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Abstract. Many probability models for graphs and directed graphs have been
proposed and the aim has usually been to reduce the probability of a graph to
some function that does not take the entire (graph-) structure into account, e.g.
the number of edges (Bernoulli graph), dyadic properties in directed graphs
(p1 Holland and Leinhardt, 1981), subgraph counts (Markov Graphs Frank and
Strauss, 1986), etc. Many of these models give you analytically tractable forms
for inference about parameters while assuming dependencies that are not al-
ways realistic in social science applications, whereas others make up for their
increased realism with computational complexity. The Markov Graph of Frank
and Strauss (1986), was later developed by Wasserman and Pattison (1996) into
the so called p

∗ model, an exponential model for graphs that comprise arbitrary
statistics of graphs and attributes. In this paper we propose a procedure for
making Bayesian inference in the exponential graph framework. The aim is to
obtain a joint posterior distribution of the parameters in the model, which cap-
tures the uncertainty about our parameter values given the observed data. A
second objective is to assess how much support different parameterizations of
the model are given by data. Typically in Bayesian statistics, the expression for
the posterior distribution is not analytically tractable because of the normaliz-
ing constant involving a complicated integral or sum. In the case of exponential
random graphs we have an additional difficulty, namely that for the p

∗ model
the likelihood is only known up to a constant of proportionality (with respect to
data). When the likelihood is easily evaluated, the first problem is easily han-
dled by means of Markov chain Monte Carlo (MCMC) methods. Here, using
this fact, the posterior is obtained from a two-step algorithm, which samples
from both the sample space and the parameter space. For calculating the mar-
ginal likelihood function needed for model comparison, we employ a method
suggested by Chib and Jeliazkov (2001). This involves estimating the posterior
density evaluated in a suitably chosen point, something which is accomplished
using only the key components of the MCMC algorithm, taking averages over
the posterior distribution and candidate proposal distribution.

1. Introduction

Many probability models for graphs and directed graphs have been proposed
and the aim has usually been to reduce the probability of a graph to some function
that does not take the entire (graph-) structure into account, e.g. the number of
edges (Bernoulli graph, Erdös, 1947), dyadic properties in directed graphs (e.g. the
p1 model, Holland and Leinhardt 1981, and its random effects version the p2 model
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Van Duijn 1995; van Duijn et al. 2004), subgraph counts (Markov Graphs, Frank
and Strauss, 1986), etc. (for a comprehensive treatment of random graphs not ex-
plicitly adapted for social network analysis see e.g. Janson et al., 2000). Many of
these models give you analytically tractable forms for inference about parameters
while assuming dependencies that are not always realistic in social science appli-
cations, whereas others make up for their increased realism with computational
complexity. The Markov Graph of Frank and Strauss (1986), was later developed
by Wasserman and Pattison (1996; see also Robins, 1998; and extensions, e.g.
Robins et al., 1999) into the so called p∗ model, an exponential model for graphs
that comprises arbitrary statistics of graphs and attributes.

Since Bayesian analysis like classicist likelihood inference is based upon the like-
lihood function, both suffers from similar dilemmas in the case of the p∗ model.
The major obstacle is that the p∗ model belongs to the normalizing-constant fam-
ily of distributions, meaning that the likelihood is only known up to a constant
of proportionality. Various simulation techniques have been proposed for finding
the maximum likelihood estimates of the parameters for the p∗ model and spe-
cial cases (Frank and Strauss, 1986; Dahmström and Dahmström, 1993; Corander
et al., 1998, 2002; Snijders, 2002b; Snijders and van Duijn, 2002) as well as approx-
imations (Strauss and Ikeda, 1990; Frank, 1991; Wasserman and Pattison, 1996).
The properties of the approximations are not fully understood and in many situa-
tions they compare unfavorably with the maximum likelihood estimators (Besag,
2000; Corander et al., 2002). When it comes to simulation techniques, if we can
simulate from a parametric distribution we can often make inference about the pa-
rameters with an accuracy that only depends on the amount of computer time we
are willing to put down. As pointed out by among others Corander et al. (1998),
and Snijders (2002b), sampling from the p∗ model is not always straightforward.
Recent work (Hancock, 2000; Besag, 2000; Snijders, 2002b) suggests however that
difficulties encountered in the estimation procedure are artifacts of certain model
deficiencies rather than problems due to estimation strategies. This has led some
to model the tie variable as conditionally independent conditional on latent struc-
tures. The notion of an underlying social space and/or structural constraints in the
context of social networks is thoroughly analysed in (Pattison and Robins, 2002).
Much progress in the department of statistical models for investigating these con-
cepts has been made recently. Originating in models for stochastic block models
(Fienberg and Wasserman, 1981; Holland et al., 1983), via recent approaches to
parameter inference (Snijders and Nowicki, 1997; Nowicki and Snijders, 2001; Tall-
berg, 2004), the fixed latent blocks have been elaborated to include ultra metrics
(Schweinberger and Snijders, 2003) and arbitrary metric spaces (Hoff et al., 2002).

The methods presented in here do not deal specifically with the problems that
may occur when simulating exponential random graphs. To fully investigate ques-
tions of model deficiency is beyond the scope of this paper. What should count
as a model deficiency and what should be regarded merely as a technical issue
is perhaps not clear-cut. Here follows some comments in brief on the technical
aspects.
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When sampling from the model, certain regions of the parameter space may give
rise to dominant regimes in the sample space. The existence of regimes is defined
in Snijders (2002b) in relation to the sampling scheme. Specifically, regimes are
subsets of the state space with high probability mass that are separated from each
other by areas with low probability mass making transitions from one regime to
the other extremely unlikely. Since the existence of regimes is an artifact of the
state space, constructing a different sampling scheme could solve this problem.
One solution could be using an over-dispersed Metropolis-coupled Markov chain
Monte Carlo strategy. Metropolis-coupled Markov chain Monte Carlo, proposed
by Geyer (1991), runs several parallel MCMC chains with different stationary dis-
tributions and at each iteration a swap between two of the chains is proposed and
accepted with a certain probability. By starting in by some definition extreme
states, over dispersing, and letting the chains implement varying degrees of incre-
mental heating (Geyer and Thompson, 1995), the chain converging to the desired
distribution is, at least heuristically speaking, relatively freely moving between
different regimes.

Another strategy that can be implemented in the Metropolis algorithm (Me-
tropolis et al., 1953), is to randomly select symmetric updating distributions. For
example, with a certain probability you change exactly one element of the current
adjacency matrix into its complement, and with another probability you change
the whole graph into its complement, or you sample a graph from the Gibbs’ dis-
tribution which has the current graph as its central graph. Snijders (2002b) has
suggested a few additional move types.

A problem that some of these and many methods for improving mixing has
in common is that they require some degree of fine tuning and in the present
context we can not allow for to much of the fine tuning being dependent on the
parameter values. In other words, the sampling scheme should work equally well
for all parameter values in the range of ”likely” values.

Model selection in the class of exponential random graphs has henceforth (as far
as we are concerned) been limited to performing t-test for individual parameters.
When maximizing the pseudo likelihood (Strauss and Ikeda, 1990) rather than the
likelihood function, you may obtain various goodness of fit statistics. The dangers
involved in relying on these for model selection were however pointed out by Besag
(2000).

Knowledge of how the exponential random graphs work continually accumulate.
Recent advances include new specifications limiting the risk of degenerate models
(Snijders et al., 2004; ”degenerate” is here used very casually, an not in the strict
sense of Strauss, 1986, regarding the large sample behaviour). New insights into
the performance of exponential random graphs can easily be incorporated into
the Bayesian analysis through prior specifications for the model parameters. It
is for example know that certain combinations of parameter values are prone to
create explosive models (Snijders 2002a; see also Strauss 1986). This should, from
a Bayesian perspective, be dealt with by assigning as little prior probability mass
as possible to these regions.
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The paper is structured as follows. After providing the bare essentials in terms
of model specification, we proceed to present the proposed algorithm for exploring
the posterior distributions of the parameters. In the latter section, we discuss
various issues relating to convergence and convergence control, and present the
procedure for calculating the quantities needed for model selection. We close
by fitting a p∗ model to Krackhardt’s (1987) high-tech managers. Two different
models are also compared for different prior assumptions.

2. The model

For a fixed set of actors represented by vertices in V = {1, . . . , n}, let x with
range space

�
be the ordinary adjacency matrix of a (di-) graph G on V , and let

z (x) =(z1 (x) , . . . , zp (x))′

be a collection of functions of x. Introducing a p× 1 vector θ = (θ1, . . . , θp)
′ with

parameter space Θ ⊆ R
p, and the so called p∗, or exponential random graph

(ERG), model can be expressed as

(2.1) p (x| θ) = exp {θ′z (x) − ψ (θ)} ,

where

(2.2) ψ (θ) = log
∑

u∈�
exp {θ′z (u)} .

To distinguish (2.2) from the normalizing constant in the posterior distribution, we
call the former (or, rather eψ(θ), to be precise) the partition function in accordance
with its use in statistical mechanics (Strauss, 1986). The directed Bernoulli(n, p)
graph on V , is equivalent to the exponential random graph for

(2.3) p =
eθ1

1 + eθ1
,

and the the degree statistic z1(x) =
∑

i6=j xij . The reciprocity model assumes that

z (x) = (z1(x),z2(x))′, where the first element is the degree statistic and the second
the number of mutual dyads z2(x) =

∑
i6=j xijxji. The probability distribution

function of x under the reciprocity model with parameters θ1 and θ2 can be written

exp {θ1z1 (x) + θ2z2 (x) − ψ (θ)} = eθ1z1(x)+θ2z2(x)(1 + 2eθ1 + e2θ1+θ2)−n
∗

,

where n∗ =
(
n
2

)
. The dependence graph on E, the set of all possible (arcs) edges of

G, is a graph D with vertex set E, and an edge between two elements (i, j), (k, `) ∈
E if xi,j and xk,` are dependent conditional on the rest of x. Any random graph
G on V with dependence structure D has probability proportional to

exp
∑

A⊆G

αA,

where αA is an arbitrary constant if A is a clique ofD, and zero otherwise. A graph
G is said to be a Markov graph if D only has edges between (i, j) and (k, `), if
{i, j}∩{k, `} 6= ∅ (Frank and Strauss, 1986; Wasserman and Robins, 2004). Some
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important progress in generalizing dependence graphs and dependence structures
is reported in for example Robins and Pattison (2004).

Typically z (x) includes functions of observable covariates as well as functions
of the graph structure. Exhaustive lists of theoretically motivated models can
be found in the literature (Frank and Strauss, 1986; Frank and Nowicki, 1993;
Wasserman and Pattison, 1996; Snijders, 2002b; Snijders et al., 2004).

2.1. Prior distributions. With prior information about the parameters repre-
sented by a distribution with density function π defined on Θ, the posterior dis-
tribution of θ given data x is given by Bayes theorem as

π (θ|x) =
exp {θ′z (x) − ψ (θ)}π (θ)∫

Θ
exp {θ′z (x) − ψ (θ)} π (θ) dθ

.

Now, it is clear that neither the denominator nor the numerator are analytically
tractable other than in a few relatively trivial cases.

In the application in the empirical section we use a vague prior (prior propor-
tional to a constant) when obtaining the posterior distribution. For the model
selection example we have used independent normal priors. To check that the
posterior is proper is, apart from in a few trivial cases (for example z (x) = 0),
in general laborious (or so we conjecture). In the mentioned illustration, we have
resorted to the ad-hoc method of assessing whether the sample from the posterior
converges. Naturally, practical problems may occur when it is difficult to distin-
guish potential inappropriateness from general symptoms of bad mixing in the
MCMC scheme.

For all proper priors the posterior is also proper, regardless of data. A proper
prior, however, should ideally not be used only for convenience, rather the proper
prior should reflect our prior knowledge and belief regarding the parameters. In
addition, not all values on the parameters make sense since the model is known to
be explosive for certain parts of R

p (Snijders, 2002a). Consequently some subsets
of the parameter space should be excluded from the analysis. For most exponential
random graphs for example, with p > 1 it is usually the case that not all parameters
may be strictly positive. A sensibly constructed prior (and a properly subjective
one) should reflect this by dependencies between the parameters a priori. One
way of getting a working handle on the relation between the parameters and the
model is by starting with the parameter corresponding to the degree statistic.
The priors for the rest of the parameters are then constructed conditional on the
degree parameter, ”as if” the (marginal expected) number of edges (arcs) were
fixed. A convenient prior distribution for studying the influence of the degree
parameter on the density of the graph is a logistic distribution with mean µ and
scale parameter τ . The study of the graph density can then be couched in terms of
the transformation (2.3). The induced prior on p (given that all other parameters
are excluded at this stage) also has a convenient form and it seems easier to think
in terms of edge probabilities than about the parameter in its exponential form.
That this induced prior should have most of its probability mass to the left of .5
is reasonable to assume in most applied cases, which suggests that µ should be
chosen to be negative. To determine more specifically what hyper parameters to
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be used, different values of µ can be tested and by manipulating the spread with
τ , the shape of the distribution of p and its quantiles can be investigated.

We might also mention that a compromise is to have a uniform prior on a
bounded subset Θ ⊂R

p. This could, however, seriously ”bias” model selection
(in some cases the Bayes factor can be seen as direct function of the volume of
the parameter space as is shown in e.g. Lindley 1957; some authors make the
dependence on these bounds explicit in the analysis, as does for example Mitchell
and Beauchamp, 1988, using a ”spike and slab” prior; see Kass and Raftery, 1995,
for a general discussion and review on Bayes factors).

3. MCMC sampling scheme

Using a Metropolis sampler (Metropolis et al., 1953), where a proposed move
from θ(t) to θ∗, sampled from a candidate generating distribution q(·|θ(t)), is ac-
cepted with probability

(3.1) α (θt, θ
∗) = min

{
1,
π (θ∗|x)

π (θ(t)|x)

q(θ(t)|θ∗)

q(θ∗|θ(t))

}
,

{
θ(t)

}
converges to a sample from π (θ|x). Although one important feature of (3.1)

is that the normalizing constant in the posterior cancels out, it does however still
depend on the partition function ψ. Even though ψ in theory can be simulation
consistently estimated with a suitable importance function, the estimator typically
has a non negligible variance. Assuming for now that we have a simple form for the
kernel of the prior or that we have a vague prior, the aim is to somehow evaluate

(3.2) p (x| θ∗) /p (x| θ) ,

where p is of the form (2.1).
For two fixed parameter vectors θ and θ∗, and a fixed choice of statistics, consider

the function

(3.3) f(y) = exp
{
(θ − θ∗)′ z (y)

}
,

defined for y ∈
�

.

Proposition 1. For a fixed θ∗ and θ in a bounded subset of R
p and f defined as

in (3.3)

E (f(Y)) = exp {ψ (θ) − ψ (θ∗)} ,

where expectancy is with respect to the random variable Y with probability function
p ( ·| θ∗) and the same choice of statistics as f .

Proof. The proof follows simply by noting that the expectation is the sum of terms

f(y)p (y| θ∗) = exp{θ′z (y)−ψ (θ∗)} = p (y| θ) exp{ψ(θ)−ψ (θ∗)}.

�

That the cumulant generating function of the statistics z has a simple expression
has been used by Frank and Strauss (1986), Corander et al. (1998), and Corander
et al. (2002) in the context of maximum likelihood estimation. Here we are however
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interested in the actual ratio of partition functions and not the cumulants. Using
the result above, for a fixed θ∗, θ and data x an estimator of (3.2) is given by

(3.4) exp
{
(θ∗ − θ)′ z (x)

}
N−1

N∑

k=1

f(yk),

where y1, . . . ,yN are generated from p ( ·| θ∗).
This suggests the following algorithm.

Algorithm 1. For positive integers T and N

Step 0: Initialize by setting θ0 := φ, where φ is drawn from distribution P0

Step 1: if t < T , proceed to step 1a, else terminate
Step 1a: draw θ∗ from q(·|θ(t))
Step 1b: draw a number u uniformly at random on the interval (0, 1)

Step 2: draw a sample {yk}
N
k=1 from p ( ·| θ∗)

Step 3: from {yk} calculate p (x| θ∗) /p (x| θ) using (3.4), if

u <
p (x| θ∗) π(θ∗)

p (x| θ)π(θ(t))

q(θ(t)|θ∗)

q(θ∗|θ(t))

set θ(t+1) := θ∗, other wise θ(t+1) := θ(t)

Step 4: return to Step 1.

The distribution P0 from which the initial values are drawn is a mere formality
(and the initial values can be set to some arbitrary vector, or drawn from the prior
distribution is this is proper; however see e.g. Fishman, 1996, ch. 6). For step 2

and 3, we need a procedure for drawing samples {yk}
N
k=1 from the exponential ran-

dom graph model. The sample points do not necessarily have to be independent.
How to draw a sample {yk}

N
k=1 using MCMC is described in for example Strauss

(1986), Corander et al. (1998) and Snijders (2002b). When MCMC is used for
generating the sample, the function f , inherits the properties of sampled points
and the ergodic average (3.4) is a simulation consistent estimator of the ratio of
partition functions. It follows from the ergodic theorem (Tierney, 1994) that this
quantity converges to its mean almost surely as N → ∞. Now, considering that
we need to compute the acceptance ratio not once but in every iteration of the
algorithm, at least a few remarks regarding the generation of exponential graphs
and of the behaviour of (3.4) are required.

3.1. Some issues relating to the second step. As mentioned above, sim-
ulating graphs from the exponential graph distribution using MCMC has been
suggested in Strauss (1986), Corander et al. (1998) and Snijders (2002b), among
others. Whereas the former two relied principally on Metropolis up-dating steps
for single edges at a time, the latter also suggested various strategies for improving
mixing by combining different up-dating rules. In our experience, a combination
of three type of moves yields fully satisfactory convergence properties. The first
move type is the Metropolis up-dating step for a single edge. To cater for the
need to sometimes propose moves that takes larger jumps in the state space we
have also included a Gibbs distribution type up-dating step. Let χ ∈

�
be a
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central (modal) graph in the sense of Banks and Constantine (1998), and define a
distribution on

�
defined by the probability mass function

q(y|χ, τ) = κ−1e−τd(y,χ),

for a suitable metric d, partition function κ, and a scaling factor τ ≥ 0. To use
this in the MCMC procedure for drawing exponential random graphs, let d be
the Hamming metric, τ a suitably chosen constant and use the graph from the
last iteration as the central graph. For y following this distribution, the partition
function becomes κ = (1 + e−τ )−n

∗

, where n∗ = n(n − 1) for directed graphs
and n∗ =

(
n
2

)
for un-directed graphs. The proposal distribution reduces to a

Bernoulli model where the edge probabilities depend upon whether the edge is
present in the modal graph or not. This naturally requires that some thought
is put into assessing what values τ are appropriate. Too small a τ will tend to
propose graphs that have a very low probability of being accepted, and if τ is too
large the proposed moves will not be very different from the ones proposed by the
single edge up-dating scheme (and in extreme cases, only the modal graph will be
proposed).

For the eventuality that the model has dominant regimes (Snijders, 2002b), a
third move type is included in the MCMC scheme. It consists of proposing to
move to the complement of the graph in the last iteration.

Given a sequence y1,y2, . . . ,yN sampled as described, where the sample points
from a suitably chosen burn-in period have been discarded, the acceptance prob-
ability is estimated with α̂3 = (N1α̂1 + (N − N1)α̂2)/N , where α̂1 is calculated
using (3.4) for the sample points y1,y2, . . . ,yN1

, whereas α̂2 is calculated based
on yN1+1,yN1+2, . . . ,yN , for a 1 ≤ N1 < N . The sizes of these sub-samples do not
necessarily have to be chosen equal, but it is convenient to do so. A measure of
the stability of the estimator is thus given by the difference between the estimator
based on the first fraction of the sample and the estimator based on the second
part of the sample. This carries some of the logic behind the Geweke diagnostics
(1992), in that we would expect different parts of a function of an MCMC output
to behave similarly if ”stationarity” is indeed achieved. The first half and the
second half are however correlated to a certain extent. For example, should the
proposed parameter values θ∗ result in a degenerate model, the sample {yk} on
which the computation of α̂ is based could be stuck in a single point. For well
behaved parameter values and less extreme cases on the other hand, inspection of
the differences α̂2− α̂1 gives an indication of how the MCMC sample in the second
step is performing.

The variance of (3.3) independent sample points is straightforward to obtain.
The expression is however not very useful since it involves the partition function.
Additionally, the sample points are not independent in the sample y1,y2, . . . ,yN .
As a consequence of this the numerical standard error of (3.4) is not equal to
the square root of the variance of (3.3) times N−1/2. An idea would otherwise
be to set the number of iterations N such that squared error is less than some
predetermined level of tolerance with high probability. There are several standard
tools in the literature for estimating the numerical standard errors of function of
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variables drawn using MCMC . These typically involve extensive calculations to be
performed on the sample and considerations on a case to case basis, e.g. inspecting
the sample autocorrelation functions, running several chains, etc. (see for example
Geyer, 1992, and the adjoint discussion). Possibly the most promising approach
would be a more sophisticated monitoring of the batched means than that we have
proposed, which could flag for unduly high discrepancies. Note also that we have
not taking any measures for reducing the variance of the estimator. It would be
worthwhile to adapt the variance reducing inversion step procedure suggested in
Snijders (2002b), especially as it comes at virtually no extra computational cost.

A related problem is deciding the burn-in time. There are a number if different
methodologies and test being developed (see e.g. Cowles and Carlin, 1996) but we
daresay, no method is suitable for this particular application. The intuition be-
hind for example the Geweke diagnostics (1992), which is mimicked in the proposed
monitoring of differences, is appealing. These diagnostic tools however require an
estimate of the standard error. It would be optimal if the required burn-in time
was given automatically. The so called perfect sampling (or Propp-Wilson algo-
rithm) of Propp and Wilson (1996) and (Wilson, 2000) is a particularly attractive
strategy in this respect since the algorithm itself tells you when it has produced
a sample point from the stationary distribution. The exponential random graph
model however suffers from the fact that there is no obvious way of ordering the
state space in the manner prescribed for defining maximal and minimal elements.
Recently though, Corcoran and Tweedie (2002) suggested a way of ordering the
state space such that one can sample perfectly using the Metropolis-Hastings algo-
rithm under fairly weak conditions. Their modification however requires that the
proposal distribution draws values independently of the previous values (some-
times called the independence sampler). Our preliminary findings for the case
of exponential random graphs are that it is in general difficult to construct a
proposal distribution that proposes moves that have a high probability of being
accepted, and (not unexpectedly) that it is not always straightforward to identify
the minimal element.

For determining the appropriate burn-in period, we have largely relied on trial
and error. With the type of moves proposed and always initiating the MCMC
sample using data x as the sample point, the length of the burn-in seems to be
of a minor importance compared to the overall number of iterations. A heuristic
argument for starting in x is that (provided priors are not highly informative) we
expect the posterior to put most of its mass in regions of the parameter space for
which the likelihood of generating data is relatively high. If this is the case, most
proposed values of θ∗ will lie in this region, provided the spread in the proposal
distribution is not to large, and the distribution p(·|θ∗) will put most of its mass
in the vicinity of x (with respect to the move types).

One undesirable aspect of (3.4) is that the importance distribution only is con-
structed as conditional on a parameter vector. The information in data is hardly
used at all, except perhaps as the starting point for the MCMC sample of y.
Introducing latent variables that augment the observed data (a method usually
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attributed to Tanner and Wong, 1987) is a commonly used tool in Bayesian infer-
ence that introduces a variable which often has the sample space as its state space
but whose distribution incorporates a dependence on both parameters and data.
In our experience, designing latent variables for the exponential random graph
models often fails in that it is hard to avoid having to deal with the partition
function in the full conditional posterior of the parameters. In theory the connec-
tion between the stochastic actor-oriented model (SAM) of Snijders (2001) and
exponential graph models can be used. More specifically, the exponential random
graph model is the limiting distribution of a certain specification of the SAM. If
data from the exponential random graph distribution is seen as an observation
from the SAM, we can define a latent variable as being an unobserved network
that preceded the observed network in time. Because of the time reversibility of
the continuous-time Markov chain of the SAM, we can easily simulate ”backwards
in time”. Conditional on a realization of the latent variable and data, inference
can be carried out in a manner described in Koskinen (2004). This conditioning
is however not legitimate since the marginal distribution of the latent variable has
to be given explicitly, the form of which would be the exponential random graph
distribution unless the backward process is run for long enough so as to lose its
memory.

3.2. Model selection. Let � be a collection of models reflecting different hy-
pothesis regarding the data generation process. Each model M ∈ � is charac-
terised by a sampling probability mass function p(x|θ,M), and a model specific set
of parameters θ ∈ ΘM⊆R

pM , where pM may vary over models. Here we consider
models with sampling probability mass function of the form (2.1). To obtain the
marginal likelihood of a model M ,

m (x|M) =

∫

ΘM

p (x|M, θ) π (θ|M) dθ,

we can use the basic marginal likelihood identity

(3.5) m (x|M) =
p (x|M, θ)π (θ|M)

π (θ|x,M)
,

obtained from Bayes theorem by simply solving for the marginal likelihood. Fol-
lowing Chib and Jeliazkov (2001), the posterior ordinate π (θ∗|x,M) for an arbi-
trary point θ∗ is estimated by

(3.6) π̂ (θ∗|x,M) =
T−1

∑T
t=1 α

(
θ(t), θ∗

)
q
(
θ(t)|θ∗

)

J−1
∑J

j=1 α (θ∗, θ∗(j))

where
{
θ(t)

}
are sampled draws from the posterior distribution and {θ∗(j)} are

draws from the proposal distribution q (·|θ∗). The problem is that we in general do
not have the numerator in (3.5) since the likelihood function includes the partition
function.

To be able to evaluate the likelihood in θ∗, note that we can often find θ∗ such
that the likelihood simplifies to a known distribution setting certain coordinates in
θ∗ to 0. More specifically, if either the degree statistic or the reciprocity statistic,



BAYESIAN EXPONENTIAL GRAPHS 11

or both, are included in the model setting all coordinates not corresponding to
these statistics to zero will yield a known likelihood. Should this not be, although
the degree statistic should always be included, one can resort to the naive option
θ∗ = 0, giving the likelihood p (x| θ∗) = |

�
|−1, which does not depend on data and

hence the numerator in (3.5) for θ∗ is given by |
�

|−1 π (θ∗|M). When comparing
ratios of marginal likelihoods for nested models, i.e. Bayes factors, θ∗ can be chosen
such that the likelihood function does not have to be evaluated. Take for example
the case when two model specifications only differ in that one includes a parameter
γ, whereas the other does not. For the smaller model the parameter vector can

for example be θ = (β1, . . . , βp)
′, and for the larger model by θ̃ = (β1, . . . , βp, γ)

′,
where the first p parameters correspond to the same statistics for both models.
If the marginal likelihood functions are estimated using the form of (3.5), for θ∗,

and θ̃∗ = (θ∗′, 0)′, the likelihood functions vanishes in the ratio.
The acceptance probability in the numerator of (3.6) can be consistently esti-

mated using (3.4), possibly with a few more sample points from the exponential
random graph distribution than in the main algorithm. For the denominator in
(3.6), (3.4) is calculated for each {θ∗(j)}. Although θ∗ can be chosen arbitrarily,
it is preferable, in addition to the requirement that the likelihood function can
be evaluated (or nested models be treated in the way described above), that θ∗

belongs to a region with relatively hight posterior probability mass. The reason
being that the estimate based on (3.6) becomes increasingly unstable with, say,
the distance from the posterior mode (Chib and Jeliazkov, 2001).

4. Example: Krackhardt’s high-tech managers

A model with the effects choice, mutuality, transitivity, cyclicity, 2-in-stars, 2-
out-stars, and 2-mixed-stars is fitted to the Krackhardt’s (1987) high-tech manager
friendship data, with n = 21 actors. A sample {θ(t)} of T = 10, 000 observations
is obtained from the two-step procedure using a multivariate normal proposal cen-
tered over the previous iteration value. A provisional variance covariance matrix
for the proposal distribution is obtained from a test run. For Figures 1 through 3
, the total length of the MCMC sample in the second step was N = 10, 000, for
which the first 4000 iterations were discarded as burn-in. To study the stability of
the estimator (3.4), the samples in the second step of the algorithm were divided
in two equal parts of 3,000 iterations each, i.e. N1 = 7000, and the differences
between the estimator of the partition function (3.4) for both halves of the sample
are shown in Figures 1 and 2. Judging by Figure 1 there seems to be no particular
relation between the differences and the distance between the parameter vectors
for which the ratio of partition functions is estimated. Conclusions such as these
should however be complemented by conditioning on the magnitudes of the ac-
ceptance ratios, which is done in Figure 2. We note that the tight concentration
around zero in Figure 1 in part is due to the fact that many proposed moves have
a very low probability of being accepted (top panel of Figure 2). Had this pattern
been more extreme it could have indicated a somewhat low acceptance rate, due
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Figure 1. Contour plot of estimated density of difference α̂2 −
α̂1 against jump-distance in covariance norm conditional on
max(α̂2, α̂1) < 1

to too large variance in the candidate generating distribution, and thereby bad
mixing.

The marginal posterior distributions are given in Figure 3 with summaries in
Table 1 (the figures for the MLE:s and standard errors are reproduced from Sni-
jders, 2002b). The credibility intervals in Figure 3 are conclusive except for β7,
corresponding to 2-mixed stars. What is striking in Table 1 is how well the max-
imum likelihood analysis approximates the posteriors, not only in terms of the
point estimates (something which is expected with vague priors and symmetric
distributions), but also in terms of the correspondence between the (approximate)
standard errors of the maximum likelihood estimates and the posterior standard
deviations of parameters.

As an example of model selection, consider testing a model with all effects
in Table 1 included against a model where the effect of cycles is omitted. By
evaluating the RHS of the basic marginal likelihood identity in a vector β∗ with
β∗

4 = 0, there is no need to evaluate the likelihood function since this vanishes in
the expression for the Bayes factor for the reduced model against the full model
(as noted above).

In this example we choose normal shrinkage priors, i.e. priors of the form
Np(0, λI), for convenience. There are various arguments for using these type of
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Figure 2. The difference α̂2 − α̂1, where αmin = min(α̂2, α̂1), and
αmax = max(α̂2, α̂1)

MLE Bayes
statistic par. estimate s.e. mean std
number of ties β1 −2.066 .656 −2.296 .666
mutuality β2 2.035 .437 1.976 .630
transitivity β3 .070 .087 .044 .120
cyclicity β4 −.004 .225 −.201 .266
2-in stars β5 −.025 .110 −.049 .143
2-out stars β6 .219 .049 .231 .077
2-mixed stars β7 −.104 .0666 −.096 .0612

Table 1. Maximum likelihood estimates and posterior means and
standard deviations of parameters for Markov graph model fitted to
Krackhardt’s high-tech managers

priors. Raftery (1996) investigated the Bayes factors as a function of the prior
spread in the context of generalised linear models. Using a multivariate normal
prior distributions of a similar form to ones used here. Whereas their aim (partly)
was to find the scale factor that minimized the influence of the prior distribution
on the Bayes factor, we merely mean to illustrate the potential of Bayesian model
selection. We prefer also this fairly ”neutral” prior to their data-dependent prior
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Figure 3. Marginal posterior distributions (panels 1 through 7)
with 95% Credibility intervals, and a trace plot for all parameters
(panel 8)

for reporting the results. Although it is sensible in a way to adapt the scale to
data, it tends to obscure the progression from prior to posterior distribution.

Bayes factors are known to be sensitive to the a priori spread of the parameters.
In particular, a sharp null-hypothesis, for example stating that a parameter is 0,
is favoured by large spread in the prior distribution. This is sometime referred
to as ”Bartlett’s paradox” (see Kass and Raftery, 1995). For the choices λ =
.1, 1, 5, 10, 20 in the prior distributions of the parameters the Bayes factors of the
full against the reduced model are given in Figure 4. The interpretation of the
Bayes factor for a given λ can be expressed in terms of posterior probabilities.
If we, for example, considered both models equally probable a priori, and our
prior belief regarding the parameters was modeled by independent N(0, λ = .1)
distributions, the posterior probability of the full model given observed data x

would have been almost .5 judging by Figure 4. That is to say, with two models,
M1 and M0, the Bayes factor B10 for M1 against M0 is related to the posterior
probability through

Pr(M0|x) =
1

1 +B10

.

Hence with extremely strong belief that all of the parameters were 0, the two
models would have been equally probable a posteriori. This would have been



BAYESIAN EXPONENTIAL GRAPHS 15

0.1 1 5 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ

Figure 4. Bayes factors for including cyclicity against excluding
cyclicity for different shrinkage factors λ = .1, 1, 5, 10, 20

something of a truism (noting that the two models are equivalent when all param-
eters are nearly nought) had we known beforehand what extremely strong belief
was. The interpretation of Figure 4 can be said to be that regardless of how we
modeled ”no” or ”little” information a priori regarding the parameter values, we
can conclude that we do not believe in including cyclicity in the random graph
model (this of course depends on what measuring stick we apply and whether
we are willing to give the reduced model, with out cyclicity, the status of a null
hypothesis, etc. Kass and Raftery, 1995). Considering the marginal credibility in-
tervals in Figure 3, we would not expect the inclusion of cyclicity to be supported
by data.

We emphasize the relative simplicity of the algorithm for calculating the mar-
ginal likelihood. The computing time as compared to the computing time for
obtaining the posteriors is small, since the only additional sampling to be made
is drawing random vectors from the proposal distribution. The last step, for the
denominator of (3.6), involves estimating the acceptance probabilities, which is
the time consuming part. However since the average over the posteriors is the
main source of variation in estimating the posterior ordinate, we do not need as
many draws from the proposal as from the posterior. For the examples reported
above, the lengths of samples from the posteriors were between 10,000 and 20,000,
which proved to provide satisfactory accuracy (Chib and Jeliazkov, 2001, give sug-
gestions as to how to calculate the numerical standard errors when the numerator
and denominator of (3.6) are based on an equal number of sample points).

Now, we might be interested in knowing how well the reduced model does in
comparison with the reciprocity model. Assume that we gave all three of the
above models (i.e. including the reciprocity model) equal prior probabilities and
modeled our uncertainty regarding the parameters with independent normal priors
with variance λ = 10, centered over the origin. Calculations are performed as
above with the exception that the second step in the algorithm can be skipped
since the partition function of the reciprocity model is known. The posterior
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probability of the full model being the right one given data would be 0.0016. The
posterior probability of the reduced model would be 0.0629 and hence the posterior
probability of the reciprocity model would be 0.9356.
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169–193. New York: Oxford Univ. Press.

Geyer, C. J. (1991). “Markov chain Monte Carlo maximum likelihood.” In Com-
puting Science and Statistics: Proceedings of the 23rd Symposium on the Inter-
face, ed. E. M. Keramidas, 156–163. Fairfax Station: Interface Foundation.



BAYESIAN EXPONENTIAL GRAPHS 17

— (1992). “Practical Markov chain Monte Carlo.” Statistical Science, 7, 473–483.
With discussion.

Geyer, C. J. and Thompson, E. A. (1995). “Annealing Markov chain Monte Carlo
with applications to ancestral inference.” Journal of the American Statistical
Association, 90, 431, 909–920.

Hancock, M. (2000). “Progress in statistical modeling of drug user and sexual
networks.” Unpublished manuscript, University of Washington, Center for Sta-
tistics and the Social Sciences.

Hoff, P., Raftery, A. E., and Handcock, M. (2002). “Latent space approaches to
social network analysis.” Journal of the American Statistical Association, 97,
1090–1098.

Holland, P., Laskey, K. B., and Leinhardt, S. (1983). “Stochastic block-models:
Some first steps.” Social Networks, 5, 109–137.

Holland, P. and Leinhardt, S. (1981). “An exponential family of probability dis-
tributions for directed graphs (with discussion).” Journal of the American Sta-
tistical Association, 76, 33–65.

Janson, S., Luczak, T., and Rucinsnki, A. (2000). Random graphs . New York:
Wiley.

Kass, R. E. and Raftery, A. E. (1995). “Bayes Factors.” Journal of the American
Statistical Association, 90, 430, 773–795.

Koskinen, J. (2004). “Bayesian inference for longitudinal social network data.”
Research Report 2004:4, Department of Statistics, Stockholm University.

Krackhardt, D. (1987). “Cognitive social structures.” Social Networks, 9, 109–134.
Lindley, D. V. (1957). “A statistical paradox.” Biometrika, 44, 187–192.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller,

E. (1953). “Equations of state calculations by fast computing machine.” Journal
of Chemical Physics , 21, 1087–1091.

Mitchell, T. J. and Beauchamp, J. J. (1988). Journal of the American Statistical
Association, 83, 1023–1032.

Nowicki, K. and Snijders, T. A. B. (2001). “Estimation and prediction for sto-
chastic blockstructures.” Journal of the American Statistical Association, 96,
1077–1087.

Pattison, P. and Robins, G. (2002). “Neighbourhood-based models for social
networks.” Sociological Methodology , 32, 301–337.

Propp, J. G. and Wilson, D. B. (1996). “Exact sampling with coupled Markov
chains and applications to statistical mechanics.” In Proceedings of the Seventh
International Conference on Random Structures and Algorithms (Atlanta, GA,
1995), vol. 9, 223–252.

Raftery, A. E. (1996). “Approximate Bayes factors and accounting for model
uncertainty in generalised Linear models.” Biometrika, 83, 2, 251–266.

Robins, G. (1998). “Personal Attributes in Interpersonal Contexts: Statistical
Models for Individual Characteristics and Social Relationships.” Ph.d. disser-
tation, University of Melbourne, Department of Psychology.



18 JOHAN KOSKINEN

Robins, G. and Pattison, P. (2004). “Interdependencies and social processes: de-
pendence graphs and generalized dependence structures.” Forthcoming in Mod-
els and Methods in Social Network Analysis, P. J. Carrington and J. Scott and
S. Wasserman (eds), New York: Cambridge University Press.

Robins, G., Pattison, P., and Wasserman, S. (1999). “Logit models and logistic
regression for social networks: III. Values relations.” Psychometrika, 64, 371–
394.

Schweinberger, M. and Snijders, T. A. B. (2003). “Settings in social networks: a
measurement model.” Sociological Methodology , 33, 307–341.

Snijders, T. A. B. (2001). “The statistical evaluation of social network dynamics.”
Sociological Methodology , 30, 361–395.

— (2002a). Personal communication.
— (2002b). “Markov chain Monte Carlo estimation of exponential random graph

models.” Journal of Social Structure, 3, 2.
Snijders, T. A. B. and Nowicki, K. (1997). “Estimation and prediction for sto-

chastic blockmodels for graphs with latent block structure.” Journal of Classi-
fication, 14, 75–100.

Snijders, T. A. B., Pattison, P. E., and Robins, G. (2004). “New specifications for
exponential random graph models.” Manuscript in preparation.

Snijders, T. A. B. and van Duijn, M. A. J. (2002). “Conditional maximum likeli-
hood estimation under various specifications of exponential random graph mod-
els.” In Contributions to Social Network Analysis, Information Theory, and
Other Topics in Statistics; A Festschrift in honour of Ove Frank , ed. J. Hag-
berg, 117–134. Stockholm: Dept. of Statistics, Stockholm University.

Strauss, D. (1986). “On a general class of models for interaction.” SIAM Rev.,
28, 4, 513–527.

Strauss, D. and Ikeda, M. (1990). “Pseudolikelihood estimation for social net-
works.” Journal of the American Statistical Association, 85, 204–212.

Tallberg, C. (2004). “A Bayesian approach to modeling stochastic blockstructures
with covariates.” To appear in Journal of Mathematical Sociology.

Tanner, M. A. and Wong, W. H. (1987). “The calculation of posterior distributions
by data augmentation (with discussion).” Journal of the American Statistical
Association, 82, 528–550.

Tierney, L. (1994). “Markov chains for exploring posterior distributions.” Ann.
Statist., 22, 4, 1701–1762. With discussion and a rejoinder by the author.

Van Duijn, M. A. J. (1995). “Estimation of a random effect model for directed
graphs.” In Symposium Statistische Software 1995 .

van Duijn, M. A. J., Snijders, T. A. B., and Zijlstra, B. H. (2004). “p2: a random
effects model with covariates for directed graphs.” Statistica Neerlandica. In
press.

Wasserman, S. and Pattison, P. (1996). “Logit models and logistic regression for
social networks: I. An introduction to Markov graphs and p∗.” Psychometrika,
61, 401–425.

Wasserman, S. and Robins, G. (2004). “An introduction to random graphs, depen-
dence graphs, and p∗.” Forthcoming in Models and Methods in Social Network



BAYESIAN EXPONENTIAL GRAPHS 19

Analysis, P. J. Carrington and J. Scott and S. Wasserman (eds), New York:
Cambridge University Press.

Wilson, D. B. (2000). “How to couple from the past using a read-once source of
randomness.” Random Structures & Algorithms, 16, 1, 85–113.

Department of Statistics, Stockholm University, SE-106 91 Stockholm, Sweden

E-mail address : johan.koskinen@stat.su.se


