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Abstract 

This is the second paper dealing with a simple measurement error model for continuous 

data collected by interviewers. The model makes a clear distinction between three different 

sources of randomness, namely, sample selection, interviewer assignment, and interviewing. 

The concept of interviewer variance is defined in the context of this measurement error 

model, and the problem of estimating the interviewer variance is considered, assuming 

stratified simple random sampling. Two different methods to estimate interviewer effects 

are formulated and compared through a simulation study. 
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1. Introduction 
 

Sample survey data is usually more or less affected by measurement errors. This means 

that each selected element is affected during the data collection stage (by an error) and the 

recorded values on the study variables differ from the true values. We will in this paper 

focus on how to study interviewer errors in surveys of individuals or households. The data 

is collected via telephone, which makes it possible to assign the sampled elements 

completely at random to the interviewers. 

 

To be able to discuss the statistical aspects of measurement errors, we need a statistical 

model describing how measurement errors arise. We will use the model described in Biemer 

and Trewin (1997). Historically the chosen measurement error model is based on the 

analysis-of-variance (ANOVA) type of model used by Kish (1962) and further developed 

by Hartley and Rao (1978) and others. The terminology will closely follow Wolter (1985), 

and Särndal, Swensson and Wretman (1992). 

 

In Lundquist and Wretman (2002) interviewer effects are studied for simple random 

sampling. The present paper expands the theory to be valid for stratified simple random 

sampling as well. As in Lundquist and Wretman we make the simplifying assumptions that 

there is no nonresponse.  

 

The main purpose of this paper is to introduce new estimators of the interviewer effect. In 

Section 2, the measurement error model is specified, and the concept of interviewer 

variance is introduced. Basic assumptions about the interviewer assignment are also made. 

In Section 3, we look at the problem of estimating a population mean under the assumed 

measurement error model. In Section 4, we discuss how to estimate the variance of an 

estimator of the population mean. In Section 5, we suggest two methods to estimate the 

interviewer variance and the intra-interviewer correlation. In Section 6, the estimators are 

examined in a simulation study. (The simulation results are given in the Appendices.) A 

short discussion based on the simulation results is given in Section 7.  
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2. Sampling design, interviewer assignment, and 

measurement error model 
 

In this section we will describe how a sample of elements is selected from the population, 

how the sampled elements are assigned to interviewers, and how measurement errors arise. 

Some necessary notation for the stratified sampling is to be introduced. The finite 

population U consisting of N elements is now partitioned into H nonoverlapping 

subpopulations, called strata where subpopulation Uh has Nh elements for h = 1,…,H and 

the number of elements in the finite population is 
1

H

h
h

N N
=

=∑ . Let kµ  be the unknown 

true value for element k, with respect to the actual study variable. The purpose of the 

survey is to estimate the true population mean 
 

1

1
h

H

U kk U
hN

µ µ
∈

=

= ∑∑  

 

Let s be a sample (that is, a subset of U ) consisting of n elements, drawn from U  by 

stratified simple random sampling without replacement. This means that we within every 

Uh (for h = 1,…,H) select a simple random sample, sh, of the size nh. (Thus, we have that 

1 h Hs s s s= ∪ ∪ ∪ ∪… …  and h
h

n n=∑ .) Ideally, we would like to observe the true value 

µk for each element k ∈ s, but what we will really observe is a value yk affected by 

measurement error, that is, 
 

yk = µk + dk = true value + measurement error 
 

The problem now is to estimate Uµ  using observed data yk for k ∈ s.  

 

We will in this paper give a brief description of the interviewer allocation and the model 

specification. A more complete description of the definitions is given in Lundquist and 

Wretman (2002).  

 

We assume, as in Lundquist and Wretman, that there is a set of I  interviewers available 

for the survey. Sampled elements are assigned to these interviewers in the following way: 

Each interviewer is given a randomly chosen subset of elements from the sample s, under 
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the restriction that the subsets should be non-overlapping and of equal size. This 

technique, the random division of the initial sample into I subsamples, is called 

interpenetrated subsampling and for each interviewer it will be possible (at least 

theoretically) to produce population estimates. In this paper this interviewer allocation is 

generalized in a symmetric way to stratified sampling. The following notation will be used. 

Let the interviewers be labeled i = 1, 2, …, I.  Let the sample sh (for h = 1,…,H) be 

partitioned at random into I  nonoverlapping groups of equal size mh = nh/I. (We assume 

that mh is an integer for h = 1,…,H.) These groups are denoted sh1, …, shi, …, shI.  Now, 

the rule is that interviewer i is to make all the interviews in group 

1i i hi His s s s= ∪ ∪ ∪ ∪… … , i = 1, 2, …, I. In particular this means that all interviewers are 

assigned elements from every stratum. 

 

The measurement error model, denoted M, is specified conditionally on a given sample s 

and given interviewer assignments s1, s2, …, sI. Following Biemer and Trewin (1997) we 

assume that the measurement error is the sum of two components, bi an “interviewer 

error” due to the interviewer, and kε  a “response error” which depends on the respondent 

(and possibly other remaining sources of error). Thus, the measurement error model says 

that when element k ∈ si is interviewed by interviewer i, the observed value yk can be 

written as 
 

yk = µk + bi + kε  

 

In the present set-up, the survey is thus viewed as a three-stage process, where randomness 

is involved in each stage: 
 

Stage 1:  A sample s  is drawn from the population U. 

Stage 2:  The sample s  is partitioned into subsamples s1, s2, …, sI. 

Stage 3:  Observed values yk  are obtained for k ∈ si,  i = 1, 2, …, I. 
 

The randomness in the first stage comes from the sampling design, denoted p, which in the 

actual case means a stratified simple random sampling without replacement of nh elements 

from Uh (h = 1,…,H). The randomness in the second stage comes from the random division 

of the sample into subsets assigned to the interviewers. The randomness in the third stage 

comes from the measurement process described by the measurement error model M. 

Sometimes it will be found convenient to consider the first two stages jointly as 

constituting one stage, which will then be denoted p*. 
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In what follows, estimators will usually be judged by their bias and variance with respect 

to the joint distribution induced by the three stages above, which will be called the p*M-

distribution. It will sometimes be found convenient to express expected values and 

variances using conditional probabilities in the following way:  
 

Ep*M( . ) = Ep*[EM( . | s; s1, …, sI)] 

and 

Varp*M( . ) = Ep*[VarM( . | s; s1, …, sI)] + Varp*[EM( . | s; s1, …, sI)] 
 

where  Ep*M( . )  denotes expectation with respect to the stochastic mechanisms in stage 1, 

2, and 3 simultaneously,  Ep* ( . ) denotes expectation with respect to stage 1 and 2 only,  

and  EM( . | s; s1, …, sI)  denotes conditional expectation with respect to stage 3, given the 

outcome of stage 1 and 2.  Analogous principles of notation hold for the variances. Note, 

this set-up implies that the order of *pE  and ME  are not interchangeable. In the rest of 

this paper we will, for the sake of simplicity, write EM( . ) instead of the longer and more 

exact expression EM( . | s; s1, …, sI).  Thus, in what follows, 
 

EM( . ) = EM( . | s; s1, …, sI) 
 

The assumptions of the measurement error model can now be expressed formally. Notice 

that the model is not affected by the sample design, i.e. the interviewer and response errors 

are not affected by the stratification.  
 

Model assumptions: 
 

For a given sample s  and given subsamples s1, s2, …, sI, 

 

yk = µk + bi + εk  for  k ∈ si,  i = 1, …, I 
 

EM(bi) = Bb and   VarM(bi) = 2
bσ  for  i = 1, …, I 

 

EM(εk) = Bε and   VarM(εk) = 2
εσ  for  k ∈ si,  i = 1, …, I 

 

b1, b2, …, bI, εk  (k ∈ s)  are independent random variables 
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The following result follows immediately from the model assumptions. 
 

Result 2.1:  Under Model M, it holds that 

 

EM(yk) = µk + Bb + Bε  for k ∈ si,  i = 1, …, I 

 

VarM(yk) = 2 2
b εσ σ+     for k ∈ si,  i = 1, …, I 

 
2 for    ,  1, ,

( , )
0 for     1, . ,  1, , ,  

b i i

M k l
i j

k l, k s , l s i I
Cov y y

k l, k s , l s , i I j I i j

σ ≠ ∈ ∈ ==  ≠ ∈ ∈ = = ≠

…

… …
 

 

 

Thus, conditionally on the sample s and on the interviewer assignments s1, s2, …, sI,  

observed values for different elements obtained by different interviewers are uncorrelated, 

while values for different elements obtained by the same interviewer are correlated. 
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3. Estimating the population mean 
Based on the p*M-distribution, specified in Section 2, it is possible to estimate the 

population mean, Uµ . We will in the following use abbreviated notation in our expressions: 

h
∑  is the short form for the summation over the h strata 

1

H

h=
∑ , 

i
∑ is used for the 

summation over the interviewers 
1

I

i=
∑ and finally 

A∑ stands for 
k A∈∑ where A U⊆  is 

any subset of U.  

 

If, hypothetically, we had sample data, µk for k ∈ s, without measurement errors, the true 

population mean would, under stratified simple random sampling and in the absence of 

auxiliary information, usually be estimated by  

 

hst h s
h

Wµ µ=∑  

 

where /h hW N N=  denotes the relative size of stratum hU  and 1
h h

s ks
hn

µ µ= ∑  for 

h = 1, …, H. 

 

The estimator that we are going to consider is the stratified sample mean based on data 

with measurement errors  

 

 
hst h s

h

y W y=∑  (3.1) 

 

where 1
h h

s ks
h

y y
n

= ∑  for h = 1, …, H.  

 

We will now find expressions for the expected value and the variance of the estimator (3.1) 

with respect to the p*M-distribution. Notice that the interviewer allocations give us the 

possibility to use the following relations 

 

 ,
1 1 1

h hi hist h s h s h s st i
h h i i h i

y W y W y W y y
I I I

= = = =∑ ∑ ∑ ∑∑ ∑  (3.2) 
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The main result on expectation is the following: 
 

Result 3.1:  Under the p*M-distribution, the expectation of the stratified sample mean 

 estimator sty  is 
 

 ( )*p M st U bE y B Bεµ= + +  (3.3) 

 
 

Thus, the bias of the estimator is 
 

 * *( ) ( )p M st p M st U bB y E y B Bεµ= − = +  (3.4) 

 

Result 3.1 can be obtained by using conditional probabilities 
 

 

( )

( )

( )

* *

*

*

1

1

hi

h

p M st p M h ks
h ih

p h k bs
h h

p st b

U

E y E E W y
n

E W B B
n

E B B

B

ε

ε

µ

µ

µ

   =       
 
 = + +  

= + +

= +

∑ ∑∑

∑ ∑  

 

because, stµ  is unbiased for the true population mean Uµ . In the derivations above we 

utilize that *( ) ( )p st p stE Eµ µ=  which can be easily justified.  

 

In the following, we will sometimes use the shorter notation bB B Bε= +  for the bias. 

 

The main result on the variance of sty  is:  
 

Result 3.2: Under the p*M-distribution, the variance of the stratified sample mean 

 estimator sty  is 
 

 ( )
22 2

2 2
* 1 hUb h

p M st h h
h hh h h

SnVar y W W
I n N n

µεσ σ   = + + −   ∑ ∑  (3.5) 

where 

 ( )22 1
1h hh

U k UU
h

S
Nµ µ µ= −

− ∑  
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Proof. 

To obtain Result 3.2 we first note that the variance of the estimator sty  is seen as a 

combination of the variation from the measurement error model and the sampling design 

including the interviewer assignment. The variance can be written as follows 

 
 ( ) ( ) ( )

1 2

* * * 1 2p M st p M st p M st

V V

Var y E Var y Var E y V V   = + = +   �������	������
 �������	������

 

 

and we consider the measurement variance 1V  and the sampling variance 2V  separately. 

For 1V  we have 

 

( )

( )

1 2
1 2

1 2 1 2

1 2 1

1 2

2
2

2 2 2 2
2

1 1

1 1 ,

1 1

hi hi

hi h i h i

M st M h k M h ks s
h i i hh h

h M k h h M k ks s s
i h h hh h h

h h b h h h h h
h h h h

Var y Var W y Var W y
n n

W Var y W W Cov y y
n n n

W m m W W m m
n n nεσ σ

≠

      = =        
     = +        

= + +

∑ ∑∑ ∑ ∑ ∑

∑ ∑ ∑ ∑∑ ∑ ∑

∑ 2

1 2

2

2
2 2 2

2

2 2
2

b
i h h

h h
h b h

i h hh h

b
h

h h

m mW W
n n

W
I n

ε

ε

σ

σ σ

σ σ

≠

       
      = ⋅ +       

= +

∑ ∑∑

∑ ∑ ∑

∑

 

 

where we have used the model property, independence between interviewers, and that 

h hn I m= ⋅  and 1hh
W =∑ . It now follows that, noticing that this expression is constant 

when taking the expectation over *p , the measurement variance is 

 

 
2 2

2
1

b
h

h h

V W
I n

εσ σ= +∑  

 

The sampling variance component, 2V , is given by first finding the conditional M-

expectation. From Result 3.1 we have that 

 

 ( ) 1
h

M st h k b sts
h h

E y W B B B
n εµ µ= + + = +∑ ∑  
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and because the sampling design is stratified simple random sampling ( stµ  is unaffected by 

the interviewer allocation) it follows that   

 

 ( )
2

2
2 * 1 hUh

p st h
h h h

SnV Var W
N n

µµ
  = = −   ∑  

 

Combining the measurement variance and the sampling variance gives the result 

 

( )* 1 2p M stVar y V V= +      , 

 

 

Under the actual measurement error model, the sampling variance, V2, of sty  is equal to 

the variance of an estimator based on stµ . The sampling variance is zero under complete 

enumeration. When there is no measurement variability, then V1 = 0 ( 2 0bσ =  and 2 0εσ = ) 

and V2 is the only contribution to the variance.  
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4. Estimating the variance of sty  
Two estimators of * ( )p M stVar y , given in Result 3.2, will be considered. The first is the 

traditional design based estimator (see for example Särndal, Swensson and Wretman 1992, 

p. 103)  
 

 
2

2ˆ 1 hysh
st h

h h h

SnV W
N n

  = −   ∑   (4.1) 

 

where 

 2 21 ( )
1h hh

ys k ss
h

S y y
n

= −
− ∑  

 

Recall that ŝtV  would be the appropriate choice if there were no measurement errors. The 

second estimator is based on the means of the subsamples assigned to the different 

interviewers 
 

 
( )

( )2,
1ˆ

1B st i st
i

V y y
I I

= −
− ∑  (4.2) 

 

where ,st iy  could be obtained from equation (3.2). This estimator is called the random 

group estimator in Wolter (1985) and will only be approximately unbiased when there are 

no measurement errors. It will be shown that both these two estimators are biased with 

respect to the p*M-distribution. For simple random sampling, Lundquist and 

Wretman (2002) found that the traditional design based estimator has a negative bias and 

the estimator based on the means of the subsamples has a positive bias. In the main 

results given below it is shown that this will be the case also under stratified simple 

random sampling.  

 
 

Result 4.1:  Under the p*M-distribution, the expectation of the variance estimator ŝtV  is 
 

 
( ) ( )

( ) ( ) ( )( )
( )

22
2 2

*

2
2 2

*

1ˆ (1 )
1

1 1
1

hUh
p M st h b

h h h h h

h h h
p M st h b h

h hh h

Sn IE V W
N I n n n

N n N n I
Var y W W

NI n N

µε

ε

σσ

σσ

 − = − + + −  
 − − − − = − − −  

∑

∑ ∑
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The bias is zero when we do not have any measurement errors, but when measurement 

errors are present we will have a negative bias. The negative bias results in 

underestimation of the true variance.  

 

Result 4.2:  Under the p*M-distribution, the expectation of the variance estimator B̂V  is 

 

 ( ) ( )
2 22 2

2 2 2
* *

ˆ h hU Ub
p M B h h p M st h

h h hh h h

S S
E V W W Var y W

I n n N
µ µεσ σ= + + = +∑ ∑ ∑  

 

 

The estimator based on the means of the subsamples, B̂V , has a positive bias that would 

remain even in a situation without measurement errors. The bias is introduced by the 

interviewer assignments, because the subsamples si (i = 1, ..., I) are dependent. However, 

the bias is small in most situations when hN  is large.  

 

Proof of Result 4.1.  

First note that the p*M-expectation of ŝtV  could be written  
 

 ( ) ( )
2 2

* *
1ˆ (1 ) ( )

1 hh

h
p M st h p M k ss

h h h h

nE V W E y y
N n n

 = − −  −∑ ∑  

 

Using the Auxiliary Result in the paper by Lundquist and Wretman (2002) for the 

subsamples sh, we get 
 

 
( )

2 2 2 21 ( 1) 1
( ) ( )

1 1 1h hh h

h
M k s b k ss s

h h h

m IE y y
n n nεσ σ µ µ− − = + + −  − − −∑ ∑  

 

The p*M-expectation of ŝtV  is then given by 
 

2 2 2 2
*

1 ( 1) 1(1 ) ( )
1 1 hh

h h
p h b k ss

h h h h h

n m IE W
N n n nεσ σ µ µ

   −  − + + − =   − −   
∑ ∑  

 

2 2 2 2
*

1 ( 1) 1(1 ) ( )
1 1 hh

h h
h b p k ss

h h h h h

n m IW E
N n n nεσ σ µ µ

   −  = − + + −   − −   
∑ ∑  

 
22

2 21(1 )
( 1)

hUh
h b

h h h h h

Sn IW
N I n n n

µεσσ
 − = − + + −  

∑   , 
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Proof of Result 4.2. 

Starting with the model expectation we have from Result 3.1 and 3.2 that  
 

 
( ) ( ) ( )

( )

22

2 2
22

M st M st M st

b
h st

h h

E y Var y E y

W B
I n

εσ σ µ

 = +  

= + + +∑
 (4.3) 

 

and by simple algebra 
 

 
( )

22
, , ,

2
22 2

,

( ) ( ) ( )M st i M st i M st i

b h st i
h h

E y Var y E y

W B
m

εσσ µ

 = +  

= + + +∑
 (4.4) 

 

Using (4.3) and (4.4) in the M-expectation of the sums of squares between subsamples we 

have 
 

( )2 2 2 2 2
, , ,( ) ( )M st i st M st i st M st i M st

i i i

E y y E y Iy E y I E y
   
   − = − = − ⋅      
∑ ∑ ∑  

( ) ( )

( ) ( )

2 2 2
2 22 2 2

,

2
2 22 2

,

2
2 2 2 2

,

( 1) ( 1)

( 1) ( 1)

b
b h st i h st

i h hh h

b h st i st
h ih

b h st i st
h ih

W B I W B
m I n

I I W B I B
m

I I W I
m

ε ε

ε

ε

σ σ σσ µ µ

σσ µ µ

σσ µ µ

   
   = + + + − + + +      

 
 = − + − + + − +  
 
 = − + − + −  

∑ ∑ ∑

∑ ∑

∑ ∑

 (4.5) 

 

To find the p*-expectations of equation (4.5) (i.e. of 2
,st iµ  and 2

stµ ) we use the findings in 

Result 3.1 and 3.2 again (with simple algebra for 2
,st iµ ) 

 
2

22 2
* * *( ) ( ) ( ) (1 ) hUh

p st p st p st h U
h h h

SnE Var E W
N n

µµ µ µ µ = + = − +  ∑   (4.6) 

 

and 
 

2
22 2

* , * , * ,( ) ( ) ( ) (1 ) hUh
p st i p st i p st i h U

h h h

SmE Var E W
N m

µµ µ µ µ = + = − +  ∑   (4.7) 

 

Using (4.6) and (4.7) the p*M-expectation of B̂V  is given by 



 

 14

 

( ) ( )

2 22 2
2 2 2

*

22 2
2 2

ˆ 1 1
1

h h

h

U Ub h h
p M B h h h

h hh h h h h

Ub
h h

h hh h

S SI m nE E V W W W
I n I I N m N n

S
W W

I n n

µ µε

µε

σ σ

σ σ

           = + + − − −           −      

= + +

∑ ∑

∑ ∑
 

, 

 

 

In survey sampling a variance estimator with a small positive bias is usually preferred to 

one with a negative bias. The conclusion is that we prefer the variance estimator (4.2) to 

(4.1). Notice that the variance estimator B̂V  only is an alternative when the initial sample 

is divided into nonoverlapping subsamples.  

 

However, the primary reason to use the interviewer allocation is that we believe that there 

is an interviewer effect present in the measured variable yk. This setup, the three-stage 

process, will make it possible to estimate a potential interviewer influence. We will in the 

following sections focus on the estimation of the interviewer effect. 
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5. Estimating the interviewer variance and intra-interviewer 

correlation 
To estimate the interviewer variance, 2

bσ , the estimator of the sum of squares within 

subsamples, ŴV , suggested for simple random sampling in Lundquist and Wretman (2002) 

has to be changed to match the stratified simple random sampling design and the 

accompanied interviewer allocation. We will in this section give two methods to estimate 

the interviewer variance. Both methods use findings from the earlier paper. The first 

method imitates the procedure in the earlier paper, but with necessary changes for the p*-

distribution in the sums of squares. The second estimator of the interviewer variance is 

given as the unweighted mean of H interviewer variances, where for each subpopulation Uh 

(h = 1, ..., H) an interviewer variance estimator is produced similar to the estimator given 

in the earlier paper.  

 

Another measure of interviewer influence is the intra-interviewer correlation, which is 

defined as 
 

 
2 2

2 2 2 2
b b

w
b U totSε µ

σ σρ
σ σ σ

= =
+ +

 (5.1) 

 

This correlation can be interpreted as the correlation of the measurement made on two 

elements that are drawn at random from the population and then interviewed by the same 

interviewer. For each method of estimating 2
bσ , an approximate estimator of the intra-

interviewer correlation, wρ , is given. However, it will be seen that the estimator of wρ  

associated with the first method is to be preferred. 

 

Method 1 

An estimator of the interviewer variance 2
bσ  is  

 
2
, 1

ˆ ˆˆ a
b ST B WI V Vσ = ⋅ −  (5.2) 

 

where  
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( ) ( )221 1ˆ

1 hihi

a
W h k ss

i h h h

V W y y
I m m

= −
−∑∑ ∑  (5.3) 

 

and B̂V  is given in equation (4.2).  

 

The expectation of the variance estimator 2
, 1b̂ STσ  is given in the following result.  

 

Result 5.1: Under the p*M-distribution, the expectation of the interviewer variance 

 estimator 2
, 1b̂ STσ  is 

 

( )2 2
* , 1ˆp M b ST bE σ σ=  

 

 

Proof of Result 5.1. 

To prove that 2
, 1b̂ STσ  is unbiased we have to find the p*M-expectation of the two 

components of the right hand side in equation (5.2). From Result 4.2 we have that 
 

 ( )
2 22 2 2

2 2 2 2 2
*

ˆ h hU Ub
p M B h h b h h

h h h hh h h h

S S
E I V I W W W W

I n n m m
µ µε εσ σ σσ

 
 ⋅ = + + = + +   

∑ ∑ ∑ ∑  

 

and to prove that 2
, 1b̂ STσ  is unbiased it is sufficient to show that 

 

 ( ) ( ) ( ) ( )2 2 2 2
* * * , 1

1ˆ ˆ ˆ
h

a
p M W p M B p M b ST h U

h h

E V E I V E W S
m ε µσ σ= ⋅ − = +∑  (5.4) 

 

Starting with the M-expectation of ( )2
hihi

k ss
y y−∑  and using bB B Bε= +  we have 

 

( )

( ) ( ) ( )

2 2 2

2 222 2 2

hi hihi hi

hihi

M k s M k h ss s

h b k h b ss
h

E y y E y m y

m B m B
m

ε
ε

σσ σ µ σ µ

   − = −     
 
 = + + + − + + +  

∑ ∑

∑
 

( )

( ) ( )

2 2 2

22

1

1

hihi

hihi

h k h ss

h k ss

m m

m

ε

ε

σ µ µ

σ µ µ

= − + −

= − + −

∑
∑

 

 

Thus, 
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( ) ( )2 2
* *

2 2
*

( )

1( 1) ( 1) ( )
1

hi hihi hi

hihi

p M k s p M k ss s

h h p k ss
h

E y y E E y y

m m E
mεσ µ µ

  − = −     
 
 = − + − − − 

∑ ∑

∑
 

 

Since each stratified subsample shi is a simple random sample from the population of Nh 

elements, the p*-expectation for the sum of squares within subsamples is given by 
 

2 2
*

1
( )

1 hi hhi
p k s Us

h

E S
m µµ µ
 
 − = − 

∑  

 

Using the derivations above, we have that 
 

( ) ( ) ( )

( )
( )( )

( )

22
* *

2 2 2

2 2 2

1 1ˆ
1

1 1 1
1

1

hihi

h

h

a
p M W h p M k ss

i h h h

h h U
i h h h

h U
h h

E V W E y y
I m m

W m S
I m m

W S
m

ε µ

ε µ

σ

σ

 = −  −

 = − +  −

= +

∑∑ ∑

∑∑

∑

 

 

which proves Result 5.1 

 

 ( ) ( ) ( )2 2
* , 1 * *

ˆ ˆˆ a
p M b ST p M B p M W bE E I V E Vσ σ= ⋅ − =  

 

, 

 

 

We now turn to the intra-interviewer correlation in equation (5.1). The correlation wρ  is 

the ratio between two variance expressions. The nominator is the interviewer variance that 

is estimated by 2
, 1b̂ STσ  in equation (5.2) and we have to find an estimator of the 

denominator 2
totσ . We will in the following show that it is possible by a linear combination 

of equation (4.2) and (5.3) to find an approximately p*M-unbiased estimator  

 

 2 2
, , 1

ˆ ˆˆ ˆtot st b ST B WV Vσ σ + += + +  (5.5) 

 

where 

( )2ˆ
hB h s st

h

V W y y+ = −∑  



 

 18

and 

( )
2 21 1ˆ

1 hihi

h h
W h k ss

i h h h

W WV W y y
I n m

+
 −  = − −   − ∑∑ ∑  

 

The intra-interviewer correlation estimator to be considered (for large populations, N, 

subpopulations, Nh, and when the sampling fraction / 0h hn N �  in all strata) is the ratio 

estimator 

 

 
2
, 1

, 1 2
,

ˆ
ˆ

ˆ
b ST

w ST
tot st

σ
ρ

σ
=  (5.6) 

 

The approximate p*M-unbiasedness of the estimator 2
,t̂ot stσ  is stated in the following result. 

 

Result 5.2: With respect to the p*M-distribution  
 

  ( )2 2 2 2 2
* ,ˆp M tot st b U totE Sε µσ σ σ σ+ + =�  

 

 for large populations, N, subpopulations, Nh, and when the sampling 

 fraction / 0h hn N �  in all strata. 

 

 

Proof of Result 5.2. 

We first notice that  
 

 2 2 2
* , * , 1 *

ˆ ˆ ˆ ˆˆ ˆ( ) ( ) ( )p M tot st p M b ST B W b p M B WE E V V E V Vσ σ σ+ + + += + + = + +  
 

and what we actually have to prove is that  
 

 2 2
*

ˆ ˆ( )p M B W UE V V Sε µσ+ ++ +�  (5.7) 
 

To prove equation (5.7) (i.e. Result 5.2) we use the population sum of squares, which can 

be expressed in different ways 
 

 

( ) ( ) ( )

( ) ( )

2 22

2 21

h hh

h hh

k U k U h U UU U
h h

h k U h U UU
h hh

N

N W W
N

µ µ µ µ µ µ

µ µ µ µ

− = − + −

 
 = − + −  

∑ ∑∑ ∑

∑ ∑ ∑
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For large populations U and subpopulations Uh, using that 1/ 1/( 1)N N −�  and 

1/ 1/( 1)h hN N −�  we approximate the second term by 
 

 ( )2 2 2
h hh U U U h U

h h

W S W Sµ µµ µ− −∑ ∑�  (5.8) 

 

It is now possible to find an approximation of the expectation in (5.7). We inspect B̂V +  

under the p*M-distribution, and we have by Result 3.1 and 3.2 that 
 

 

( ) ( )2 2 2
* * *

2 2
* * * *

22 2 2

ˆ

( ) ( ) ( ) ( )

1

h h

h h

h

h

p M B p M h s st p M h s st
h h

h p M s p M s p M st p M st
h

Ub h
h U

h h h h

E V E W y y E W y y

W Var y E y Var y E y

SnW B
I n N n

µεσ σ µ

+    
   = − = −      
   = + − +    

         = + + − + +             

∑ ∑

∑

[ ]

( ) ( )

2
22 2 2

22 2 2

1 1

1 1

h

h h

b h
h U U

h h h

h
h h U h U U

h hh h

nW S B
I n N

nW W S W
n N

ε µ

ε µ

σ σ µ

σ µ µ

         − + + − + +              
   = − + − + −      

∑

∑

∑ ∑

 

 

Using equation (5.8) and assuming that the sample in every stratum, nh, is small compared 

to the subpopulation, Nh, we could approximate ( )*
ˆ

p M BE V +  with 
 

 ( ) ( ) ( )2 2 2 2 2
*

1ˆ
h hp M B h h U U h U

h hh

E V W W S S W S
n ε µ µ µσ+ − + + −∑ ∑�  (5.9) 

 

The first sum in equation (5.9) bears a resemblance to the p*M-expectation of ˆa
WV . Using 

equation (5.4) the p*M-expectation of ŴV +  is  
 

 ( ) ( )
2

2 2
*

ˆ
h

h h
p M W h U

h h

W WE V W S
n ε µσ+

 −  = − +   ∑  (5.10) 

 

Result 5.2 now follows from combining (5.9) and (5.10),  
 

( ) ( ) ( )
2

2 2 2 2 2 2 2
*

2 2

1ˆ ˆ( )
h h h

h h
p M B W h h U U h U h U

h h hh h

U

W WE V V W W S S W S W S
n n

S

ε µ µ µ ε µ

ε µ

σ σ

σ

+ +
 −  + − + + − + − +   

= +

∑ ∑ ∑�

 
, 
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Method 2 

To find an estimator of the interviewer variance, 2
bσ , we notice that the stratified simple 

random sampling design makes it possible for us to use the result in Lundquist and 

Wretman (2002) on each subpopulation Uh. We then have 

 

 ,2
, ,

ˆ
ˆˆ W h

b h B h
h

V
I V

n
σ

  = −    
 for h = 1,…,H. (5.11) 

 

where ,B̂ hV and ,Ŵ hV  are estimators defined for the subpopulations Uh. As in the earlier 

paper we have for each stratum h (h = 1,…,H.) 

 

( ) ( ) ( ) ( )2 2

, ,
1 1ˆ ˆ     and     

1 1hi h hihi
B h s s W h k ss

i ih

V y y V y y
I I I m

= − = −
− −∑ ∑∑  

 

It could be shown using the results in Lundquist and Wretman (2002) that the estimators 

expectation with respect to the p*M-distribution for sh are 

 

  ( ) ( )
2 22

2 2
* , * ,

ˆ ˆ     and     h

h

Ub
p M B h p M W h U

h

S
E V E V S

I n
ε µ

ε µ

σσ σ
+

= + = +  

 

and we then have that 

 

 ( )2 2
* ,ˆp M b h bE σ σ=  for h = 1,…,H. 

 

The model assumptions imply that each stratum produces an estimator of the interviewer 

variance. An estimator that uses the whole sample would be more stable and one choice is 

the mean of the H estimators in formula (5.11). The estimator of 2
bσ  for Method 2 (which 

also is p*M-unbiased) that uses the whole stratified simple random sample is: 

 

 2 2
, 2 ,

1ˆ ˆb ST b h
hH

σ σ= ∑  (5.12) 
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Note that this simple way of estimating the interviewer variance is not practicable when 

estimating the intra-interviewer correlation. The H strata would produce different 

estimators of 2
totσ  given by 

 

 2
, , ,

1ˆ ˆˆ h
tot h B h W h

h

mI V V
m

σ −= ⋅ +  for h = 1,…,H. (5.13) 

 

If we now take the p*M-expectation on (5.13) we would get 

 

 ( )2 2 2 2
* ,ˆ

hp M tot h b UE Sε µσ σ σ= + +  

 

and the intra-interviewer correlation is estimated differently for the different 

subpopulations 

 

 
2
,

, 2
,

ˆ
ˆ

ˆ
b h

w h
tot h

σ
ρ

σ
=   for h = 1,…,H.   (5.14) 

 

Equation (5.14) will produce the intra-interviewer correlation in the subpopulation Uh. The 

estimator of wρ  for Method 2 is also based on averaging over the H different strata (as for 

the interviewer variance (5.12)):  

 

 , 2 ,
1ˆ ˆw ST w h

hH
ρ ρ= ∑  (5.15) 

 

This estimator is an average of the intra-interviewer correlation estimators in the different 

subpopulations, which is not necessarily equal to the intra-interviewer correlation in the 

whole population unless the subpopulation variances 2
hUSµ  are all equal.  
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6. Simulation study 
 

This section describes a simulation study with the purpose to compare the interviewer 

estimators for Method 1 and 2 by simulations. Two artificial populations are considered; 

one population is symmetric and the other is skew. The skew population is meant to be 

more realistic in some situations, such as when dealing with economic data. Each 

population consists of eight strata and only one sample size is used, with equal sample size 

in all strata. 

 

In Lundquist and Wretman (2002) it was shown, for simple random sampling, that the 

accuracy of the estimated interviewer variance and estimated intra-interviewer correlation 

varied for a fix sample size when the subsample sizes and number of interviewers varied. 

Eight different combinations of mh and I for nh are created to investigate if this also holds 

for the stratified simple random sampling.  

 

The simulation study is done in the following way. 

 

• Two artificial finite populations of the size N = 100,000 are created by generating 

100,000 independent random numbers, kµ :  

o Population 1, drawn from a standard normal distribution, N(0,1) 

and  

o Population 2, drawn from a gamma distribution, Gamma(0.5, 1) with 

expectation 0.5 and variance 0.5. 

 

For each population there is an auxiliary variable, xk (k = 1, …, 100,000), which is used 

in the stratification. The auxiliary variables are correlated with the “true values” and 

the correlation, r, is fixed to 0.4 in both populations. The correlated auxiliary variable 

xk is achieved by using the following relation: Let kµ  and zk be i.i.d. and calculate 
2 0.5(1 )k k kx r r zµ= + − . This means that we in Population 1 first generate two 

independent variables kµ  and zk for k = 1, …, 100,000 from the standard normal 

distribution and then use the relation to create the auxiliary values xk. In Population 2 

the procedure is similar but with two independent variables kµ  and zk from 
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Gamma(0.5, 1). For the artificial population where kµ  are realized from N(0,1) we 

found the following covariance matrix:  

 

  
2

2

0.99284498 0.39680338

0.39680338 0.99976496
xUU

xU xU

SS

S S
µµ

µ

      =        
 

 

And for the skew population where kµ  are realized from Gamma(0.5, 1) we found:  

 

  
2

2

0.49138668 0.19853051

0.19853051 0.50150039
xUU

xU xU

SS

S S
µµ

µ

      =        
 

 

To create the stratification the populations are sorted by the auxiliary variables and 

divided into eight subpopulations. The following sizes on the subpopulations are 

chosen: N1 = 5,000, N2 = 10,000, N3 = 15,000, N4 = 20,000, N5 = 20,000, N6 = 15,000, 

N7 = 10,000 and N8 = 5,000. (The 5,000 lowest values in the first subpopulation and 

the successive 10,000 values in the second subpopulation etc.) Means and variances for 

the eight subpolulations are presented in Table A.1 and the distributions for the 

different subpopulations are shown in Figure A.1 and Figure A.2 in Appendix A. 

 

• From the two finite populations 5,000 samples of the same size, n = 2,400, are 

drawn by stratified simple random sampling without replacement. Each sample is 

replaced before the next sample is drawn, so that all samples are independent. The 

sample size in every stratum is fixed to nh = 300 (h = 1,…,8). 
 

• For each sample, the sampled elements are assigned at random to I fictitious 

interviewers, in conformity with assumptions made in Section 2, so that every 

interviewer gets the same number, mh = nh/I, of respondents (h = 1,…,8). Eight 

different values of I are used (I =150, 75, 60, 50, 30, 20, 15 and 10).  
 

• For each sample, with given I, and given interviewer assignments, interviewer effects, bi  

(i = 1,…, I) are obtained by generating I independent random numbers from an 

N(0, 2
bσ ) distribution. Different values of 2

bσ  were chosen as described below. 
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• For each sample, response errors, kε (k ∈ s), are obtained by generating n independent 

random numbers from an N(0, 2
εσ ) distribution. Different values of 2

εσ  were chosen as 

described below. 
 

• The following combinations of values were used for 2
bσ  and 2

εσ :  
 

  kµ ∼N(0,1) kµ ∼Gamma(0.5,1) 
 2

bσ / 2
εσ  2

bσ  2
bσ  

wρ =0.01 0.1 0.01115556 0.00552120 

 1.0 0.01013107 0.00501415 

 10.0 0.01003888 0.00496852 

wρ =0.02 0.1 0.02545756 0.01259966 

 1.0 0.02068427 0.01023722 

 10.0 0.02030358 0.01004881 

wρ =0.04 0.1 0.07091750 0.03509905 

 1.0 0.04316717 0.02136464 

 10.0 0.04154163 0.02056011 
 

These combinations of values were chosen in order to illustrate various relations 

between the two variances involved, while at the same time, together with the actual 

values of 2Sµ , giving a constant intra-interviewer correlation of wρ . 
 

• Finally, for each sample s we obtain values yk (= µk + bi + εk) for all k ∈ s. Using these 

values, we then calculate, for each sample, sty  (3.1), 2
, 1b̂ STσ  (5.2), , 1ŵ STρ  (5.6), 

2
, 2b̂ STσ  (5.12) and , 2ŵ STρ  (5.15). 

 

The measures considered are the expected values and the standard errors. To obtain them 

we use the following approximate results from the simulations. Let ts denote some sample 

quantity calculated from observed data in a sample s, and let tsj be the realized value of ts 

for the jth simulation sample  (j = 1, …, 5,000).  (For example, if ts is the stratified sample 

mean sty , then ,sj st jt y=  is the observed mean in the jth simulation sample.) The 

simulation mean 
 

5,000

1

1
5, 000s sj

j

t t
=

= ∑  

 

is the simulation estimate of the expected value * ( )p M sE t . We denote this estimated 

expectation with Esim. The simulation variance 



 

 25

 
5,000

2 2

1

1 ( )
5, 000 1st sj s

j

S t t
=

= −
− ∑  

 

is the simulation estimate of the variance * ( )p M sVar t . We use the square root of this 

estimated variance 1/2
simV , i.e. the estimate of the standard error of the estimator ts, to 

compare the accuracy of the methods for the eight different combinations of mh and I. 

 

Let us first look at the simulation results for the sample mean of the true values, 

 

1
h

H

st h s
h

Wµ µ
=

=∑  

 

We already know from elementary sampling theory that (because the sampling design is 

stratified simple random sampling without replacement): 
 

0.00430063 Population 1
( )

0.49647738 Population 2p st UE µ µ
= = 

 

 
1/22

1/2 2

1

0.02028429 Population 1
( ) (1 )

0.01216316 Population 2
h

H
Uh

p st h
h h h

SnVar W
N n

µµ
=

     = − =         
∑  

 

Since the true values are fixed constants, the measurement error model is not considered 

here. 

 

The results of the simulation study are given in Table 6.1 below. The simulation estimates 

are seen to be rather close to the exact values of the quantities that they are supposed to 

approximate. 

 
Table 6.1. Results from the simulation study on sample mean of the true values. 

 5,000 repeated samples. 

  kµ ∼N(0,1) kµ ∼Gamma(0.5,1) 

( )p stE µ  Exact value 

Simulation estimate 

0.00430063 

0.00410500 

0.49647738 

0.49636391 
1/2

( )p stVar µ    Exact value 

Simulation estimate 

0.02028429 

0.01993082 

0.01216316 

0.01206599 
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Simulation mean and simulation standard error for each of sty , 2
, 1b̂ STσ , , 1ŵ STρ , 2

, 2b̂ STσ  and 

, 2ŵ STρ  are given in Tables B.1 – B.18 in Appendix B, for the two populations; for various 

values of I  (and mh =nh/I); for wρ =  0.01, 0.02 and 0.04 and for 2 2/b εσ σ = 0.1, 1, and 10. 

Some comments on these simulation results follow here. 

 

• We note that the simulated standard error of sty  increases as the number of 

interviewers, I, decreases (that is when the subsample, mh, increases). This is what 

is to be expected from equation (3.5). 
 

• It seems that 2
, 1b̂ STσ  is more efficient than 2

, 2b̂ STσ  in this study. It is always possible to 

find a combination (of I and mh) for 2
, 1b̂ STσ  with a lower standard error. The lowest 

standard error is not given for the same combination for the two interviewer variance 

estimators, 2
, 2b̂ STσ  always need a larger subsample, mh, than 2

, 1b̂ STσ . This is true for the 

chosen populations and the studied values of the intra-interviewer combinations.  
 

• The relation between the interviewer variance 2
bσ  and the response error variance 2

εσ  is 

not of great importance in this simulation example.  If the interviewer variance is a 

tenth of, equal to, or ten times the elementary error variance does not affect the results 

very much. 
 

• If the population is skew or symmetric does not affect the results of 2
, 1b̂ STσ  as much 

as 2
, 2b̂ STσ . There are small differences for 2

, 1b̂ STσ  and the combination (of I and mh) with 

the lowest standard error in the skew population is also among the ones with the lowest 

standard error for the symmetric population. There is a minor indication that we need 

a larger subsample size, mh. For 2
, 2b̂ STσ  we always need a larger subsample size for the 

skew population for wρ =  0.02 and 0.04. 
 

• Different values of wρ  produce different minima of the standard error of the 

interviewer variance estimators. We note that a smaller subsample size, mh, is needed 

when the intra-interviewer correlation is large. 
 

• The findings for , 1ŵ STρ  in the simulation study are similar to what we found 

for 2
, 1b̂ STσ . 

 

• , 2ŵ STρ  is not recommended as an estimator of the intra-interviewer 

correlation in these situations. 
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7. Discussion 
This is the second paper where we have used the theoretical framework for interviewer 

variance studies for continuous data. We have extended the theory to be practicable for 

stratified simple random sampling. The basic concepts under the stratified sample design 

have made it possible to create interviewer effect estimators. Two different interviewer 

variance estimators have been investigated under the simple measurement error model. 

The first 2
, 1b̂ STσ  is to be preferred to 2

, 2b̂ STσ  according to the simulation study. Our 

judgment is based on that 2
, 1b̂ STσ  always has a lower standard error than 2

, 2b̂ STσ  for all 

combinations of I and m. The estimator is also rather stable in that sense that the 

minimum values for the combinations of number of interviewers and sizes of the subsample 

is not affected when the underlying population departs from a symmetric distribution. 

There may however exist situations where 2
, 2b STσ  works well. The results are based on one 

stratified sample design from two artificial populations. In a real experiment the number of 

strata will be different and maybe also the sample design within strata.  

 

The simulations also indicated that it is possible to use , 1ŵ STρ  as an estimator of the intra-

interviewer correlation wρ . Some care is needed in a real situation when estimating the 

intra-interviewer correlation. However, the approximations (for large populations, N, and 

subpopulations, Nh, and when the sampling fraction / 0h hn N �  in all strata) used for the 

denominator 2
,t̂ot stσ  work well in this situation where for example n1/N1 = 300/5,000.  

 

We use the simple measurement error model yk = µk + bi + εk for all k ∈ s. If on the other 

hand we would have additional information, about the interviewer effects or the response 

errors, another model could be preferred. The basic idea is that a survey is going to take 

place, and we have some doubts about some of the questions in the survey, but no extra 

information about the error structure. To investigate if there are interviewer effects we 

then use a simple model.  
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 Appendix A 
 

Table A.1 The populations and eight subpopulations sorted  

according to the auxiliary variables.  

 kµ  from N(0,1) kµ  from Gamma(0.5,1) 

N = 100,000 Uµ =  0.00430063 Uµ =  0.49647738 

 

 

2
USµ =  0.99284498 2

USµ =  0.49138668 

N1 = 5,000 
1Uµ = -0.82670502 

1Uµ =  0.01903444 

 
1

2
USµ =  0.84202525 

1

2
USµ =  0.00037749 

N2 = 10,000 
2Uµ = -0.49948376 

2Uµ =  0.07834953 

 
2

2
USµ =  0.83327089 

2

2
USµ =  0.00417544 

N3 = 15,000 
3Uµ = -0.30194349 

3Uµ =  0.18513546 

 
3

2
USµ =  0.83144030 

3

2
USµ =  0.02168764 

N4 = 20,000 
4Uµ = -0.09757170 

4Uµ =  0.35293309 

 
4

2
USµ =  0.83593094 

4

2
USµ =  0.08363140 

N5 = 20,000 
5Uµ =  0.10855032 

5Uµ =  0.57214530 

 
5

2
USµ =  0.84132404 

5

2
USµ =  0.25642728 

N6 = 15,000 
6Uµ =  0.30432987 

6Uµ =  0.81992360 

 
6

2
USµ =  0.84728370 

6

2
USµ =  0.62592751 

N7 = 10,000 
7Uµ =  0.52208466 

7Uµ =  0.99418949 

 
7

2
USµ =  0.84543291 

7

2
USµ =  1.2517950 

N8 = 5,000 
8Uµ =  0.81683091 

8Uµ =  1.0499443 

 
8

2
USµ =  0.88246143 

8

2
USµ =  1.9237204 
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Figure A.1 Subpopulations, h = 1,…,8, for the first finite population N(0,1) 
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Figure A.2  Subpopulations, h = 1,…,8, for the second finite population Gamma(0.5,1) 
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Appendix B 
Table B.1.  Simulation means, simE , and standard errors, 1/2

simV , of 2
, 1 , 1ˆ ˆ, , ,st b ST w STy σ ρ 2

, 2 , 2ˆ ˆ and b ST w STσ ρ  from 

5,000 repeated stratified simple random samples assuming N(0,1)kµ ∼ . Sample size n = 2,400, nh = 300, 

h = 1,…8, 2 2/b εσ σ = 0.1, and wρ = 0.01. ( 2
bσ =0.011155562) 

I = 

mh = 

150  

2 

75 

4 

 60  

5 

 50  

6 

 30  

 10 

20  

 15 

15  

20 

10  

30 

sty  
210simE ×  0.40 0.44 0.41 0.44 0.42 0.42 0.44 0.40 

1/2 210simV ×  2.29 2.42 2.51 2.62 2.84 3.20 3.43 3.98 
2
, 1b̂ STσ  

210simE ×  1.10 1.12 1.12 1.12 1.12 1.11 1.12 1.12 
1/2 210simV ×  1.03 0.79 0.74 0.71 0.69 0.68 0.69 0.74 

, 1ŵ STρ  
210simE ×  0.99 1.01 1.00 1.01 1.00 0.99 1.00 1.00 

1/2 210simV ×  0.93 0.71 0.66 0.64 0.62 0.60 0.61 0.65 
2
, 2b̂ STσ  

210simE ×  1.12 1.10 1.10 1.10 1.11 1.08 1.11 1.11 
1/2 210simV ×  2.81 1.67 1.45 1.34 1.07 0.94 0.89 0.86 

, 2ŵ STρ  
210simE ×  1.15 1.13 1.13 1.12 1.13 1.11 1.13 1.14 

1/2 210simV ×  2.90 1.72 1.50 1.38 1.10 0.97 0.91 0.88 
 

Table B.2.  Simulation means, simE , and standard errors, 1/2
simV , of 2

, 1 , 1ˆ ˆ, , ,st b ST w STy σ ρ 2
, 2 , 2ˆ ˆ and b ST w STσ ρ  from 

5,000 repeated stratified simple random samples assuming N(0,1)kµ ∼ . Sample size n = 2,400, nh = 300, 

h = 1,…8, 2 2/b εσ σ = 1, and wρ = 0.01. ( 2
bσ =0.010131071) 

I = 

mh = 

150  

2 

75 

4 

 60  

5 

 50  

6 

 30  

 10 

20  

 15 

15  

20 

10  

30 

sty  
210simE ×  0.40 0.44 0.41 0.44 0.42 0.42 0.44 0.41 

1/2 210simV ×  2.17 2.29 2.38 2.47 2.70 3.03 3.26 3.78 
2
, 1b̂ STσ  

210simE ×  1.00 1.02 1.01 1.02 1.02 1.00 1.02 1.01 
1/2 210simV ×  0.92 0.70 0.67 0.64 0.62 0.61 0.62 0.67 

, 1ŵ STρ  
210simE ×  0.99 1.01 1.00 1.00 1.00 0.99 1.00 1.00 

1/2 210simV ×  0.91 0.69 0.66 0.63 0.61 0.60 0.61 0.65 
2
, 2b̂ STσ  

210simE ×  1.02 1.01 1.00 1.00 1.00 0.98 1.00 1.01 
1/2 210simV ×  2.53 1.50 1.31 1.21 0.97 0.85 0.80 0.78 

, 2ŵ STρ  
210simE ×  1.17 1.16 1.15 1.14 1.15 1.12 1.15 1.15 

1/2 210simV ×  2.91 1.73 1.51 1.39 1.11 0.98 0.91 0.88 
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Table B.3.  Simulation means, simE , and standard errors, 1/2

simV , of 2
, 1 , 1ˆ ˆ, , ,st b ST w STy σ ρ 2

, 2 , 2ˆ ˆ and b ST w STσ ρ  from 

5,000 repeated stratified simple random samples assuming N(0,1)kµ ∼ . Sample size n = 2,400, nh = 300, 

h = 1,…8, 2 2/b εσ σ = 10, and wρ = 0.01. ( 2
bσ =0.010038877) 

I = 

mh = 

150  

2 

75 

4 

 60  

5 

 50  

6 

 30  

 10 

20  

 15 

15  

20 

10  

30 

sty  
210simE ×  0.40 0.44 0.41 0.44 0.42 0.42 0.44 0.41 

1/2 210simV ×  2.16 2.28 2.37 2.46 2.68 3.02 3.24 3.76 
2
, 1b̂ STσ  

210simE ×  0.99 1.01 1.00 1.01 1.01 0.99 1.01 1.00 
1/2 210simV ×  0.91 0.70 0.66 0.64 0.61 0.60 0.62 0.66 

, 1ŵ STρ  
210simE ×  0.99 1.01 1.00 1.00 1.00 0.99 1.00 1.00 

1/2 210simV ×  0.91 0.69 0.66 0.63 0.61 0.60 0.61 0.65 
2
, 2b̂ STσ  

210simE ×  1.01 1.00 0.99 0.99 0.99 0.97 1.00 1.00 
1/2 210simV ×  2.51 1.49 1.30 1.20 0.96 0.84 0.79 0.77 

, 2ŵ STρ  
210simE ×  1.17 1.16 1.15 1.15 1.15 1.13 1.15 1.15 

1/2 210simV ×  2.92 1.73 1.51 1.39 1.12 0.98 0.92 0.88 

 
Table B.4.  Simulation means, simE , and standard errors, 1/2

simV , of 2
, 1 , 1ˆ ˆ, , ,st b ST w STy σ ρ 2

, 2 , 2ˆ ˆ and b ST w STσ ρ  from 

5,000 repeated stratified simple random samples assuming N(0,1)kµ ∼ . Sample size n = 2,400, nh = 300, 

h = 1,…8, 2 2/b εσ σ = 0.1, and wρ = 0.02. ( 2
bσ =0.025457564) 

I = 

mh = 

150  

2 

75 

4 

 60  

5 

 50  

6 

 30  

 10 

20  

 15 

15  

20 

10  

30 

sty  
210simE ×  0.39 0.45 0.40 0.45 0.42 0.42 0.45 0.40 

1/2 210simV ×  2.63 2.90 3.07 3.24 3.66 4.26 4.68 5.56 
2
, 1b̂ STσ  

210simE ×  2.53 2.56 2.55 2.56 2.56 2.53 2.56 2.55 
1/2 210simV ×  1.33 1.11 1.08 1.08 1.14 1.18 1.28 1.43 

, 1ŵ STρ  
210simE ×  1.99 2.01 2.00 2.01 2.00 1.98 2.00 1.99 

1/2 210simV ×  1.05 0.87 0.84 0.84 0.88 0.91 0.98 1.10 
2
, 2b̂ STσ  

210simE ×  2.54 2.53 2.54 2.53 2.54 2.51 2.55 2.54 
1/2 210simV ×  3.27 2.01 1.77 1.67 1.46 1.39 1.42 1.51 

, 2ŵ STρ  
210simE ×  2.24 2.23 2.24 2.23 2.24 2.20 2.24 2.23 

1/2 210simV ×  2.89 1.78 1.57 1.47 1.27 1.21 1.23 1.30 
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Table B.5.  Simulation means, simE , and standard errors, 1/2

simV , of 2
, 1 , 1ˆ ˆ, , ,st b ST w STy σ ρ 2

, 2 , 2ˆ ˆ and b ST w STσ ρ  from 

5,000 repeated stratified simple random samples assuming N(0,1)kµ ∼ . Sample size n = 2,400, nh = 300, 

h = 1,…8, 2 2/b εσ σ = 1, and wρ = 0.02. ( 2
bσ =0.020684270) 

I = 

mh = 

150  

2 

75 

4 

 60  

5 

 50  

6 

 30  

 10 

20  

 15 

15  

20 

10  

30 

sty  
210simE ×  0.40 0.45 0.41 0.45 0.43 0.42 0.45 0.40 

1/2 210simV ×  2.34 2.57 2.73 2.88 3.27 3.81 4.19 5.00 
2
, 1b̂ STσ  

210simE ×  2.05 2.08 2.07 2.08 2.08 2.05 2.08 2.07 
1/2 210simV ×  1.05 0.88 0.86 0.86 0.91 0.95 1.03 1.16 

, 1ŵ STρ  
210simE ×  1.99 2.01 2.00 2.00 2.00 1.98 2.00 1.99 

1/2 210simV ×  1.01 0.84 0.83 0.83 0.87 0.91 0.97 1.09 
2
, 2b̂ STσ  

210simE ×  2.07 2.07 2.06 2.05 2.06 2.03 2.07 2.06 
1/2 210simV ×  2.60 1.59 1.42 1.34 1.17 1.11 1.14 1.21 

, 2ŵ STρ  
210simE ×  2.32 2.31 2.30 2.30 2.31 2.27 2.30 2.30 

1/2 210simV ×  2.92 1.79 1.59 1.50 1.30 1.23 1.25 1.32 

 
Table B.6.  Simulation means, simE , and standard errors, 1/2

simV , of 2
, 1 , 1ˆ ˆ, , ,st b ST w STy σ ρ 2

, 2 , 2ˆ ˆ and b ST w STσ ρ  from 

5,000 repeated stratified simple random samples assuming N(0,1)kµ ∼ . Sample size n = 2,400, nh = 300, 

h = 1,…8, 2 2/b εσ σ = 10, and wρ = 0.02. ( 2
bσ =0.020303578) 

I = 

mh = 

150  

2 

75 

4 

 60  

5 

 50  

6 

 30  

 10 

20  

 15 

15  

20 

10  

30 

sty  
210simE ×  0.40 0.46 0.41 0.45 0.43 0.43 0.45 0.41 

1/2 210simV ×  2.32 2.55 2.71 2.85 3.24 3.77 4.14 4.95 
2
, 1b̂ STσ  

210simE ×  2.01 2.04 2.03 2.04 2.04 2.01 2.04 2.03 
1/2 210simV ×  1.02 0.86 0.85 0.85 0.89 0.94 1.01 1.13 

, 1ŵ STρ  
210simE ×  1.98 2.01 2.00 2.00 2.00 1.98 2.00 1.99 

1/2 210simV ×  1.01 0.84 0.83 0.83 0.86 0.90 0.97 1.09 
2
, 2b̂ STσ  

210simE ×  2.03 2.03 2.02 2.02 2.02 1.99 2.03 2.02 
1/2 210simV ×  2.55 1.56 1.39 1.31 1.15 1.09 1.12 1.19 

, 2ŵ STρ  
210simE ×  2.33 2.32 2.31 2.31 2.31 2.27 2.31 2.30 

1/2 210simV ×  2.92 1.79 1.60 1.50 1.30 1.23 1.25 1.32 
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Table B.7.  Simulation means, simE , and standard errors, 1/2
simV , of 2

, 1 , 1ˆ ˆ, , ,st b ST w STy σ ρ 2
, 2 , 2ˆ ˆ and b ST w STσ ρ  from 

5,000 repeated stratified simple random samples assuming N(0,1)kµ ∼ . Sample size n = 2,400, nh = 300, 

h = 1,…8, 2 2/b εσ σ = 0.1, and wρ = 0.04. ( 2
bσ =0.070917499) 

I = 

mh = 

150  

2 

75 

4 

 60  

5 

 50  

6 

 30  

 10 

20  

 15 

15  

20 

10  

30 

sty  
210simE ×  0.38 0.48 0.40 0.47 0.43 0.43 0.47 0.39 

1/2 210simV ×  3.51 4.08 4.40 4.69 5.49 6.58 7.35 8.89 
2
, 1b̂ STσ  

210simE ×  7.05 7.11 7.10 7.13 7.11 7.05 7.12 7.08 
1/2 210simV ×  2.26 2.13 2.16 2.23 2.54 2.80 3.16 3.65 

, 1ŵ STρ  
210simE ×  3.98 4.00 4.00 4.01 4.00 3.96 3.99 3.96 

1/2 210simV ×  1.27 1.17 1.18 1.21 1.37 1.51 1.70 1.95 
2
, 2b̂ STσ  

210simE ×  7.07 7.08 7.10 7.08 7.09 7.03 7.12 7.07 
1/2 210simV ×  4.73 3.18 2.89 2.81 2.80 2.94 3.24 3.70 

, 2ŵ STρ  
210simE ×  4.32 4.32 4.34 4.32 4.32 4.28 4.32 4.28 

1/2 210simV ×  2.89 1.93 1.74 1.69 1.66 1.73 1.89 2.13 

 
Table B.8.  Simulation means, simE , and standard errors, 1/2

simV , of 2
, 1 , 1ˆ ˆ, , ,st b ST w STy σ ρ 2

, 2 , 2ˆ ˆ and b ST w STσ ρ  from 

5,000 repeated stratified simple random samples assuming N(0,1)kµ ∼ . Sample size n = 2,400, nh = 300, 

h = 1,…8, 2 2/b εσ σ = 1, and wρ = 0.04. ( 2
bσ =0.043167173) 

I = 

mh = 

150  

2 

75 

4 

 60  

5 

 50  

6 

 30  

 10 

20  

 15 

15  

20 

10  

30 

sty  
210simE ×  0.40 0.47 0.41 0.47 0.43 0.43 0.47 0.40 

1/2 210simV ×  2.67 3.11 3.37 3.60 4.25 5.09 5.69 6.91 
2
, 1b̂ STσ  

210simE ×  4.29 4.34 4.32 4.33 4.33 4.29 4.34 4.31 
1/2 210simV ×  1.32 1.26 1.29 1.33 1.53 1.69 1.90 2.20 

, 1ŵ STρ  
210simE ×  3.97 4.01 3.99 4.00 3.99 3.95 3.99 3.96 

1/2 210simV ×  1.21 1.14 1.16 1.19 1.35 1.50 1.67 1.93 
2
, 2b̂ STσ  

210simE ×  4.31 4.32 4.31 4.30 4.31 4.26 4.33 4.30 
1/2 210simV ×  2.76 1.84 1.71 1.67 1.68 1.77 1.95 2.22 

, 2ŵ STρ  
210simE ×  4.59 4.60 4.59 4.58 4.59 4.53 4.58 4.54 

1/2 210simV ×  2.94 1.94 1.80 1.75 1.73 1.81 1.98 2.23 
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Table B.9.  Simulation means, simE , and standard errors, 1/2

simV , of 2
, 1 , 1ˆ ˆ, , ,st b ST w STy σ ρ 2

, 2 , 2ˆ ˆ and b ST w STσ ρ  from 

5,000 repeated stratified simple random samples assuming N(0,1)kµ ∼ . Sample size n = 2,400, nh = 300, 

h = 1,…8, 2 2/b εσ σ = 10, and wρ = 0.04. ( 2
bσ =0.041541631) 

I = 

mh = 

150  

2 

75 

4 

 60  

5 

 50  

6 

 30  

 10 

20  

 15 

15  

20 

10  

30 

sty  
210simE ×  0.40 0.48 0.41 0.47 0.43 0.43 0.47 0.40 

1/2 210simV ×  2.62 3.04 3.30 3.53 4.16 4.98 5.57 6.78 
2
, 1b̂ STσ  

210simE ×  4.12 4.18 4.15 4.17 4.16 4.12 4.17 4.15 
1/2 210simV ×  1.26 1.21 1.24 1.28 1.46 1.62 1.82 2.12 

, 1ŵ STρ  
210simE ×  3.97 4.01 3.99 4.00 3.99 3.95 3.99 3.95 

1/2 210simV ×  1.21 1.13 1.16 1.19 1.35 1.50 1.67 1.93 
2
, 2b̂ STσ  

210simE ×  4.14 4.16 4.14 4.14 4.15 4.10 4.16 4.14 
1/2 210simV ×  2.65 1.76 1.64 1.61 1.62 1.70 1.88 2.13 

, 2ŵ STρ  
210simE ×  4.62 4.63 4.62 4.61 4.62 4.55 4.61 4.57 

1/2 210simV ×  2.95 1.94 1.81 1.76 1.74 1.82 1.98 2.23 
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Table B.10.  Simulation means, simE , and standard errors, 1/2
simV , of 2

, 1 , 1ˆ ˆ, , ,st b ST w STy σ ρ  2
, 2 , 2ˆ ˆ and b ST w STσ ρ  

from 5,000 repeated stratified simple random samples assuming Gamma(0.5,1)kµ ∼ . Sample size n = 

2,400, nh = 300, h = 1,…8, 2 2/b εσ σ = 0.1, and wρ = 0.01. ( 2
bσ =0.0055211987) 

I = 

mh = 

150  

2 

75 

4 

 60  

5 

 50  

6 

 30  

 10 

20  

 15 

15  

20 

10  

30 

sty  
210simE ×  49.63 49.66 49.63 49.65 49.64 49.64 49.65 49.63 

1/2 210simV ×  1.46 1.56 1.62 1.67 1.87 2.14 2.32 2.71 
2
, 1b̂ STσ  

210simE ×  0.54 0.55 0.55 0.55 0.55 0.54 0.56 0.54 
1/2 210simV ×  0.40 0.32 0.30 0.29 0.29 0.29 0.32 0.34 

, 1ŵ STρ  
210simE ×  0.99 1.00 1.00 1.01 1.00 0.98 1.01 0.98 

1/2 210simV ×  0.74 0.58 0.54 0.53 0.52 0.52 0.57 0.62 
2
, 2b̂ STσ  

210simE ×  0.51 0.56 0.54 0.55 0.57 0.57 0.58 0.55 
1/2 210simV ×  2.59 1.53 1.32 1.18 0.92 0.77 0.70 0.62 

, 2ŵ STρ  
210simE ×  3.85 3.90 3.89 3.90 3.90 3.85 3.90 3.81 

1/2 210simV ×  2.87 1.89 1.69 1.62 1.54 1.56 1.71 1.90 

 

 

Table B.11.  Simulation means, simE , and standard errors, 1/2
simV , of 2

, 1 , 1ˆ ˆ, , ,st b ST w STy σ ρ  2
, 2 , 2ˆ ˆ and b ST w STσ ρ  

from 5,000 repeated stratified simple random samples assuming Gamma(0.5,1)kµ ∼ . Sample size n = 

2,400, nh = 300, h = 1,…8, 2 2/b εσ σ = 1, and wρ = 0.01. ( 2
bσ =0.0050141498) 

I = 

mh = 

150  

2 

75 

4 

 60  

5 

 50  

6 

 30  

 10 

20  

 15 

15  

20 

10  

30 

sty  
210simE ×  49.63 49.66 49.64 49.66 49.64 49.64 49.66 49.63 

1/2 210simV ×  1.36 1.45 1.51 1.55 1.75 2.01 2.18 2.56 
2
, 1b̂ STσ  

210simE ×  0.49 0.50 0.50 0.50 0.50 0.49 0.51 0.49 
1/2 210simV ×  0.35 0.28 0.26 0.26 0.25 0.26 0.28 0.30 

, 1ŵ STρ  
210simE ×  0.99 1.00 1.00 1.00 1.00 0.98 1.01 0.98 

1/2 210simV ×  0.72 0.56 0.53 0.52 0.50 0.51 0.56 0.61 
2
, 2b̂ STσ  

210simE ×  0.46 0.50 0.48 0.49 0.52 0.51 0.52 0.50 
1/2 210simV ×  2.50 1.47 1.26 1.14 0.88 0.74 0.67 0.58 

, 2ŵ STρ  
210simE ×  13.37 13.40 13.36 13.36 13.28 13.11 13.13 12.83 

1/2 210simV ×  2.87 2.26 2.22 2.27 2.58 2.97 3.44 4.05 
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Table B.12.  Simulation means, simE , and standard errors, 1/2
simV , of  2

, 1 , 1ˆ ˆ, , ,st b ST w STy σ ρ  2
, 2 , 2ˆ ˆ and b ST w STσ ρ  

from 5,000 repeated stratified simple random samples assuming Gamma(0.5,1)kµ ∼ . Sample size n = 

2,400, nh = 300, h = 1,…8, 2 2/b εσ σ = 10, and wρ = 0.01. ( 2
bσ =0.0049685206) 

I = 

mh = 

150  

2 

75 

4 

 60  

5 

 50  

6 

 30  

 10 

20  

 15 

15  

20 

10  

30 

sty  
210simE ×  49.63 49.66 49.64 49.66 49.64 49.64 49.66 49.63 

1/2 210simV ×  1.35 1.44 1.50 1.54 1.74 2.00 2.17 2.54 
2
, 1b̂ STσ  

210simE ×  0.49 0.50 0.50 0.50 0.50 0.49 0.50 0.49 
1/2 210simV ×  0.35 0.27 0.26 0.25 0.25 0.25 0.28 0.30 

, 1ŵ STρ  
210simE ×  0.99 1.00 1.00 1.00 1.00 0.98 1.01 0.98 

1/2 210simV ×  0.72 0.55 0.52 0.51 0.50 0.51 0.56 0.60 
2
, 2b̂ STσ  

210simE ×  0.45 0.50 0.47 0.49 0.52 0.51 0.52 0.50 
1/2 210simV ×  2.49 1.46 1.26 1.13 0.87 0.74 0.67 0.58 

, 2ŵ STρ  
210simE ×  20.34 20.36 20.33 20.31 20.23 20.03 20.00 19.66 

1/2 210simV ×  2.72 2.04 2.00 2.05 2.31 2.69 3.13 3.77 

 

 

Table B.13.  Simulation means, simE , and standard errors, 1/2
simV , of 2

, 1 , 1ˆ ˆ, , ,st b ST w STy σ ρ  2
, 2 , 2ˆ ˆ and b ST w STσ ρ  

from 5,000 repeated stratified simple random samples assuming Gamma(0.5,1)kµ ∼ . Sample size n = 

2,400, nh = 300, h = 1,…8, 2 2/b εσ σ = 0.1, and wρ = 0.02. ( 2
bσ =0.012599659) 

I = 

mh = 

150  

2 

75 

4 

 60  

5 

 50  

6 

 30  

 10 

20  

 15 

15  

20 

10  

30 

sty  
210simE ×  49.62 49.67 49.63 49.66 49.64 49.64 49.66 49.63 

1/2 210simV ×  1.73 1.93 2.03 2.13 2.47 2.92 3.22 3.85 
2
, 1b̂ STσ  

210simE ×  1.25 1.26 1.26 1.27 1.26 1.24 1.27 1.24 
1/2 210simV ×  0.55 0.48 0.47 0.47 0.50 0.53 0.61 0.69 

, 1ŵ STρ  
210simE ×  1.99 2.00 2.00 2.01 2.00 1.97 2.01 1.97 

1/2 210simV ×  0.88 0.76 0.74 0.75 0.79 0.83 0.95 1.07 
2
, 2b̂ STσ  

210simE ×  1.21 1.27 1.25 1.26 1.28 1.27 1.30 1.26 
1/2 210simV ×  2.74 1.65 1.43 1.30 1.06 0.93 0.90 0.88 

, 2ŵ STρ  
210simE ×  4.65 4.71 4.70 4.71 4.70 4.64 4.70 4.60 

1/2 210simV ×  2.88 1.95 1.77 1.71 1.70 1.76 1.97 2.22 
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Table B.14.  Simulation means, simE , and standard errors, 1/2
simV , of 2

, 1 , 1ˆ ˆ, , ,st b ST w STy σ ρ  2
, 2 , 2ˆ ˆ and b ST w STσ ρ  

from 5,000 repeated stratified simple random samples assuming Gamma(0.5,1)kµ ∼ . Sample size n = 

2,400, nh = 300, h = 1,…8, 2 2/b εσ σ = 1, and wρ = 0.02. ( 2
bσ =0.010237223) 

I = 

mh = 

150  

2 

75 

4 

 60  

5 

 50  

6 

 30  

 10 

20  

 15 

15  

20 

10  

30 

sty  
210simE ×  49.63 49.67 49.64 49.66 49.65 49.65 49.66 49.63 

1/2 210simV ×  1.50 1.68 1.78 1.86 2.18 2.59 2.86 3.44 
2
, 1b̂ STσ  

210simE ×  1.01 1.02 1.02 1.03 1.02 1.01 1.03 1.01 
1/2 210simV ×  0.42 0.36 0.36 0.36 0.39 0.42 0.49 0.55 

, 1ŵ STρ  
210simE ×  1.99 2.00 2.00 2.01 2.00 1.97 2.01 1.97 

1/2 210simV ×  0.83 0.71 0.70 0.71 0.76 0.82 0.94 1.05 
2
, 2b̂ STσ  

210simE ×  0.98 1.03 1.00 1.02 1.04 1.03 1.05 1.02 
1/2 210simV ×  2.52 1.50 1.30 1.17 0.94 0.82 0.79 0.75 

, 2ŵ STρ  
210simE ×  16.27 16.30 16.25 16.26 16.15 15.95 15.96 15.60 

1/2 210simV ×  2.90 2.45 2.46 2.55 2.99 3.49 4.07 4.80 

 

 

Table B.15.  Simulation means, simE , and standard errors, 1/2
simV , of 2

, 1 , 1ˆ ˆ, , ,st b ST w STy σ ρ  2
, 2 , 2ˆ ˆ and b ST w STσ ρ  

from 5,000 repeated stratified simple random samples assuming Gamma(0.5,1)kµ ∼ . Sample size n = 

2,400, nh = 300, h = 1,…8, 2 2/b εσ σ = 10, and wρ = 0.02. ( 2
bσ =0.010048807) 

I = 

mh = 

150  

2 

75 

4 

 60  

5 

 50  

6 

 30  

 10 

20  

 15 

15  

20 

10  

30 

sty  
210simE ×  49.63 49.67 49.64 49.67 49.65 49.65 49.67 49.63 

1/2 210simV ×  1.48 1.66 1.76 1.83 2.16 2.56 2.83 3.41 
2
, 1b̂ STσ  

210simE ×  0.99 1.01 1.01 1.01 1.00 0.99 1.01 0.99 
1/2 210simV ×  0.41 0.36 0.35 0.36 0.38 0.41 0.48 0.54 

, 1ŵ STρ  
210simE ×  1.99 2.01 2.00 2.01 2.00 1.97 2.01 1.97 

1/2 210simV ×  0.83 0.71 0.70 0.71 0.75 0.81 0.93 1.05 
2
, 2b̂ STσ  

210simE ×  0.96 1.01 0.98 1.00 1.02 1.01 1.03 1.00 
1/2 210simV ×  2.50 1.49 1.28 1.16 0.93 0.81 0.78 0.74 

, 2ŵ STρ  
210simE ×  25.08 25.10 25.06 25.04 24.94 24.71 24.67 24.25 

1/2 210simV ×  2.69 2.14 2.14 2.22 2.58 3.05 3.58 4.33 
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Table B.16.  Simulation means, simE , and standard errors, 1/2
simV , of 2

, 1 , 1ˆ ˆ, , ,st b ST w STy σ ρ  2
, 2 , 2ˆ ˆ and b ST w STσ ρ  

from 5,000 repeated stratified simple random samples assuming Gamma(0.5,1)kµ ∼ . Sample size n = 

2,400, nh = 300, h = 1,…8, 2 2/b εσ σ = 0.1, and wρ = 0.04. ( 2
bσ =0.035099049) 

I = 

mh = 

150  

2 

75 

4 

 60  

5 

 50  

6 

 30  

 10 

20  

 15 

15  

20 

10  

30 

sty  
210simE ×  49.62 49.69 49.63 49.68 49.65 49.65 49.68 49.62 

1/2 210simV ×  2.39 2.80 3.01 3.18 3.80 4.58 5.13 6.22 
2
, 1b̂ STσ  

210simE ×  3.49 3.50 3.52 3.53 3.51 3.47 3.53 3.48 
1/2 210simV ×  1.01 0.99 1.00 1.04 1.19 1.32 1.55 1.79 

, 1ŵ STρ  
210simE ×  3.98 3.99 4.00 4.01 4.00 3.94 4.00 3.94 

1/2 210simV ×  1.15 1.10 1.11 1.15 1.31 1.45 1.68 1.94 
2
, 2b̂ STσ  

210simE ×  3.45 3.52 3.51 3.52 3.54 3.51 3.57 3.50 
1/2 210simV ×  3.29 2.09 1.86 1.75 1.62 1.60 1.73 1.91 

, 2ŵ STρ  
210simE ×  5.77 5.82 5.82 5.83 5.81 5.74 5.81 5.70 

1/2 210simV ×  2.90 2.05 1.89 1.85 1.93 2.06 2.33 2.67 

 

 

Table B.17.  Simulation means, simE , and standard errors, 1/2
simV , of 2

, 1 , 1ˆ ˆ, , ,st b ST w STy σ ρ  2
, 2 , 2ˆ ˆ and b ST w STσ ρ  

from 5,000 repeated stratified simple random samples assuming Gamma(0.5,1)kµ ∼ . Sample size n = 

2,400, nh = 300, h = 1,…8, 2 2/b εσ σ = 1, and wρ = 0.04. ( 2
bσ =0.021364638) 

I = 

mh = 

150  

2 

75 

4 

 60  

5 

 50  

6 

 30  

 10 

20  

 15 

15  

20 

10  

30 

sty  
210simE ×  49.63 49.68 49.64 49.68 49.65 49.65 49.68 49.63 

1/2 210simV ×  1.76 2.08 2.25 2.38 2.90 3.51 3.94 4.81 
2
, 1b̂ STσ  

210simE ×  2.12 2.14 2.14 2.15 2.14 2.11 2.15 2.11 
1/2 210simV ×  0.55 0.55 0.57 0.59 0.69 0.78 0.92 1.07 

, 1ŵ STρ  
210simE ×  3.98 4.01 4.01 4.02 4.00 3.94 4.01 3.93 

1/2 210simV ×  1.05 1.02 1.05 1.09 1.25 1.41 1.65 1.91 
2
, 2b̂ STσ  

210simE ×  2.08 2.14 2.12 2.14 2.16 2.13 2.17 2.13 
1/2 210simV ×  2.57 1.57 1.38 1.28 1.12 1.07 1.13 1.20 

, 2ŵ STρ  
210simE ×  19.61 19.65 19.59 19.59 19.46 19.21 19.22 18.78 

1/2 210simV ×  2.95 2.68 2.75 2.88 3.47 4.08 4.79 5.66 
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Table B.18.  Simulation means, simE , and standard errors, 1/2

simV , of 2
, 1 , 1ˆ ˆ, , ,st b ST w STy σ ρ  2

, 2 , 2ˆ ˆ and b ST w STσ ρ  

from 5,000 repeated stratified simple random samples assuming Gamma(0.5,1)kµ ∼ . Sample size n = 

2,400, nh = 300, h = 1,…8, 2 2/b εσ σ = 10, and wρ = 0.04. ( 2
bσ =0.020560112) 

I = 

mh = 

150  

2 

75 

4 

 60  

5 

 50  

6 

 30  

 10 

20  

 15 

15  

20 

10  

30 

sty  
210simE ×  49.63 49.68 49.64 49.68 49.65 49.65 49.68 49.63 

1/2 210simV ×  1.72 2.03 2.20 2.33 2.83 3.44 3.86 4.71 
2
, 1b̂ STσ  

210simE ×  2.04 2.06 2.06 2.06 2.06 2.03 2.07 2.03 
1/2 210simV ×  0.52 0.53 0.54 0.57 0.66 0.75 0.89 1.02 

, 1ŵ STρ  
210simE ×  3.98 4.01 4.01 4.02 4.00 3.94 4.01 3.93 

1/2 210simV ×  1.05 1.02 1.04 1.08 1.25 1.41 1.65 1.90 
2
, 2b̂ STσ  

210simE ×  2.00 2.06 2.03 2.05 2.07 2.05 2.09 2.04 
1/2 210simV ×  2.54 1.54 1.36 1.25 1.09 1.04 1.10 1.16 

, 2ŵ STρ  
210simE ×  30.48 30.49 30.45 30.43 30.30 30.03 29.98 29.49 

1/2 210simV ×  2.66 2.26 2.31 2.41 2.89 3.45 4.08 4.96 

 
 

 

 


