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Abstract

This is the second paper dealing with a simple measurement error model for continuous
data collected by interviewers. The model makes a clear distinction between three different
sources of randomness, namely, sample selection, interviewer assignment, and interviewing.
The concept of interviewer variance is defined in the context of this measurement error
model, and the problem of estimating the interviewer variance is considered, assuming
stratified simple random sampling. Two different methods to estimate interviewer effects

are formulated and compared through a simulation study.
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1. Introduction

Sample survey data is usually more or less affected by measurement errors. This means
that each selected element is affected during the data collection stage (by an error) and the
recorded values on the study variables differ from the true values. We will in this paper
focus on how to study interviewer errors in surveys of individuals or households. The data
is collected via telephone, which makes it possible to assign the sampled elements

completely at random to the interviewers.

To be able to discuss the statistical aspects of measurement errors, we need a statistical
model describing how measurement errors arise. We will use the model described in Biemer
and Trewin (1997). Historically the chosen measurement error model is based on the
analysis-of-variance (ANOVA) type of model used by Kish (1962) and further developed
by Hartley and Rao (1978) and others. The terminology will closely follow Wolter (1985),
and Sérndal, Swensson and Wretman (1992).

In Lundquist and Wretman (2002) interviewer effects are studied for simple random
sampling. The present paper expands the theory to be valid for stratified simple random
sampling as well. As in Lundquist and Wretman we make the simplifying assumptions that

there is no nonresponse.

The main purpose of this paper is to introduce new estimators of the interviewer effect. In
Section 2, the measurement error model is specified, and the concept of interviewer
variance is introduced. Basic assumptions about the interviewer assignment are also made.
In Section 3, we look at the problem of estimating a population mean under the assumed
measurement error model. In Section 4, we discuss how to estimate the variance of an
estimator of the population mean. In Section 5, we suggest two methods to estimate the
interviewer variance and the intra-interviewer correlation. In Section 6, the estimators are
examined in a simulation study. (The simulation results are given in the Appendices.) A

short discussion based on the simulation results is given in Section 7.



2. Sampling design, interviewer assignment, and

measurement error model

In this section we will describe how a sample of elements is selected from the population,
how the sampled elements are assigned to interviewers, and how measurement errors arise.
Some necessary notation for the stratified sampling is to be introduced. The finite
population U consisting of N elements is now partitioned into H nonoverlapping

subpopulations, called strata where subpopulation U, has N, elements for h = 1,...,H and

H
the number of elements in the finite population is N = ZN , - Let g, be the unknown

h=1

true value for element k, with respect to the actual study variable. The purpose of the

survey is to estimate the true population mean

_ 1 &
Hy = FE : E :keU” Hog
h=1

Let s be a sample (that is, a subset of U ) consisting of n elements, drawn from U by
stratified simple random sampling without replacement. This means that we within every
U, (for h = 1,...,H) select a simple random sample, s,, of the size n,. (Thus, we have that

s=s5U...Us, U...Us, and n = Znh .) Ideally, we would like to observe the true value
h

4, for each element k € s, but what we will really observe is a value y, affected by

measurement error, that is,
Y, = M + d, = true value + measurement error

The problem now is to estimate i, using observed data y, for k € s.

We will in this paper give a brief description of the interviewer allocation and the model
specification. A more complete description of the definitions is given in Lundquist and

Wretman (2002).

We assume, as in Lundquist and Wretman, that there is a set of I interviewers available
for the survey. Sampled elements are assigned to these interviewers in the following way:

Each interviewer is given a randomly chosen subset of elements from the sample s, under



the restriction that the subsets should be non-overlapping and of equal size. This
technique, the random division of the initial sample into I subsamples, is called
interpenetrated subsampling and for each interviewer it will be possible (at least
theoretically) to produce population estimates. In this paper this interviewer allocation is
generalized in a symmetric way to stratified sampling. The following notation will be used.
Let the interviewers be labeled i = 1, 2, ..., I. Let the sample s, (for h = 1,...,H) be
partitioned at random into I nonoverlapping groups of equal size m, = n,/I. (We assume
that m, is an integer for h = 1,...,H.) These groups are denoted s, ..., Sy, .-, S NOw,
the rule is that interviewer ¢ is to make all the interviews in group

s, =s,U...Us, U...Usy,, t=1,2, ..., I. In particular this means that all interviewers are

assigned elements from every stratum.

The measurement error model, denoted M, is specified conditionally on a given sample s
and given interviewer assignments s, S,, ..., s, Following Biemer and Trewin (1997) we
assume that the measurement error is the sum of two components, b, an “interviewer
error” due to the interviewer, and ¢, a “response error” which depends on the respondent
(and possibly other remaining sources of error). Thus, the measurement error model says
that when element k € s; is interviewed by interviewer i, the observed value y, can be

written as

Yp = My + b+ g

In the present set-up, the survey is thus viewed as a three-stage process, where randomness

is involved in each stage:

Stage 1: A sample s is drawn from the population U.
Stage 2: The sample s is partitioned into subsamples s, s,, ..., s

Stage 3: Observed values y, are obtained for ke s, 1=1,2, ..., L

The randomness in the first stage comes from the sampling design, denoted p, which in the
actual case means a stratified simple random sampling without replacement of n, elements
from U, (h = 1,...,H). The randomness in the second stage comes from the random division
of the sample into subsets assigned to the interviewers. The randomness in the third stage
comes from the measurement process described by the measurement error model M.
Sometimes it will be found convenient to consider the first two stages jointly as

constituting one stage, which will then be denoted p*.



In what follows, estimators will usually be judged by their bias and variance with respect
to the joint distribution induced by the three stages above, which will be called the p* M-
distribution. It will sometimes be found convenient to express expected values and
variances using conditional probabilities in the following way:

Eol.)=EJEW .| s 8, ..., 3)]

p

and
Varyo (. ) = Ex[Vary( .| s s, ..., s)] + Vary[Ey( .| s 8, ..., 5))]

where E.,(.) denotes expectation with respect to the stochastic mechanisms in stage 1,
2, and 3 simultaneously, E,. (. ) denotes expectation with respect to stage 1 and 2 only,
and Ey,(.] s s, ..., s) denotes conditional expectation with respect to stage 3, given the
outcome of stage 1 and 2. Analogous principles of notation hold for the variances. Note,
this set-up implies that the order of E . and E,, are not interchangeable. In the rest of
this paper we will, for the sake of simplicity, write E,( . ) instead of the longer and more

exact expression Ey( . | s; s, ..., s). Thus, in what follows,

EM( . ) = EM( . ’ 8y Sy veey 51)

The assumptions of the measurement error model can now be expressed formally. Notice
that the model is not affected by the sample design, i.e. the interviewer and response errors

are not affected by the stratification.

Model assumptions:

For a given sample s and given subsamples s,, s,, ..., s,

Y. =+ b, + & for kes, i=1,..,1
E(b) =B, and Vary(b) = o, for i=1,...,1

E\(g) = B: and Vary(g) = o’

€

for kes, i=1,..,1

by, by, ..., by, & (k€ s) are independent random variables




The following result follows immediately from the model assumptions.

Result 2.1: Under Model M, it holds that

E(y) = m + B, + B; forkes, 1=1,...,1

Var,(y,) = o; + 0o’ forkes, i=1,..,1
o} for k=1 kes, les, 1=1,...,1
Cov ) =
W) =10 o ke kes, les, i=1..0 j=1..,I i=j

Thus, conditionally on the sample s and on the interviewer assignments s, s,, ..., s,

observed values for different elements obtained by different interviewers are uncorrelated,

while values for different elements obtained by the same interviewer are correlated.




3. Estimating the population mean

Based on the p*M-distribution, specified in Section 2, it is possible to estimate the

population mean, i, . We will in the following use abbreviated notation in our expressions:

H
Z is the short form for the summation over the h strata Z , Z is used for the

h h=1 i

1
summation over the interviewers Z and finally ZA stands for ZkeA where A C U is

i=1

any subset of U.

If, hypothetically, we had sample data, g, for k € s, without measurement errors, the true
population mean would, under stratified simple random sampling and in the absence of

auxiliary information, usually be estimated by
ll_’Lst = Zm/hl_’tsh
h
o _ 1
where W, = N, /N denotes the relative size of stratum U, and g, = —Z p, for
g nh Sh
h=1, ..., H

The estimator that we are going to consider is the stratified sample mean based on data

with measurement errors

ysz‘, = Zmzysh (3]‘)

h

1
where y, = n—z% y, for h=1, ..., H.
\ :

We will now find expressions for the expected value and the variance of the estimator (3.1)
with respect to the p* M-distribution. Notice that the interviewer allocations give us the

possibility to use the following relations

_ _ 1 _ 1 _ 1 _
Yg = ZVVhysh = ZVVh TZZU% = TZZW;JJSM = TZ Y i (3.2)
h h i i h i



The main result on expectation is the following:

Result 3.1: Under the p*M-distribution, the expectation of the stratified sample mean

estimator y,, is

EP*M <gs1‘) = EU + Bb + BE (33)

Thus, the bias of the estimator is

Result 3.1 can be obtained by using conditional probabilities

_ 1
B <i‘/st) =B\ Ey ZWh TTZZS,,,; Y
h hood
; ZW Z (1, + B, +B)]

:Ep* (/“Lst +Bb +B€>
:ﬁU + B

I
S5

because, i, is unbiased for the true population mean i, . In the derivations above we

utilize that E .(1,) = E,(j,) which can be easily justified.

In the following, we will sometimes use the shorter notation B = B, 4+ B_ for the bias.

The main result on the variance of y,, is

Result 3.2: Under the p*M-distribution, the variance of the stratified sample mean

estimator y,, is

2

S
Var,.,, (7,) = —+ZWQU—+ZW2[ ] o (3.5)
h

ny,

where

SiU,,, = Nhl— 1 ZU,L (/“ka ~ Hy, >2




Proof.
To obtain Result 3.2 we first note that the variance of the estimator ¥y, is seen as a
combination of the variation from the measurement error model and the sampling design

including the interviewer assignment. The variance can be written as follows

Var,., (7,) = Ep* [VarM (7., )] + Var [ (7, )] V, +V,

Vi v,

and we consider the measurement variance V, and the sampling variance V, separately.

For V, we have

_ 1 1

Var, (%t) = Vary, [Zm H_ZZ% yk] = ZVG’TM [ZVVh n—z% yk]
7 h i i T h

— Z{Z W} — — Vary, [Zﬁ yk} + Z Z ——Cov,y,

hy=h, h " hz

Do VoD, k}}
_Z{ZW21(mhab+mh )+§;¢;W,11th " mhﬁf}

=Z(
—U—:+ZW“’—f
T h hnh

2
m 2 2 My, o
D W Tk oy + Y W Lo
h n, h n

h

where we have used the model property, independence between interviewers, and that

n, =1-m, and ZhWh = 1. It now follows that, noticing that this expression is constant

when taking the expectation over p *, the measurement variance is

2 2

gy Z 2 0,

- — —|— M/ —_£&
I —~ "

h

The sampling variance component, V,, is given by first finding the conditional M-

expectation. From Result 3.1 we have that

E, yst ZW Zsh w + B, +B. =p, +B
ny,



and because the sampling design is stratified simple random sampling ( 1z, is unaffected by

the interviewer allocation) it follows that

SQ
V, = Var, (i) = ) W, [1__nh]_w,,,
2 p( t) : h Nh n,

Combining the measurement variance and the sampling variance gives the result

Varp*M (gjst) =V, +7 O

Under the actual measurement error model, the sampling variance, V,, of ¥, is equal to
the variance of an estimator based on fi,. The sampling variance is zero under complete
enumeration. When there is no measurement variability, then V, =0 (o; =0 and o’ =0)

and V, is the only contribution to the variance.

10



4. Estimating the variance of 7,

Two estimators of Var., (¥, ), given in Result 3.2, will be considered. The first is the

traditional design based estimator (see for example Siarndal, Swensson and Wretman 1992,

p. 103)
5 2 ny SyQS
Vy =D Wi 1— | = (4.1)

where

1
S = =7 )
ysy, nh . 1 Zsh (yk y(s,, )
Recall that Vst would be the appropriate choice if there were no measurement errors. The
second estimator is based on the means of the subsamples assigned to the different

Interviewers

S 1 _ N\
Vy = mzj:(%m - ysz‘,) (4.2)

where 7, could be obtained from equation (3.2). This estimator is called the random
group estimator in Wolter (1985) and will only be approximately unbiased when there are
no measurement errors. It will be shown that both these two estimators are biased with
respect to the p*M-distribution. For simple random sampling, Lundquist and

Wretman (2002) found that the traditional design based estimator has a negative bias and
the estimator based on the means of the subsamples has a positive bias. In the main
results given below it is shown that this will be the case also under stratified simple

random sampling.

Result 4.1: Under the p*M-distribution, the expectation of the variance estimator V., is

E W):ZWQ(l—ﬂ)—I_l 02+U—3+%
p*M st - h Nh I(nh _1) b nh nh
= N(nh—l)—(Nh—nh)([—l) 2 2‘72
:V * - W _ W £
ary«n (ysz‘) zh: h NI (”h — 1) o, zh: h N,

11




The bias is zero when we do not have any measurement errors, but when measurement
errors are present we will have a negative bias. The negative bias results in

underestimation of the true variance.

~

Result 4.2: Under the p*M-distribution, the expectation of the variance estimator V, is

2

o 5 _ 5
By (Vi) = T+ DOWE 2o DW=V (7,) + 2O W0

The estimator based on the means of the subsamples, VB, has a positive bias that would
remain even in a situation without measurement errors. The bias is introduced by the
interviewer assignments, because the subsamples s; (¢ = 1, ..., I) are dependent. However,

the bias is small in most situations when N, is large.

Proof of Result 4.1.
First note that the p*M-expectation of V, could be written

5 nl 1
*M(V) ZW2 N} mEpw

>, -7,

Using the Auxiliary Result in the paper by Lundquist and Wretman (2002) for the

subsamples s,, we get

1

1 _ m, (I —1 1 _
1) By [Zsh (v, — 7, )2] = h’(—_l)af +ol + n Z (1 — 1, )

(m, — n
The p*M-expectation of Vst is then given by

I-1
m,( )Uf
n, — n, —1

1
b Sw -2

U

= Z:W,f(l—&)i m( 1) o, + o’ + E,.
A N,y | ony =1

12




Proof of Result 4.2.
Starting with the model expectation we have from Result 3.1 and 3.2 that

2

E, (?75%) = Vary, <gst) + [EM (?75t )]

2 2

o 9 T
=L 4> W=
I ; n,

+(/“_Lst +B>2

and by simple algebra

_ _ R
EM(yth,i) = Vary, (yst,i) + [EM(yst,i)]
o 3 ) (4.4)
=0, + ) Wi —=+(n,, + B)

i my,

Using (4.3) and (4.4) in the M-expectation of the sums of squares between subsamples we

have

E, yfm ystl ZEM yst7 —1I- EM(ysz‘)

Z(ystz _ystf} = EM[ :
= Z o} +ZVVhQ i
i h my,

= ([ =Do; + (I =1 W

2
v (7. +B>ﬂ—f % L + |

2
Ua

— +[Z(ﬁm+B)2—I(,75t+B)Z] (4.5)

<o

h
2
E

= —Do; + (I -1)> Wy

To find the p*-expectations of equation (4.5) (i.e. of &}, and [ ) we use the findings in
Result 3.1 and 3.2 again (with simple algebra for 1)

_ _ S o,
Ep*(/’l/szz‘) = VCLTP* (/’Lst) [ lust ] ZW N MU]I + /’Lé (46)
h nh
and
—2 — — P m, S ZUI —2
Ep*(/’bsz‘,,i) = Va’rp* (lusz‘z) + [Ep* (/’Lst,i)] = ZVVh(l - N_)m_l + Ky (47)
h h h

Using (4.6) and (4.7) the p*M-expectation of V, is given by

13



2 2 S2

g Z 2 0 Z 2 P,

—_ b + m e + m HUy
I h y, h y,

In survey sampling a variance estimator with a small positive bias is usually preferred to
one with a negative bias. The conclusion is that we prefer the variance estimator (4.2) to
(4.1). Notice that the variance estimator V, only is an alternative when the initial sample

is divided into nonoverlapping subsamples.

However, the primary reason to use the interviewer allocation is that we believe that there
is an interviewer effect present in the measured variable y,. This setup, the three-stage
process, will make it possible to estimate a potential interviewer influence. We will in the

following sections focus on the estimation of the interviewer effect.

14



5. Estimating the interviewer variance and intra-interviewer

correlation

To estimate the interviewer variance, o; , the estimator of the sum of squares within
subsamples, VW, suggested for simple random sampling in Lundquist and Wretman (2002)
has to be changed to match the stratified simple random sampling design and the
accompanied interviewer allocation. We will in this section give two methods to estimate
the interviewer variance. Both methods use findings from the earlier paper. The first
method imitates the procedure in the earlier paper, but with necessary changes for the p*-
distribution in the sums of squares. The second estimator of the interviewer variance is
given as the unweighted mean of H interviewer variances, where for each subpopulation U,
(h =1, ..., H) an interviewer variance estimator is produced similar to the estimator given

in the earlier paper.

Another measure of interviewer influence is the intra-interviewer correlation, which is

defined as

O’2 0’2
Iow = ” = Qb (5]‘)

2 2 2
Ub + Ue + SyU O-z‘,oz‘,

This correlation can be interpreted as the correlation of the measurement made on two
elements that are drawn at random from the population and then interviewed by the same
interviewer. For each method of estimating o} , an approximate estimator of the intra-
interviewer correlation, p, , is given. However, it will be seen that the estimator of p,

associated with the first method is to be preferred.

Method 1
An estimator of the interviewer variance o, is

A~

&Iisn =1- VB - va (5-2)

where

15



= —ZZWf 72 (v -7,) (5.3)

mh (mh —1

and V, is given in equation (4.2).

The expectation of the variance estimator &; g, is given in the following result.

Result 5.1: Under the p*M-distribution, the expectation of the interviewer variance

. ~2 .
estimator o, ¢,y 18

a2 9
Ep*M <Ub,ST1> = 0,

Proof of Result 5.1.
To prove that &4, is unbiased we have to find the p* M-expectation of the two

components of the right hand side in equation (5.2). From Result 4.2 we have that

WUy,

h

2 2 2 2
Ep*M (['VB) =1 U_b‘}'szﬁ‘*'sz SHU}] = ‘71? +ZVI/IL2 ;:
h h )

I h h h

h

and to prove that d; s, is unbiased it is sufficient to show that

~

Ep*M(VVIg}):Ep*M (IVB)_ *M(UbST1> ZWQ 1 < 52+SZU,L> (54)

Starting with the M-expectation of ZS ( — Y, >2 and using B = B, + B, we have

E, [Z% (yk — Y., )2} =Ey [ZSM Y — mhysi}

=m, (‘7b2 +‘7§> + Zs},f, (b + B>2 —my,

2
gy

(’E% + B>2

, — 1) +Z uf —my i

O' +Z <’uk ’usm)

Thus,

16




EP*M [Zsm <yk - g‘gm )2} = Ep* EM (Zsm (yk - ys,,,; )2 )}

1 _
Z (1, — K, )2

Sli
m, — 1

Since each stratified subsample s,, is a simple random sample from the population of N,

1

elements, the p*-expectation for the sum of squares within subsamples is given by

1 _
Ep* Z ) (luk - /’Ls,” )2

5”
m, — 1

Q2
- SIIU/,,

Using the derivations above, we have that

E.. (va) _ %ZZVV}? ﬁEl]*M [ZSM <yk — Y, )2}
X e gyl 0+ )
=W (o 450

which proves Result 5.1

A~

B (Gt = B (1-03) B ) =

We now turn to the intra-interviewer correlation in equation (5.1). The correlation p, is
the ratio between two variance expressions. The nominator is the interviewer variance that
is estimated by ;¢ in equation (5.2) and we have to find an estimator of the

denominator o.,. We will in the following show that it is possible by a linear combination

tot *

of equation (4.2) and (5.3) to find an approximately p* M-unbiased estimator
&fot,st = OA-I?,STI + I}BJr + VV; (55)

where

Vi=S"w,(7, ~7.)
h

17



and

(yk - ys,,,,; )2

Shi

e 1 w,-w?| 1

nh mh - ]‘

The intra-interviewer correlation estimator to be considered (for large populations, N,
subpopulations, N,, and when the sampling fraction n, /N, = 0 in all strata) is the ratio

estimator

A2
A~ 0 N
Pusti = =5 (5.6)

~2
tot,st

2

The approximate p* M-unbiasedness of the estimator &,,,,

is stated in the following result.

Result 5.2: With respect to the p*M-distribution
Ep*M (6-1520t,st> = O-I? + U? + SjU = 0-15201‘,

for large populations, N, subpopulations, N,, and when the sampling

fraction n, /N, =0 in all strata.

Proof of Result 5.2.
We first notice that

Ep*M(OA-z‘,Zm‘,,st) = Ep*M (OA-I?‘,STl + VB+ + Vut) = 01? + Ep*M (VB+ + Vut)
and what we actually have to prove is that
E (Vi +Vy) =0+ 5% (5.7)

To prove equation (5.7) (i.e. Result 5.2) we use the population sum of squares, which can

be expressed in different ways

ZU(M« a EU)Q = ;ZU,, <,Uk o /_LU,Z )2 + ZNh </_LU,L o EU)Q

h

=N, (=) + W (7, - )
) h !

18




For large populations U and subpopulations U,, using that 1/ N =1/(N —1) and
1/N, =1/(N, —1) we approximate the second term by

ZVVh <I_LU,L - ﬁU)Z = SiU - ZMS;?U,I (5‘8)
h h

It is now possible to find an approximation of the expectation in (5.7). We inspect 17;

under the p*M-distribution, and we have by Result 3.1 and 3.2 that

By (Vi) = Ep

ZVV;L (ysh - yst )ﬂ = Ep*M [Z V[/hyjl - yftl
h h

= Z I/I/;L [Varp*M (ysh) + Ep*M (ysh )2] - [Varp*M (yst) + Ep*M (yst )2]
h

o’ o’ n SQU — 2
:ZVVh b 42y 1__’1A_|_[MUH+B]
7 I n, n) T '
2
g, s 1| T, | @2 — 2
_ 2 w2 — 1——=21§ B
[I+zh: hnh o N, o +[#U+ ]l
1 _ _
D R (R eSS
h nh Nh h

Using equation (5.8) and assuming that the sample in every stratum, n,, is small compared

to the subpopulation, N,, we could approximate F ., <VB+ ) with

AN 1

By (Vi) = 22 (Wh = W) — (02 + 83, ) + 8 = 2 WS, (5.9)
h h h

The first sum in equation (5.9) bears a resemblance to the p*M-expectation of Vu‘i Using

equation (5.4) the p*M-expectation of Vuf is

o (Vi) = Z[Wh W= (02 + 52, (5.10)

n,

1

Result 5.2 now follows from combining (5.9) and (5.10),

n,

. - 1
Ep*M(VB+ + VI/IJ/r) = Z(I/I/h - I/Vl12>n_<0-: + S/QLUh)_{— S/QLU - ZVVILSZUh + Z[
h h

h h

](U? + SEU,, >

L
2

= 0-3 + S/LU
]

19



Method 2

To find an estimator of the interviewer variance, o, , we notice that the stratified simple
random sampling design makes it possible for us to use the result in Lundquist and

Wretman (2002) on each subpopulation U,. We then have

.
6, =1|Vy, —%] for h = 1,...,H. (5.11)
h

where VB,h and VW,h are estimators defined for the subpopulations U,. As in the earlier

paper we have for each stratum h (h = 1,...,H.)

N 1 _ _ N 1 _
Vin = mz (yshi -, )2 and Vigw = WZZS’ (yk — Y, )2

i i

It could be shown using the results in Lundquist and Wretman (2002) that the estimators

expectation with respect to the p*M-distribution for s, are

2 2
) ::Eﬁi_+ 05-+-5>m

By <VB,h and  E.y (VWJL) =0+ SiUh

nh

and we then have that
By (5-I?JL>:U;? for h=1,...,H.

The model assumptions imply that each stratum produces an estimator of the interviewer
variance. An estimator that uses the whole sample would be more stable and one choice is
the mean of the H estimators in formula (5.11). The estimator of o, for Method 2 (which

also is p*M-unbiased) that uses the whole stratified simple random sample is:

oo L i (5.12)

o
0,ST2
) H -

20



Note that this simple way of estimating the interviewer variance is not practicable when
estimating the intra-interviewer correlation. The H strata would produce different
estimators of o>, given by

mh_]‘ 7

6 =1V, + Vi s for h=1,...,H. (5.13)

m,
If we now take the p*M-expectation on (5.13) we would get
Ep*M (6-1‘,201&,/7,) = ‘71? + U: + S;QLU,l

and the intra-interviewer correlation is estimated differently for the different

subpopulations

a2
Oy

low,h = = 2
tot,h

for h=1,...,H. (5.14)

Equation (5.14) will produce the intra-interviewer correlation in the subpopulation U,. The
estimator of p, for Method 2 is also based on averaging over the H different strata (as for

the interviewer variance (5.12)):

A 1 A
IOw,STQ = Ezpw,h (515)
h

This estimator is an average of the intra-interviewer correlation estimators in the different
subpopulations, which is not necessarily equal to the intra-interviewer correlation in the

whole population unless the subpopulation variances SiUh are all equal.
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6. Simulation study

This section describes a simulation study with the purpose to compare the interviewer
estimators for Method 1 and 2 by simulations. Two artificial populations are considered;
one population is symmetric and the other is skew. The skew population is meant to be
more realistic in some situations, such as when dealing with economic data. Each
population consists of eight strata and only one sample size is used, with equal sample size

in all strata.

In Lundquist and Wretman (2002) it was shown, for simple random sampling, that the
accuracy of the estimated interviewer variance and estimated intra-interviewer correlation
varied for a fix sample size when the subsample sizes and number of interviewers varied.
Eight different combinations of m, and I for n, are created to investigate if this also holds

for the stratified simple random sampling.
The simulation study is done in the following way.
o Two artificial finite populations of the size N = 100,000 are created by generating

100,000 independent random numbers, g, :

o Population 1, drawn from a standard normal distribution, N(0,1)

and
o Population 2, drawn from a gamma distribution, Gamma(0.5, 1) with
expectation 0.5 and variance 0.5.
For each population there is an auxiliary variable, z, (k= 1, ..., 100,000), which is used

in the stratification. The auxiliary variables are correlated with the “true values” and
the correlation, r, is fixed to 0.4 in both populations. The correlated auxiliary variable
7, is achieved by using the following relation: Let p, and z be i.i.d. and calculate

z, = ru, +(1—7")""2, . This means that we in Population 1 first generate two
independent variables p, and z, for k=1, ..., 100,000 from the standard normal
distribution and then use the relation to create the auxiliary values z,. In Population 2

the procedure is similar but with two independent variables p, and z, from
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Gamma(0.5, 1). For the artificial population where p, are realized from N(0,1) we

found the following covariance matrix:

2
S u S/wU

0.99284498 0.39680338
S sil

0.39680338 0.99976496

pxU

And for the skew population where p, are realized from Gamma(0.5, 1) we found:

2
S u S/wU

S S?, 0.19853051 0.50150039

pxU

[0.49138668 0.19853051]

To create the stratification the populations are sorted by the auxiliary variables and
divided into eight subpopulations. The following sizes on the subpopulations are
chosen: N, = 5,000, N, = 10,000, N, = 15,000, N, = 20,000, N; = 20,000, N, = 15,000,
N; = 10,000 and Ny = 5,000. (The 5,000 lowest values in the first subpopulation and
the successive 10,000 values in the second subpopulation etc.) Means and variances for
the eight subpolulations are presented in Table A.1 and the distributions for the
different subpopulations are shown in Figure A.1 and Figure A.2 in Appendix A.

From the two finite populations 5,000 samples of the same size, n = 2,400, are
drawn by stratified simple random sampling without replacement. Each sample is
replaced before the next sample is drawn, so that all samples are independent. The

sample size in every stratum is fixed to n, = 300 (h = 1,...,8).

For each sample, the sampled elements are assigned at random to [ fictitious
interviewers, in conformity with assumptions made in Section 2, so that every
interviewer gets the same number, m, = n,/I, of respondents (h = 1,...,8). Eight

different values of I are used (I =150, 75, 60, 50, 30, 20, 15 and 10).

For each sample, with given I, and given interviewer assignments, interviewer effects, b,

(i = 1,..., I) are obtained by generating I independent random numbers from an

N(0,0; ) distribution. Different values of o; were chosen as described below.
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e For each sample, response errors, ¢, (k € s), are obtained by generating n independent
random numbers from an N(0, o) distribution. Different values of o were chosen as

described below.

e The following combinations of values were used for o; and o”:

w, ~N(0,1) 1, ~Gamma(0.5,1)
0, /0 o o
p, =0.01 0.1 0.01115556 0.00552120
1.0 0.01013107 0.00501415
10.0 0.01003888 0.00496852
P, =0.02 0.1 0.02545756 0.01259966
1.0 0.02068427 0.01023722
10.0 0.02030358 0.01004881
p, =0.04 0.1 0.07091750 0.03509905
1.0 0.04316717 0.02136464
10.0 0.04154163 0.02056011

These combinations of values were chosen in order to illustrate various relations
between the two variances involved, while at the same time, together with the actual

9 .. . . . .
values of S, giving a constant intra-interviewer correlation of p, .

e Finally, for each sample s we obtain values y, (= g + b, + &) for all k € s. Using these
values, we then calculate, for each sample, 7, (3.1), 6,57y (5.2), posr1 (5.6),

OA_Z?,STQ (5.12) and p, 47, (5.15).

The measures considered are the expected values and the standard errors. To obtain them
we use the following approximate results from the simulations. Let ¢, denote some sample
quantity calculated from observed data in a sample s, and let t; be the realized value of ¢,
for the jth simulation sample (j=1, ..., 5,000). (For example, if ¢, is the stratified sample
mean ¥, , then ¢, =7, . is the observed mean in the jth simulation sample.) The

simulation mean

is the simulation estimate of the expected value E ., (t,). We denote this estimated

expectation with F_ . The simulation variance

sim*
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5,000
1 >

- t.—t)
5,000—1;(‘” )

is the simulation estimate of the variance Var,.(t,). We use the square root of this
estimated variance V!/? | i.e. the estimate of the standard error of the estimator t,, to

sim )

compare the accuracy of the methods for the eight different combinations of m, and I.

Let us first look at the simulation results for the sample mean of the true values,

H

lEst = mehﬂsh

h=1

We already know from elementary sampling theory that (because the sampling design is

stratified simple random sampling without replacement):

0.00430063 Population 1

E (i) =1y =
o (Fy) = Iy {0_49647738 Population 2

2

ar ) = S 25

12 10.02028429 Population 1
Nh n a

0.01216316 Population 2

1

Since the true values are fixed constants, the measurement error model is not considered

here.

The results of the simulation study are given in Table 6.1 below. The simulation estimates
are seen to be rather close to the exact values of the quantities that they are supposed to

approximate.

Table 6.1. Results from the simulation study on sample mean of the true values.

5,000 repeated samples.

. ~N(0,1) H, ~ Gamma(0.5,1)

E () Exact value 0.00430063 0.49647738
Simulation estimate 0.00410500 0.49636391

1/2
[Var (,Ust)] Exact value 0.02028429 0.01216316
Simulation estimate 0.01993082 0.01206599
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Simulation mean and simulation standard error for each of ¥, G;gr\, Pysris Orsr and
Pu.sro are given in Tables B.1 — B.18 in Appendix B, for the two populations; for various
values of I (and m, =n,/I); for p, = 0.01, 0.02 and 0.04 and for o; /o?= 0.1, 1, and 10.

Some comments on these simulation results follow here.

e We note that the simulated standard error of ¥, increases as the number of
interviewers, I, decreases (that is when the subsample, m,, increases). This is what

is to be expected from equation (3.5).

o It seems that &, 4, is more efficient than &; ., in this study. It is always possible to
find a combination (of I and m,) for 6; ¢, with a lower standard error. The lowest
standard error is not given for the same combination for the two interviewer variance
estimators, d; ¢, always need a larger subsample, m, than d; ¢, . This is true for the

chosen populations and the studied values of the intra-interviewer combinations.

. . . . 2 . 2 .

e The relation between the interviewer variance o, and the response error variance o- is
not of great importance in this simulation example. If the interviewer variance is a
tenth of, equal to, or ten times the elementary error variance does not affect the results

very much.

o If the population is skew or symmetric does not affect the results of &;,, as much
as G, gy, - There are small differences for 6}, and the combination (of I and m,) with
the lowest standard error in the skew population is also among the ones with the lowest
standard error for the symmetric population. There is a minor indication that we need
a larger subsample size, m,. For &, ., we always need a larger subsample size for the

skew population for p, = 0.02 and 0.04.

J Different values of p, produce different minima of the standard error of the
interviewer variance estimators. We note that a smaller subsample size, m,, is needed

when the intra-interviewer correlation is large.

J The findings for p, ¢;, in the simulation study are similar to what we found

A2
for Ty 911 -

o P,sro 1s not recommended as an estimator of the intra-interviewer

correlation in these situations.
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7. Discussion

This is the second paper where we have used the theoretical framework for interviewer
variance studies for continuous data. We have extended the theory to be practicable for
stratified simple random sampling. The basic concepts under the stratified sample design
have made it possible to create interviewer effect estimators. Two different interviewer
variance estimators have been investigated under the simple measurement error model.
The first 6; ¢y, is to be preferred to &;4,, according to the simulation study. Our
judgment is based on that &;,, always has a lower standard error than &;,;, for all
combinations of I and m. The estimator is also rather stable in that sense that the
minimum values for the combinations of number of interviewers and sizes of the subsample
is not affected when the underlying population departs from a symmetric distribution.
There may however exist situations where af’sn works well. The results are based on one
stratified sample design from two artificial populations. In a real experiment the number of

strata will be different and maybe also the sample design within strata.

The simulations also indicated that it is possible to use p, ¢, as an estimator of the intra-
interviewer correlation p, . Some care is needed in a real situation when estimating the
intra-interviewer correlation. However, the approximations (for large populations, N, and
subpopulations, N,, and when the sampling fraction n, /N, = 0 in all strata) used for the

denominator &;,, work well in this situation where for example n,/N, = 300/5,000.

tot st
We use the simple measurement error model y, = g, + b, + &, for all k € s. If on the other
hand we would have additional information, about the interviewer effects or the response
errors, another model could be preferred. The basic idea is that a survey is going to take
place, and we have some doubts about some of the questions in the survey, but no extra
information about the error structure. To investigate if there are interviewer effects we

then use a simple model.
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Appendix A

Table A.1 The populations and eight subpopulations sorted

according to the auxiliary variables.

p, from N(0,1)

w, from Gamma(0.5,1)

N = 100,000 fi; = 0.00430063 fi; = 0.49647738
Shy = 0.99284498 iy = 0.49138668
N, = 5,000 iy, =-0.82670502 fiy, = 0.01903444
o, = 0.84202525 o, = 0.00037749
N, = 10,000 i, =-0.49948376 fiy, = 0.07834953
S, = 0.83327089 Sy, = 0.00417544
N, = 15,000 fi;, =-0.30194349 fi;, = 0.18513546
S, = 0.83144030 S, = 0.02168764
N, = 20,000 fi;, =-0.09757170 iy, = 0.35293309
%, = 0.83593094 Sk, = 0.08363140
N, = 20,000 fiy, = 0.10855032 fiy, = 0.57214530
o = 0.84132404 o = 0.25642728
N, = 15,000 fiy, = 0.30432987 fiy, = 0.81992360
Sk, = 0.84728370 i, = 0.62592751
N, = 10,000 fi;, = 0.52208466 fi;, = 0.99418949
Sk, = 0.84543291 Sy = 1.2517950
N, = 5,000 fi;,, = 0.81683091 fi, = 1.0499443
S, = 0.88246143 Sh. = 19237204

HUs

1Us
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Figure A.1 Subpopulations, A = 1,...,8, for the first finite population N(0,1)
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Figure A.2 Subpopulations, h = 1,...,8, for the second finite population Gamma(0.5,1)
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Appendix B

Table B.1. Simulation means, F

sim 7

1/2 — A2 ~ ~2 ~
and standard errors, V./?, of 7,6 sr1sPusris Orsre and pygp, from

5,000 repeated stratified simple random samples assuming p, ~ N(0,1). Sample size n = 2,400, n, = 300,
h=1,..8, 0f /o?= 0.1, and p,= 0.01. (o} =0.011155562)

=150 75 60 50 30 20 15 10

m, = 2 4 5 6 10 15 20 30
Yy
E, x10° 040 044 041 0.44 042 042 044  0.40
Vi %10 229 242 251 2.62 2.84 320  3.43 3.98
OA-bQ,STl
E, x10° 1.10 1.12 1.12 1.12 1.12 111 1.12 1.12
Vi x10? 1.03 0.79 0.74 0.71 0.69 0.68 0.69 0.74
ﬁm,STl
E, x10° 0.99 1.01 1.00 1.01 .00 0.99 1.00 1.00
Vi x10? 0.93 0.71 0.66 0.64 0.62 0.60 0.61 0.65
OA-bQ,STQ
E, x10° 1.12 1.10 1.10 1.10 1.11 1.08 111 1.11
Vi x10? 2.81 1.67 1.45 1.34 .07 0.94 0.89 0.86
ﬁm,STQ
E, x10° 1.15 1.13 1.13 1.12 1.13 1.11 1.13 1.14
Vi x10? 2.90 1.72 1.50 1.38 1.10 0.97 0.91 0.88

Table B.2. Simulation means, E

sim sim )

1/2 — a2 A A2 ~
and standard errors, V", of ¥,,0, ¢71,0u5r15 0570 a0d P, gp, from

5,000 repeated stratified simple random samples assuming p, ~ N(0,1). Sample size n = 2,400, n, = 300,
h=1,.8, 0. /o’=1,and p,= 0.01. (¢, =0.010131071)

=" 150 75 60 50 30 20 15 10

m, = 2 4 5 6 10 15 20 30
Yy
E, x10° 0.40 0.44 0.41 0.44 0.42 0.42 0.44 0.41
Vi %10 2.17 2.29 2.38 2.47 2.70 3.03 3.26 3.78
OA';:Z,STl
E, x10° 1.00 1.02 1.01 1.02 1.02 1.00 1.02 1.01
Vi x10 0.92 0.70 0.67 0.64 0.62 0.61 0.62 0.67
ﬁm,STl
E, x10° 0.99 1.01 1.00 1.00 1.00 0.99 1.00 1.00
Vi x10? 0.91 0.69 0.66 0.63 0.61 0.60 0.61 0.65
OA-I?,STQ
E, x10° 1.02 1.01 1.00 1.00 .00 0.98 1.00 1.01
Vi x10? 2.53 1.50 1.31 1.21 097 085 0.80 0.78
ﬁw,STZ
E, x10° 1.17 1.16 1.15 1.14 1.15 1.12 1.15 1.15
Vi x10? 2.91 1.73 1.51 1.39 111 0.98 0.91 0.88
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Table B.3. Simulation means, F, , s

1/2 — a2 A ~2 ~
and standard errors, V", of ¥,,0, ¢71,05r15 Opsro a0d P, gp, from

5,000 repeated stratified simple random samples assuming p, ~ N(0,1). Sample size n = 2,400, n, = 300,
h=1,.8, 0. /o= 10, and p,= 0.01. (o; =0.010038877)

=150 75 60 50 30 20 15 10

m, = 2 4 5 6 10 15 20 30
Y
E, x10° 040 044 041 0.44 042 042 044 041
V<10 2.16 2.28 2.37 2.46 2.68 3.02 3.24 3.76
OA';)Z,STI
E, x10° 0.99 1.01 1.00 1.01 1.01 0.99 1.01 1.00
V<10 0.91 0.70 0.66 0.64 0.61 0.60 0.62 0.66
ﬁw‘STl
E, x10° 0.99 1.01 1.00 1.00 1.00  0.99 1.00 1.00
V%10 0.91 0.69 0.66 0.63 0.61 0.60 0.61 0.65
&;STQ
E, x10° 1.01 .00 0.99 0.99 099  0.97 1.00 1.00
Vi x10? 2.51 1.49 1.30 1.20 0.96 0.84 0.79 0.77
ﬁw,sm
E, x10° 1.17 1.16 1.15 1.15 1.15 1.13 1.15 1.15
Vi x10? 2.92 1.73 1.51 1.39 1.12 0.98 0.92 0.88

Table B.4. Simulation means, E , el

and standard errors, V1'%, of U6 sr1sPusris Orsrs and p,gp, from
5,000 repeated stratified simple random samples assuming u, ~ N(0,1). Sample size n = 2,400, n, = 300,

h=1,.8, 0> /o=0.1,and p,=0.02. (o7 =0.025457564)

I'=" 150 75 60 50 30 20 15 10

m, = 2 4 5 6 10 15 20 30
gﬁf,
E, x10° 0.39 0.45 0.40 0.45 0.42 0.42 0.45 0.40
Vi x10? 2.63 2.90 3.07 3.24 3.66 4.6 4.68 5.56
A2
Oy.s11
E, x10° 2.53 2.56 2.55 2.56 2.56 2.53 2.56 2.55
Vi x10? 1.33 111 1.08 1.08 1.14 1.18 1.28 1.43
ﬁw,STl
E, x10° 1.99 2.01 2.00 2.01 2.00 1.98 2.00 1.99
Vi x10? 1.05 0.87 0.84 0.84 0.88 0.91 0.98 1.10
oA'??,ST?
E, x10° 2.54 2.53 2.54 2.53 2.54 2.51 2.55 2.54
V%10 3.27 2.01 1.77 1.67 1.46 1.39 1.42 1.51
ﬁu‘,ST?
E, x10° 2.24 2.23 2.24 2.23 2.24 2.20 2.24 2.23
V<10 2.89 1.78 1.57 1.47 1.27 1.21 1.23 1.30
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Table B.5. Simulation means, E

sim sim )

1/2 — a2 I ~2 ~
and standard errors, V", of ¥,,0, ¢71,05r15 Opsro a0d P, gp, from

5,000 repeated stratified simple random samples assuming p, ~ N(0,1). Sample size n = 2,400, n, = 300,
h=1,.8, 0. /0c’=1,and p,= 0.02. (o, =0.020684270)

I'= 150 75 60 50 30 20 15 10

my, = 2 4 5 6 10 15 20 30
Ua
E, x10° 0.40 0.45 0.41 0.45 0.43 0.42 0.45 0.40
Vi %10 2.34 2.57 2.73 2.88 3.27 3.81 4.19 5.00
OA';)Z,STI
E, x10° 2.05 2.08 2.07 2.08 2.08 2.05 2.08 2.07
V<10 1.05 0.88 0.86 0.86 0.91 0.95 1.03 1.16
ﬁw,STl
E, x10° 1.99 2.01 2.00 2.00 2.00 1.98 2.00 1.99
V%10 1.01 0.84 0.83 0.83 0.87 0.91 0.97 1.09
~2
Oy 572
E, x10° 2.07 2.07 2.06 2.05 2.06 2.03 2.07 2.06
Vi x10? 2.60 1.59 1.42 1.34 117 111 1.14 1.21
ﬁw,STQ
E, x10° 2.32 2.31 2.30 2.30 2.31 2.27 2.30 2.30
V1210 2.92 1.79 1.59 1.50 1.30 1.23 1.25 1.32

sim

Table B.6. Simulation means, E_ , A

and standard errors, V1'%, of U6 sr1sPusris Orsrs and p,gp, from
5,000 repeated stratified simple random samples assuming u, ~ N(0,1). Sample size n = 2,400, n, = 300,

h=1,.8, 0> /o’ =10, and p,= 0.02. (o =0.020303578)

I'="150 75 60 50 30 20 15 10

m, = 2 4 5 6 10 15 20 30
Y
E, x10° 040 046 041 0.45 043 043 045 0.41
Vi x10? 2.32 2.55 2.71 2.85 3.24 3.77 414 4.95
OA-bQ,STl
E, x10° 2.01 2.04 203 2.04 204 201 2.04 203
Vi x10? 1.02 08 08 08 08 094 101 1.13
[)w,STl
E, x10° 1.98 201 2.00 2.00 2.00 1.98 2.00 1.99
Vi x10? 1.01 0.84 0.83 0.83 0.86 0.90 0.97 1.09
63,ST2
E, x10° 2.03 203 202 2.02 2.02 1.99 2.03 2.02
V%10 2.55 1.56 1.39 1.31 1.15 1.09 1.12 1.19
[)w,STQ
E, x10° 233 232 231 2.31 2.31 227 231 2.30
V%10 2.92 1.79 1.60 1.50 1.30 1.23 1.25 1.32

sim
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1/2 — a2 A ~2 ~
and standard errors, V", of ¥,,0, s71,00.5r15 Opsro a0d P, gp, from

sim

Table B.7. Simulation means, E

5,000 repeated stratified simple random samples assuming p, ~ N(0,1). Sample size n = 2,400, n, = 300,
h=1,.8, 0. /o’=0.1,and p,= 0.04. (o; =0.070917499)

=150 75 60 50 30 20 15 10

m, = 2 4 5 6 10 15 20 30
Y
E, x10° 0.38 048 040 047 043 043 047  0.39
V<10 3.51 4.08  4.40 4.69 5.49 6.58 7.35 8.89
OA';)Z,STI
E, x10° 7.05 711 710 713 711 705 712 7.08
V%10 2.26 2.13 2.16 2.23 2.54 2.80 3.16 3.65
ﬁw‘STl
E, x10° 3.98 400 400  4.01 400 396 399  3.96
Vi x10? 1.27 1.17 1.18 1.21 1.37 1.51 1.70 1.95
OA';)Z,STQ
E, x10° 707 708 710 708 709 703 712 7.07
V<10 4.73 3.18 2.89 2.81 2.80 2.94 3.24 3.70
ﬁw,STQ
E, x10° 432 432 434 432 432 428 432 4.28
V%10 2.89 1.93 1.74 1.69 1.66 1.73 1.89 2.13

sim

Table B.8. Simulation means, F

sim 7

1/2 — A2 ~ ~2 ~
and standard errors, V./?, of ¥,,6; s Pusris Orsrs and pygp, from

5,000 repeated stratified simple random samples assuming , ~ N(0,1). Sample size n = 2,400, n, = 300,
h=1,.8, 0. /0c’=1,and p,= 0.04. (o, =0.043167173)

I="150 75 60 50 30 20 15 10

m, = 2 4 5 6 10 15 20 30
Yy
E, x10° 0.40 047 041 0.47 0.43 0.43 0.47  0.40
Vi x10? 2.67 3.11 3.37 3.60 4.25 5.09 5.69 6.91
OA-bQ,STl
E, x10° 429 434 4.32 4.33 433 4.29 434 431
Vi x10? 1.32 1.26 1.29 1.33 1.53 1.69 1.90 2.20
ﬁw,STl
E, x10° 3.97  4.01 3.99 4.00 3.99 3.95 3.99 3.96
Vi x10? 1.21 1.14 1.16 1.19 1.35 1.50 1.67 1.93
oA'??,ST?
E, x10° 4.31 432 431 4.30 4.31 4.26 4.33 4.30
V<10 2.76 1.84 1.71 1.67 1.68 1.77 1.95 2.22
ﬁw,ST?
E, x10° 459 460  4.59 4.58 459  4.53 4.58 4.54
V%10 2.94 1.94 1.80 1.75 1.73 1.81 1.98 2.23

sim
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Table B.9. Simulation means, E

sim sim )

1/2 — a2 A ~2 ~
and standard errors, V", of ¥,,0, ¢71,05r15 Opsro a0d P, gp, from

5,000 repeated stratified simple random samples assuming p, ~ N(0,1). Sample size n = 2,400, n, = 300,
h=1,.8, 0. /o= 10, and p,= 0.04. (o} =0.041541631)

=" 150 75 60 50 30 20 15 10

m, = 2 4 5 6 10 15 20 30
Y
E, x10° 0.40 0.48 0.41 0.47 0.43 0.43 0.47 0.40
Vi %10 2.62 3.04 3.30 3.53 416  4.98 5.57 6.78
OA';)Z,STI
E, x10° 412 418 415 417 416 412 417 415
V<10 1.26 1.21 1.24 1.28 1.46 1.62 1.82 2.12
ﬁw,STl
E, x10° 3.97  4.01 3.99  4.00 3.99 395  3.99 3.95
V%10 1.21 1.13 1.16 1.19 1.35 1.50 1.67 1.93
OA-bQ,STQ
E, x10° 414 416 414 414 415 410 416 414
Vi x10? 2.65 1.76 1.64 1.61 1.62 1.70 1.88 2.13
ﬁw,STQ
E, x10° 462 463 462 461 462 455  4.61 4.57
Vi x10? 2.95 1.94 1.81 1.76 1.74 1.82 1.98 2.23
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Table B.10. Simulation means, E

sim

1/2 — a2 A A2 ~
and standard errors, V of Yst5O0p5115 PusTs  ObsT2 and Puw.sT2

sim )
from 5,000 repeated stratified simple random samples assuming u, ~ Gamma(0.5,1). Sample size n =

2,400, n, = 300, h=1,..8, 02 /o’ = 0.1, and p, = 0.01. (o =0.0055211987)

=150 75 60 50 30 20 15 10

m, = 2 4 5 6 10 15 20 30
Y
E, x10° 49.63  49.66  49.63  49.65  49.64  49.64  49.65  49.63
Vi x10? 1.46 1.56 1.62 1.67 1.87 214 2.32 2.71
OA';)Z,STI
E, x10° 054 055 055 055 055 054 056 0.54
Vi x10? 0.40 0.32 0.30 0.29 0.29 0.29 0.32 0.34
ﬁw,STl
E, x10° 0.99 1.00 1.00 1.01 1.00  0.98 1.01 0.98
Vi x10? 0.74 0.58 0.54 0.53 0.52 0.52 0.57 0.62
OA';)Z,STQ
E, x10° 0.51 056 054 055 057 057 058 055
V<10 2.59 1.53 1.32 1.18 0.92 0.77  0.70 0.62
ﬁw,STQ
E, x10° 3.85 390 380 390 390 38 390 381
V2 %10 2.87 1.89 1.69 1.62 1.54 1.56 1.71 1.90

sim

Table B.11. Simulation means, E

sim

1/2 — a2 A ~2 N
and standard errors, V, of Y5051 PusTy  ObsT2 and Puw.sT2

sim )
from 5,000 repeated stratified simple random samples assuming u, ~ Gamma(0.5,1). Sample size n =

2,400, n, = 300, h=1,...8, 0> /o’ =1, and p,= 0.01. (o> =0.0050141498)

=150 75 60 50 30 20 15 10

m, = 2 4 5 6 10 15 20 30
Y
E, x10° 49.63  49.66  49.64  49.66  49.64  49.64  49.66  49.63
Vi %10 1.36 1.45 1.51 1.55 1.75 2.01 2.18 2.56
6';)2,ST1
E, x10° 049 050  0.50 0.50 050 049  0.51 0.49
Vi %10 0.35 0.28 0.26 0.26 0.25 0.26 0.28 0.30
ﬁm,STl
E, x10° 0.99 1.00 1.00 1.00 1.00  0.98 1.01 0.98
Vi %10 0.72 0.56 0.53 0.52 0.50 0.51 0.56 0.61
OA-b?.ST2
E, x10° 046 050  0.48 0.49 052 0.51 0.52 0.50
Vi x10? 2.50 147 1.26 114 0.8 074 067  0.58
ﬁw,STZ
E, x10° 13.37 1340 13.36  13.36  13.28 1311  13.13  12.83
V2% 10? 2.87 2.26 2.22 2.27 2.58 2.97 3.44 4.05

sim
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Table B.12. Simulation means, E

sim

1/2 — a2 A A2 ~
and standard errors, V of Yst50p,5715 PuwsTs  OpsT2 and Puw.sT2

sim )
from 5,000 repeated stratified simple random samples assuming u, ~ Gamma(0.5,1). Sample size n =

2,400, n, = 300, h=1,...8, 02 /o® = 10, and p, = 0.01. (o> =0.0049685206)

=150 75 60 50 30 20 15 10

m, = 2 4 5 6 10 15 20 30
Yy
E, x10° 49.63  49.66  49.64  49.66  49.64  49.64  49.66  49.63
Vi x10? 1.35 1.44 1.50 1.54 1.74 2.00 2.17 2.54
OA';)Z,STI
E, x10° 049 050  0.50 0.50 050 049 050  0.49
Vi x10? 0.35 0.27 0.26 0.25 0.25 0.25 0.28 0.30
ﬁw,STl
E, x10° 0.99 1.00 1.00 1.00 1.00  0.98 1.01 0.98
Vi x10? 0.72 0.55 0.52 0.51 0.50 0.51 0.56 0.60
OA';)Z,STQ
E, x10° 045 050 047  0.49 052 0.51 0.52 0.50
V<10 249 146 126 113 087 074 067  0.58
ﬁw,STQ
E, x10° 20.34  20.36  20.33  20.31 2023 20.03  20.00  19.66
V2 %10 2.72 2.04 2.00 2.05 2.31 2.69 3.13 3.77

sim

Table B.13. Simulation means, E

sim

1/2 — a2 A ~2 N
and standard errors, V, of Y5051 PusTy  ObsT2 and Puw.sT2

sim )
from 5,000 repeated stratified simple random samples assuming u, ~ Gamma(0.5,1). Sample size n =

2,400, n, = 300, h=1,...8, 0> /o’ = 0.1, and p, = 0.02. (o> =0.012599659)

=150 75 60 50 30 20 15 10

m, = 2 4 5 6 10 15 20 30
Y
E, x10° 49.62  49.67  49.63  49.66  49.64  49.64  49.66  49.63
Vi %10 1.73 1.93 2.03 2.13 2.47 2.92 3.22 3.85
6';)2,ST1
E, x10° 1.25 1.26 1.26 1.27 1.26 1.24 1.27 1.24
Vi %10 0.55 0.48 0.47 0.47 0.50 0.53 0.61 0.69
ﬁm,STl
E, x10° 199 200 200 2.01 2.00 1.97 201 1.97
Vi %10 0.88 0.76 0.74 0.75 0.79 0.83 0.95 1.07
OA-b?.ST2
E, x10° 1.21 1.27 1.25 1.26 1.28 1.27 1.30 1.26
Vi x10? 2.74 1.65 1.43 1.30 1.06 0.93 0.90 0.88
ﬁw,STZ
E, x10° 465 471 470 471 470 464 470 4.60
V2% 10? 2.88 1.95 1.77 1.71 1.70 1.76 1.97 2.22

sim
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Table B.14. Simulation means, E

sim

1/2 — a2 A A2 ~
and standard errors, V of Yst5O0p5115 PusTs  ObsT2 and Puw.sT2

sim )
from 5,000 repeated stratified simple random samples assuming u, ~ Gamma(0.5,1). Sample size n =

2,400, n, = 300, h=1,..8, 0> /o’ =1, and p,= 0.02. (o7 =0.010237223)

=150 75 60 50 30 20 15 10

m, = 2 4 5 6 10 15 20 30
Y
E, x10° 49.63  49.67  49.64  49.66  49.65  49.65  49.66  49.63
Vi x10? 1.50 1.68 1.78 1.86 2.18 2.59 2.86 3.44
OA';)Z,STI
E, x10° 1.01 1.02 1.02 1.03 1.02 1.01 1.03 1.01
Vi x10? 0.42 0.36 0.36 0.36 0.39 0.42 0.49 0.55
ﬁw,STl
E, x10° 1.99 200 200 201 2.00 1.97 201 1.97
Vi x10? 0.83 0.71 0.70 0.71 0.76 0.82 0.94 1.05
OA';)Z,STQ
E, x10° 0.98 1.03 1.00 1.02 1.04 1.03 1.05 1.02
V<10 252 150 130 117 094 082 079 075
ﬁw,STQ
E, x10° 1627 1630 1625 1626 1615 1595 1596  15.60
V<10 2.90 2.45 2.46 2.55 2.99 3.49 4.07  4.80

sim

Table B.15. Simulation means, E

sim

1/2 — a2 A ~2 N
and standard errors, V, of Y5051 PusTy  ObsT2 and Puw.sT2

sim )
from 5,000 repeated stratified simple random samples assuming u, ~ Gamma(0.5,1). Sample size n =

2,400, n, = 300, h = 1,...8, 07 /o* = 10, and p, = 0.02. (o =0.010048807)

=150 75 60 50 30 20 15 10

m, = 2 4 5 6 10 15 20 30
Y
E, x10° 49.63  49.67  49.64  49.67  49.65  49.65  49.67  49.63
Vi %10 1.48 1.66 1.76 1.83 2.16 2.56 2.83 3.41
6'?;2,ST1
E, x10° 0.99 1.01 1.01 1.01 1.00  0.99 1.01 0.99
Vi %10 0.41 0.36 0.35 0.36 0.38 0.41 0.48 0.54
ﬁm,STl
E, x10° 1.99 201 2.00 2.01 2.00 1.97 201 1.97
Vi %10 0.83 0.71 0.70 0.71 0.75 0.81 0.93 1.05
OA-bQ,ST2
E, x10° 0.96 1.01 0.98 1.00 1.02 1.01 1.03 1.00
Vi x10? 2.50 1.49 1.28 1.16 0.93 0.81 0.78 0.74
ﬁw,STZ
E, x10° 25.08  25.10  25.06  25.04 2494 2471 2467 2425
V%10 2.69 2.14 2.14 2.22 2.58 3.05 3.58 4.33

sim
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Table B.16. Simulation means, E

sim

1/2 — a2 A A2 ~
and standard errors, V of Yst5O0p5115 PusTs  ObsT2 and Puw.sT2

sim )
from 5,000 repeated stratified simple random samples assuming u, ~ Gamma(0.5,1). Sample size n =

2,400, n, = 300, h=1,...8, 0 /o’ = 0.1, and p, = 0.04. (o7 =0.035099049)

=150 75 60 50 30 20 15 10

m, = 2 4 5 6 10 15 20 30
Yy
E, x10° 49.62  49.69  49.63  49.68  49.65  49.65  49.68  49.62
Vi x10? 2.39 2.80 3.01 3.18 3.80 4.58 5.13 6.22
OA—;)Z,STI
E, x10° 349 350  3.52 3.53 3.51 347  3.53 3.48
Vi x10? 1.01 0.99 1.00 1.04 1.19 1.32 1.55 1.79
ﬁw,STl
E, x10° 3.98 399 400  4.01 400 394 400  3.94
Vi x10? 1.15 1.10 1.11 1.15 1.31 1.45 1.68 1.94
OA';)Z,STQ
E, x10° 345 352 351 3.52 3.54  3.51 3.57 350
V<10 3.29 2.09 1.86 1.75 1.62 1.60 1.73 1.91
ﬁw,STQ
E, x10° 577 582  5.82 5.83 5.81 5.74 5.81 5.70
V2 %10 2.90 2.05 1.89 1.85 1.93 2.06 2.33 2.67

sim

Table B.17. Simulation means, E

sim

1/2 — a2 A ~2 N
and standard errors, V, of Y5051 PusTy  ObsT2 and Puw.sT2

sim )
from 5,000 repeated stratified simple random samples assuming u, ~ Gamma(0.5,1). Sample size n =

2,400, n, = 300, h=1,..8, 07 /o’ = 1, and p, = 0.04. (o? =0.0213646383)

=" 150 75 60 50 30 20 15 10

m, = 2 4 5 6 10 15 20 30
Y
E, x10° 49.63  49.68  49.64  49.68  49.65  49.65  49.68  49.63
Vi %10 1.76 2.08 2.25 2.38 2.90 3.51 3.94 4.81
OA';)Z,STl
E, x10° 2.12 2.14 2.14 2.15 2.14 2.11 2.15 2.11
Vi %10 0.55 0.55 0.57 0.59 0.69 0.78 0.92 1.07
ﬁm,STl
E, x10° 3.98  4.01 4.01 4.02 4.00 3.94 4.01 3.93
Vi %10 1.05 1.02 1.05 1.09 1.25 1.41 1.65 1.91
OA-bQ,ST2
E, x10° 2.08 2.14 2.12 2.14 2.16 2.13 217 213
Vi x10? 2.57 1.57 1.38 1.28 1.12 1.07 1.13 1.20
ﬁw,STZ
E, x10° 19.61  19.65 19.59  19.59 1946 1921  19.22  18.78
V%10 2.95 2.68 2.75 2.88 3.47 4.08 4.79 5.66

sim
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Table B.18. Simulation means, E

sim sim )

1/2 — a2 A A2 ~
and standard errors, V of Yst5O0p57115 PusTy  ObsT2 and Puw.sT2

from 5,000 repeated stratified simple random samples assuming u, ~ Gamma(0.5,1). Sample size n =

2,400, n, = 300, h = 1,...8, o /o’ = 10, and p, = 0.04. (o =0.020560112)

=" 150 75 60 50 30 20 15 10

m, = 2 4 5 6 10 15 20 30
Y
E, x10° 49.63  49.68  49.64  49.68  49.65  49.65  49.68  49.63
Vi %10 1.72 2.03 2.20 2.33 2.83 3.44 3.86 4.71
OA';)Z,STI
E, x10° 2.04 2.06 2.06 2.06 2.06 2.03 2.07 2.03
V<10 0.52 0.53 0.54 0.57 0.66 0.75 0.89 1.02
ﬁw,STl
E, x10° 3.98  4.01 4.01 4.02 4.00 3.94 4.01 3.93
V%10 1.05 1.02 1.04 1.08 1.25 1.41 1.65 1.90
OA-bQ,STQ
E, x10° 2.00 2.06 2.03 2.05 2.07 205 2.09 2.04
Vi x10? 2.54 1.54 1.36 1.25 1.09 1.04 1.10 1.16
ﬁw,STQ
E, x10° 30.48 3049 3045 3043  30.30  30.03  29.98  29.49
Vi x10? 2.66 226 231 2.41 2.89 345  4.08  4.96
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