di¤erent multivariate normal distribu-
tions, all in three dimensions. 100 data points were generated from a distribution
with mean vector [4 0 2] and covariance matrix I, where I is the identity ma-
trix. 200 data points came from a distribution with mean vector [0 1 � 1] and
covariance matrix I. The last 50 data points are much more scattered. They are
spread around the mean vector [0 0 0], with a covariance matrix � = diag [9 9 25].
Data is shown in Figure 1, and mean vectors and covariance matrices are given
in the Appendix, Table 5. Multidimensional scaling (MDS) is used to give a two
dimensional presentation of our three dimensional data. MDS places objects in
a Euclidean space, reduced in dimensions, while preserving the distance between
them as well as possible (Oh and Raftery, 2003).

­8 ­6 ­4 ­2 0 2 4 6 8 10 12
­8

­6

­4

­2

0

2

4

6

8

10

12
Cluster 1
Cluster 2
Cluster 3

Figure 1: 350 data points in three dimensions, simulated from three di¤erent multi-
variate normal distributions. The data points are presented in a two dimensional plot,
after they are rescaled using MDS.

We are rather vague in the prior speci�cations. We want data to have the major
in�uence on the posterior distributions, not the prior speci�cations. The Dirichlet
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parameters �j are set to 5 for all j, corresponding to a prior belief of equal size
for all clusters. The choice of putting �j to 5 instead of a higher value gives us
a wider range for the prior belief of !j. In this case, a 95 percent interval lies
approximately between 0.1 and 0.55. We use the mean and covariance matrix
for the whole data set of 350 points as the prior for each separate cluster (for
numerical values, see the prior row in Table 1). The precision parameters � j = 1
for j = 1; :::; 3. The prior for �j; times its degrees of freedom mj, gives us 	j.
The degrees of freedom mj are set to 2, giving a wide enough prior for �j. We
do not specify in the priors, that we expect a smaller deviant cluster with larger
variance than the other clusters. Instead, we use neutral prior speci�cations to
test if the method manages to discern the deviant group, simply by the nature of
the data itself.

It is important to determine how long the simulation should be and to discard a
number of burn-in iterations. If the iterations have not proceeded long enough,
the simulations may be grossly unrepresentative of the target distribution. Even
when the simulation has reached approximate convergence, the early iterations
are still in�uenced by the start values rather than the target distribution. The
length of the burn-in can be estimated theoretically - see for instance Gilks et al.
(1999), Chapter 1 but we settle for a visual inspection of the Monte Carlo output.
Figure 2 shows the iteration plots where convergence is rapidly attained for ! and
� values. The same goes for variance and covariance values although they are not
shown here. The burn-in in this example is practically nonexistent. Therefore,
only 200 iterations were discarded.

0 500 1000 1500 2000 2500 3000 3500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Probabilities

0 500 1000 1500 2000 2500 3000 3500
­5

0

5
Mean values

0 500 1000 1500 2000 2500 3000 3500
­2

0

2

0 500 1000 1500 2000 2500 3000 3500
­5

0

5

10

Figure 2: Left �gure: Iteration plots for the cluster probabilities. Right �gure: Itera-
tion plots for the mean values. One graph for each cluster. All three dimensions within
each cluster are plotted.

To determine the number of iterations we rely on trial and error, and run several
chains in parallel and compare the estimates. If they do not agree adequately, the
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number of iterations is increased. 3000 iterations seemed to be su¢ cient for this
example. Several simulations were run with di¤erent prior values. The sensitivity
of the results due to reasonable changes in the prior were found to be small.

Despite the neutral prior information, the posterior variables are estimated in a
satisfactory way. The computations manage to distinguish the clusters in the right
proportions. The deviant cluster with large variance is well distinguished despite
its location over the other two clusters. It is clear from the posterior columns
of Table 1 that all mean and covariance values also lie fairly close to the values
desired. The variances of the two last dimensions of the deviant cluster lie a little
lower than they should. This is partly due to the relatively low prior variances.

Prior Speci�cations
Cluster Mean Covariance Probability

1,2 and 3

0@ 1:10
0:52

�0:10

1A 0@ 5:21 �0:40 1:83
2:05 �0:64

5:89

1A 1=3

Posterior Estimates
Cluster Mean Covariance Probability

1

0@ 3:96
�0:03
1:86

1A0@ 4
0
2

1A 0@ 1:28 0:03 0:14
0:98 0:00

1:14

1A0@ 1 0 0
1 0
1

1A 0:30 (0:29)

2

0@ �0:06
0:99

�1:04

1A0@ 0
1

�1

1A 0@ 1:11 0:22 0:06
0:96 0:12

0:97

1A0@ 1 0 0
1 0
1

1A 0:56 (0:57)

3

0@ �0:25
�0:31
�0:39

1A0@ 0
0
0

1A 0@ 9:59 1:37 �8:26
6:97 �1:76

22:58

1A0@ 9 0 0
9 0
25

1A 0:14 (0:14)

Table 1: The prior parameters are equal for all clusters. The posterior variables are the
mean of the 2800 last simulations. In parentheses to the right are the true underlying
values.

The histograms presented in Figure 3, give a picture of the estimated posterior
distributions of a selection of the parameters. The conditional posterior for the
mean values is a normal distribution. The conditional posterior distribution for the
covariance matrix is the inverse Wishart, while a single parameter in the diagonal,
i.e. the variance parameters, has an inverse �2-distribution. One single probability
parameter in the Dirichlet distribution has a beta distribution. The generating
outcomes for the mean, variance and probability parameters are shown in Figure
3.

Due to the use of simulated data, we are able to evaluate and examine our results.
One way is by investigating how objects, originated from the three clusters, are
classi�ed throughout the iteration process. The percentage of the times objects
from each cluster is classi�ed into its true group, or into one of the two other
groups, is shown in Table 2. Objects from clusters 1 and 2 are to a very high extent
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Figure 3: Histograms for the last 2800 simulations for a) The mean values for each
cluster (row) and variable (column) b) The variances for each cluster (row) and variable
(column), i.e. these are the diagonal values in the three estimated covariance matrices.
c) The probabilities for each cluster.

classi�ed into the right group. The objects of the deviant group have a somewhat
lower percentage for the right group. The fact that this cluster is spread over the
other two increases the risk of misclassi�cation. Cluster 2, whose mean vector lies
closest to that of the deviant cluster, attracts the most missclassi�ed objects from
the deviant group.

Classi�ed into
Cluster

1 2 3 Total
Originated 1 98 1 2 100
from 2 1 95 4 100
Cluster 3 8 22 70 100

Table 2: The percentage of the times objects originated from the three clusters are
classi�ed into the right cluster, or misclassi�ed into one of the other two.
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5.2 Example 2

In the second example, we simulate 500 data points in three dimensions from four
multivariate normal distributions with di¤erent shapes, sizes, and directions. Yet
again, one of the clusters is deviant, with a larger variance than the others. The
cluster structure is more di¤use than in Example 1. The clusters lie closer together
and also overlap to a higher extent. Each of Clusters 1 through 3 contains 150 data
points. Cluster 1 is generated from a distribution with mean vector [1 0 0] and
covariance matrix �1 = I, Cluster 2 is generated from a distribution with mean
vector [�1 � 2 0] and covariance matrix �2 = diag [4 1 1]. Cluster 3 comes from
a distribution with mean vector [�2 1 1] and covariance matrix �3 = diag [1 1 4].
The last deviant cluster consists of 50 data points from a distribution with mean
vector [0 0 0] and covariance matrix �4 = diag [9 9 9]. Multidimensional scaling
is once again used to show data in a two dimensional graph: see Figure 4. Actual
mean vectors and covariance matrices can be seen in Table 6 in the Appendix.

­6 ­4 ­2 0 2 4 6 8 10
­8

­6

­4

­2

0

2

4

6

8

10
Cluster 1
Cluster 2
Cluster 3
Cluster 4

Figure 4: 500 data points in three dimensions simulated from four di¤erent multivariate
normal distributions. The data points are presented in a two dimensional plot after they
are rescaled using MDS.

We use the mean vector for the whole data set as the prior for �j. The precision
parameters � j = 1 for j = 1; :::; 4. The variances for the whole data set lie around
3. We make a prior assumption that the non-deviant clusters all have smaller
variances, and the deviant cluster has larger variances, than 3. The mean prior
covariance matrices for Cluster 1 through 3 are �1 = �2 = �3 = diag [1:5 1:5 1:5]
and for Cluster 4, �4 = diag [5 5 5]. The degrees of freedom mj are set to 10 for
all clusters. This gives an approximate 95 percent prior interval for the variances
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between 0:2 and 2:8 for the �rst three clusters, and between 0:5 and 9:5 for the
deviant cluster. The Dirichlet parameters are �1 = �2 = �3 = 10 and �4 = 5. This
corresponds to equal expected size among Cluster 1, 2, and 3, and half the size for
the deviant cluster. A 95 percent interval for the probabilities is approximately
between 0:15 and 0:44 for Cluster 1 through 3, and between 0:02 and 0:26 for the
deviant cluster.

We used 5 000 iterations in this example. Convergence was rapidly attained for all
parameters; iteration plots are shown for mean and variance estimates in Figure
6 in the Appendix. Histograms over the mean values are found in Figure 5. 200
iterations were discarded. The simulation result is summarized in numbers, in
Table 3, together with the prior speci�cations. The method manages to discern
the clusters in the right proportions, with parameter estimates close to the true
underlying values.
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Figure 5: Histograms for the mean values after 4800 simulations. Rows correspond to
clusters and columns to variables.
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Prior Speci�cations
Cluster Mean Covariance Probability

1,2,3

0@ �0:67
�0:30
0:30

1A 0@ 1:5 0 0
1:5 0

1:5

1A 0:29

4

0@ �0:67
�0:30
0:30

1A 0@ 5 0 0
5 0
5

1A 0:14

Posterior Estimates
Cluster Mean Covariance Probability

1

0@ 0:97
0:05
0:13

1A0@ 1
0
0

1A 0@ 0:99 �0:06 �0:05
1:07 �0:09

0:91

1A0@ 1 0 0
1 0
1

1A 0:29 (0:30)

2

0@ �1:30
�1:74
0:06

1A0@ �1
�2
0

1A 0@ 3:77 �0:26 �0:06
1:27 �0:07

1:05

1A0@ 4 0 0
1 0
1

1A 0:34 (0:30)

3

0@ �1:98
1:05
1:11

1A0@ �2
1
1

1A 0@ 1:51 �0:05 �0:21
0:99 0:00

4:31

1A0@ 1 0 0
1 0
4

1A 0:28 (0:30)

4

0@ 0:54
�0:28
�0:79

1A0@ 0
0
0

1A 0@ 9:57 �1:97 1:68
10:55 0:62

8:67

1A0@ 9 0 0
9 0
9

1A 0:09 (0:10)

Table 3: The prior mean parameters are equal for all clusters, while the prior variance
parameters are higher for the deviant cluster. The posterior variables are the mean of
the 4800 last simulations. In parenthesis to the right are the true underlying values.

The percentage of the instances, in which objects from each cluster are classi�ed
into their true groups or into one of the other three groups, can be seen in Table
4. Objects from cluster 1 through 3 are to a high extent classi�ed into the right
groups. The objects originating from cluster 4 have a harder time �nding their
origin. It should be mentioned that when each observation is classi�ed into the
cluster it ended up in most of the times during the last 4800 simulations, the
percent of misclassi�cation is lower for all clusters (not reported).

Classi�ed into
Cluster

1 2 3 4 Total
Originated 1 73 17 6 4 100
from 2 13 78 4 5 100
Cluster 3 6 11 77 6 100

4 12 22 19 47 100

Table 4: The percent of the times objects originatingfrom the four clusters are classi�ed
into the right cluster, or misclassi�ed into one of the other three.
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6 Discussion

We have presented and exempli�ed a Bayesian, model-based clustering methodol-
ogy. A mixture model is used, where each distribution represents a cluster. Each
cluster has a multivariate normal distribution with its own parameterization. As
opposed to the deterministic approach, the model-based approach has several ad-
vantages. It comes with the possibility of handling groups of di¤erent shapes,
volumes, and directions, as well as handling overlapping groups. This opens up
for the possibility of including outlier objects in the cluster solution by creating a
deviant cluster with large variance. The use of Bayesian inference adds additional
advantages. As we know, Bayesian inference not only provides point estimates,
but gives the whole posterior distributions, and therefore provides a picture of
the uncertainty of the estimated parameters. In traditional cluster analysis each
object is assigned to a cluster without speci�cation of cluster membership proba-
bilities for other clusters. The Bayesian approach is able to provide probabilities
for single objects coming from any cluster. This is especially interesting for objects
in overlapping areas.

Two simulated data sets are used to test and verify the method. We are able to
satisfactorily estimate the distribution parameters and the probabilities between
clusters, and to separate data into their original distributions.

The model-based approach with Bayesian inference works well in the situations
described in this paper. Further improvements and developments of the method
may nevertheless be of interest. Normality is assumed for data in all clusters.
Other distributions, and also di¤erent distributions within a mixture model, can
open up for new situations and applications. Stanford and Raftery (2000) show
promising research in �nding curvilinear clusters by assuming other distributions.
In this thesis, we assume normality in all clusters, even the deviant. In real data
sets it may not be optimal to assume normality for the deviant objects. A uniform
distribution over the whole sample space may be a better unrestricted choice.

A structure with a deviant cluster is only one of many special structures the
model-based approach can handle. The method leaves room for tailored solutions,
by di¤erent prior speci�cations. If knowledge about a speci�c structure is available
a priori, it should be used in the analysis. There is a wide range of possibilities
to model di¤erent prior speci�cations. Besides di¤erent sizes and shapes of the
clusters, there might, for example, be information on the variables used. We
might know that some variables are of the same kind, or the variables may refer
to di¤erent time points with di¤erent prior knowledge.

The Gibbs sampler is a rather simple algorithm in MCMC simulations. More
complicated algorithms may improve the results, and can open for new possibilities.
Richardson and Green (1997), for example, use a more complicated �reversible
jump�algorithm in addition to Gibbs sampler in their work with mixture models.
The algorithm is able to split or merge clusters throughout the simulations, and
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can also allow for the birth or death of an empty cluster. The number of clusters
is therefore decided during the simulations and need not be decided prior to the
analysis.

17



References

Bensmail, H., Celeux, G., Raftery, A. E. and Robert, C. P. (1997). �Inference in
Model-Based Cluster Analysis.�Statistics and Computing, 7, 1-10.

Casella, G. and George, E. (1992), �Explaining the Gibbs Sampler,�The American
Statistician. 46, 3, 167-174.

Dasgupta, A. and Raftery, A. E. (1998). �Detecting Features in Spatial Point
Processes with Clutter via Model-Based Clustering,� Journal of the American
Statistical Association. 93, 441, 294-302.

Diebolt, J. and Robert, C.P. (1990). �Bayesian estimation of �nite mixture dis-
tributions: part II, Sampling implementation,�Technical Report 111. Laboratoire
de Statistique Théorique et Appliquée, Univeristé Paris VI, Paris.

Diebolt, J. and Robert, C.P. (1994). �Estimation of Finite Mixture Distributions
through Bayesian Sampling,�Journal of the Royal Statistical Society. Series B, 56,
2, 363-375.

Escobar, M. D. and West, M. (1995). �Bayesian Density Estimation and Inference
using Mixtures,�Journal of the American Statistical Association, 90, 577-588.

Fraley, C. and Raftery, A. E. (1998). �How Many Clusters? Which Clustering
Method? Answers via Model-Based Cluster Analysis,�The Computer Journal, 41,
578-588.

Gamerman, D., (1997). Markov Chain Monte Carlo. London: Chapman &
Hall/CRC.

Gelfand, A. E. and Smith, A. F. M. (1990). �Sampling-Based Approaches to Cal-
culating Marginal Densities,�Journal of the American Statistical Association. 85,
410, 398-409.

Geman, S. and Geman, D. (1984). �Stochastic Relaxation, Gibbs Distributions,
and the Bayesian Restoration of Images,�IEEE Transactions on Pattern Analysis
and Machine Intelligence, 6, 721-741.

Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. (1999).Markov Chain Monte
Carlo in Practice. London: Chapman & Hall.

Hastings, W. K. (1970). �Monte Carlo Sampling Methods Using Markov Chains
and their Applications,�Biometrika. 57, 1, 97-109.

Lavine, M. and West, M. (1992). �A Bayesian Method for Classi�cation and Dis-
crimination�. Canadian Journal of Statistics, 20, 451-461.

McLachlan, G. J. and Peel, D. (2000). Finite Mixture Models. New York: Wiley.

18



Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller
E. (1953), �Equation of State Calculations by Fast Computing Machine,� The
Journal of Chemical Physics, 21, 6.

Oh, M.-S. and Raftery, A. E. (2003). �Model-Based Clustering with Dissimilari-
ties: A Bayesian Approach,�Technical Report no. 441, Department of Statistics,
University of Washington.

Pearson, K. (1894). �Contribution to the Mathematical Theory of Evolution,�
Philosophical Transactions of the Royal Society of London A, 185, 71-110.

Richardson, S. and Green, P. J. (1997). �On Bayesian Analysis of Mixtures with
an Unknown Number of Components,� Journal of the Royal Statistical Society,
Series B, 59, 4, 731-792.

Stanford, D. C. and Raftery, A. E. (2000). �Principal Curve Clustering with
Noise,� IEEE Transaction on Pattern Analysis and Machine Analysis, 22, 601-
609.

Tanner, M. A. and Wong, W. H. (1987). �The Calculation of Posterior Distrib-
utions by Data Augmentation,�Journal of the American Statistical Association,
82, 398, 528-550.

Titterington, D. M., Smith, A. F. M., and Makov, U. R. (1985). Statistical Analysis
of Finite Mixture Distributions. New York: Wiley.

Wehrens, R., Buydens, L. M. C., Fraley, C. and Raftery, A. E. (2003). �Model-
Based Clustering for Image Segmentation and Large Datasets Via Sampling,�
Technical Report no. 424, Department of Statistics, University of Washington.

19



Appendix

Cluster Mean Covariance Probability

1

0@ 4:01
�0:03
1:91

1A 0@ 0:93 0:10 0:06
0:91 �0:02

1:04

1A 0:29

2

0@ �0:00
1:03

�1:01

1A 0@ 0:97 0:18 0:07
0:92 0:08

0:95

1A 0:57

3

0@ �0:29
�0:42
�0:47

1A 0@ 7:08 0:42 �3:90
6:42 �1:08

24:27

1A 0:14

Table 5: Simulated values used in Example 1.

Cluster Mean Covariance Probability

1

0@ 0:94
0:06

�0:01

1A 0@ 0:82 0:01 �0:07
0:85 �0:15

0:87

1A 0:30

2

0@ �0:66
�1:47
0:17

1A 0@ 4:19 0:58 �0:04
1:65 0:06

0:89

1A 0:30

3

0@ �2:04
0:95
0:95

1A 0@ 1:15 0:02 �0:05
1:01 0:18

4:33

1A 0:30

4

0@ 0:15
�0:16
�0:54

1A 0@ 10:96 �2:07 1:05
10:69 1:06

9:14

1A 0:10

Table 6: Simulated values used in Example 2.
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Figure 6: 5 000 iterations from Example 2. Mean values are on top, and the variance
values at the bottom - one graph for each cluster. All three dimensions within each
cluster are plotted.
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