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Abstract

D-optimal designs are derived for certain quadratic logistic regression
models. The performance of the D-optimal designs regarding maximum like-
lihood estimation of the model parameters and estimation of the optimum of
the response function is studied for di¤erent sample sizes. Comparisons are
made with a couple of non-optimal designs. There were found to be disagree-
ments between the asymptotic distribution and the small sample distribution
of the maximum likelihood estimator. The designs are also evaluated as to
what extent they su¤er from the problem of non-existence of the maximum
likelihood estimator. The probability that the maximum likelihood estimate
exists is compared for the various designs. Non-existence proved to be a
substantial problem for these quadratic logistic models.

Keywords: D-optimal design, Logit model, Response Surface Method-
ology, Maximum likelihood estimator, Separation.



1 Introduction

The statistical methods for designing and analyzing the outcome of experiments
where interest is in a response variable that is a¤ected by one or several variables
are known as Response Surface Methodology (RSM). A thorough exposition of these
techniques is given in the book by Box and Draper (1987). RSM is traditionally
used for �nding optimum operating conditions in the industry. It is now common in
many di¤erent �elds like physical, chemical, biological, clinical and social sciences.

The principal objective of RSM is to explore the unknown relationship between
the response/output variable and the control/input variables. For example, the
response variable might be the yield of a chemical process and the control variables
might be temperature and pressure, or the response variable might be the reac-
tion time of an individual and the control variables might then be dose of alcohol
and amount of sleep. RSM attempts to answer questions about how the response
variable behaves when the levels of the control variables are changed, e.g. what hap-
pens to the yield when the temperature and pressure levels are varied. The true
unknown function that describes this relationship is often locally approximated by
a polynomial in the region of interest. Thus, this approximating function is not
expected to be valid outside the limited region of interest. One common applica-
tion for RSM is to �nd the optimum operating conditions, e.g. to �nd out for what
levels of temperature and pressure the yield is maximized.

RSM is essentially a sequential procedure where the experimental design is gradu-
ally updated as investigation proceeds. Initially choices have to be made regarding
the model, the number of replicates, the levels of the control variables and the size
and location of the region of interest. The objective is that the procedure is such
that the right conclusions can be drawn even if the initial experimental design is
poor and that the path to arrive there is as short as possible, for details see Box
and Draper (1987).

It is often assumed that the responses are normally distributed and an ordinary
regression model is used. However, there are many situations where this is not the
case. An example is a binary response variable that assumes one of two possible
values, "success" or "failure". Generalized Linear Models (GLMs) is a class of
models that can be used in such situations, which include the linear regression
model as a special case but also allows discrete data. Examples on GLMs also
include logistic, probit and log-linear models. GLMs are treated in several books,
e.g. Dobson (2002) and McCullagh and Nelder (1989). For an overview of the
use of Generalized linear models in RSM, see the article by Khuri (2001). The
problem of �nding the optimum operating conditions when the response variable
is binary is about determining the levels of the control variables that give the
maximum/minimum of the probability of "success"/"failure".

When estimating the parameters in the model that is assumed to describe the re-
lationship between the response and the control variables the aim is to choose a
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design that gives the highest possible precision in these estimates, i.e. to choose an
optimal design. The problem of �nding an optimal design is treated in, for exam-
ple, Atkinson and Donev (1992), Silvey (1980) and Fedorov and Hackl (1997). A
problem with �nding optimal designs for GLMs is that the optimal design generally
depends on the true parameters. If the true parameters are known it is possible to
�nd an optimal design but then at the same time there is no need for estimation
at all. Another problem that can arise with maximum likelihood estimation of the
parameters in the logistic model and small samples is that the maximum likelihood
estimate does not always exist.

The theoretical results about optimal designs for GLMs are asymptotic results.
In practice experiments are often restricted by time and money constraints. Fur-
thermore, the true parameters are generally unknown in practice. The purpose of
this paper is to derive optimal designs for a quadratic logistic model given four
di¤erent sets of true parameters and to examine the properties of these designs in
small samples. In addition, comparisons will be made with the properties of some
non-optimal designs. This paper is organized as follows. GLM, the model and the
sets of parameters are outlined in section 2. Section 3 presents the derivation of
the optimal designs. The results of the maximum likelihood estimation are given in
section 4. A concluding discussion is found in the �nal section.

2 Model

A logistic regression model with one control variable and a quadratic term is ex-
amined in this paper. The logistic model belongs to the generalized linear models
which generally are characterized by three components: (1) The distribution of
each of the independent response variables Y1; :::; YN belongs to the exponential
family (2) The linear predictor � = xT� is a linear (in �) combination of k control
variables (x1; x2; :::; xk) and p parameters and (3) The link function g (�) speci�es
the relationship between the expected value of the response variable (E (Y ) = �)
and the linear predictor. This is a monotonic and di¤erentiable function.

The response variable in a logistic model is binary. Success/failure, broken/not
broken and pass a test/not pass a test are examples on outcomes of binary response
variables. The responses are independent and Bernoulli distributed

Yi � bern(�i) = bin(1; �i),

with the logit link function

g(�i) = ln

�
�i

1� �i

�
= �i,

and

�i =
e�i

1 + e�i
.
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The linear predictor for the logistic model with one control variable and a quadratic
term is given by

�i = xTi � =
�
1 xi x2i

� 24 �0�1
�2

35
= �0 + �1xi + �2x

2
i .

The probability of "success", �, is a function of the control variable x. The levels
of the control variable are set by the experimenter. For example, consider manu-
facturing a food product, then x might be the quantity of an additive which a¤ects
�, the probability that the product is good. If the quantity is too small or too large
the probability of a good product is small but for some quantity � is maximized.
In this case interest is in determining the value of the control variable for which �
is maximized, i.e. determining the optimum operating conditions. For some appli-
cations interest is instead in minimizing the probability of an undesirable outcome.
Because of the fact that the link function is monotonic optimizing � is equivalent
to optimizing �, thus the optimum point xm is obtained according to

@

@x
� = 0) xm = �

�1
2�2

.

The response curve that describes � as a function of x is symmetric around this
point. Taking the second derivative of �

@2

@x2
� = 2�2;

shows that whether �(x) has a maximum or a minimum is determined by the sign
of the parameter �2. The parameter �0 determines the height of the curve in the
optimum point. The linear predictor in the optimum point is given by

� (xm) = �0 + �1xm + �2x
2
m = �0 �

�21
4�2

:

If the response curve has a maximum (�2 < 0) a larger �0 means that the maximum
of � (x) is closer to 1 and if there is a minimum (�2 > 0) a larger �0 means that the
minimum of � is closer to 1. Furthermore, the size of �2 determines the relative
width of the response curve for a given height and a larger absolute value of �2
means a more narrow curve. Thus, the parameters determine the shape of the
function � (x). The four sets of parameters that are examined in this paper are
given in Table 1 and displayed in Figure 1. The sets are chosen to represent di¤erent
variations of the shape of the response curve. The response curve is considered to
be high when the maximum value of � (x) is close to 1 and low when the maximum
value of � (x) is close to 0. Given the scale on x the response curves have di¤erent
widths. Two of the curves are named wide and two are named narrow. The meaning
of these labels should be understood in a relative sense.
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Table 1: Four parameter sets labeled according to their associated characteristics
of �(x).

Type of response curve Parameter set

"High-wide" � =

�
2 0 �0:1

�T
"High-narrow" � =

�
2 0 �4

�T
"Low-wide" � =

�
�2 0 �0:1

�T
"Low-narrow" � =

�
2 0 �0:1

�T
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Figure 1: The probability � is plotted against the control variable x for the four
parameter sets in Table 1.

The maximum likelihood estimates of the model parameters are found by using the
method of scoring (see e.g. Dobson, 2002, Section 4.3). Let xTi be a row-vector of
control variables and let X be the N � p matrix with xTi as rows. Also let V be
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the N �N diagonal matrix with weights

v (xi) =
1

V ar (Yi)

�
@�i
@�i

�2
; i = 1; 2; : : : ; N:

The asymptotic sampling distribution of the MLE is normal with covariance I�1 =�
XTVX

��1
. That is, the MLE is a consistent and asymptotically e¢ cient estimator

of �: Variance estimates can be obtained by the diagonal elements in

bV �b�� = �XT bVX��1 ;
where bV is the same as V but with the MLE of � used instead of �: The maximum
likelihood estimator of the optimum point xm is given by

x̂m = �
�̂1

2�̂2
:

This estimator is also consistent with asymptotic variance

V
�
g
�
�̂
��

= V (x̂m) =

�
@xm
@�

�T
V
�
�̂
��@xm

@�

�
=

�
@xm
@�

�T
I�1

�
@xm
@�

�
;

with �
@xm
@�

�T
=
�
0 � 1

2�2

�1
2�22

�
:

An estimate of V
�
g
�
�̂
��

can be obtained as follows.

bV �g ��̂�� = bV (x̂m) = �@bxm
@b�

�T bV ��̂��@bxm
@b�

�
:

3 Design

When designing an experiment the objective is to obtain as much information
as possible. A criterion function, 	(�;�) ; can be used to re�ect the amount of
information in a design and therefore to decide which design is the best. An optimal
design is constructed by selecting the levels of the control variables, the design
points, and the proportions of the total number of observations to be allocated to the
design points, the design weights, in a way that the criterion function is optimized.
Di¤erent criterion functions are used for di¤erent situations depending on the aim
of the experiment. For example, when the aim is to explore the relationship between
the response and the control variables, i.e. to estimate the model parameters, the
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criterion function is di¤erent from when the aim is to �nd the optimum operating
conditions. Thus, the optimal design for these two situations will also be di¤erent.

A design can be denoted as

� =

�
x1 x2 � � � xn
w1 w2 � � � wn

�
;

wi � 0;
nP
i=1

wi = 1;

where x1; x2; :::; xn represent the design points and w1; w2; :::; wn represent the cor-
responding design weights. The information obtained from an observation at the
design point xi is given by

m (�;xi) = v (xi)xix
T
i :

when the model belongs to the GLMs. The standardized information matrix for a
design can be expressed as the weighted sum of the information from the individual
design points in the p� p matrix

M (�;�) =
nP
i=1

wim (�;xi) :

The Fisher information for the design is given by

I (�;�) = NM (�;�)

and the asymptotic covariance matrix of the MLE of � is given by the inverse of
the Fisher information matrix

I�1 (�;�) =
1

N
M�1 (�;�) :

Di¤erent designs will thus lead to di¤erent asymptotic sampling distributions of the
MLE. The standardized predictor variance for a GLM is de�ned as

d (x; �) = v (x)xTM�1 (�;�)x = tr
�
m (�;x)M�1 (�;�)

�
:

One reasonable criterion function when interest is in estimating the model para-
meters with high precision is 	(�;�) = ln jM�1(�;�)j ; the optimal design is then
found by minimizing ln jM�1(�;�)j. The square root of jM�1(�;�)j is proportional
to the volume of the con�dence region for the parameters which is thus minimized.
Such a design is called D-optimal. If interest instead is in estimating the opti-
mum point xm a reasonable choice of criterion function is 	(�;�) = cTM�1(�;�)c;

with c =
�
@xm
@�

�
, which is the asymptotic variance of x̂m: Minimizing this criterion

function results in a c-optimal design.

The General Equivalence Theorem, see Kiefer and Wolfowitz (1959) and Kiefer
(1961), can be used to check optimality of a suggested design. If the design is
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optimal it is known from the theorem that the maximum of d (x; �) should be equal
to the number of parameters in the model. The maxima will also appear at the
design points. Furthermore, it is known that there exists a D-optimal design with
p � n � p(p+1)

2
design points.

For the logistic model with linear predictor �i = �0+ �1xi+ �2x
2
i the standardized

information matrix for a particular design is given by the 3� 3 matrix

M (�;�) =
nP
i=1

wim (�;xi) =
nP
i=1

wiv (xi)xix
T
i =

nP
i=1

wi� (xi) (1� � (xi))

24 1 xi x2i
xi x2i x3i
x2i x3i x4i

35
The D-optimal design is found by minimizing ln jM�1 (�;�)j ; or equivalently max-
imizing ln jM (�;�)j, which can be accomplished with numerical methods. To start
with the number of design points n is not known. Assume for example p points,
minimize jM�1 (�;�)j and plot the standardized predictor variance, d (x; �). This
plot will show whether the design is optimal or not. For the non-optimal case it
can give a hint of the optimal number of design points by looking at the number of
peaks of the function d (x; �).

The D-optimal design depends on the true parameter vector � for the logistic
model. Because of the symmetry property that � (x+ xm) = � (�x+ xm) there
is a possibility that the optimal design is also symmetric. Therefore to start with
the assumption that the D-optimal design consists of p = 3 points, where one
point is xm and the other two are symmetric around this point, is made. For
all of the four parameter sets presented in the previous section �1 = 0 so that
xm = ��1= (2�2) = 0. It is also assumed that the design weights are equal to 1=3.
This design, denoted as �3, is given by

�3 =

�
�x+ xm xm x+ xm
1=3 1=3 1=3

�
=

�
�x 0 x
1=3 1=3 1=3

�
:

The standardized information matrix will now be

M (�3;�) =
1

3

0@2v (x)
24 1 0 x2

0 x2 0
x2 0 x4

35+ v (0)
241 0 0
0 0 0
0 0 0

351A
where

v (�x) = v (x) =
exp f�0 + �1x+ �2x2g

(1 + exp f�0 + �1x+ �2x2g)
2

v (0) =
exp f�0g

(1 + exp f�0g)
2 :
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The next step is to �nd the value of x that maximizes jM (�3;�)j, which here was
done using Mathcad 11.0. The resulting 3-point designs for the four sets of true
parameters are given in Table 2.

Table 2: Suggested 3-point designs.

Type of response curve True parameters Design

"High-wide" � =
�
2 0 �0:1

�T
�3 =

8<:�5:5398 0 5:5398

1=3 1=3 1=3

9=;
"High-narrow" � =

�
2 0 �4

�T
�3 =

8<:�0:8759 0 0:8759

1=3 1=3 1=3

9=;
"Low-wide" � =

�
�2 0 �0:1

�T
�3 =

8<:�3:9819 0 3:9819

1=3 1=3 1=3

9=;
"Low-narrow" � =

�
�2 0 �4

�T
�3 =

8<:�0:6296 0 0:6296

1=3 1=3 1=3

9=;

It turns out that these suggested designs are D-optimal when the curve describing
� (x) is low, i.e. for the two parameter sets named "low-wide" and "low-narrow".
This can be seen from the plots of the standardized predictor variance, d (x; �3)
given in Figure 2. d (x; �3) � 3 and the maxima are attained at the design points
for these two models, which is in line with the General Equivalence Theorem.
However, d (x; �3) > 3 when � (x) is high. As can be seen from the plots in Figure
2 it seems like the D-optimal designs in these cases consist of 4 symmetric points.
Another design with 4 points that is symmetric around xm is given by �4; xm = 0
because �1 = 0 in the current special cases.

�4 =

�
�x2 + xm �x1 + xm x1 + xm x2 + xm
w2=2 w1=2 w1=2 w2=2

�
=

�
�x2 �x1 x1 x2
w2=2 w1=2 w1=2 w2=2

�
The standardized information matrix for �4 is given by

M (�4;�) = w1v (x1)

24 1 0 x21
0 x21 0
x21 0 x41

35+ w2v (x2)
24 1 0 x22
0 x22 0
x22 0 x42

35 :
Now the problem is to �nd the values of x1; x2; w1 and w2 that makes jM (�4;�)j
take on its largest value. Doing so results in the two designs shown in Table 3 with
standardized predictor variance d (x; �4) as in Figure 3. An examination of these
plots shows that d (x; �4) � p = 3 in both cases and that the maxima are attained
at the design points. Hence, these designs are D-optimal.
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Figure 2: The standardized predictor variance d (x; �3) for the four designs given
in Table 2.

Table 3: Suggested 4-point designs.

Type of response curve True parameters Design

"High-wide" � =
�
2 0 �0:1

�T
�4 =

8<:�5:7185 �2:7017 2:7017 5:7185

0:3138 0:1862 0:1862 0:3138

9=;
"High-narrow" � =

�
2 0 �4

�T
�4 =

8<:�0:9042 �0:4272 0:4272 0:9042

0:3138 0:1862 0:1862 0:3138

9=;
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Figure 3: The standardized predictor variance d (x; �4) for the two designs given in
Table 4.

For the parameter sets where � (x) is low the D-optimal designs consist of 3 points
and for the parameter sets where � (x) is high the D-optimal designs consist of 4
points indicating that more points are needed to estimate a higher curve. For the
two cases when the shape of the curve � (x) is narrow it can be noted that the
design points are closer to the optimum point xm = 0. Furthermore, regardless of
the number of design points the optimal designs are symmetric around the optimum
point in all four cases.

When deriving c-optimal designs a problem sometimes arises with a singular in-
formation matrix. A way to circumvent this is to add a small number " to the
diagonal elements of M (�;�) before inversion, see Section 10.3 in Atkinson and
Donev (1992). Using Mathcad 11.0 cTM�1 (�;�) c was minimized and the result-
ing c-optimal designs consist of 2 points that are symmetric around the optimum
point for all four sets of true parameters, see Table 4.

Table 4: c-optimal designs.

Type of response curve True parameters Design

"High-wide" � =
�
2 0 �0:1

�T 8<:�5:2529 5:2529

1=2 1=2

9=;
"High-narrow" � =

�
2 0 �4

�T 8<:�0:8306 0:8306

1=2 1=2

9=;
"Low-wide" � =

�
�2 0 �0:1

�T 8<:�3:3089 3:3089

1=2 1=2

9=;
"Low-narrow" � =

�
�2 0 �4

�T 8<:�0:5232 0:5232

1=2 1=2

9=;
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4 Sampling distribution of the maximum likeli-
hood estimator

The D-optimal designs shown in the previous section concern the asymptotic sam-
pling distribution of the parameter estimators. In practice the sample sizes are
often small due to time and money constraints raising the question how these de-
signs will work in a small sample setting. Furthermore, the optimal designs depend
on the true parameters which are unknown. The properties of the MLE when the
D-optimal designs are used are examined for di¤erent sample sizes and compared
to the properties of the MLE when some non-optimal designs are used.

For each of the four sets of true parameters presented in section 2 three designs
are considered. One is the D-optimal design which depends on the parameters and
thus is di¤erent in all four cases. In practice the true parameters are not known
and in most cases more than the optimal number of points are taken to hopefully
get some good points. Sometimes there is an understanding of where P (Y = 1) is
appreciably greater than zero and less than one. If so, an interval can be speci�ed
where it is believed that both Y = 1 and Y = 0 may be observed. This interval
may then be used to determine where the design points shall be. One 7-point
design (�7) and one 8-point design (�8) are used here, the design with 8 points is
symmetric around the optimum point whereas the 7-point design is not. All designs
are given in Table 5. The c-optimal designs are derived to be optimal when it comes
to estimating the optimum point xm. However, it is not possible to estimate the
model parameters with a c-optimal design because two points are not su¢ cient to
estimate three parameters. This is the reason for not considering the c-optimal
designs here when the small sample distribution of the MLE is studied.

Table 5: D-optimal designs, one 7-point design and one 8-point design.

D-optimal "High-wide" � =
�
2 0 �0:1

�T
�� =

8<: �5:7185 �2:7017 2:7017 5:7185

0:3138 0:1862 0:1862 0:3138

9=;
D-optimal "High-narrow" � =

�
2 0 �4

�T
�� =

8<: �0:9042 �0:4272 0:4272 0:9042

0:3138 0:1862 0:1862 0:3138

9=;
D-optimal "Low-wide" � =

�
�2 0 �0:1

�T
�� =

8<: �3:9819 0 3:9819

1=3 1=3 1=3

9=;
D-optimal "Low-narrow" � =

�
�2 0 �4

�T
�� =

8<: �0:6296 0 0:6296

1=3 1=3 1=3

9=;
7-point �7 =

8<: �4 �1 0:5 1 1:5 3 6

1=7 1=7 1=7 1=7 1=7 1=7 1=7

9=;
8-point �8 =

8<: �5 �2 �0:75 �0:25 0:25 0:75 2 5

1=8 1=8 1=8 1=8 1=8 1=8 1=8 1=8

9=;
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For every combination of true parameter values and design four sample sizes are
examined, two small samples N = 10 and N = 20 and two larger, N = 50 and N =
100. The exact sampling distribution of the MLE is obtained for the small sample
sizes by generating all possible samples, the parameter estimate for each sample is
then weighted with the probability of obtaining the current sample. For the larger
sample sizes simulations are performed instead because the number of possible
samples grows very large. Given a set of true parameter values and design, response
values are generated. For every x the probability of a "success", P (Yj = 1) = �j, is
calculated. Uniform random numbers Uj; j = 1; :::; N are generated and if Uj < �j
1 is assigned to the response variable and 0 otherwise. These response values are,
together with the values of the control variable given by the design, used to estimate
the parameters.

The proportions of the sample to be allocated to the design points are given by
the design weights. The number of observations to be taken at each design point
are thus given by ni = wiN . However, adjustments has to be made to ni because
the number of observations need to be integer values. The resulting designs will
then be approximations to the designs given in Table 5. In Table 6 the number of
observations per design point are shown.

Table 6: Number of observations taken at each design point.

N 3-point design 4-point design 7-point design 8-point design

10 3=4=3 3=2=2=3 1=2=1=2=1=2=1 2=1=1=1=1=1=1=2

20 7=6=7 6=4=4=6 3=3=3=2=3=3=3 2=3=2=3=2=3=2=3

50 17=16=17 16=9=9=16 7=7=7=8=7=7=7 7=6=6=6=6=6=6=7

100 33=34=33 31=19=19=31 14=14=15=14=15=14=14 12=13=12=13=12=13=12=13

4.1 Non-existence of the MLE

For certain data the maximum likelihood estimation procedure does not converge
and there exist no MLEs. Depending on the pattern of the data points a data
set can be categorized as belonging to one of three types of data con�gurations;
complete separation, quasi-complete separation or overlap, as described in Albert
and Anderson (1984). It is only when data belong to the third con�guration that
the MLE is �nite and unique. The responses are binary and the data can thus be
divided into two response groups, one including the points where Yi = 1 and one
including the points where Yi = 0. If there is a vector that correctly allocates all
observations to their respective response group complete separation is present, that
is, if there is a vector � so that �Txi > 0 for all Yi = 1 and �Txi < 0 for all Yi = 0.
Quasi-complete separation occurs when there is a vector � such that �Txi � 0 for
all Yi = 1 and �Txi � 0 for all Yi = 0. If the data con�guration is neither complete
separation nor quasi-complete separation the data points are overlapped and the
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MLE exists and is unique. Examples on the three data con�gurations are shown in
Figure 4.

The problem of separation occurs for the logistic model considered here, to what
extent depends on the sample size, the number of design points and the true para-
meters. When the sample size is N = 10 divided among three points the number
of possible samples is equal to

(n1 + 1) � (n2 + 1) � (n3 + 1) = 4 � 5 � 4 = 80:

The only way for the data to be overlapped and thereby for the MLE to exist is
to have both response types (Y = 1 and Y = 0) observed at all three points. In a
design point where three observations are taken there are two variants where both
response types are represented: 1 or 2 ones out of 3. When four observations are
taken at a design point there are three such cases: 1, 2 or 3 ones out of 4. In total
there are 2 �3 �2 = 12 distinct samples where the MLE exists. Let Zi be the number
of ones observed at design point xi, that is Zi � bin (ni; �i) where �i = e�i

1+e�i
. The

probability that the MLE exists can then be computed as

P (MLE) = [P (Z1 = 1) + P (Z1 = 2)] � [P (Z2 = 1) + P (Z2 = 2) + P (Z2 = 3)]
� [P (Z3 = 1) + P (Z3 = 2)] :

This probability is shown for all combinations of design and true parameters for
N = 10 in section a) of Table 7. The probability to obtain a MLE is essentially zero
for the "low-narrow" model irrespective of what design is used. It is not possible to
estimate the parameters with only 10 observations in this case. For the "low-wide"
model this probability is at best around 10 percent when one of the two non-optimal
designs are used. The reason why the non-optimal designs perform better in this
respect is that the D-optimal design consists of only 3 points which makes it more
di¢ cult to obtain overlapped data compared to the designs with more points. This
is particularly the case for the wide models because for these models P (Y = 1)
is appreciably greater than zero for a wider range of x values than for the narrow
models. As a consequence there are more points to choose from for which there
are a possibility of observing both zeros and ones and thus avoiding complete or
quasi-complete separation in the data. This is also re�ected in the pattern for the
"high-wide" model where the probability of obtaining a MLE is approximately 50
% for the non-optimal designs compared to 35 % for the D-optimal design. For
the "high-narrow" model on the other hand the D-optimal design outperforms the
other two having 35 % chance of obtaining parameter estimates as against 11 % (the
8-point design) and 1 % (the 7-point design). The low models are more problematic
compared to the high models because P (Y = 1) is low and therefore there will be
many points where only zeros are observed.
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Figure 4: Examples on data con�gurations for the 8-point design, if there are only
zeros observed at a point a ring is displayed, if there are only ones observed a cross
is displayed and if both response types are present a cross in a ring is displayed.
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Table 7: The number of possible samples, the number of samples where the MLE
exists and the probability that the MLE exists for N=10 and N=20.

Type of response curve Design # samples # samples where
the MLE exists P(MLE exists)

a) N = 10
D-opt 144 68 0:35

"High-wide" 7-p 648 544 0:53
8-p 576 488 0:49

D-opt 144 68 0:35
"High-narrow" 7-p 648 544 0:014

8-p 576 488 0:11

D-opt 80 12 2:5 � 10�3
"Low-wide" 7-p 648 544 0:11

8-p 576 488 0:096

D-opt 80 12 2:5 � 10�3
"Low-narrow" 7-p 576 488 2:4 � 10�5

8-p 192 156 2:6 � 10�3

b) N = 20
D-opt 1225 927 0:74

"High-wide" 7-p 12288 11944 0:82
8-p 20736 20384 0:84

D-opt 1225 927 0:76
"High-narrow" 7-p 12288 11944 0:046

8-p 20736 20384 0:43

D-opt 448 180 0:016
"Low-wide" 7-p 12228 11944 0:28

8-p 20736 20384 0:36

D-opt 448 180 0:016
"Low-narrow" 7-p 12228 11944 4:4 � 10�5

8-p 20736 20384 0:016

In section b) of Table 7 the probabilities that the MLE exist when N = 20 are
presented. The probability to obtain parameter estimates has increased but is
still extremely low for the "low-narrow" model. For the "low-wide" model these
probabilities have increased about three times for the two non-optimal designs which
still are preferable. The D-optimal design has the highest probability for the "high-
narrow" model and the three designs are almost equivalent for the "high-wide"
model.

For N = 50 the probability of obtaining parameter estimates can be estimated by
the percentage share of the simulations where the MLE existed. These are shown
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in column a) of Table 8. There are hardly ever problems with non-existence for
the "high-wide" model with 99 % existence for all three designs. The same thing
applies to the "high-narrow" model if the D-optimal design is used. The situation
is not quite as good for the "low-wide" model where the 80 % associated with the
8-point design is the highest proportion. Nevertheless it is a lot better than for the
"low-narrow" case where existence in 11 % of the times (for the D-optimal design)
is the maximum.

Table 8: The percentage share of the simulations where the MLE existed for N=50
and N=100.

Type of response curve Design % of the simulation samples
where the MLE existed

a) N = 50 b) N = 100
D-opt 99 100

"High-wide" 7-p 99 100
8-p 99 100

D-opt 99 100
"High-narrow" 7-p 34 69

8-p 84 98

D-opt 12 35
"Low-wide" 7-p 73 97

8-p 80 98

D-opt 11 35
"Low-narrow" 7-p 0:04 0:2

8-p 8 21

For N = 100 the percentage shares of the simulations where the MLE existed are
given in column b) of Table 8. There are no longer any problems with non-existence
for the "high-wide" model for any of the designs. If the D-optimal or 8-point design
is chosen for the "high-narrow" model the problem is also avoided. By choosing one
of the non-optimal designs for the "low-wide" model almost 100 % existence of the
MLE can be expected. When the D-optimal design was used for the "low-narrow"
model existence occurred in only 35 % of the times even though the sample size is
quite large.

4.2 Results

When the sample sizes are small, i.e. whenN = 10 andN = 20, all possible samples
are generated and parameter estimates are calculated when possible. The mean
squared error, mean and variance given that the MLE exists are displayed in Table
9. Furthermore, an estimate of the variance of the MLE, given by the diagonal
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elements in bV �b�� found in section 2, is calculated. The mean and variance of
this estimator, given that the MLE exists, are also presented in the table. In the
column AV

�b�� the theoretical approximate variance derived using asymptotic
results, obtained from the diagonal in I�1 (�;�), can be found.

The results for the smallest sample size N = 10 are summarized as follows. The
mean squared error given that the MLE exists is not consistently lower for the
D-optimal design compared to the two non-optimal designs, e.g. for the "high-
narrow" model. In order to maximize the probability of obtaining a MLE for the
"high-wide" model the 7-point design is preferable. The downside is that the mean
squared error given that the MLE exists is larger than for the D-optimal design.
For the "high-narrow" model the D-optimal design that has the highest probability
of existence does not have the lowest mean squared error for two of the parameters.
The mean squared error given that the MLE exists is smallest for the D-optimal
design and the "low-wide" model, but the probability of existence is practically
zero. Of the other two designs the best choice is the 7-point design, however, the
probability of existence is only 11 % so this is still no good choice. The results for
the "low-narrow" model are less important because the probability that the MLE
exists is virtually zero. It can be noted that the bias (given that the MLE exists)
of b�1 is small whenever a symmetric design (the D-optimal or the 8-point design) is
used for all models. Apart from these cases, the bias is large. The variance of the
MLE (given that the MLE exists) is always less than the theoretical approximate
variance when the D-optimal design is used, that is the asymptotic results are not
applicable for such small samples. For the non-optimal designs the variance given
that the MLE exists is sometimes larger and sometimes smaller depending on the
true parameters. The mean of the variance estimator (given that the MLE exists)
is almost always overestimating the variance.

When N = 20 the probability of existence has increased although it is still very
low for the "low-narrow" model and quite low for the "low-wide" model. The mean
squared error given that the MLE exists has decreased. There is no design that
consistently has a lower mean squared error than the others even though the D-
optimal design more often is favored. A higher probability of obtaining an estimate
can sometimes be traded for a higher mean squared error, like for the "low-wide"
model. The bias (given that the MLE exists) is quite large throughout, with the
exception of estimation of �2 for the "high-wide" model regardless of which design
is used, and of �1 when the D-optimal design is used. The bias has increased forb�1 and the 8-point design compared to when N = 10. There is no clear-cut pattern
as to when the variance given that the MLE exists is larger than or less than the
theoretical approximate variance. The mean of the variance estimator given that
the MLE exists is with one exception an overestimation of the variance. In addition,
the variance of this variance estimator (given that the MLE exists) is very large for
some cases for the non-optimal designs, especially for the 7-point design and the
"low-wide" model.
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Simulations are performed for the larger sample sizes N = 50 and N = 100: MLEs
of the parameters are obtained for each of the true parameter-design-sample size
combinations which is repeated 5000 times. The simulation results concerning
parameter estimation when N = 50 and N = 100 are summarized in Table 10.
The mean squared error for the simulation samples where the maximum likelihood
estimation procedure converged is computed and shown in the second column. The
average and sample variance of the MLE in the simulation samples where the MLE
existed are given in the third and fourth columns. The next column contains the
theoretical approximate variance derived using asymptotic results, abbreviated as
AV

�b�� : An estimate of the variance of the MLE, given by the diagonal elements
in bV �b��, is calculated for each of the simulation samples where the MLE existed.
The average and sample variance of these variance estimates are found in the last
two columns.

WhenN = 50 almost all of the 5000 simulations resulted in overlapped data with an
existing MLE for the "high-wide" model no matter what design was used and for the
"high-narrow" model together with the D-optimal design. 80 % existence was the
best that was achieved for the "low-wide" model (the 8-point design) which might
be tolerable contrary to 11 % existence that was the maximum for the "low-narrow"
model (the D-optimal design). The pattern of the simulation mean squared error
based on the times where the MLE existed is similar to the pattern of the mean
squared error (given that the MLE exists) observed whenN = 20. That is, although
none of the designs entirely outperforms the others, the D-optimal design is more
often associated with the lowest mean squared error. The bias is still quite large, in
most cases it has decreased but there are examples where the opposite is true, e.g.b�1 and the D-optimal design. The simulation sample variance of the MLE exceeds
but is quite close to the theoretical approximate variance when the percentage share
of existence was as high as 99 %. The variance estimator also worked well when
the MLE existed in 99 % of the times, it slightly underestimated the simulation
sample variance in those cases. For almost all the rest it was an overestimate of
the sample variance and the higher proportion of existence the closer it came. The
simulation sample variance of this variance estimator was particularly large for the
non-optimal designs and both the low models.

When the sample size is N = 100 the D-optimal design was the design with the
highest proportion of existence in three out of four cases. For the "low-wide"
model on the other hand, both the non-optimal designs managed to estimate the
parameters in almost 100 % of the times compared to only 35 % for the D-optimal
design. The mean squared error for the simulation samples where the MLE existed
is lowest for the D-optimal design besides for b�0 in both the wide models and it is
lowest for all parameters in the "high-narrow" model. The 8-point design is instead
associated with the lowest mean squared error for two parameters in the "low-
narrow" model. The MLE is still biased (with the exception of b�2 for the "high-
wide" model and the D-optimal or 8-point design) although it has decreased. The
bias is generally smallest for b�1 when the D-optimal or 8-point design is used. For all
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three designs and the "high-wide" model and for the two symmetric designs and the
"high-narrow" model the simulation sample variance agrees well with the theoretical
approximate variance. Furthermore, the variance estimator comes close to the
simulation sample variance. In spite of the fact that the proportion where the MLE
existed was approximately 100 % for the two non-optimal designs and the "low-
wide" case, the simulation sample variance exceeds the theoretical approximate
variance with a fairly large amount. However, the variance estimator succeeds
quite well in these two cases.

The mean and variance of the optimum point, x̂m, given that the MLE exists
are computed for N = 10 and N = 20 and the average and simulation sample
variance of x̂m are computed for N = 50 and N = 100. Occasionally the estimate
of �2 comes close to zero which causes x̂m and with that the mean or simulation
average of x̂m to degenerate. When x̂m falls outside x̂m � 10 �

p
AV (bxm), where

AV (bxm) is the approximate theoretical variance, that estimate is discarded. The
probability that x̂m is not degenerated according to this de�nition is displayed in
the second column of Table 11. For the two smallest sample sizes this probability
is calculated by summing the probabilities to obtain each of the samples where x̂m
is not degenerated. For the two largest sample sizes this probability is estimated
by the percentage share of the samples (where the MLE existed) where x̂m was
not degenerated. The mean and variance of x̂m given that the MLE exists and
that x̂m is not degenerated is found in the third and fourth columns of Table 11.
The �fth column contains the theoretical approximate variance of x̂m derived using
asymptotic results. The variance estimator bV (bxm) is computed according to the
equations given in section 2 and its mean and variance are given in last two columns.
The corresponding simulation results given that the MLE existed and that x̂m was
not degenerated are presented in Table 12 for N = 50 and N = 100.

The probability of obtaining degenerated estimates is higher for the wide models
because �2 is closer to zero, as can be seen from Table 11 forN = 10. The di¤erences
between the designs are small in this respect. The di¤erences when it comes to bias
and variance of x̂m given that the MLE exists and that x̂m is not degenerated was
on the other hand large. The D-optimal design had the smallest bias (for all but the
"low-wide" model) and variance irrespective of the true parameters. The 8-point
design comes in a good second place when grading is made by size of bias, it is not
far away from the D-optimal design. A symmetric design is as might be expected
better at estimating the optimum point. The variance of x̂m was smallest for the
D-optimal design and in three cases smaller for the 8-point than for the 7-point
design. The variance exceeded the theoretical approximate variance for the high
models and vice versa for the low models. The variance estimator does not work
well at all. For all models it overestimates the variance of x̂m given that the MLE
exists and that x̂m is not degenerated and it only came fairly close for the 8-point
design and the narrow models. It needs to be pointed out that the probability that
the MLE exists is extremely low for many cases making some of these results not
that meaningful.
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The probability that x̂m is not degenerated has increased somewhat when the sam-
ple size is increased from N = 10 to N = 20. The D-optimal design is now
associated with the lowest bias and variance given that the MLE exists and that
x̂m is not degenerated in all cases. The 8-point design is still in a second place but
has now fallen behind. The bias has also increased for the D-optimal design and
the high models. The variance of x̂m given that the MLE exists and that x̂m is not
degenerated was higher than the theoretical approximate variance for the two high
models and lower for the two low models. The variance estimator is still no good for
any of the models, although it is somewhat closer for the 7-point design together
with the narrow models. These patterns remain when N = 50 apart from that
the simulation sample variance of x̂m now is closer to the theoretical approximate
variance, especially for the D-optimal design, and that the variance estimator has
improved for the "high-wide" model. For the largest sample size the same grading
prevails, i.e. that the D-optimal design was better than the non-optimal designs.
The variance of x̂m is quite close to the theoretical approximate variance for the
high models. The variance estimator also comes close to the simulation sample
variance for these models.
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Table 9: Results of maximum likelihood estimation of the parameters in the
quadratic logit model for N=10 and N=20.

Design
(P (MLE))

MSE E
�b�� V

�b�� AV
�b�� E

�cV �b��� V
�cV �b���

a ) Tru e re sp o n se cu rve : " h ig h -w id e"m o d e l � =
�
2 0 �0:1

�T
D
(0:35)

1:53
0:018

2:66 � 10�3

1:10

�2:34 � 10�18
�0:064

0:72
0:018

1:39 � 10�3

2:67
0:025

3:87 � 10�3

2:19
0:03

3:81 � 10�3

0:063

1:10 � 10�4

5:20 � 10�7

N = 10
7 � P
(0:53)

0:63
0:42
0:017

1:82
�0:16
�0:090

0:60
0:40
0:017

1:28
0:074

5:70 � 10�3

1:60
0:57
0:03

1:41
1:07

5:38 � 10�3

8 � P
(0:49)

0:71
0:25
0:019

1:41

�4:16 � 10�17
�0:093

0:36
0:25
0:019

1:31
0:062

5:16 � 10�3

1:30
0:31
0:028

0:094
0:40
0:022

D
(0:74)

0:79
0:016

1:43 � 10�3

1:89

�1:26 � 10�17
�0:10

0:78
0:016

1:43 � 10�3

1:34
0:013

1:94 � 10�3

1:40
0:019

2:45 � 10�3

0:19

1:16 � 10�4

8:13 � 10�7

N = 20
7 � P
(0:82)

0:60
0:17

7:82 � 10�3

2:14
�0:097
�0:11

0:58
0:16

7:74 � 10�3

0:64
0:037

2:85 � 10�3

1:02
0:17

9:64 � 10�3

0:73
0:46
0:013

8 � P
(0:84)

0:47
0:16
0:014

2:05
�0:019
�0:11

0:47
0:16
0:014

0:65
0:031

2:58 � 10�3

0:82
0:14
0:015

0:16
0:14
0:038

b )Tru e re sp o n se cu rve : " h ig h -n a rrow "m o d e l � =
�
2 0 �4

�T
D
(0:35)

1:53
0:73
4:26

1:10

�4:24 � 10�17
�2:58

0:72
0:73
2:23

2:68
1:01
6:20

2:19
1:21
6:09

0:063
0:18
1:33

N = 10
7 � P
(0:014)

4:20
0:51
12:20

�9:79 � 10�4
�0:38
�0:51

0:19
0:37
0:023

7:87
3:26
13:00

1:68
1:07
0:65

0:35
1:83
0:041

8 � P
(0:11)

1:53
1:66
0:14

0:86

�3:31 � 10�16
�1:56

0:23
1:66
0:14

4:04
2:73
19:18

1:65
3:71
2:72

0:011
1:89
1:78

D
(0:76)

0:79
0:64
2:29

1:89

�3:89 � 10�16
�4:01

0:78
0:64
2:29

1:34
0:50
3:10

1:40
0:75
3:91

0:19
0:19
2:08

N = 20
7 � P
(0:28)

1:46
0:33
5:28

1:08
0:012
�1:77

0:61
0:33
0:30

3:93
1:63
6:49

1:97
1:13
1:97

1:35
40:83
2:43

8 � P
(0:36)

0:68
1:63
2:88

1:43
�0:14
�2:94

0:35
1:61
1:76

2:02
1:37
9:59

1:26
1:99
6:26

0:13
1:02
19:89

c )Tru e re sp o n se cu rve : " low -w id e"m o d e l � =
�
�2 0 �0:1

�T
D�
2:5 � 10�3

� 1:47

1:59 � 10�3
0:014

�0:88
2:11 � 10�17
0:014

0:23

1:59 � 10�3

1:00 � 10�3

2:86
0:36
0:034

1:28
0:047

8:06 � 10�3

0:015

4:34 � 10�19

2:44 � 10�7

N = 10
7 � P
(0:11)

2:34
1:36
0:15

�0:86
0:36
�0:35

1:05
1:22
0:088

2:21
0:55
0:060

2:35
2:23
0:35

5:58
11:96
0:14

8 � P
(0:096)

3:10
2:01
0:69

�0:43
�5:65 � 10�16
�0:63

2:63
2:01
0:41

1:66
0:63
0:060

1:40
2:31
0:86

0:21
3:96
2:08

D
(0:016)

0:73

1:95 � 10�3

6:60 � 10�3

�1:31
3:36 � 10�17
�0:026

0:25

1:95 � 10�3

1:12 � 10�3

1:43
0:18
0:017

1:07
0:036

6:49 � 10�3

0:044

8:19 � 10�6

7:31 � 10�4

N = 20
7 � P
(0:28)

1:21
2:37
0:45

�1:52
0:61
�0:46

0:98
2:01
0:32

1:11
0:27
0:030

2:61
6:56
1:46

26:52
696:44
41:63

8 � P
(0:43)

0:88
1:66
0:69

�1:36
�0:044
�0:68

0:48
1:66
0:69

0:83
0:31
0:030

0:88
2:04
1:52

0:19
7:66
13:61

d ) Tru e re sp o n se cu rve : " low -n a rrow "m o d e l � =
�
�2 0 �4

�T
D�
2:5 � 10�3

� 1:47
0:064
22:52

�0:88
�1:45 � 10�16
0:57

0:23
0:064
1:60

2:86
14:4
54:56

1:28
1:89
12:91

0:015

1:33 � 10�15
0:62

N = 10
7 � P�
2:4 � 10�5

� 3:45
0:34
12:45

�0:15
�0:37
�0:47

0:026
0:20
0:011

103:06
139:39
329:69

1:59
0:96
0:63

0:18
1:12

7:24 � 10�3

8 � P�
2:6 � 10�3

� 6:11
2:68
4:93

0:47

�5:46 � 10�16
�1:80

0:022
2:68
0:094

6:32
30:32
133:93

1:59
4:69
3:69

8:87 � 10�3
0:91
0:73

D
(0:016)

0:73
0:078
10:56

�1:31
�3:19 � 10�16
�1:04

0:25
0:078
1:79

1:43
7:21
27:28

1:07
1:42
10:38

0:044
0:013
1:87

N = 20
7 � P�
4:4 � 10�5

� 1:37
0:85
11:71

�0:98
�0:05
�0:59

0:32
0:85
0:10

1:43
7:21
27:28

1:52
2:10
0:70

1:78
30:67
1:62

8 � P
(0:016)

1:54
1:70
5:55

�0:85
0:35
�1:84

0:22
1:58
0:88

3:16
15:16
66:97

0:96
3:52
6:13

0:016
1:71
36:13



Table 10: Simulation results of maximum likelihood estimation of the parameters
in the quadratic logit model for N=50 and N=100.

Design
(% MLE)

mse b� s2c� AV
�b�� cV �b�� s2dV�c��

a ) Tru e re sp o n se cu rve : " h ig h -w id e"m o d e l � =
�
2 0 �0:1

�T
D
(99)

0:72

7:34 � 10�3

1:14 � 10�3

2:17

2:18 � 10�4
�0:11

0:69

7:34 � 10�3

1:06 � 10�3

0:54

5:03 � 10�3

7:75 � 10�4

0:69

6:33 � 10�3

1:01 � 10�3

0:12

1:26 � 10�5

1:94 � 10�6

N = 50
7 � P
(99)

0:39
0:031

2:50 � 10�3

2:16
�0:030
�0:11

0:36
0:030

2:35 � 10�3

0:26
0:015

1:14 � 10�3

0:35
0:025

2:03 � 10�3

0:068

5:03 � 10�3

4:73 � 10�6

8 � P
(99)

0:38
0:020

1:73 � 10�3

2:12

�1:35 � 10�4
�0:11

0:36
0:020

1:65 � 10�3

0:26
0:012

1:03 � 10�3

0:34
0:016

1:37 � 10�3

0:041

1:72 � 10�4

1:19 � 10�6

D
(100)

0:33

2:93 � 10�3

4:79 � 10�4

2:09

2:56 � 10�4
�0:10

0:32

2:93 � 10�3

4:57 � 10�4

0:27

2:51 � 10�3

3:87 � 10�4

0:29

2:79 � 10�3

4:28 � 10�4

8:17 � 10�3

3:68 � 10�7

9:20 � 10�9

N = 100
7 � P
(100)

0:16

9:50 � 10�3

8:57 � 10�4

2:08
�0:011
�0:11

0:16

9:38 � 10�3

8:25 � 10�4

0:13

7:42 � 10�3

5:70 � 10�4

0:14

8:57 � 10�3

7:22 � 10�3

2:38 � 10�3

3:84 � 10�6

1:57 � 10�7

8 � P
(100)

0:15

7:72 � 10�3

6:53 � 10�4

2:05

1:42 � 10�3
�0:10

0:14

7:72 � 10�3

6:53 � 10�4

0:13

6:15 � 10�3

5:16 � 10�4

0:14

6:96 � 10�3

5:83 � 10�4

2:01 � 10�3

4:14 � 10�6

2:54 � 10�8

b ) Tru e re sp o n se cu rve : " h ig h -n a rrow "m o d e l � =
�
2 0 �4

�T
D
(99)

0:67
0:26
1:70

2:15

�1:26 � 10�3
�4:32

0:60
0:29
1:60

0:54
0:20
1:24

0:68
0:25
1:59

0:10
0:020
0:46

N = 50
7 � P
(34)

0:86
0:14
1:27

1:87
�0:083
�3:43

0:85
0:14
0:94

1:57
0:65
2:60

1:56
0:48
2:20

0:27
0:030
0:52

8 � P
(84)

0:44
0:82
2:72

1:99
�0:020
�4:11

0:44
0:82
2:71

0:81
0:55
3:84

0:89
0:74
4:31

0:16
0:19
4:66

D
(100)

0:31
0:11
0:74

2:08

4:97 � 10�4
�4:16

0:30
0:11
0:71

0:27
0:10
0:62

0:29
0:11
0:68

8:64 � 10�3

5:75 � 10�4
0:025

N = 100
7 � P
(69)

0:76
0:18
0:96

2:10

�1:77 � 10�3
�4:03

0:75
0:18
0:96

0:79
0:33
1:30

0:87
0:36
1:40

0:12
0:020
0:26

8 � P
(98)

0:47
0:32
2:21

2:14
0:017
�4:30

0:45
0:32
2:12

0:40
0:27
1:92

0:50
0:30
2:12

0:084

5:05 � 10�3
1:02

c ) Tru e re sp o n se cu rve : " low -w id e"m o d e l � =
�
�2 0 �0:1

�T
D
(12)

0:39

4:50 � 10�3

5:75 � 10�3

�1:99
�1:91 � 10�4
�0:037

0:39

4:50 � 10�3

1:78 � 10�3

0:57
0:072

6:82 � 10�3

0:68
0:030

4:59 � 10�3

0:090

2:46 � 10�5

1:53 � 10�6

N = 50
7 � P
(73)

1:09
2:32
0:50

�2:04
0:49
�0:44

1:09
2:08
0:38

0:44
0:11
0:012

1:53
2:96
0:65

9:05
106:93
5:79

8 � P
(80)

0:42
1:15
0:82

�1:88
�0:026
�0:55

0:41
1:15
0:62

0:33
0:13
0:012

0:50
1:05
0:82

0:12
2:91
5:08

D
(35)

0:34

5:71 � 10�3

2:86 � 10�3

�2:11
�1:94 � 10�3
�0:066

0:33

5:71 � 10�3

1:72 � 10�3

0:29
0:036

3:41 � 10�3

0:35
0:026

3:06 � 10�3

0:042

3:63 � 10�5

7:89 � 10�7

N = 100
7 � P
(97)

0:72
1:51
0:34

�2:09
0:30
�0:33

0:71
1:42
0:28

0:22
0:055

5:95 � 10�3

0:66
1:30
0:30

3:26
42:62
2:39

8 � P
(98)

0:23
0:44
0:33

�1:99
�2:73 � 10�3
�0:35

0:23
0:44
0:27

0:17
0:063

6:02 � 10�3

0:22
0:33
0:24

0:022
0:50
1:01

d ) Tru e re sp o n se cu rve : " low -n a rrow "m o d e l � =
�
�2 0 �4

�T
D
(11)

0:37
0:14
8:15

�1:95
2:68 � 10�3
�1:64

0:36
0:14
2:55

0:57
2:88
10:91

0:66
1:20
7:23

0:083
0:037
3:69

N = 50
7 � P
(0:04)

0:79
2:77
11:52

�2:56
0:58
�0:62

0:47
2:43
0:099

20:61
27:68
65:94

2:10
3:87
0:78

3:10
21:88
0:48

8 � P
(8)

0:46
1:72
4:64

�1:60
�0:078
�2:16

0:30
1:71
1:25

1:26
6:06
26:79

0:69
2:88
6:06

0:012
1:17
16:19

D
(35)

0:34
0:25
4:55

�2:10
0:012
�2:67

0:33
0:25
2:79

0:29
1:44
5:46

0:35
1:05
4:89

0:041
0:055
1:92

N = 100
7 � P
(0:2)

0:64
0:14
9:13

�1:83
�0:33
�1:03

0:62
0:027
0:33

10:31
13:94
32:97

0:94
0:49
1:05

0:024

3:09 � 10�3
0:20

8 � P
(21)

0:33
1:78
3:74

�2:02
0:067
�2:58

0:33
1:77
1:72

0:63
3:03
13:39

0:52
2:42
6:06

0:021
1:42
11:94



Table 11: Results of maximum likelihood estimation of the optimum point in the
quadratic logit model for N=10 and N=20.

Design
(P (MLE))

P (bxm) E (bxm) V (bxm) AV (bxm) E
�cV (bxm)

�
E
�cV (bxm)

�
a )Tru e re sp o n se cu rve : " h ig h -w id e"m o d e l � =

�
2 0 �0:1

�T ; xm = 0

D
(0:35)

0:94 1:31 � 10�16 1:40 0:63 6:18 170:6

N = 10
7 � P
(0:53)

0:90 �0:32 14:23 1:86 345:85 1:55 � 106

8 � P
(0:49)

0:95 �6:38 � 10�16 6:90 1:54 81:17 1:10 � 105

D
(0:74)

0:99 2:55 � 10�4 0:59 0:31 3:79 � 1027 3:38 � 1058

N = 20
7 � P
(0:82)

0:95 �0:12 4:03 0:93 42:16 1:92 � 105

8 � P
(0:84)

0:96 0:076 3:40 0:77 59:30 7:49 � 107

b )Tru e re sp o n se cu rve : " h ig h -n a rrow "m o d e l � =
�
2 0 �4

�T ; xm = 0

D
(0:35)

0:94 4:56 � 10�17 0:035 0:016 0:15 0:11

N = 10
7 � P
(0:014)

1 �0:44 0:12 0:051 1:55 0:22

8 � P
(0:11)

1 �1:55 � 10�17 0:13 0:043 0:29 7:08 � 10�3

D
(0:76)

0:99 �5:31 � 10�5 0:015 7:86 � 10�3 4:17 � 1027 4:09 � 1058

N = 20
7 � P
(0:046)

1 �0:032 0:049 0:025 0:14 0:069

8 � P
(0:43)

1 �0:022 0:051 0:021 0:074 1:86 � 10�3

c )Tru e re sp o n se cu rve : " low -w id e"m o d e l � =
�
�2 0 �0:1

�T ; xm = 0

D�
2:5 � 10�3

� 0:99 �3:82 � 10�16 0:070 9:01 15:37 26:85

N = 10
7 � P
(0:11)

0:99 0:86 9:59 13:73 1:24 � 103 3:39 � 108

8 � P
(0:096)

0:97 2:80 � 10�16 6:24 15:63 92:72 1:05 � 107

D
(0:016)

1 1:65 � 10�15 1:30 4:51 78:97 1:42 � 104

N = 20
7 � P
(0:28)

0:99 0:49 21:00 6:87 2:61 � 103 2:01 � 108

8 � P
(0:36)

0:98 �0:056 5:51 7:82 278:24 4:66 � 107

d )Tru e re sp o n se cu rve : " low -n a rrow "m o d e l � =
�
�2 0 �4

�T ; xm = 0

D�
2:5 � 10�3

� 0:99 1:00 � 10�16 1:74 � 10�3 0:23 0:38 0:017

N = 10
7 � P�
2:4 � 10�5

� 1 �0:44 0:072 2:18 1:71 0:047

8 � P�
2:6 � 10�3

� 1 �2:60 � 10�17 0:19 0:47 0:28 0:012

D
(0:016)

1 �1:03 � 10�15 0:032 0:11 1:97 8:88

N = 20
7 � P�
4:4 � 10�5

� 1 �0:29 0:32 1:09 1:07 0:19

8 � P
(0:016)

1 0:089 0:12 0:24 0:28 0:024
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Table 12: Simulation results of maximum likelihood estimation of the optimum
point in the quadratic logit model for N=50 and N=100.

Design
(% MLE)

bxm % bxm s2cxm AV (bxm) cV (bxm) s2dV (cxm)

a ) Tru e re sp o n se cu rve : " h ig h -w id e"m o d e l � =
�
2 0 �0:1

�T ; xm = 0

D
(99)

100 �4:13 � 10�3 0:16 0:13 0:16 0:028

N = 50
7 � P
(99)

99 �0:18 0:78 0:37 1:86 106:54

8 � P
(99)

100 �5:40 � 10�3 0:50 0:31 1:25 420:49

D
(100)

100 1:30 � 10�3 0:069 0:063 0:068 6:10 � 10�4

N = 100
7 � P
(100)

100 �0:095 0:28 0:19 0:32 0:66

8 � P
(100)

100 2:09 � 10�3 0:19 0:15 0:20 0:072

b ) Tru e re sp o n se cu rve : " h ig h -n a rrow "m o d e l � =
�
2 0 �4

�T ; xm = 0

D
(99)

100 �8:44 � 10�4 4:06 � 10�3 3:14 � 10�3 5:99 � 10�3 0:020

N = 50
7 � P
(34)

100 �0:013 4:83 � 10�3 0:010 0:014 3:43 � 10�4

8 � P
(84)

100 �1:79 � 10�3 0:016 8:54 � 10�3 0:018 1:95 � 10�4

D
(100)

100 1:06 � 10�3 1:68 � 10�3 1:57 � 10�3 1:72 � 10�3 5:28 � 10�7

N = 100
7 � P
(69)

100 2:73 � 10�3 3:40 � 10�3 5:09 � 10�3 5:89 � 10�3 9:68 � 10�6

8 � P
(98)

100 1:29 � 10�3 5:58 � 10�3 4:27 � 10�3 6:27 � 10�3 2:36 � 10�5

c ) Tru e re sp o n se cu rve : " low -w id e"m o d e l � =
�
�2 0 �0:1

�T ; xm = 0

D
(12)

100 0:039 1:59 1:80 141:68 4:76 � 104

N = 50
7 � P
(73)

99 0:29 4:63 2:75 221:35 8:16 � 106

8 � P
(80)

100 0:018 3:57 3:13 187:39 1:61 � 107

D
(35)

98 �0:020 0:79 0:90 80:03 1:32 � 105

N = 100
7 � P
(97)

99 0:074 1:75 1:37 17:95 9:70 � 104

8 � P
(98)

100 �0:027 1:65 1:56 17:10 8:57 � 104

d ) Tru e re sp o n se cu rve : " low -n a rrow "m o d e l � =
�
�2 0 �4

�T ; xm = 0

D
(11)

100 4:38 � 10�3 0:036 0:045 3:22 27:19

N = 50
7 � P
(0:04)

100 0:17 1:37 0:44 1:04 0:18

8 � P
(8)

100 �0:014 0:097 0:095 0:21 0:026

D
(35)

98 3:92 � 10�3 0:022 0:023 1:62 68:91

N = 100
7 � P
(0:2)

100 �0:25 0:054 0:22 0:40 0:29

8 � P
(21)

100 8:90 � 10�3 0:066 0:047 0:13 0:019
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5 Discussion

The foremost important conclusion to be drawn is that non-existence is a big prob-
lem for this three parameter logistic model and the sets of true parameters that
were examined here, especially for small samples. How severe the problem is de-
pends on the true parameters and the design. The non-optimal designs considered
here were sometimes better than the D-optimal design in this respect, due to the
larger number of design points. The models where the response curve � (x) is low
were more problematic, in particular the "low-narrow" model where existence prac-
tically never occurred for the smallest sample size (N = 10) and only in 35 % of
the times for the largest sample size (N = 100). The practical consequence is that
large samples demanding big time and money e¤orts need to be taken and yet there
may be a large risk of not obtaining estimates, depending on the true parameters.

It turned out to be quite a large discrepancy between the asymptotic sampling
distribution of the MLE and its small sample distribution given that the MLE
exists. Even when existence was 100 % and the sample size was N = 100 the
MLE remained biased. It was only when the probability that the MLE exists was
close to 100 % (as for the high models and the two largest sample sizes) and the
D-optimal design was used that the simulation sample variance was close to the
theoretical approximate variance. This is a problem because the construction of
the optimal designs is based on the theoretical approximate variance. The accuracy
of the variance estimator was also dependent on the proportion of existence of the
MLE.

The parameter dependence makes things troublesome for these kind of models.
However, when estimating the parameters the D-optimal design was not consis-
tently outperforming the non-optimal designs, although it was preferable more of-
ten. When estimating the optimum point and for the smaller sample sizes in partic-
ular the di¤erence between the D-optimal designs and the non-optimal designs was
more distinct. These results imply that choosing one of the non-opitmal designs
does not have to be disastrous, at least not when it comes to parameter estimation.
Such a design might perform equally well or it might even be an improvement. Yet
again, the choice of design did have a large impact on the probability of obtaining a
MLE. The ideal would be to combine a D-optimal design with more points in a way
that maximizes the probability of existence of the MLE. Some kind of sequential
procedure could be required considering the parameter dependence of this problem.
Further study is needed to �nd ways to deal with the problems of non-existence of
the MLE in this quadratic logistic model.
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