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Abstract

Exact and asymptotic distributions of the degree variance are in-
vestigated for Bernoulli graphs and uniform random graphs. For
graphs of large order we show that the degree variance is approxi-
mately gamma distributed with parameters obtained from the first
two moments of the degree variance. The usefulness of the results
is illustrated by a graph centrality test with a critical value obtained
from the gamma distribution.
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1 Introduction

Consider a random graph on n vertices with r edges, i.e. a random graph of
order n and size r, and let X; be the degree of vertex ¢, i.e. the number of
edges incident to vertex i. The degree variance is defined as

n

1 -\ 2
52 - Xz - X y
- 2; ( )
where X = % Z?Zl X;. The distribution of S? depends on the random graph
model that generates the edges. Section 2 gives a brief description of the two
models of this paper: the Bernoulli(n,p)-model and the Uniform (n,r)-

model. For further details on these models, see Hagberg (2003a). Some



properties of the degree variance and related enumeration problems are dis-
cussed in Section 3. Exact distributions of the degree variance for graphs of
small order are given in Section 4 and approximate distributions for graphs of
large order are given in Section 5. In Section 6, the accuracy of the approx-
imations are investigated by comparing exact and simulated distributions
with the approximate distributions. It is shown that we need to adjust the
approximation for the dependence between the vertex degrees. Finally, in
Section 7, the approximate distribution of S? is applied to graph centrality
(or vertex heterogeneity) testing.

2 Random graph models

We consider a random graph on n labeled vertices. The vertices are labeled
by integers 1,...,n. Let X; be the number of edges incident to vertex .

Model 1: Bernoulli (n, p)

With probability p, each pair of distinct vertices ¢ and j is connected by
an edge. These connections are made independently of each other. Let X;;
be an edge indicator that is 1 or 0 according to whether or not there is an
edge between ¢ and j. For ¢ = j it is convenient to define X;; = 0 so that
X; = Z;;l X;. Since a vertex can have no more than n — 1 edges it follows
that

Xi; ~ Bernoulli(p) ,i # 7,
X, ~ Bin(n—1,p), i=1,2,...,n and
R ~ Bin(N,p),

where R is the number of edges and N = (g)
Model 2: Uniform (n,r)

Let the number of edges, r, be fixed, 0 < r < N. The r pairs of dis-
tinct vertices ¢ and j connected by an edge, are chosen uniformly at random
without replacement among the N pairs. It follows that X;; is Bernoulli
distributed and X is hypergeometrically distributed, i.e.

-
X;; ~ B li(=),

ernou Z(N)
X; ~ Hypg.(r;n—1,N—n+1).
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That is
n—1\ (N—n+1
P, =y U0

G
maX{O,T— (";1>} <z <min{n—1,r}.

3 Degree variance

To avoid fractions, it is convenient to use the integer valued random variable
Z = n’$?=n) (X -X)’
i=1

= ) (X X))>*. (3.1)
i<j
We see that Z takes the value zero if and only if the graph is regular, i.e. all
degrees are equal.

The distribution of the degree variance is related to the distribution of
the ordered degree sequence, but is even more complicated to determine.
Isomorphic graphs have the same ordered degree sequence and the same
degree variance. Complementary graphs have the same degree variance even
if their ordered degree sequences are not equal. Non-isomorphic graphs can
have the same degree variance even if their ordered degree sequences are not
equal.

Consider any given ordered degree sequence (Xi,...,X,,) where X; >
, ...y > X, and its ordered complement, (n —1— X,,,....,n—1— X3). The two
ordered sequences correspond to a graph and its complement, and they have
the same degree variance, but that value is not necessarily unique for these
two graphs.

The two ordered degree sequences (1,1,1,1,1,1) and (3,3, 3,3, 3, 3) both
yield Z = 0 and the two ordered degree sequences (4,1,1,1,1,0) and
(4,2,2,1,1,0) both yield Z = 56. The mean is not the same for the last two
sequences, but the sequences (3,1,1,1,0,0) and (2,2,2,0,0,0) have the same
mean and both yield Z = 36. So the same degree variance doesn’t imply that
the graphs are isomorphic, complementary, regular or have the same mean.
The graphs corresponding to the six degree sequences above are shown in
Figure 1.
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Figure 1. Six graphs and their ordered degree sequences. Graphs in the
same row have the same degree variance.

An algorithm that generates all ordered degree sequences of a given length
is developed by Cohen et al. (1994) and a formula for the number of (0,1)-
matrices for any ordered degree sequence is given by Wang and Zhang (1998).
For graphs of small order, the latter can also be computed by the program
Z0O 2.3, developed by Snijders (2002).

The number of ordered degree sequences increases rapidly with n, as
indicated by Table 1. The number of unlabeled graphs increase even more
rapidly. For methods of graphical enumeration see, for example, Harary
(1969) , Deo (1973) or Sloane & Plouffe (1995).



n | Number of Number of ordered | Number of distinct
unlabeled graphs | degree sequences s%-values

1 |1 1 1

2 |2 2 1

3 |4 4 2

4 |11 11 4

5 | 34 31 11

6 | 156 102 14

7 11044 342 43

8 | 12 346 1213 34

9 | 274 668 4 361 102

10 | 12 005 168 16 016 111

11 | 1 018 997 864 59 348 296

12 | 165 091 172 592 | 222 117 262

Table 1. The number of

Notice that the number of distinct s?-values is not monotonically increas-

ing with n.

unlabeled graphs, ordered degree
sequences, and distinct s?- values for n =1, ...,12.

4 Exact distributions

As indicated in the previous section, it is very time consuming to find the
exact distribution of S? if n > 7. Even the task of determining the possible
values of S is cumbersome for modest values of n. From Table 2 below, it is
possible to obtain simple probability functions of Z under the Bernoulli (n, p)
model of order 3 and 4:

n=3:7Zn~2Be(3pq) andn=4:7 ~ 4Bin(3,2pq) .

In fact, for n =3

Z=2I(1<R<2),

and for n = 4 some algebra reveals that

Z =4[(Xyy— Xs0)? + (X153 — Xoa)* 4+ (X4 — X23)2] :




Due to the irregularities in the tails of the distributions and the rapidly
increasing number of degree sequences, it is much harder, or in practice
impossible, to derive the corresponding functions for the Bernoulli(n,p)
model of large order. Thus, there is a need for approximate methods.

The numbers needed for the exact distributions of the degree variance for
uniform random graphs and Bernoulli graphs of order n for n = 3,...,7 are
given below. Here L(n,r, z) is the number of labeled graphs of order n, size
r and degree variance z/n?. For the Uniform (n,r)-model

L(n,r,z)

P(2=2)= =005

and for the Bernoulli (n,p)-model
P(Z=2z2)= ZL (n,r, 2)p g™ .
Notice that Y- L (n,r,2) = (V) and Y>3 L(n,r,z) =2V,

Table 2. The numbers L (n,r,z) of labeled graphs of order n distributed
according to r and z.

|z\7“|0,3|1,2|

0 1
2 3
|Sum|1 |3 |

n = 3. 2(2) = 8 labeled graphs distributed according to z and r.

|z\r[0,6[1,5[24[3 |

0 1 3

4 6 12
8 12

12 8

[Sum [1 [6 [15 [20|
4
2

n = 4. 205) = 64 labeled graphs distributed according to z and r.




[2\r[0,10]1,9]2,8]3,7[4,6]5 |
0 1 12
4 15 |30
6 10 70
10 120
14 30 |60
16 75
20 60
24 30
26 60
30 60
36 5

[Sum |1 |10 [45 [120 | 210 | 252 |
n =5. 203) = 1024 labeled graphs distributed according to z and r.

|2\r[0,15]1,14[2,13[3,12[4,11[5,10[6,9 | 7,8 |

0 1 15 70

8 15 45 270 | 465 810
12 180 1080

20 60 480 | 972 1800
24 180 1530

32 405 | 810

36 80 1080

44 180 | 480 1080
48 810

26 30 270 630
60 360

68 360
72 75

80 6

| Sum |1 |15 |105 |455 |1365 |3003 |5005| 6435|
n = 6. 2(3) = 32768 labeled graphs distributed according to z and r.




z\r (0,21 [1,20 |2,19 |3,18 |4,17 [516 [6,15 [7,14 8,13 9,12 10, 11

0 1 465

6 105 (315 5670

10 21 3507 9660

12 105 2625 19355

14 10500

20 630 [ 1890 48300

24 12810 35910

26 105 4935 45360

28 27300

34 420 | 1890 62790

38 11970 41895

40 6552 71190

42 22365

48 175 [1365 79170

52 13440 46620

54 3255 48055

56 26880

62 420 55230

66 6510 25620

68 2100 51030

70 13545

76 105 50715

80 4095 25305

82 840 27090

84 9240

90 21735

94 1470 10500

96 18585

98 3990

104 18270

108 455 5355

110 42 8190

112 1890

118 7455

122 1575

124 4200

132 3150

136 420

138 875

140 105

146 210

150 7

160 21

Sum |1 21 210 1330 |5985 |20349 [54264 [116280 | 203490 | 293930 | 352716

n=7. 2(2) = 2097152 labeled graphs distributed according to z and r.



5 (Gamma approximations

A random variable Y has a gamma distribution with parameters o > 0 and
G > 0,denoted by Y ~ Gamma («, 3) , if its density function is given by

1

For Y ~ Gamma (o, () it holds that

ﬁk
I'(a)

E(Y*) = T'(a+k)= ’“H a+j), k>0 (5.1)

The first two central moments are thus
E(Y)=af and Var(Y) = o3> (5.2)

Let U;,© = 1,2, ...,n be a sequence of n independent identically distributed
normal random variables with mean p and variance o2, that is, Uy, ..., U,
are 7id N(pu,0°%). Let W = 15" (U —U)Qwhere U =1%" U Then,
according to known results (Johnson & Kotz 1970), W is gamma distributed
ie.

_ 2
W ~ Gamma (n 5 1,2i> (5.3)

B(W)=""25" and Var (W) = (” _ 104> . (5.4)

The degrees of the vertices under the Bernoulli (n,p) model are bino-
mially distributed with g = (n —1)p and ¢? = (n — 1) pq. Binomially dis-
tributed random variables are approximately normally distributed if their
variances are sufficiently large. Thus, neglecting the weak pair wise depen-
dence between the vertex degrees (See Hagberg (2000, 2003a).), we can argue
that S? should be approximately

Gamma (”; 1 2(n - ”Pq) | (5.5)



However, due to the dependence between the vertex degrees, this gamma dis-
tribution does not have the correct mean and variance. A gamma distribution
with the correct mean and variance can be obtained by choosing the gamma
distribution parameters a and /3 so that a3 = ES? and a* = VarS?, where
ES? and Var (S?) are given by Hagberg (2000, 2003a). This leads to

‘T an Z(?n_—lé)pq]p ¢ and f= W [1+(n—6)pg.  (56)

Table 3 shows the first three moments of S? derived under independence

assumptions (unadjusted gamma) and adjusted for the dependence (adjusted
gamma,).

Moment | Unadjusted gamma | Adjusted gamma

n—1)2 n—1)(n—
1 L pg i
9 (7”L+1)n(;"b—1)d P (n—1)(n—ﬂ)zpq(£§+4)(n—3)m+2)
3 (n+3)(nj31)(n71)4p3q3 8(n717)lgn72)3pq

2(n—1)(n—2)(3n24+5n—48

+ ng ) p2q?
(n—1)(n—2)(n—3) (n+4)(n2+3(n—8)

+ - ( ) P

Table 3. The first three approximate moments of S2.

The exact first two moments of S? equal the adjusted gamma moments,
and the exact third moment is equal to

p(sy) = oo 12&5(” k) (5.7)
L2 (n—1)% (3n - 4;[5(71 —2)(n+6)— 8]p2q2
3)r,.4
+(n — 1) [n*(n+3)—4(3n ;54) B(n—2)(n+6)—n— 4]]p3q3,

where the exponent in parenthesis denotes the falling factorial.
Let D, denote the difference between the exact third moment of S?
and the third adjusted gamma moment and notice that the coefficients of
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n® n’,and n® are equal in the numerators of p3¢®/n3. We have that

4(n—1)(n—-2)° 4(n—1)(n—2)(3n®—22n2 +48n — 24) , ,

D, = - = pq + = P°q
n n
64(n—1)*(n—2)(n—3)(n—4) 4 4
— . P
n
For fixed p, |D,| increases with n and
lim D, = D = 4p*¢* (3 — 16pq) . (5.8)

n—od

L
16

minimum value —i is obtained for p = % as shown in Figure 2.

and is obtained for p = % + /1 and the

The maximum value of D is 3

0.1~

0.08-
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-0.15-

-0.21-

-0.25 I I I I I I I I I |
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

p
Figure 2. D plotted against p.

The corresponding differences between the exact moments and the mo-
ments of the unadjusted gamma distributed variable W tend to the following
limits:

(ES2 - EW) — —pq ,

E(S%)? — EW?
(S ) W N _2p2q2 and
n
E(S?)?* - Ew?
( lﬁ — =3p’¢. (5.9)

11



Thus, the unadjusted gamma approximation gives a bias to the mean and
increasing biases to higher moments. The adjusted gamma approximation
with correct first two moments has a bias for the third moment which is
bounded by —1/4 and 1/16.

Since the distribution of S? is discrete and the gamma distribution is con-
tinuous, we can improve the approximation by the use of a continuity cor-
rection. The improvement is verified by simulations and exact calculations.
Let 21 < 29 < - - - < z,, denote the ordered possible values of Z = n?5?. and
let s3 = z;/n® for j = 1,...,m and let Gop denote the distribution function
of a Gamma («, §) variable. We have

<

P(S* = ) =P (Zj e _QZj_l <Z<zj+ —Zj+12_ Zj)

b
= P(zj—a<Z<zj+b):P(32 %<SQ<S§+F)

i

Gl (s§ + %) ~ Gap (2= )

Q

a+b $3.— S5
LS S Sy 510
b b
P(SQ < S?) _ P(52 < S? + ﬁ) ~ Gaﬂ (S? + F) (511)
and
a a
PS> 8) = P(S? 2 8 = =) ~ 1= G (s2- ﬁ> . (5.12)

where ¢ = 2—2=% and b = =L

The possible z-values are not all known for large n. Table 2 lists the z-
values for n < 7 and Table 7 contains the values for n = 8. All possible
values of z for graphs of order n = 9,10,11 and 12 are listed in Table 8 at
the end of the paper, and a method for deriving the values in graphs of larger
order is treated in Hagberg (2003c). Below follows a method for simplified

continuity correction.

Theorem 1 Forn > 2 and any two consecutive values, z; and zj1, it holds

that
1I<I}i<nm (zj+1 —2j) = 2 if nis odd,
min (z;.1 — 2;) = 4 ifn is even.
1<j<m( j+1 J) f

12



Proof. By writing

z=2n

r+ i (";)] — 42, (5.13)

where r is the number of edges, we see that z is even and z is also divisible
by 4 if n is even. Thus, in order to prove the theorem we need to show that
for some graph G of order n there is another graph G* of order n such that

. 2 if nodd
Z(G)_Z(G):{4 if n even.

Consider a graph G of order n and size r < (’;) — 1 having X5 = 0. Let G*
be G extended with edge (1,2). Then

z = z(G) :n2x3—4r2,
i=1

n

Z¥ = z(G*):n((x1+1)2+(:p2—|—1)2+2x?> —4(r+1)%,

i=1

and it follows that
Zr—z=2n(14+z1+x2) —42r+1).
Taking 1 = 2o =0 and r < (”;2) we obtain
Zr—z=2n—-8r —4=2 ifn=4r+3

which proves the theorem for n = 3,7, 11, ....
Taking 1 = x5 = 1 and r < 2+ (n;2> we obtain

F—z=6n—8r —4=2 ifn=4k+1 and r = 3k.

for some positive integer k, proving the theorem for n = 5,9,13, ....
Finally, taking x; = 0,25 =1 and r < 1+ (";2) we obtain

Z—z=dn—-8r—4=4 ifn=2r+2,

proving the theorem for n =2,4,6,.... m

13



According to this theorem, if we observe a value s? and don’t know the
2 2
values of s7 | and sj,; we can use

(5.14)

2 if n is even

{1 if n is odd
a=b=

in (5.10) - (5.12).

Under the Uni form (n,r)-model the degrees of the vertices are hyperge-
ometrically distributed with mean p = 2r/n and variance
02 = 2r(n*—n—2r)/(n*(n+1)). According to Johnson, Kotz & Kemp
(1992) hypergeometric random variables can be approximated by the normal
distribution. By using the same arguments as used for the Bernoulli (n, p)-
model, it follows that gamma approximation is valid for S? in the Uni form (n, r)-
model. In accordance with the Bernoulli (n, p)-model, we choose the gamma
distribution parameters a and 3 so that of = ES? and af* = VarS?,
where ES? and VarS? are given by Hagberg (2000, 2003a). Thus, S? in the
Uniform(n,r) model is approximately Gamma (o, ) where the parame-
ters adjusted for dependence are

:T(n+2)[n(n—1)—4] n(n—1)—2r]

22 (r— (1) —2(r + 1] (5.15)

and

4(r—=1nn—-1)=2(r+1)]

p= m+2)(n+)[n(n—1)—4 "

(5.16)

We can also improve the approximation by the use of a continuity correc-
tion. For the degree variance S? in Uniform(n,r)-graphs we use

a=0b=n. (5.17)

in (5.10) - (5.12). It is shown in Hagberg (2003b) that the difference between
any two consecutive values of Z is 2n, except for the right tail of the distri-
bution. In the right tail the difference between any two consecutive values is
at least 2n.

14



6 Simulation results

In this section F (s%) means the exact or a simulated distribution function of
S? G (s%) means the gamma distribution function in the adjusted approxi-
mation with continuity correction, and G* (s?) means the gamma distribution
function in the adjusted approximation without continuity correction. For
the Bernoulli (n,p)-model, the function F' is based on the exact distribution
of S? for n = 6 and 7, it is based on the approximate distribution of S? ob-
tained from 107 simulated graphs for n = 8,9, ..., 15, 20, 30 and 10° simulated
graphs for n = 100. Due to the increasing computer time needed to simulate
graphs of higher order, fewer graphs are simulated for n = 100. Furthermore,
to investigate the accuracy of the adjusted gamma approximation to the dis-
tribution function of S? in Uni form(n,r)-graphs, 10° graphs were simulated
for n = 8§, ...,12,15 and various values of r. The exact distribution is used
forn="71.

| n=6, p=0.1

|z P(S?=2Z) Adj. diff. Unadj. diff. F(Z) Adj. diff. Unadj. diff. |
0 | 210155 -.036779 | .125352 210155 | -.036779 | .125352
8 || .467669 133990 | .145285 677824 || 097211 | 270637
12 | .051256 -.147356 | -.228063 729080 || -.050145 | .042573
20 || .171050 063438 | .005814 900130 || .013293 | .048388
24 || .051431 -.004643 | -.031431 951561 || .008651 | .016957
32 || .015618 -.012975 | -.022267 967179 || -.004324 | -.005311
36 || .023013 .008633 | .006636 990192 || .004308 | .001376
44 || .007374 .000210 | .000620 997566 || .004519 | .001996
48 || .000314 -.003230 | -.002396 997880 || .001289 | -.000400
56 || .001913 .000170 | .000850 1999793 || .001459 | .000450
60 || .000140 -.000715 | -.000270 1999933 || .000744 | .000180
68 || .000017 -.000400 | -.000138 1999950 || .000344 | .000042
72 || .000029 -.000174 | -.000029 1999980 || .000170 | .000013
80 || .000021 -.000078 | -.000001 1.000000 | .000093 | .000013

15



| n=06. p=05

|z P(S?=2%) Adj. diff. Unadj. diff. F(Z) Adj. diff. Unadj. diff. |

36

0 || -005249 .002218 | -.003899 .005249 .002218 | -.003899

8 || 097961 047829 | .038574 103211 .050047 | .034675
12 || .076904 -.048359 | -.024155 180115 .001688 | .010520
20 || .202148 033779 | .082007 .382263 .035467 | .092526
24 || .104370 -.065564 | -.017482 486633 || -.030098 | .075045
32 | .181274 035667 | .068299 .667908 .005570 | .143344
36 || .070801 -.041438 | -.028068 738709 | -.035868 | .115276
44 | .106201 025849 | .023094 .844910 | -.010020 | .138370
48 || .049439 -.005033 | -.018376 .894348 | -.015052 | .119994
56 || .056763 021352 | .002674 951111 .006300 | .122668
60 || .021973 -.000295 | -.020396 973084 .006005 | .102273
68 || .021973 .008342 | -.010732 995056 .014348 | .091541
72 | .004578 -.003582 | -.020363 999634 .010766 | .071178
80 || .000366 -.004427 | -.018460 1.000000 || .006338 | .052718

Table 4. The differences between the.exact distribution of S?
and the adjusted and unadjusted gamma approximations respectively
forn =6, p=0.1 and p = 0.5.

In Table 4 we have used the continuity correction (5.10) for the probabil-
ity function, and the continuity correction (5.11) for the distribution function.
Table 5 below shows the Kolmogorov distance, i.e. the greatest absolute de-
viation between the exact or simulated distribution function of S? and the
adjusted and the unadjusted gamma approximation respectively for various
values of n and p. Formally, the Kolmogorov distance between F (s?) and
G (s?) is given by max|F (s*) — G (s®)|. The corresponding distance in the
upper decile of G iss given within parenthesis. The accuracy of the approx-
imation in the upper decile is important for hypothesis testing as shown in
Section 7. For n < 12, the continuity correction (5.11) is used and for n > 12
the continuity correction (5.14) is used. Table 6 shows the corresponding val-
ues for the adjusted gamma approximation to S? in Uniform(n,r)-graphs
where the continuity correction is given by (5.17).

16



ln | |p=0.1 |p=0.2 |p=04 |p=0.5

7 | Adj. 1131 (.0252) | .0610 (.0112) | .0453 (.0076) | .0474 (.0088)
Unadj. | .2854 (.0547) | .1586 (.0629) | .1319 (.1234) | .1334 (.1064)
8 | Adj. 10350 (.0063) | .0125 (.0015) | .0201 (.0047) | .0203 (.0048)
Unadj. | .1557 (.0104) | .1088 (.0661) | .1118 (.0973) | .1100 (.0946)
9 | Adj. 0873 (.0162) | .0193 (.0053) | .0241 (.0042) | .0236 (.0051)
Unadj. | .1617 (.0332) | .1157 (.0573) | .1053 (.0867) | .1076 (.0936)
10 | Adj. .0370 (.0019) | .0057 (.0014) | .0114 (.0028) | .0121 (.0033)
Unadj. | .1387 (.0113) | .0981 (.0552) | .0939 (.0781) | .0944 (.0801)
12 | Adj. 10245 (.0054) | 0081 (.0012) | .0101 (.0025) | .0106 (.0028)
Unadj. | .1366 (.0164) | .0949 (.0508) | .0883 (.0698) | .0883 (.0734)
15 | Adj. 10257 (.0087) | .0135 (.0034) | .0108(.0028) | .0100 (.0027)
Unadj. | .1205 (.0213) | .0888 (.0466) | .0822 (.0595) | .0816 (.0614)
20 | Adj. 0136 (.0029) | .0056 (.0013) | .0046 (.0014) | .0049 (.0015)
Unadj. | .0417 (.0727) | .0715 (.0352) | .0668 (.0478) | .0668 (.0486)
30 | Adj. 0111 (.0018) | .0045 (.0013) | .0028 (.0012) | .0039 (.0017)
Unadj. | .0716 (.0110) | .0548 (.0281) | .0546 (.0357) | .0544 (.0367)
100 | Adj. 10020 (.0011) | .0033 (.0015) | .0011 (.0006) | .0009 (.0004)
Unadj. | .0301 (.0075) | .0287 (.0131) | .0287 (.0154) | .0289 (.0162)

Table 5. The Kolmogorov distances for S?. The distances
in the upper deciles are given within parenthesis.

We see from Table 4 and 5 that the adjusted gamma approximation to the
distribution function of S? in Bernoulli graphs works well, especially when
P (5% > s?) < 0.10. For n = 8,...,12 the adjusted approximation is very
good when p is close to 0.2. For graphs of higher order the approximation
is better when the variance is higher i.e. when p tends to 0.5. When p is
fixed the accuracy of the approximation for graphs of order n is better than
the accuracy for graphs of order n + 1 if n is even. The latter is due to the
relative smoothness of the distribution when n is even and can be seen from
Figure 3 and 4, that show the distribution of S? for p = 0.5 and n = 7 and
10 respectively. For further details on the smoothness of the distribution, see
Hagberg (2003b). From Table 5 it can be seen that the unadjusted gamma
approximation is bad, which agree with (5.9).
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n=7,p=05

0,08 —
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Figure 3. The exact distribution of S? for n = 7 and p = 0.5.

n=10,p=05
0,04 —
0,03 —
0,02 —
o H i m
0,00 — ||‘ ‘ ‘ ‘ m “ ||| Wb
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Figure 4. The simulated distribution of S? for n = 10 and p = 0.5.
Figure 5 below shows the differences F' (s*)—G/(s?) ,under the Bernoulli (n, p)-
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model, plotted against F (s?) for n = 15. The dependence structure of the
differences varies for different values of n and p and can hardly be modeled
without knowledge of the true distribution.
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p=04 p=05
0.025 f 3 0.025 F
002} ] 0.02}
9 0015} ] 0.015
Q  oo1t ] 0.01} ]
3 oo HHH ' L ’HH i |
r o Mllm ML HH\ H | ! ‘H ‘H " “W\“‘H“‘H“”‘“\'i'\“m o i||\|| NI bl H‘ ! I “\H”‘H\”H\”“\”'\”'\ I
0,005 T 0005 i H |
001, 0.2 0.4 0.6 0.8 1 001, 0.2 0.4 0.8 1
F(s2) F( 52)

Figure 5. F (s?) — G(s?) plotted against F (s?) for n = 15.

In Figure 6, F' (s*) — G(s?) is plotted against s* for n = 15 and p = 0.5.
From the figure we get an inkling of the structure of the differences. The
minimum value of F (s?) — G(s?) is —0.007 and is obtained for s* ~ 3 =
E(S?%). For n = 15 and p = 0.5 we have that P (5% < F(S?)) ~ 0.54. A
figure similar to Figure 6 can be obtained if a binomial random variable
X is approximated by a normal distributed random variable with mean np
and variance npq and P (X < E (X)) ~ 0.54, using continuity correction.
This is shown in Figure 7 where X ~ Bin (100,0.6) and N(x) is the normal
approximated distribution function of X. The minimum value in Figure 7 is
—0.003 and is obtained for z = 60 = F (X).
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Figure 6. The differences between the simulated distribution function of S?
and the adjusted gamma approximation plotted against s for n = 15 and

p=0.5.
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Figure 7. The differences between the exact and the normal approximated
distribution function of X, X ~ Bin(100,0.6).
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7 r=2>5 r=7 r=29 r =10
.0319 (.0051) | .0421 (.0069) | .0361 (.0085) | .0267 (.0087)
10 r=25 r=10 r=17 r =22
.0103 (.0103) | .0125 (.0030) | .0116 (.0036) | .0117 (.0035)
12 r=>5 r=10 r=15 r =230
.0118 (.0064) | .0052 (.0038) | .0077 (.0028) | .0111 (.0034)
15 r=>5 r=10 r=20 r =250
.0201 (.0075) | .0041 (.0029) | .0034 (.0028) | .0062 (.0024)

Table 6. The Kolmogorov distances for S? in the uniform(n,r) model..
The distances in the upper deciles of G (s?) are given within parenthesis.

The results in Table 6 show that the gamma approximation to the dis-
tribution function of S? in uniform random graphs is better than the cor-
responding approximation in Bernoulli graphs.
smoothness of the distribution in uniform random graphs, and can be seen

from Figure 8.

Figure 8. The simulated distribution of S? for n = 10 and r = 22.

n=10,r=22

This is explained by the
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p=0.1 p=0.5

z F |F-G'| F-G F F-G*| F-G

0 | 0.0532 0.0532 0.0003 0.0002 0.0002 0.0001
121 0.2510 0.0743 0.0263 0.0067 0.0054 0.0043
16 | 0.4095 0.1357 | -0.0088 0.0197 0.0156 0.0058
28 | 0.5515 | 0.0036 | -0.0350 0.0594 0.0266 0.0180
32 | 0.7273 0.1047 0.0107 0.1050 0.0537 0.0166
44 | 0.8136 0.0233 0.0027 0.1656 0.0298 0.0119
48 | 0.8690 0.0394 -0.0072 0.2377 0.0653 0.0047
60 | 0.9193 0.0084 -0.0009 0.3291 0.0309 0.0085
64 | 0.9556 0.0269 0.0063 0.4107 0.0675 -0.0003
76 | 0.9666 0.0025 -0.0014 0.4802 | 0.0027 | -0.0189
80 | 0.9803 0.0088 0.0003 0.5612 0.0409 -0.0203
92 | 0.9882 0.0022 0.0006 0.6432 | 0.0051 | -0.0127
96 | 0.9936 0.0045 0.0012 0.7101 0.0370 -0.0110
108 | 0.9962 0.0015 0.0009 0.7584 | -0.0053 | -0.0184
112 1 0.9979 0.0020 0.0008 0.8091 0.0198 -0.0144
124 | 0.9985 0.0004 0.0002 0.8523 | -0.0007 | -0.0096
128 | 0.9992 0.0007 0.0002 0.8895 0.0192 -0.0035
140 | 0.9996 0.0003 0.0002 0.9139 | 0.0018 | -0.0039
144 | 0.9998 0.0004 0.0002 0.9372 0.0141 -0.0002
156 | 0.9999 0.0002 0.0001 0.9555 0.0063 0.0029
160 | 0.9999 0.0001 0.0001 0.9692 0.0133 0.0047
172 | 1.0000 0.0001 0.0000 0.9765 0.0050 0.0030
176 | 1.0000 0.0000 0.0000 0.9846 0.0092 0.0042
188 | 1.0000 0.0000 0.0000 0.9902 0.0059 0.0047
192 | 1.0000 0.0000 0.0000 0.9941 0.0076 0.0048
204 | 1.0000 0.0000 0.0000 0.9962 0.0046 0.0040
208 | 1.0000 0.0000 0.0000 0.9979 0.0051 0.0036
220 | 1.0000 0.0000 0.0000 0.9988 0.0032 0.0029
224 1 1.0000 0.0000 0.0000 0.9995 0.0033 0.0024
236 | 1.0000 0.0000 0.0000 0.9997 0.0020 0.0019
240 | 1.0000 0.0000 0.0000 0.9999 0.0019 0.0015
252 | 1.0000 0.0000 0.0000 1.0000 0.0012 0.0008
272 | 1.0000 0.0000 0.0000 1.0000 0.0005 0.0003
300 | 1.0000 0.0000 0.0000 1.0000 0.0001 0.0001

Table 7. Gamma approximation G with and G* without continuity cor-

rection in the Bernoulli (n, p)-model of order n = 8.
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Finally, in Table 7 we have compared F (s?) — G* (s?) with F (s?) — G (s?)
for every possible value of S? in the Bernoulli (n,p)-model of order n = 8.
The points of the distributions where |F (s?) — G (s?)| > |F (s*) — G* (s?)]
are given in bold. For p = 0.1, we see that G*(s?) is better than G (s?)
for s = 28/64 only. For p = 0.5, G* (s?) is better than G (s?) in 5 of the
34 possible values of S?. Other values of p for n = 8 give similar results.
The conclusion is that we in general improve the approximation by using the
continuity correction for n = 8. Further simulations show that the impor-
tance of the continuity correction decreases when n increases. It seems that
the fraction of points where |F (s?) — G (s?)| > |F (s*) — G* (s?)] increases
with n. However, in the calculations and simulations preformed for n < 15,
max |F (s?) — G(s?)] < max |F (s*) — G* (s?)] for both the models.

7 Application to Graph Centrality Testing

Several measures of graph centrality have been developed over the years, see
for example Freeman (1978), Snijders (1981a) and Wasserman&Faust (1994).
One of them is based on the degree variance, and this centrality of a graph can
be interpreted as a measure of vertex heterogeneity in the graph. By using
the approximate probability distribution of S?, we can assess a critical value
to test the hypothesis of no centrality against alternatives with centrality.
The null hypothesis will be rejected if the observed value s? is large enough,
that is, if the probability value P (S? > s?|Hy) is small enough.

Note that we have to reject the Bernoulli (n, p)-model and the Uni form (n, r)-
model if the null hypothesis is rejected. In fact the null hypothesis of no
centrality is modeled by the Bernoulli graph and the uniform random graph.
But, departures from these graphs does not imply centrality. Centrality here
means, that the degrees vary more than they do in Bernoulli or uniform
graphs. If the degrees vary less, as they do for instance in regular graphs,
then this is not considered to be a violation of Hy. Below we apply the out-
lined method to a well known network.

One part of the network data compiled by Padgett, (Padgett & Ansell
(1993)) consist of marriage relations among 16 families in the 15th century
Florence, Italy. In Figure 9 we have drawn an edge between a pair of vertices
i.e. a pair of families if a member of one family marries a member of the other.
A more detailed description of the network can be found in Wasserman &
Faust (1994).
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Figure 9. Marital relations between Padgett’s Florentine families.

The statistics of the network are:
1
n:16,r:20,ﬁ:€and32:2.125.

To estimate the o and 3 parameters, we use (5.6) for the Bernoulli (n,D)
model and (5.15), (5.16) for the uniform(n,r) model. We also apply the
continuity corrections given by (5.14) and (5.17).

If we assume that the edges are generated according to a Bernoulli(n, D)
model, S? is approximately Gamma(6.9767 , 0.2613) and P (52 > 2.125 — %) =
0.30. This is no strong evidence against the hypothesis of no graph central-
ity. However, since the true value of p might differ from the estimate p, the
probability value is uncertain.

To see how the uncertainty about p might affect our conclusions, we
calculate a approximate 95% confidence interval for p according to

p(1—-p)

549
P N

and obtain the interval (0.10 , 0.23).
From the lower endpoint of the interval we have

~ 2
& = 5.6474 , B = 0.2066 , P (52 > 2.125 — ﬁ> =0.04

and from the upper endpoint we have
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a=17.7085, 3 =0.3058 , P <52 > 2.125 — %) = 0.57.

Hence, the two endpoints yield two different conclusions about graph cen-
trality and indicate that the Bernoulli(n,p)-model might be inappropriate
for graphs of low order.

If we assume a Uni form(n, r)-model, S? is approximately Gamma(8.8218
, 0.2084) and P (S? > 34=18) = 0.32. Under this model, there is no strong
evidence against the hypothesis that there is no graph centrality. Wasserman
and Faust (1994) come to the same conclusion in some of their investigations
of these data. They also applied other models and got other findings about

the structure of this network.
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Table 8. The possible values of the degree variance times n? for n =
9,10,11,12.

n=29:

08 14 18 20 26 32 36 38 44 50 54 56 62 68 72 74 80 86 90 92 98 104 108 110
116 122 126 128 134 140 144 146 152 158 162 164 170 176 180 182 188 194
198 200 206 210 216 218 224 230 234 236 242 248 252 254 260 266 270 272
278 284 288 290 296 302 306 308 314 320 324 326 332 338 342 344 350 356
360 362 368 374 378 380 386 392 396 398 404 410 414 416 422 428 432 434
446 450 458 470 504

n=10:

0 16 20 24 36 40 44 56 60 64 76 80 84 96 100 104 116 120 124 136 140 144
156 160 164 176 180 184 196 200 204 216 220 224 236 240 244 256 260 264
276 280 284 296 300 304 316 320 324 336 340 344 356 360 364 376 380 384
396 400 404 416 420 424 436 440 444 456 460 464 476 480 484 496 500 504
516 520 524 536 540 544 556 560 564 576 580 584 596 600 604 616 620 624
636 640 644 656 660 664 676 680 684 696 700 704 716 724 744 756 784

n=11":

010 18 22 24 28 30 32 40 44 46 50 52 54 62 66 68 72 74 76 84 88 90 94 96 98
106 110 112 116 118 120 128 132 134 138 140 142 150 154 156 160 162 164
172 176 178 182 184 186 194 198 200 204 206 208 216 220 222 226 228 230
238 242 244 248 250 252 260 264 266 270 272 274 282 286 288 292 294 296
304 308 310 314 316 318 326 330 332 336 338 340 348 352 354 358 360 362
370 374 376 380 382 384 392 396 398 402 404 406 414 418 420 424 426 428
436 440 442 446 448 450 458 462 464 468 470 472 480 484 486 490 492 494
502 506 508 512 514 516 524 528 530 534 536 538 546 550 552 556 558 560
568 572 574 578 580 582 590 594 596 600 602 604 612 616 618 622 624 626
634 638 640 644 646 648 656 660 662 666 668 670 678 682 684 688 690 692
700 704 706 710 712 714 722 726 728 732 734 736 744 748 750 754 756 758
766 770 772 776 778 780 788 792 794 798 800 802 810 814 816 820 822 824
832 836 838 842 844 846 854 858 860 864 866 868 876 880 882 886 888 890
898 902 904 908 910 912 920 924 926 930 932 934 942 946 948 952 954 956
964 968 970 974 976 978 986 990 992 996 998 1000 1008 1012 1014 1018 1020
1022 1030 1034 1036 1040 1044 1052 1056 1058 1062 1064 1066 1074 1086
1106 1110 1124 1152 1176
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n=12:

020 24 32 36 44 48 56 60 68 72 80 84 92 96 104 108 116 120 128 132 140 144
152 156 164 168 176 180 188 192 200 204 212 216 224 228 236 240 248 252
260 264 272 276 284 288 296 300 308 312 320 324 332 336 344 348 356 360
368 372 380 384 392 396 404 408 416 420 428 432 440 444 452 456 464 468
476 480 488 492 500 504 512 516 524 528 536 540 548 552 560 564 572 576
584 588 596 600 608 612 620 624 632 636 644 648 656 660 668 672 680 684
692 696 704 708 716 720 728 732 740 744 752 756 764 768 776 780 788 792
800 804 812 816 824 828 836 840 848 852 860 864 872 876 884 888 896 900
908 912 920 924 932 936 944 948 956 960 968 972 980 984 992 996 1004 1008
1016 1020 1028 1032 1040 1044 1052 1056 1064 1068 1076 1080 1088 1092
1100 1104 1112 1116 1124 1128 1136 1140 1148 1152 1160 1164 1172 1176
1184 1188 1196 1200 1208 1212 1220 1224 1232 1236 1244 1248 1256 1260
1268 1272 1280 1284 1292 1296 1304 1308 1316 1320 1328 1332 1340 1344
1352 1356 1364 1368 1376 1380 1388 1392 1400 1404 1412 1416 1424 1428
1436 1440 1448 1452 1460 1464 1472 1476 1484 1488 1496 1500 1508 1512
1520 1524 1532 1548 1560 1568 1584 1592 1620 1652 1728
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