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Abstract
Optimal design of experiments for binary data is the topic of this thesis. A particular
logistic model including a quadratic term in the linear predictor is considered. Deter-
mining an optimal design for this model is complicated by the fact that the optimal
design is dependent on the unknown true parameters. Methods to obtain locally c- and
D-optimal designs are illustrated. c-optimal designs are derived via the canonical design
space. This space o¤ers an useful geometric interpretation of the design problem. Using
the canonical design space it is shown how the number of design points in a c-optimal
design varies depending on the parameter being estimated. Furthermore, formulae for
�nding the design points along with the corresponding design weights are derived. The
small sample performance of the locally optimal designs is compared to the performances
of some non-optimal designs in a simulation study. The evaluations are made in terms
of mean squared error of the maximum likelihood estimator. The small sample distri-
bution of the maximum likelihood estimator is demonstrated to be quite di¤erent from
the asymptotic distribution. It was also concluded that non-existence of the maximum
likelihood estimator is a critical problem for the quadratic logistic model. The designs
di¤ered considerably in this respect and this problem also turned out to be parameter
dependent. As a solution to this problem another type of parameter estimator is sug-
gested, which is also evaluated in the simulation study. It performs better in this respect,
but not completely satisfactory because it fails in other respects. Two kinds of sequential
design approaches are proposed for the purpose of �nding the point of optimum response.
One is a parametric optimal design approach where c-optimal designs are updated se-
quentially. The other one is a nonparametric stochastic approximation approach. The
suggested designs are evaluated and compared via simulations. Based on the simulation
results the c-optimal design approach was consistently favored. Sequential estimation
proved to be an e¤ective way to handle the parameter dependence issue.
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Chapter 1

Introduction

Experimentation constitutes a cornerstone of the empirical sciences. With
the help of experiments it is possible to answer questions, to test hypothe-
ses and ultimately to either con�rm or refute theories. An experiment is
a controlled study in which observations are made and data collected that
forms the basis for analysis and subsequent conclusions. The quality of
the analysis depends directly on the experimental design. A well-designed
experiment allows valid conclusions to be drawn. Statistical methods are
of vital importance to achieve this ambition. Available as an alternative is
to perform an observational study in which the researcher does not make
any interventions but merely observes existing states. The advantage with
experiments over observational studies is the opportunity to control the
experimental conditions and to determine which variables to include. Ob-
servational studies are vulnerable in the sense that the interpretations may
be distorted by important variables that are not measured or even unknown.

A common objective is to gain knowledge about a process or system, such
as a manufacturing process or a biomedical system, that is a¤ected by
one or more controllable variables and possibly a number of uncontrollable
variables. A response variable re�ects some observable aspect of the output
that is of interest, like the yield of a chemical process or whether a product
is defect or not. The person conducting the experiment, the experimenter,
can vary the levels of the control variable(s) systematically in order to
investigate how it in�uences the response variable(s). Response Surface
Methodology (RSM) treats the statistical methods for design and analysis
of such experiments. The search for optimum operating conditions in a
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manufacturing process is a frequent application.

RSM rests on the notion that there are many equally satisfactory paths
that lead to correct conclusions and that the learning process is iterative.
It is often wise to split the resources into several stages instead of devoting
everything to one large experiment. For instance, it may very well happen
that a screening experiment points in a di¤erent direction than anticipated
beforehand. For example moving from current towards optimum operating
conditions is usually accomplished in more than one step.

The theory of optimal design provides an approach that enables the exper-
imental design to be customized to a speci�c inferential goal. Planning and
performing experiments requires resources, optimal experimental design is
about getting good value for the time and money invested. By carefully con-
sidering certain choices before the experiment is conducted the information
obtained can be maximized (given a cost constraint) or the expenses can
be minimized (for a desired precision). The choices that have to be made
include deciding on which variables to examine, at what levels to make ob-
servations and the corresponding proportion of observations as well as how
the resources should be divided between di¤erent stages of the experiment.

A pioneer in the design of experiments area was Sir R. A. Fisher. He
introduced statistical principles to the experimental design in the studies
of agricultural systems. The work of Fisher starting in the 1930�s laid the
foundation to statistical experimental design, see for example Fisher (1935).
The applications were mainly in the agricultural, biological and medical
�elds. In the 1950�s the development of RSM caused statistical design of
experiments to enter the industrial �eld of application. RSM originated
with the paper by Box and Wilson (1951) on which an extensive growth
followed during the next decades. The book by Box and Draper (1987)
gives a comprehensive treatment of the RSM techniques.

It was also in the late 1950�s that the optimal design theory was initiated
where many contributions are attributable to J. Kiefer. For instance the
alphabetical terminology referring to the optimality criteria was introduced
by Kiefer (1959) and the General Equivalence Theorem is owing to Kiefer
and Wolfowitz (1959) and Kiefer (1961). Fedorov (1972), Silvey (1980),
Pazman (1986), Atkinson and Donev (1992), Pukelsheim (1993) and Fe-
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dorov and Hackl (1997) are all classic books that cover optimal design of
experiments.

Research was predominantly concentrated to linear models at �rst but dur-
ing the last decades it has been extended to concern non-linear models
including Generalized Linear Models, see e.g. Ford et al. (1989). The crux
of the problem of �nding optimal designs for the latter cases is that the
optimal design generally depends on the unknown model parameters. It
may seem discouraging that the construction of an optimal design to esti-
mate the parameters requires the very same parameters to be known prior
to the experiment. However, there exist several approaches to solve this
problem. The most straightforward solution is to base the construction on
a best guess, obtained from earlier experiments or based on expert knowl-
edge, which obviously risks being poor if the guess is poor. Such a design is
called a locally optimal design and was introduced by Cherno¤ (1953). A
natural development of this approach is the so called optimum on average
designs (also known as Bayesian designs) which assume a prior distribution
on the parameters instead of focusing on just one guess, see e.g. Fedorov
and Hackl (1997). Another alternative is the sequential construction of de-
signs, as in Silvey (1980). The idea is that the parameter estimates and
the optimal design are updated stepwise. A design is derived at each stage
assuming the parameter estimates obtained at the previous stage to be true.
The advantage with a sequential strategy is that modi�cations are allowed
as experimentation proceeds and more information is gained. Sequential
designs are particularly e¤ective when the response values can be obtained
in a short time.

Much of the research concerning optimal experimental design for GLMs has
been devoted to the logistic two-parameter model. A common application
are the dose-response models that relates the control variable, e.g. the dose
of a drug, to the probability of response, e.g. that a test subject is cured.
The interest is often to �nd the dose associated with some speci�c response
rate, referred to as the e¤ective dose. An overview of optimal designs for
the two-parameter logistic model can be found in Myers et al. (1994).
Wu (1985) presents various sequential designs for binary data, which for
instance are suitable to �nd the e¤ective dose.

This thesis treats optimal design of experiments for a particular logistic
model, the quadratic logistic model. In addition to the usual two parameters
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it includes a third parameter related to a quadratic term. The overall
ambition is to �nd optimal designs for estimation of the associated quadratic
response curve. The main topics of the thesis are:

� to illustrate methods to obtain locally optimal designs for the quadratic
logistic model, including the use of the canonical design space (Chap-
ter 3)

� to explore the performance of optimal as well as some non-optimal
designs in small samples (Chapter 4)

� to evaluate the performance of two kinds of sequential designs through
a simulation study (Chapter 6)

The outline of the thesis is as follows. Chapter 2 introduces the concept of
generalized linear models and reviews the theory of optimal design of experi-
ments. It also treats Response Surface Methodology and gives the de�nition
of the quadratic logistic model. The subsequent chapter includes a detailed
discussion about how to �nd locally optimal designs for this model. Chapter
4 contains a simulation study with the aim to examine the performance of
di¤erent designs in small samples. Comparisons are made between optimal
and non-optimal designs and between two types of estimators. In Chapter
5 two sequential approaches are proposed as a solution to the parameter
dependence issue. The performances of the sequential designs and their
abilities to �nd the optimum operating conditions are evaluated through
simulations in Chapter 6. Conclusions together with some suggestions for
future research areas appear in the last chapter.



Chapter 2

Theory

2.1 Generalized Linear Models

The concept of a generalized linear model (GLM) uni�es the analysis of
a wide variety of statistical models. The standard linear regression model
with the responses being continuous and normally distributed can be viewed
as a special case. However, both continuous and discrete data as well as
several other probability distributions �t into this framework. Consider
for example experiments where the outcome is one out of two possibilities,
e.g. success or failure, explode or not explode, resulting in a binary re-
sponse variable. Logit and probit regression are commonly used models for
such situations. Generalized Linear Models were introduced in Nelder and
Wedderburn (1972), a comprehensive book-length treatment is provided
by McCullagh and Nelder (1989) and an introduction is given by Dobson
(2002). The class of GLMs shares the following characteristics.

� The random component speci�es the distribution of the independent
response variables Y1; : : : ; YN . The distribution can be any member
of the exponential family and the response variable may be either
discrete or continuous.

� The linear predictor de�ned as

�i = x
0
i�; i = 1; :::; N



6 Chapter 2. Theory

where xi is a p�1 vector containing the k control variables (x1; ::; xk)
and � is a p � 1 parameter vector. The vector xi may include non-
linear elements, in contrast to the parameter vector �. For instance,
a model with an intercept, a quadratic term and a cubic term yields
xi =

�
1 xi x2i x3i

�0
:

� The link function
g (�i) = �i i = 1; :::; N

de�nes the connecting link between the mean response, E (Yi) = �i,
and the linear predictor, �i. g is assumed to be a di¤erentiable and
monotonic function. Examples on standard GLMs and corresponding
link functions are shown in Table 2.1.

Table 2.1: Some GLM examples.

Regression

model
Response Distribution Link function

Inverse

link function

Linear Continuous Normal identity: � = � � = �

Logistic Binary Binomial logit: � = ln
�

�
1��

�
� =

expf�g
1+expf�g

Probit Binary Binomial probit: � = ��1 (�) � = �(�)

Poisson Counts Poisson log: � = ln� � = exp f�g

The mean response �i is a function of the linear predictor, see Table 2.1,
which in turn is a function of the control variables and the model para-
meters. Furthermore, the variance of Yi generally depends on the mean
response �i. For example, in the case of a binomial response variable
V (Yi) = ri�i (1� �i), where ri is the number of observations at xi; and
for a Poisson response variable V (Yi) = �i, whereas in the standard linear
regression model V (Yi) = �2. The function

v (xi) =
1

V (Yi)

�
@�i
@�i

�2
is called the GLM weight. For binomial Yi with logit link the GLM weight
becomes v (xi) = ri�i (1� �i), for a Poisson response and log link v (xi) =
�i and for a normally distributed response it is constant, v (xi) = �

�2. This
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is what makes the construction of optimal designs for GLMs generally more
complicated than for linear models. An optimal design often attempts to
maximize the precision of the parameter estimates, or equivalently minimize
the variance, e.g. to make good predictions of the response. The GLM
weight enters as a term into the variance associated with estimating the
model parameters. Since v (xi) depends on the true parameters through �i
the optimal design will also depend on the true parameters.

2.2 Optimal Design of Experiments

The experimenter has to decide on what levels on the control variable should
be used in the experiment, such as the amounts of a certain fertilizer in
an agricultural experiment, the quantities of a new drug in a biomedical
experiment or the temperatures in a manufacturing experiment. A design
point is a particular level on the control variable, like 150 degrees or 5
ml of the drug. The locations of the design points have a direct in�uence
on the amount of information that can be extracted from the experiment.
Other issues related to the experimental design refers to the number of
design points and the allocation of observations to the points. In the case
of sequential experimentation additional questions arise, for example are a
few large batches preferred over many batches of smaller size?

The purpose of conducting experiments is to increase knowledge, to gain
as much information as possible. The core of the theory of optimal design
is therefore the information matrix which mathematically summarizes the
amount of information. Optimal designs are derived by optimizing some
carefully chosen function of the information matrix.

2.2.1 The information matrix

Let � denote a design formulated according to

� =

�
x1 x2 : : : xn
r1 r2 : : : rn

�
;

nP
i=1

ri = N; x 2 � � Rk;

where ri is the number of observations taken at the design point xi. The
design space � is the set of possible x-values. It can be either restricted
or unrestricted. Some applications imply a restricted design space, e.g.
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a dose of a drug is restricted to be above zero and below a safety level.
Alternatively, a design can be formulated as

� =

�
x1 x2 : : : xn
w1 w2 : : : wn

�
; 0 � wi � 1;

nP
i=1

wi = 1;

where the design weights wi = ri=N , specify the allocation to the design
points. The restriction that ri should be integer needs to be imposed for
the design to be realizable. The ful�lment of such condition is what dis-
tinguishes an exact design from a continuous design. It is typically more
practical to handle continuous designs calculation-wise although such de-
signs are not guaranteed to be feasible. However, an exact design can often
serve as a satisfactory approximation, provided that N is not too small.
Let the N � p design matrix be given by

XN =

2666666666666666666664

x01
...
x01

9>=>; r1 times

...
x0i
...
x0i

9>=>; ri times

...
x0n
...
x0n

9>=>; rn times

3777777777777777777775
where the exact appearance of the 1 � p vector x0i is determined by the
model. Each of the N observations made according to the design � enters
as a row inXN , one time each. If there are any replications some of the rows
will be exactly the same. The design matrix contains information about the
location of the design points in the design space �. The information matrix
for a GLM

I (�;�) = X0
NVNXN

is composed of the design matrix and the N �N GLM weight matrix

VN=diag

"
v (x1) : : : v (x1)| {z }
r1 times

: : : v (xi) : : : v (xi)| {z }
ri times

: : : v (xn) : : : v (xn)| {z }
rn times

#
:
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That is, smaller weights are assigned to less informative locations/points
and vice versa. The weights are determined by the model parameters �, as
argued in the previous section. Again, there may be elements in VN that
are identical if replicates are made at any design point. The information
matrix reduces to

I (�) =
1

�2
X0
NXN

for the linear regression model, in which case it su¢ ces to consider the
design matrix when deriving optimal designs (not the model parameters).
Furthermore, it is customary to deal with the standardized information
matrix that reveals the average information per observation. Adding more
points to a design will never decrease the total information, worst case
scenario is that it remains the same. Unless a candidate point causes the
average information to increase it would pay o¤more to make replications at
an already existing point. Seeking to maximize average information assures
the inclusion of only highly informative design points. The standardized
information matrix for a design is given by

M (�;�)=N�1I (�;�) = N�1X0
NVNXN = X

0
nVnWnXn:

The matrix Xn of dimension n� p is given by

Xn =

2666664
x01
...
x0i
...
x0n

3777775
and the GLM weight matrix Vn of dimension n� n is accordingly

Vn=diag
�
v (x1) : : : v (xi) : : : v (xn)

�
:

The n�n design weight matrixWn contains the proportions of observations
on the diagonal according to

Wn=diag
�
w1 : : : wi : : : wn

�
:

The standardized information matrix can also be expressed as the weighted
sum of the information obtained from the individual design points
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M (�;�) =
nP
i=1

wiv (xi)xix
0
i =

nP
i=1

wim (�;xi) :

m (�;xi) denotes the contribution of the design point xi to the total in-
formation. Moreover, the standardized variance associated with making
predictions of the response at x is de�ned as

d (x; �) = v (x)x0M�1 (�;�)x = tr
�
m (�;x)M�1 (�;�)

�
:

d (x; �), known as the standardized predictor variance, plays an important
role in the construction of D-optimal designs.

2.2.2 Maximum Likelihood Estimation

The inferential goal of an experiment is often to achieve high precision/low
variance when estimating the model parameters. Maximum likelihood esti-
mates for a GLM is obtained by solving the score equations

@l

@�j
= Uj =

NP
i=1

(yi � �i)xij
V (Yi)

�
@�i
@�i

�
= 0 j = 1; 2; :::; p

where l is the logarithm of the likelihood function L (�;y) : The solutions
to these equations generally have to be found numerically. The method of
Fisher scoring (see e.g. Dobson, 2002) is an iterative method that is useful
to compute the estimates. Given a guess �(m�1) of the parameter vector �
a new guess �(m) is obtained by

�(m)= �(m�1)+
�
I(m�1)

��1
U(m�1):

I(m�1) is the information matrix and U(m�1) is the vector of scores (Uj),
both evaluated at �(m�1). This expression can be rewritten as

�(m) = (X0
NVNXN)

�1
X0
NVNz;

where XN is the N�p design matrix, VN is the N�N GLM weight matrix
and z is a N � 1 vector with elements

zi = x
0
i�
(m�1) + (yi � �i)

�
@�i
@�i

�
:
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VN and z are evaluated at �
(m�1). Iterations are continued until a termina-

tion criterion is reached, e.g. when the relative di¤erence between �(m) and
�(m�1) is less than a predetermined small number. �(m) is then taken as the
ML estimate of � denoted by b�: The asymptotic sampling distribution ofp
N
�b� � �� is normal with covariance matrix

V
�b�� = (X0

nVnWnXn)
�1
:

Unfortunately, for certain samples there exist no maximum likelihood es-
timates. The data pattern of a sample determines whether the maximum
likelihood estimate exists or not. These issues are treated in Albert and
Anderson (1984). As an extreme example consider a binary response ex-
periment in which only zeros (nonresponse) are observed at all design points,
in such case it is intuitive that no parameter estimates can be obtained.

2.2.3 Optimality Criteria

Ideally a design that maximizes the entire standardized information matrix
M (�;�) would be chosen as the optimal design. Unfortunately, such an
optimization task is generally not doable because it is not possible to rank
matrices. Some appropriate function ofM (�;�) will instead be the subject
of optimization. Let 	 fM (�;�)g denote a criterion function that agrees
well with the inferential goal of the experiment. Generally a design �� is
said to be 	-optimal if

�� = arg min
xi;wi;n

	 fM (�;�)g :

Convexity of the criterion function 	 is assumed. Let �� be a design with
design weight 1 at the design point x and let �0 be de�ned as

�0 = (1� �) � + ���

for 0 � � � 1. The directional derivative of 	(�;�) in the direction �� is
given by

� (x; �) = lim
�!0+

1

�
[	 fM (�0;�)g �	 fM (�;�)g]

A design is 	-optimal if and only if the minimum of the directional deriv-
ative � (x; ��) � 0 for all x 2 �. This result is stated in The General
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Equivalence Theorem (Kiefer and Wolfowitz (1959) and Kiefer, (1961)) to-
gether with two equivalent conditions on ��:

1. The design �� minimizes 	 fM (�;�)g
2. The minimum of � (x; ��) � 0
3. The derivative � (x; ��) achieves its minima at the points of the design,

see e.g. Atkinson and Donev (1992). Various optimality criteria have been
proposed, some popular examples are listed below.

D-optimality The perhaps most widely used optimality criteria is that
of D-optimality, where the optimal design is found by minimizing

	 fM (�;�)g = ln
��M�1(�;�)

�� :
Equivalently, a D-optimal design is found by maximizing

	� fM (�;�)g = ln jM(�;�)j

because jM�1j = jMj�1. Numerical methods are usually required to solve
this task. The rationale of this criterion function is that jM(�;�)j�1=2 is
proportional to the volume of the asymptotic con�dence region for the pa-
rameters and it is desirable to have this region as small as possible. When
	 fM (�;�)g = ln jM�1(�;�)j it can be shown that

� (x; �) = p� d (x; �) ;

see for example Silvey (1980), with the resulting alternative formulation of
the conditions on �� in The General Equivalence Theorem

1. The design �� minimizes 	 fM (�;�)g
2. d (x; ��) � p
3. d (x; ��) achieves its maxima at the points of the design.

The practical implication of this is that the optimality of a suggested design
can easily be veri�ed or disproved. A graphical examination of a plot of
d (x; �) reveals whether a design is optimal or not. In the case of a non-
optimal design the appearance of the curve can give a clue about the optimal
number of design points.
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Sometimes interest is in s linear combinations of the p parameters, a situ-
ation that often arises in medical experiments when interest is in making
comparisons between a control group and one or more treatment groups.
The asymptotic covariance matrix for the linear combination A0� is given
by

A0M�1 (�;�)A

where A is a p � s matrix. A special case of D-optimality, referred to as
DA-optimality occurs when

	 fM (�;�)g = ln
��A0M�1 (�;�)A

��
is minimized.

Another special case, Ds-optimality, comes about in situations where there
are s parameters of interest and p�s nuisance parameters or when interest is
in model checking. Consider for example the parameter vector partitioned
as � =

�
�s �p�s

�
and that the aim is to �nd an optimal design to estimate

�s. It is analogous to DA-optimality if A is set equal to
�
Is 0

�
, Is being

the s� s identity matrix and 0 a (p� s)� s matrix with zeros.

c-optimality

c-optimality is an appropriate criterion when the aim is to estimate some
function h (�) of the model parameters with minimum variance. The crite-
rion function to be minimized is then

	 fM (�;�)g = c0M�1 (�;�) c

where c is a p�1 vector. Speci�cally, when the target function is nonlinear
in �, the asymptotic variance of h

�b�� is given by
V
�
h
�b��� = c0V

�b�� c;
c =

@h (�)

@�
;

where h (�) is assumed to be di¤erentiable in a neighborhood of �: Hence,
it follows that c-optimality is a natural criterion when the purpose of the
experiment is accurate estimation of h (�).
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c-optimality will also be the choice when the objective is to estimate one
single parameter. Such situations often arise in the RSM context when in-
terest is in the parameter that determines the point of optimum response.
Consider for example manufacturing a food product that needs to be pre-
pared in oven, an experiment might then be conducted to �nd out the
baking time that maximizes the probability of a good product.

A-optimality

Even if the volume of a con�dence ellipsoid is small (as strived for using
the D-optimality criterion) all variances of the parameter estimates are not
necessarily small. As an alternative, A-optimality strives for minimizing the
sum of the variances of the parameter estimators. The diagonal elements of
the inverse of the standardized information matrix are proportional to the
asymptotic variance of the ML estimator of �. The design that minimizes

	 fM (�;�)g = tr
�
M�1(�;�)

�
is called A-optimal.

It needs to be pointed out that these optimal design criteria rely on asymp-
totics for the GLM models. In practice all designs are limited regarding the
number of observations. As a consequence the success of a particular de-
sign depends on the degree of agreement between the asymptotic sampling
distribution and the sampling distribution for the current �nite sample size.

2.2.4 The Canonical Design Space

An analysis of the geometry of the canonical design space can provide useful
insights into the construction of optimal designs. It can also result in the
formulation of some geometric rules. In an important paper, Elfving (1952)
used geometrical arguments to derive c-optimal design points along with
optimal weights for the linear regression model. Kitsos, Titterington and
Torsney (1988) applied these principles for a speci�c nonlinear design prob-
lem. Ford, Torsney and Wu (1992) used the canonical form to construct
locally optimal designs for generalized linear models with one control vari-
able. Sitter and Torsney (1995) used the same method for binary response
models with two control variables. Biedermann, Dette, and Zhu (2005) ex-
plored designs for binary response models with a single response variable
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and using a general class of criterion functions as well as a restricted range
of the control variable.

The canonical design space Z � Rp arises from a transformation of the
design points de�ned by the GLM weight function as

z =
p
v (x)x:

The transformation leads to a formulation of the design problem that is
independent of the unknown parameters. The problem can thus be solved
independent of the parameters. When the dimensionality allows, i.e. for
p � 3, a plot of the space Z can be very useful. The geometry of Z reveals
both the number of design points and their (approximate) locations together
with the design weights. More details are given in Chapter 3 where it is
applied as a method to �nd c-optimal designs.

2.3 Response Surface Methodology

The statistical methods for designing and analyzing the outcome of exper-
iments where interest is in a response variable that is a¤ected by one or
several variables are known as Response Surface Methodology (RSM). A
thorough exposition of these techniques is given in the book by Box and
Draper (1987). RSM has traditionally been used for �nding optimum oper-
ating conditions in the industry. It is now common in many di¤erent �elds
like physical, chemical, biological, clinical and social sciences.

The principal objective of RSM is to explore the unknown relationship be-
tween the response/output variable and the control/input variables. Should
the exact nature of this relationship be known, which is rarely the case, a
mechanistic model could be formulated. Mostly, RSM deals with approxi-
mate empirical models. As an example, if the response variable is the yield
of a chemical process, the control variables might be temperature and pres-
sure. If the response variable instead is the reaction time of an individual,
possible control variables are dose of alcohol and amount of sleep. RSM
attempts to answer questions about how the response variable is a¤ected
when the levels of the control variables are changed, like what happens to
the yield when the temperature and pressure levels are varied. A common
application for RSM is to �nd the optimum operating conditions, e.g. to
�nd out for what levels of temperature and pressure the yield is maximized.
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RSM is essentially a sequential process where the experimental design is
gradually updated as investigation proceeds. Initially, choices have to be
made regarding the model, the number of replications, the levels on the
control variables and the size and location of the region of interest. The
aim is to have a procedure such that the right conclusions can be drawn
even if the initial experimental design is poor and that the path to arrive
there is as short as possible, for details see Box and Draper (1987).

In general a response variable Y is observed in an experiment and the rela-
tionship between Y and the control variables x =

�
x1 : : : xk

�0
is assumed

to have the functional form

y = f (x;�) + ":

Observing the response may be associated with measurement errors and
there may be errors due to variations in the experimental setting. These
kinds of errors as well as natural variation around the mean response are
all captured by the term ": Hence, the mean response, expressed as

E (Y ) = f (x;�) ;

forms the response surface. Because the exact true functional form f (x;�)
generally is unknown it needs to be approximated. A function g (x;�) is
taken as a local approximation to f (x;�). The approximation is local be-
cause it is restricted to be valid only in a limited region of interest, R.
The function g (x;�) is usually in the form of a polynomial. The use of a
polynomial stems from making a Taylor expansion of f (x;�), a polynomial
of degree d corresponds to truncating the Taylor�s series after the d : th
order term. The higher degree of complexity of the polynomial, the better
the approximation. Given a certain degree d a smaller R will increase the
closeness of the approximating function to the true function. Of course
there has to be a balance between the complexity and a reasonable dimen-
sion, increasing the complexity increases the number of parameters to be
estimated.

An RSM experiment is often performed stepwise. One important applica-
tion is to determine the conditions on the control variables that maximize
or minimize the response function, for example to �nd the optimum op-
erating conditions for an industrial process. Starting at current operating
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conditions it may be adequate to �t a lower order model at the �rst stage
in order to �nd the direction towards the optimum operating conditions.
The method of steepest ascent (descent) is a sequential procedure where
successive steps are taken towards the maximum increase (decrease) in the
response. Assume that two control variables are believed to in�uence the
response variable and a �rst order model is �tted to start with. A con-
tour plot of the �rst order response surface may look like Figure 2.1, the
steepest ascent is then found in the direction of the arrow. The steps are
proportional to the parameter estimates, the actual step length is obtained
by normalizing the vector b� and then multiplying it with an appropriate
step size. Observations on the response variable are made along this path
until the response decreases, when a new �rst order model is �tted, a new
direction of steepest ascent is located and a new path is followed. Experi-
mentation proceeds in this manner until a lack of �t test indicates that a
�rst order approximation no longer is suitable. This usually happens when
the maximum of the response surface is nearby. A higher order model is
then �tted and analyzed.

x1

x2

20

25

30

35

40

Figure 2.1: A contour plot of a �rst order response surface, the arrow points
in the direction of steepest ascent.

The applications of RSM were primarily concentrated to linear regression
models. However, a response surface may just as well be �tted for a GLM



18 Chapter 2. Theory

model, in which case the mean response

E (Y ) = �

that forms the response surface is connected to the linear predictor � via
the inverse link function. Some examples on inverse link functions can be
found in Table 2.1 in Section 2.1. In the special case of a linear model the
connection between the mean response and the linear predictor is direct,
that is � = �. This thesis deals with a second order logistic regression
model for binary data which is presented in detail in the next section.

2.4 The Quadratic Logistic Model

The response variable in the logistic model is binary. Success/failure, bro-
ken/not broken and pass/fail a test are examples on outcomes of a binary
response variable. The control variable(s) can be either continuos, e.g. tem-
perature, or categorical, such as treatment group. Many times the purpose
of the analysis is to explore the relationship between the probability of re-
sponse (e.g. a success) and the control variable(s). The response surface
(or response curve in the case of two dimensions) that approximates this
relationship takes on di¤erent shapes depending on the linear predictor.
For example, the logistic two-parameter model yields a sigmoidally shaped
response curve. Adding a quadratic term yields a quadratic response curve,
consequently named the quadratic logistic model.

The quadratic logistic model belongs to the class of GLMs. The binary
response variable Y is assumed to be Bernoulli distributed with response
probability E (Y ) = P (Y = 1) = � (x) given by

� (x) =
exp f� (x)g

1 + exp f� (x)g ;

where the linear predictor is de�ned as

� (x) = �+ � (x� �)2 :

The logit link

ln

�
� (x)

1� � (x)

�
= � (x)
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speci�es the connection between � (x) and � (x). Let � = (�; �; �)0. The
parameter � de�nes the point of optimum response, that is the value of x
at which � (x) attains its maximum or minimum. � controls the height of
the response curve at the point of optimum response. � is related to the
width of the curve and the kind of optimum. Throughout the thesis � < 0
is assumed, i.e. the response curve is assumed to have a maximum. The
choice is arbitrary, analogous methods and results apply to � > 0 in which
case the response curve has a minimum.

The response curve is symmetric around �, the point of maximum response.
The parameter � can be thought of as a location parameter for the response
curve. Changing � shifts the response curve along the x-axis. Furthermore,
the parameter � can be thought of as a scale parameter because the curve
is stretched or contracted when � is changed. De�ne �� (x) as

�� (x) =
exp f�� x2g

1 + exp f�� x2g ; (2.1)

i.e. �� (x) is the same as � (x) with the parameters � and � set to �1 and 0,
respectively. Thus, �� (x) corresponds to � (x) based on the parameter set
�� = (�;�1; 0)0. The response curve �� (x) is standardized in the sense of
being a curve with location at x = 0 and standardized width, given a certain
height of the response curve at the point of maximum response (which is
determined by the parameter �). Taking �� (x) as the starting point the
response curve � (x) with parameters � = (�; �; �)0 can be obtained as

��
h
(x� �)

p
j�j
i
:

��
h
(x� �)

p
j�j
i
=

exp

�
��

h
(x� �)

p
j�j
i2�

1 + exp

�
��

h
(x� �)

p
j�j
i2�

=
exp

�
�+ � (x� �)2

	
1 + exp

�
�+ � (x� �)2

	 = � (x) :
The information matrix under the quadratic logistic model, given an obser-
vation at x, is

I (�;x) = v (x)

�
@� (x)

@�

��
@� (x)

@�

�0
;
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where �
@� (x)

@�

�
=

0@ 1

(x� �)2
�2� (x� �)

1A
and

v (x) =
1

V (Y )

�
@� (x)

@� (x)

�2
= � (x) (1� � (x)) :

An important application for this model is to �nd the point of maximum
or minimum response, i.e. to estimate the parameter �. As an example
consider manufacturing a product where defect items have to be discarded
and the probability of a good product is maximized for the right adjust-
ment of machine speed. As another example, consider a pharmaceutical
manufacturer who produces boxes containing asthma medicine. To make
the boxes waterproof a plastic wrap is inserted. The quality of this wrap is
a¤ected by the variable pressure. The control variable can be varied in an
experiment to determine the level of pressure for which the probability of a
leaking box is minimized. The applications are not limited to maximizing
the probability of response � (x), optimizing any general function h (x) may
as well be the objective. For instance, let c (x) be the production cost and
h (x) = c (x) =� (x) be the cost per produced unit that is saleable. Interest
may then be in �nding the value of x that minimizes h (x).



Chapter 3

Locally Optimal Designs for
the Quadratic Logistic Model

Before an optimal design can be determined it needs to be established what
sense of optimality is intended. Therefore, a decision on an appropriate
criterion function has to be made. It should be chosen to match the aim of
the experiment. The locally optimal design is then the choice of points and
corresponding weights that optimize the selected criterion function. The
criterion function is commonly related in some way to the precision of the
parameter estimates, such as the size of a con�dence region or the sum of
the variances of the parameter estimators. It can concern estimation of all
parameters, a subset, or some combination of the parameters.

In any case, the criterion function involves the standardized information
matrix. The standardized information matrix given a particular design �
is the weighted sum of the contributions from each of the n design points.
For the quadratic logistic model it is given by the 3� 3 matrix

M (�;�) =
nP
i=1

wiv (xi)

�
@� (xi)

@�

��
@� (xi)

@�

�0

=
nP
i=1

wi� (xi) (1� � (xi))

0@ 1 (xi � �)2 �2� (xi � �)
(xi � �)2 (xi � �)4 �2� (xi � �)3

�2� (xi � �) �2� (xi � �)3 4�2 (xi � �)2

1A :
The notationM (�;�) is used to stress the fact that the information matrix
depends on the unknown model parameters.
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Locally optimal designs may not be that usable per se, but sequential pro-
cedures are greatly facilitated if there are easy ways to �nd locally optimal
designs. They are also important as benchmarks, e.g. when making ef-
�ciency comparisons. In this section the procedures to obtain locally D-
and c-optimal designs are demonstrated and illustrated with some exam-
ples. When deriving c-optimal designs particularly, it is shown how the
geometry of the canonical design space can be made to use.

3.1 D-optimality

There are several methods at hand when it comes to the practise of deter-
mining the optimal design. These include algorithms, analytical, numerical
and graphical methods, used separately or in combinations. For a review
of the available methods, see e.g. Atkinson and Donev (1992). There is
no method that is generally favorable, it depends on the problem at hand.
The method selected to derive D-optimal designs for the quadratic logistic
model is described below.

D-optimality is achieved by minimizing jM�1 (�;�)j ; or equivalently max-
imizing jM (�;�)j. To start with the number of design points n is not
known. Though, it is known that there exists a D-optimal design with
p � n � p(p+1)

2
design points. A plot of the standardized predictor variance,

d (x; �) serves as a useful tool, it helps to reveal whether a suggested design
is optimal or not. If the design is optimal the maximum of d (x; �) should
be equal to the number of parameters in the model. The maxima will also
appear at the design points. In the non-optimal case the plot can give a
hint of the optimal number of design points by looking at the number of
peaks of the function d (x; �). The D-optimal design is essentially obtained
according to the following steps.

1. Begin to assume a p-point design.

2. Minimize jM�1 (�;�)j yielding the best possible p-point design.

3. Plot the standardized predictor variance, d (x; �). If a visual inspec-
tion indicates that the design clearly is non-optimal return to step 2
and try a design with p+ 1 points.
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4. Verify optimality of the suggested design by the General Equivalence
Theorem, see Section 2.2.3, by assuring that the maxima of d (x; �)
are attained at the candidate design points (either analytically or
numerically). If the design cannot be veri�ed to be optimal, go back
to step 2 and evaluate a (p+ 1)-point design.

etc.

The procedure to �nd D-optimal designs for the quadratic logistic model
is facilitated by seeking an optimal design for the standardized response
curve �� (x) given in (2.1). Using �� (x) as the basis corresponds to seeking
a locally D-optimal design for �� = (�;�1; 0)0 : A design point x for the
response curve �� (x) corresponds to the point

xp
j�j
+ � (3.1)

for the response curve � (x), see Figure 3.1. Once a locally D-optimal
design is found for ��, the locally D-optimal design points for estimation
of � can easily be obtained by the transformation (3.1). It is motivated by
comparing the determinants of the two information matricesM (�;��) and
M (�;�) ; the latter evaluated at x=

p
j�j+ �. First, the expression for the

determinant of the standardized information matrix based on �� is

jM (�;��)j =

������
X

wiv
� (xi)

0@ 1 x2i 2xi
x2i x4i 2x3i
2xi 2x3i 4x2i

1A������ :
Secondly, the determinant based on � evaluated at x=

p
j�j+ � is given by

jM (�;�)j xp
j�j
+� =

���������
X

wiv

 
xip
j�j
+ �

!0BBB@
1

x2i
j�j �2

p
j�jxi

x2i
j�j

x4i
�2

�2x3ip
j�j

�2
p
j�jxi �2x3ip

j�j
4 j�jx2i

1CCCA
��������� :

Then, noting that

v� (x) = v

 
xp
j�j
+ �

!
;

the following equality holds
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jM (�;�)j xp
j�j
+� =

j�j
4
jM (�;��)j :

The fact that jM (�;��)j / jM (�;�)j xp
j�j
+� shows that the locally D-

optimal depends only on the parameter � since �� only includes �:
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Figure 3.1: The response curves �� (x) and � (x) for � = 3:

The derivation of D-optimal designs will be illustrated for three parameter
sets: �A=(3;�1; 0)0, �B=(0;�1; 0)0 and �C=(�3;�1; 0)0, according to the
steps given above.

Step 1. Due to the symmetry property of the response curve that �� (x) =
�� (�x) one might expect that the optimal design is symmetric as well. To
begin with the following symmetric design consisting of p = 3 points with
equal design weights is assumed.
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�3 =

�
�x 0 x
1=3 1=3 1=3

�
:

Step 2. The standardized information matrix for �3 is

M (�3;�
�) =

1

3

242v� (x)
0@ 1 x2 0
x2 x4 0
0 0 4x2

1A+ v� (0)
0@1 0 0
0 0 0
0 0 0

1A35
=

2

3

0@v� (x) + v�(0)
2

v� (x)x2 0
v� (x)x2 v� (x)x4 0

0 0 v� (x) 4x2

1A
where v� (x) is the GLM weight function based on �� (x), i.e. v� (x) =
�� (x) [1� �� (x)],

v� (x) = v� (�x) = exp f�� x2g
(1 + exp f�� x2g)2

;

v� (0) =
exp f�g

(1 + exp f�g)2
:

Now, the determinant of the standardized information matrix is

jM (�3;�
�)j =

�
2

3

�3 �
2x6v� (x)2 v� (0)

�
/ x6v� (x)2

and maximizing yields the following expression

x =

s
3

2� 4�� (x) : (3.2)

The solutions to formula (3.2) can be found numerically, using Mathcad
12.0 for instance. The resulting 3-point designs are given in Table 3.1.
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Table 3.1: Suggested 3-point designs.

True parameters Design

�A=(3;�1; 0)0 �3A =

�
�1:957 0 1:957
1=3 1=3 1=3

�

�B=(0;�1; 0)0 �3B =

�
�1:407 0 1:407
1=3 1=3 1=3

�

�C=(�3;�1; 0)0 �3C =

�
�1:238 0 1:238
1=3 1=3 1=3

�

Step 3. Plots of the standardized predictor variance, d (x; �) are given in
Figure 3.2. These plots suggest that the 3-point designs are D-optimal for
the two parameter sets �B and �C : d (x; �) � 3 and the maxima are attained
at the design points for these two models which is in line with the General
Equivalence Theorem. However, d (x; �) > 3 for model A and the design
�3A is clearly non-optimal. The plot indicates that the D-optimal design
could consist of 4 symmetric points. Therefore, the next step is to test a
4-point design. Let �4A denote a design with 4 points symmetric around �
speci�ed as

�4A =

�
�x2 �x1 x1 x2
w 0:5� w 0:5� w w

�
:

The standardized information matrix for the design �4A is then

M (�4A;�
�) = 2wv� (x2)

0@ 1 x22 0
x22 x42 0
0 0 4x22

1A+2 (0:5� w) v� (x1)
0@ 1 x21 0
x21 x41 0
0 0 4x21

1A :
In this case the determinant of the standardized information matrix

jM (�4A;�
�)j

= 8w (1� 2w) v� (x1) v� (x2)
�
x22 � x21

�2 �
2wv� (x2)x

2
2 + (1� 2w) v� (x1)x21

�
is a function of three variables: f(x1; x2; w): The D-optimal design can now
be found as the solutions to the set of equations
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Figure 3.2: The standardized predictor variance d (x; �) for the designs given
in Table 3.1.
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@f(x1; x2; w)

@x1
=

(1� 2w) v� (x1)
�
�
�
2q (x1)x

2
1 � 1

� �
x22 � x21

�
� 2x21

�
+2wv� (x2)x

2
2

�
q (x1)

�
x22 � x21

�
� 2
�
= 0

@f(x1; x2; w)

@x2
=

(1� 2w) v� (x1)x21
�
�q (x2)

�
x22 � x21

�
+ 2
�
�2wv� (x2)

��
2q (x2)x

2
2 � 1

� �
x22 � x21

�
� 2x22

�
= 0

@f

@w
= v� (x1)x

2
1 [(1� 2w) (1� 6w)] + v� (x2)x22 [4w (1� 3w)] = 0

where

q (x) =
1� exp f�� x2g
1 + exp f�� x2g :

While these equations do not o¤er as much of a simpli�cation as in the
case with 3 design points, they may serve as an alternative in �nding the
optimal design. Here, solving the equations (numerically) resulted in the
following design

�4 =

�
�2:061 �1:324 1:324 2:061
0:297 0:203 0:203 0:297

�
:

The standardized predictor variance d (x; �4A) is plotted in Figure 3.3. An
examination of the plot shows that d (x; �4A) � p = 3 and that the maxima
are attained at the design points.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

   x

   d(x,ξ
4A

)

   θ
A
=(3,−1,0)′

Figure 3.3: The standardized predictor variance d (x; �4) for the design �4.
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Step 4. Optimality of the designs �4A, �3B and �3C is here veri�ed nu-
merically. It is con�rmed that the maxima of the standardized predictor
variance

d (x; �) = tr
�
m (�;x)M�1 (�;�)

�
are attained at the suggested design points in all three cases, i.e. the de-
signs meet the conditions of the General Equivalence Theorem. A com-
mon property for the three designs is that all of them are placed sym-
metrically around � = 0: It can also be noted that the design points
are placed at � (x) = � (�x) = 0:226 for the 3-point designs and at
� (x1) = 1� � (x2) = 0:223 for the 4-point design.

3.2 c-optimality

For certain applications the objective is to estimate just one of the model
parameters. For instance, when seeking the point of optimum response, it
is only the parameter � that is of interest and the other two parameters
may be regarded as nuisance parameters. In such cases a c-optimal design
is appropriate. For c-optimal designs, the canonical design space o¤ers use-
ful information about the number of design points as well as the placing of
them. This section is based on the paper by Fackle Fornius and Nyquist
(2008). First, the characteristics of the canonical space is examined. Sub-
sequently, c-optimal designs for estimation of each of the model parameters
are treated in detail.

In order to estimate the parameter � with high precision de�ne c =(0; 0; 1)0

and minimize the asymptotic variance of c0b�; i.e. minimize
c0M (�;�)�1 c:

Correspondingly, c =(1; 0; 0)0 and c =(0; 1; 0)0 apply for estimation of the
other two parameters, � and �, respectively. Recall the standardized in-
formation matrix for the quadratic logistic model given a design � and
parameter vector � = (�; �; �)0

M (�;�) =
nP
i=1

wiv (xi)
�
1; (xi � �)2 ;�2� (xi � �)

�0 �
1; (xi � �)2 ;�2� (xi � �)

�
:
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It can be noted that M (�;�) for this model is proportional to that for a
linear regression model

y = 1z1 + 2z2 + 3z3 + "; (3.3)

where 1; 2, and 3 are the model parameters,

z1 =
p
v (x) (@� (x) =@�) =

p
� (x) (1� � (x))

z2 =
p
v (x) (@� (x) =@�) =

p
� (x) (1� � (x)) (x� �)2

z3 =
p
v (x) (@� (x) =@�) = �2

p
� (x) (1� � (x))� (x� �)

and " � N (0; �2) :

In the original formulation, the design problem consists of selecting the
design points x1; :::; xn from the design space �. However, as noted above,
the standardized information matrix for the model under consideration is
proportional to that for the linear model (3.3). The problem of selecting
design points x1; :::; xn from the design space � is therefore equivalent to
selecting design points z1; :::; zn, z =(z1; z2; z3)

0 from the design space Z
de�ned by

Z =

�
z 2 R3 : z =

p
v (x)

�
@� (x)

@�

�
; x 2 �

�
:

Z is called the canonical design space and the design problem is now con-
verted to the selection of canonical design points in Z. In the original design
problem, there is a dependence of the optimal design on the true parame-
ters �. In the canonical version, however, the transformation from � to Z is
parameter dependent yielding a design space that varies with �. In e¤ect,
it has resulted in a transformation of the GLM design problem to one that
is analogous to the design problem for a linear model.

The canonical design space Z de�nes a curve in R3, see Figures 3.4 to 3.6.
These graphs also display the re�ection of Z through the origin, �Z. Note
that z1; z2 > 0 for z 2 Z. The sets Z and �Z as well as the convex
hull of Z [ �Z are used in the geometric approach presented later in this
section. Each point in Z corresponds to a speci�c value of � (x) which in
turn corresponds to a speci�c value of x. The function � (x) is symmetric
around the point of optimum response, i.e. � (x+ �) = � (�x+ �) : The
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curve Z shares this property. It can further be noted that the shape of
the curve is independent of �, so de�ning t = � (x� �)2 facilitates a more
detailed examination.

Suppose �rst that � < 0, so that t � 0 and � (x) has a maximum attained at
x = �, or equivalently at t = 0. Three cases are shown in Figures 3.4 to 3.6:
�A=(3;�1; 0)0, �B=(0;�1; 0)0and �C=(�3;�1; 0)0. Consider �rst Figure
3.4 which displays model A. It is seen that the curve Z makes a closed loop,
approaching the origin as t! �1, z1 is at most 0.5 which appears when t =
�� and the curve has a symmetry point at t = 0. For the next case, model
B, displayed in Figure 3.5, the symmetry point coincides with the maximum
of z1 at t = 0, which is now given by z1 = exp (�=2) = (1 + exp (�)). Model
C is viewed in Figure 3.6. The curve now has a similar shape as in the
previous case, but it is shrunk, and the maximum of z1 still appears at
t = 0. In the case � > 0, t � 0 and � (x) has a minimum at x = �, or
t = 0. The case with � > 0 is equivalent to the case with � < 0 when � < 0
and similarly, the case with � < 0 is equivalent to the case with � > 0 for
� < 0.

Elfving (1952) provides a method to derive c-optimal design points and
weights from the geometry of Z. The procedure is as follows. Take the
set Z, its re�ection through the origin, �Z, and then determine the convex
hull generated by Z and �Z. Let Z� denote the boundary of this convex
hull. Draw the vector c to �nd out where it perforates the boundary of the
convex hull. Stretching this vector may be needed if it does not reach Z�

in the �rst place. The point of intersection, c�, either lies in Z or the part
of the convex hull that connects Z and �Z. If the point is in Z the design
point is obtained directly. Otherwise it is a convex combination of some
extreme points of either Z or �Z. If the point is in �Z, �z will be taken
as the design point. Elfving also showed that once the design points are
determined to be zi; i = 1; :::; n; the optimal design weights are obtained
as P

iwizi = c
�; wi > 0;

P
iwi = 1:

Here, the convex hull that encloses the curves Z and �Z comprises a three-
dimensional body. The surface of this body is partly �at and partly curved.
Two-dimensional plots of the di¤erent views generated by the three pairs
of axes are given in Figure 3.7. In the plots the convex hull is completed
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with dotted lines. For example, in the upper panel displaying the z1 � z2
viewpoint, the boundary of the convex hull is made up of two �at parts (the
dotted lines) and two curved parts (where it coincides with the sets Z and
�Z). The two �at parts are the contours of two planes, henceforth referred
to as the top and bottom plane.

The graphs in Figure 3.7 are useful to identify the location of the optimal
design points. The points of contact between the dotted lines and the solid
lines are potentially critical points. The particular cases of estimating one
of the model parameters are described below. Especially, estimation of �,
the point of maximum or minimum probability � (x), often plays a crucial
role in practical applications.

3.2.1 c =(1; 0; 0)0

The c-optimal design for estimation of �, the parameter that controls the
height of the response curve at the optimum point, proves to be a one-
point design. This is clear from an examination of the canonical design
space. Examples for the parameter sets �A=(3;�1; 0)0, �B=(0;�1; 0)0 and
�C=(�3;�1; 0)0 are shown in Figure 3.9. The point of intersection between
c and Z� is in Z and appears at t = 0. The value of c� at the intersection
is found to be c� = (exp(�=2)=(1 + exp(�)); 0; 0)0. For model B this yields
c� = z = (0:5; 0; 0) and the design that allocates all observations to x = 0.
Similarly, for models A and C c� = z = (0:2125; 0; 0)0, yielding one point
designs at x = 0. In general, c-optimal estimation of � implies a one point
design with observations taken at the point at which t = 0, that is at x = �,

��� =

�
�
1

�
:

Taking observations at the optimum point to study the height of the re-
sponse curve at this point goes well with intuition.

3.2.2 c =(0; 1; 0)0

When estimating �, the parameter related to the width of the response
curve, the optimal design is made up of either 3 or 4 design points. The
height of the response curve determines whether it is 3 or 4 points. The
canonical design space helps to explain when the number of design points is
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altered. Here the vector c =(0; 1; 0)0 penetrates Z� at the top plane. This
plane has either 3 or 4 points of contact with Z and �Z, which thus yields
3 or 4 design points. Seen from the z1 � z2 viewpoint the curve Z starts at
the origin and makes a loop before it reaches the z1-axes, see Figure 3.10.
The length of this loop is crucial for the number of contact points with the
top plane. If the top plane hits �Z at the symmetry point where t = 0 this
gives us one design point. If the top plane does not reach this point there
will be two points of contact with �Z. In both cases there are two contact
points between Z and the top plane. The dividing line between 3 and 4
point designs occurs when the loop is long enough, such that z1 (0) < 0:2762
(approximately) and there are two values of z2 for z1 (0) : This occurs when
� > 2:4 (approximately) for � < 0 and � < �2:4 (approximately) for
� > 0. The derivations of the design points for the case � < 0 are described
in detail below. Similar calculations apply to the case � > 0:

i) � > 2:4, 4 design points

In the left panel of Figure 3.10 the canonical design space for �A=(3;�1; 0)0
is depicted. The 4 design points z1; :::; z4 are marked in the graph. These
points are symmetric around the point of optimum response �: The design
points are taken at, say t = �t1;� and t = �t2;� or equivalently at x1 =
� �

p
jt1;�=�j and x2 = � �

p
jt2;�=�j. The slope of the plane along the

z1-direction is given by z2(tmax)=z1(tmax) where tmax is the value of t that
maximizes z1. Since z2(tmax) = (tmax=�) z1 (tmax) and tmax = �� the slope
is ��=�: The derivative of the curve Z� at the tangent point with the plane
is (dz2=dt) = (dz1=dt), evaluated at t1;� (or t2;�). Equating this expression
to the slope yields the equation

t� = ��� 2
�
1 + e�+t�

1� e�+t�

�
; (3.4)

from which both t1;� and t2;� can be solved. The resulting c-optimal design
for estimating � is then

��� =

�
��

p
jt2;�=�j ��

p
jt1;�=�j �+

p
jt1;�=�j �+

p
jt2;�=�j

0:25 0:25 0:25 0:25

�
:

For the parameters �A=(3;�1; 0)0 Equation (3.4) is

t� = �3� 2
�
1 + e3+t�

1� e3+t�

�
;
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the solutions of which, found numerically, are t1;� = �5:3994 and t2;� =
�0:6006. A c-optimal design for estimating � is therefore in this case the
design

��� =

�
�2:3239 �0:7750 0:7750 2:3239
0:25 0:25 0:25 0:25

�
:

ii) � < 2:4, 3 design points

The middle and left panels of Figure 3.10 show �B=(0;�1; 0)0 and �C=(�3;�1; 0)0
and the associated 3 point designs. The top plane now connects with
�Z at the symmetry point �z1 (0) where t = 0 and x = �: It has also
two symmetric tangent points with Z at, say t = �t�, or equivalently at
x = ��

p
jt�=�j. A determination of t� from Z� can be found by noting that

the slope of the plane along the z1-direction is z2(t�)= (z1 (0) + z1 (t�)) and
the derivative of the curve Z� at the tangent points is (dz2=dt) = (dz1=dt)
evaluated at t�. By equating these two expressions, the following expression
is obtained

t� = �2
�
1 + e�+t�

1� e�+t�

��
z1 (t�)

z1 (0)
+ 1

�
from which t� can be solved. The resulting c-optimal design for estimating
� is then

��� =

�
��

p
jt�=�j � �+

p
jt�=�j

w 1� 2w w

�
:

The weight w is determined from

w

0@ z1 (t�)
z2 (t�)
z3 (t�)

1A+ (1� 2w)
0@ �z1 (0)

0
0

1A+ w
0@ z1 (t�)

z2 (t�)
�z3 (t�)

1A = k

0@ 0
1
0

1A ;
for some constant k. Hence, it is deduced

w =
1

2

z1 (0)

z1 (0) + z1 (t�)
:

For the case �B=(0;�1; 0)0 the equation for t� is

t� = �2
2et�=2 + et� + 1

et� � 1 :
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The solution, found numerically, is t� = 3:087 yielding the design points
�1:757 and 0. The design weight w is �nally obtained as

w =
1

2

e0=(1 + e0)

e0=(1 + e0) + e3:087=(1 + e3:087)
� 0:355:

The resulting c-optimal design is therefore

��� =

�
�1:757 0 1:757
0:355 0:290 0:355

�
:

3.2.3 c =(0; 0; 1)0

The geometry of Z� in Figure 3.11 reveals that a two-point design is c-
optimal for estimation of �: Since c perforates Z� on the part joining two
extreme points of Z and �Z, both of these make up the design points. The
points are obtained from maximizing z3 (t), which is a solution to

t� =
e�+t� + 1

e�+t� � 1 :

It should be noted that this equation may have two solutions and it is
important to select the solution with the same sign as � since (x� �)2 is
non-negative. The extreme points at Z and �Z have the coordinates z1 =
(z1 (t�) ; z2 (t�) ; z3 (t�))

0 and z2 = (�z1 (t�) ;�z2 (t�) ; z3 (t�))0, respectively.
Furthermore, it is apparent from the graph that the optimal design weights
are w1 = w2 = 0:5 which can be veri�ed by

P
iwizi = 0:5z1+0:5z2 = 0:5

0@z1 (t�)z2 (t�)
z3 (t�)

1A+0:5
0@�z1 (t�)�z2 (t�)
z3 (t�)

1A =

0@ 0
0

z3 (t�)

1A = c�:

The c-optimal design for estimating � is therefore

��� =

�
��

p
t�=� �+

p
t�=�

0:5 0:5

�
:

Note here that if t� has the same sign as � the ratio t�=� is positive.

For the case A with �A=(3;�1; 0)0

t� =
e3+t� + 1

e3+t� � 1
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with the solution t� = �3:5748 and, translating the canonical design points
back to the corresponding x-values yields the optimal design

��A =

�
�1:8907 1:8907
0:5 0:5

�
:

For the cases B and C with �B=(0;�1; 0)0 and �C=(�3;�1; 0)0 similar
calculations yield t� = �1:5434 and t� = �1:0360; respectively. The corre-
sponding designs are

��B =

�
�1:2423 1:2423
0:5 0:5

�
and

��C =

�
�1:0178 1:0178
0:5 0:5

�
:

3.2.4 Conclusions

Analyzing the geometry of the canonical design space leads to the following
conclusions. The number of design points in a c-optimal design for esti-
mating the model parameters varies depending on which parameter to be
estimated. One design point is required when estimating the height of the
response curve at the maximum or minimum. For estimating the parameter
�, which is related to the width of the response curve, either three or four
points are required. For a response curve with a maximum, a c-optimal
design has four points if the maximum is large enough (probability for re-
sponse is greater than 0.917 at the maximum), while it has three points
otherwise. Analogous results are valid when the response curve has a mini-
mum. For estimating the location of the maximum, two points are required.
Furthermore, formulae for �nding the design points along with the corre-
sponding design weights have been derived. While the results here focus
on the logistic regression model, it would not be di¢ cult to use the same
methodology for extending the results to other binary response models.
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Chapter 4

Parameter Estimation in Small
Samples

D-optimality is based on asymptotic properties of the maximum likelihood
estimator. In practice, sample sizes are often small due to time and money
constraints raising the question how these designs will work in a small-
sample setting. Furthermore, the optimal designs depend on the true pa-
rameters which are unknown, sometimes making it challenging to actually
obtain an optimal design. A simulation study is performed with the pur-
pose to address these issues and the results are reported in this chapter.
The properties of the maximum likelihood (ML) estimator are examined
for various sample sizes. A couple of non-optimal designs are compared to
the optimal design in terms of mean squared error. However, situations
may occur where no ML estimate exists for one or more parameters, pri-
marily in small samples. The probabilities to encounter non-existing ML
estimates are compared for the di¤erent designs. Another estimator, based
on a modi�cation of the score function introduced by Firth (1993), is evalu-
ated as a solution to this problem for standard logistic regression by Heinze
and Schemper (2002). This estimator, denoted by FL, is also tested in the
simulations. This chapter is a development of the paper by Fackle Fornius
(2007).
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4.1 The ML Estimator

For the quadratic logistic regression model the ML estimates are obtained
as the solutions to the score equations Uj = @l=@�j = 0; j = 1; 2; 3;

@l

@�
=

NP
i=1

(yi � �i) = 0

@l

@�
=

NP
i=1

(yi � �i) (xi � �i)
2 = 0

@l

@�
=

NP
i=1

�2� (yi � �i) (xi � �) = 0:

The solutions to the score equations can be obtained iteratively by the
method of Fisher scoring, which was introduced in Chapter 2. Let eXN

denote a N � p matrix with rows

ex0i = �@�i@�
�
;

then the Fisher information matrix for this model can be expressed as

I (�;�) = eX0
NVN

eXN :

Given a previous estimate, �(m�1); the estimate �(m) is given by

�(m)= �(m�1)+
�
I(m�1)

��1
U(m�1): (4.1)

where I(m�1) is the Fisher information matrix and U(m�1) is the vector of
scores (Uj), both evaluated at �

(m�1): Alternatively, equation (4.1) can be
written as

�(m) =
�eX0

NVN
eXN

��1 eX0
NVNz: (4.2)

Note that eXN and the GLM weight matrix VN are evaluated at �(m�1).
The vector z is of dimension N � 1 with elements

zi = ex0i�(m�1) +
�
yi � �(m�1)i

�
h
�
(m�1)
i

h
1� �(m�1)i

ii :
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The ML estimates b� can now be obtained by iteratively updating equation
(4.2) until the relative di¤erence between successive estimates �(m) and
�(m�1) falls below a convergence criterion (e.g. 1e� 5).

The asymptotic sampling distribution of
p
N
�b� � �� is normal with mean

0 and covariance matrix

V
�b�� = �eX0

nVnWn
eXn

��1
:

That is, the ML estimator is a consistent and asymptotically e¢ cient es-
timator of �: Note that di¤erent designs will lead to di¤erent asymptotic
sampling distributions of the ML estimator. Variance estimates can be
obtained by the diagonal elements in

bV �b�� = �eX0
n
bVnWn

eXn

��1
where bVn denotes the GLM weight matrix Vn evaluated at b�:
Whether ML estimates exist depends on the pattern of the data points in
the sample. A data set can be categorized as belonging to one of three types
of data con�gurations; complete separation, quasi-complete separation or
overlap, as described in Albert and Anderson (1984). It is only when data
belong to the third con�guration that the ML estimate is �nite and unique.
The responses are binary and the data can thus be divided into two response
groups, one including the points where Yi = 1 and one including the points
where Yi = 0. If there is a vector that correctly allocates all observations
to their respective response group complete separation is present, that is,
if there is a vector � so that �0xi > 0 for all Yi = 1 and �0xi < 0 for all
Yi = 0. Quasi-complete separation occurs when there is a vector � such
that �0xi � 0 for all Yi = 1 and �0xi � 0 for all Yi = 0. If the data
con�guration is neither complete separation nor quasi-complete separation
the data points are overlapped and the ML estimate exists and is unique.

Example. Consider an 8-point design de�ned as

�8 =

�
�5 �2 �0:75 �0:25 0:25 0:75 2 5
1=8 1=8 1=8 1=8 1=8 1=8 1=8 1=8

�
:

Examples on the three types of data patterns are shown in Figure 4.1 for
this 8-point design. A ring symbolizes that zeroes are observed at the design
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point, a cross symbolizes that ones are observed. In panel A there are only
zeroes at the points �2 and �5 and only ones at the rest of the design
points. As can be seen there is a line that completely separates the points
�2 and �5 from the other points. As a contrast, in panel C, no such line
can be found. Panel C shows an example of overlap, which is desired in
order to obtain existing ML estimates.
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Figure 4.1: Examples on data con�gurations for the 8-point design, if there are
only zeros observed at a point a ring is displayed, if there are only ones observed
a cross is displayed and if both response types are present a cross in a ring is
displayed.
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4.2 The FL Estimator

Firth (1993) introduced a modi�cation to the score function as a means
to reduce the small-sample bias of maximum likelihood estimates. The re-
sulting estimator is proposed as an alternative to the ML estimator. Firth
advocated using this alternative estimator directly instead of using correc-
tive methods (i.e. to correct the ML estimate after it is computed). For
instance, in the event of non-existing estimates corrective methods are not
feasible.

The modi�cation of the score function stems from imposing a �penalty�
term to the standard likelihood function. The so called penalized likelihood
function is de�ned as

L� (�;y) = L (�;y) jI (�;�)j1=2 ;
with corresponding log-likelihood

l� = l + 0:5 ln jI (�;�)j :

The e¤ect of the additional term is asymptotically insigni�cant. The mod-
i�ed score function is given by

U� = U+ 0:5tr
�
I (�;�)�1D

	
;

where the matrix D has elements

Dij=
@I (�;�)ij
@�j

:

For the quadratic logistic model it yields the modi�ed score function

U�=
NP
i=1

�
(yi � �i)

�
@�i
@�j

�
+ hi (0:5� �i)

�
That is, the score equations are now given by

@l

@�
=

NP
i=1

(yi � �i + hi (0:5� �i)) = 0

@l

@�
=

NP
i=1

(yi � �i + hi (0:5� �i)) (xi � �i)
2 = 0

@l

@�
=

NP
i=1

�2� (yi � �i + hi (0:5� �i)) (xi � �) = 0:
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The hi terms are the diagonal elements of the �hat�matrix H

hi = diag (H) = diag

�
V
1=2
N

�eX0
NVN

eXN

��1 eX0
NV

1=2
N

�
:

The addition of hi (0:5� �i) to the score equations in e¤ect causes the
FL estimates to be shrunk towards zero, compared to the standard ML
estimates. Most importantly, it solves the problem of separation, i.e. the
estimates are guaranteed to exist for binary response models, see Firth
(1993). FL estimates, b��, can now be found iteratively as described in the
preceding section, taking

��(m)= ��(m�1)+
�
I(m�1)

��1
U�(m�1)

as the starting point instead of (4.1). Variance estimates are accordingly
found as bV �b��� = �eX0

n
bVnWn

eXn

��1
where the GLM weight matrix bVn here is evaluated at b��:
4.3 Simulation Setup

The aims of the simulation study are to compare D-optimal designs to
a couple of non-optimal designs and to evaluate the performance of the
ML estimator, both in terms of probability of existence and mean squared
error. In addition, the performance of the ML estimator is compared to the
performance of the FL estimator.

Four sets of parameters are considered in the simulations, these are given
in Table 4.1 and displayed in Figure 4.2. The sets are chosen to represent
di¤erent variations of the shape of the response curve. The response curve
is considered to be high when the maximum value of � is close to 1 and low
when the maximum value is close to 0. Given the scale on x the response
curves have di¤erent widths. Two of them are called wide and two are
called narrow. The meaning of these labels should be understood in a
relative sense.
For each of the four sets of true parameters three designs are considered.
One is the D-optimal design which depends on the parameters and thus
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Table 4.1: Four parameter sets labeled according to their associated character-
istics of �(x).

Type of response curve Parameter set

�high-wide� � = (2;�0:1; 0)0

�high-narrow� � = (2;�4; 0)0

�low-wide� � = (�2;�0:1; 0)0

�low-narrow� � = (�2;�4; 0)0

is di¤erent in all four cases. In practise, when the true parameters are
unknown, a strategy might be to include more than the optimal number of
design points to increase the chance that some points are good. Two non-
optimal designs composed of 7 (�7) and 8 (�8) design points are compared
to the D-optimal designs. The 8-point design is symmetric around the
optimum point whereas the 7-point design is not. All designs are given in
Table 4.2.

For every combination of true parameter values and design four sample
sizes are considered, two small samples N = 10 and N = 20 and two larger,
N = 50 and N = 100. The exact sampling distributions of the ML and FL
estimators are obtained for the small sample sizes by generating all possible
samples, the parameter estimates for each sample are then weighted with
the probability of obtaining the current sample. For the larger sample sizes
simulations are performed instead because the number of possible samples
grows very large. The simulation results are based on 10000 runs. All
calculations are performed in Matlab.

The proportions of the sample to be allocated to the design points are
given by the design weights. The number of observations to be taken at
each design point are thus given by ri = wiN . However, adjustments has to
be made to ri because the number of observations need to be integer values.
The resulting designs will then be approximations to the designs given in
Table 4.2. In Table 4.3 the number of observations per design point are
shown.
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Figure 4.2: The response curves corresponding to the parameter sets given in
Table 4.1.

Table 4.3: Number of observations taken at each design point.

N 3-point design 4-point design 7-point design 8-point design

10 3=4=3 3=2=2=3 1=2=1=2=1=2=1 2=1=1=1=1=1=1=2

20 7=6=7 6=4=4=6 3=3=3=2=3=3=3 2=3=2=3=2=3=2=3

50 17=16=17 16=9=9=16 7=7=7=8=7=7=7 7=6=6=6=6=6=6=7

100 33=34=33 31=19=19=31 14=14=15=14=15=14=14 12=13=12=13=12=13=12=13
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Table 4.2: The designs used in the simulations.

Parameter set Design

�high-wide�
� = (2;�0:1; 0)0 D-optimal �� =

�
�5:7185 �2:7017 2:7017 5:7185

0:3138 0:1862 0:1862 0:3138

�
�high-narrow�
� = (2;�4; 0)0 D-optimal �� =

�
�0:9042 �0:4272 0:4272 0:9042

0:3138 0:1862 0:1862 0:3138

�
�low-wide�

� = (�2;�0:1; 0)0 D-optimal �� =

�
�3:9819 0 3:9819

1=3 1=3 1=3

�
�low-narrow�
� = (�2;�4; 0)0 D-optimal �� =

�
�0:6296 0 0:6296

1=3 1=3 1=3

�

all 7-point �7 =

�
�4 �1 0:5 1 1:5 3 6

1=7 1=7 1=7 1=7 1=7 1=7 1=7

�

all 8-point �8 =

�
�5 �2 �0:75 �0:25 0:25 0:75 2 5

1=8 1=8 1=8 1=8 1=8 1=8 1=8 1=8

�

Some issues emerged during the simulations which called for a decision. It
should be remembered that these decisions a¤ect the simulation results. If
the sequence of ML estimates does not converge, indicating non-existence,
it is rather apparent that such an estimate is failed. Even if the estimation
algorithm converge, the estimate may not be useful for practical purposes. If
a quadratic response curve with a maximum is assumed and the parameter
estimates indicate a minimum (b� > 0), or the estimate of the point of
maximum response (b�) is degenerated, not much information is gained.
For these reasons such parameter estimates are considered unusable and
are excluded if any of the following events occur.

� The estimation algorithm does not converge within the iteration limit
(set to 100 iterations) which is a sign that no �nite parameter esti-
mates exist. Note that it can only come into question for the ML
estimates.

� The estimate b� > 0, then the estimated response curve has a minimum
instead of a maximum at b�:

� The estimate b� is degenerated (the cuto¤ was set to jb�j > 10 ). In
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such cases the estimated point of maximum response is even outside
the interval of non-zero response of the true response curve, where the
probability of response is e¤ectively zero.

4.4 Simulation Results

4.4.1 Non-existence of the ML Estimates

The problem of separation resulting in non-existence for the ML estimator
occurs for the quadratic logistic model considered here. To what extent
depends on the sample size, the number of design points and the true pa-
rameters. When the sample size is N = 10 divided among three points the
number of possible samples is equal to

(r1 + 1) � (r2 + 1) � (r3 + 1) = 4 � 5 � 4 = 80:

The only way for the data to be overlapped and thereby for the ML estimate
to exist is to have both response types (Y = 1 and Y = 0) observed at all
three points. At a design point where three observations are taken there are
two variants where both response types are represented; 1 or 2 ones out of
3. When four observations are taken at a design point there are three such
cases; 1, 2 or 3 ones out of 4. In total there are 2 �3 �2 = 12 distinct samples
where the ML estimate exists. Let Zi be the number of ones observed
at design point xi, then Zi � bin (ri; �i) where �i = e�i= (1 + e�i). The
probability that the ML estimate exists, P (ML) can now be computed as

P (ML) = [P (Z1 = 1) + P (Z1 = 2)] � [P (Z2 = 1) + P (Z2 = 2) + P (Z2 = 3)]
� [P (Z3 = 1) + P (Z3 = 2)] :

This probability is shown for all combinations of design and true parame-
ters for N = 10 in section a) of Table 4.4. The probability to obtain a ML
estimate is essentially zero for the �low-narrow�model irrespective of what
design is used. It is not possible to estimate the parameters with only 10
observations in this case. For the �low-wide�model this probability is at
best around 10 percent when one of the two non-optimal designs are used.
The reason why the non-optimal designs perform better in this respect is
that the D-optimal design consists of only 3 points which makes it more dif-
�cult to obtain overlapped data compared to the designs with more points.



56 Chapter 4. Parameter Estimation in Small Samples

This is particularly the case for the wide models because for these models
P (Y = 1) > 0 for a wider range of x values than for the narrow models.
As a consequence there are more points to choose from for which there are
a possibility of observing both zeros and ones and thus avoiding complete
or quasi-complete separation in the data. This is also re�ected in the pat-
tern for the �high-wide�model where the probability of obtaining a ML
estimate is approximately 50 % for the non-optimal designs compared to
35 % for the D-optimal design. For the �high-narrow�model on the other
hand the D-optimal design outperforms the other two having 35 % chance
of obtaining parameter estimates as against 11 or 1 %. The low models are
more problematic compared to the high models because P (Y = 1) is low
and therefore there will be many points where only zeros are observed.

In section b) of Table 4.4 the probabilities that the ML estimate exists
when N = 20 are presented. The probability to obtain parameter estimates
has increased but is still extremely small for the �low-narrow�model. For
the �low-wide�model these probabilities have increased about three times
for the two non-optimal designs which still are preferable. The D-optimal
design has the highest probability for the �high-narrow� model and the
three designs are almost equivalent for the �high-wide�model.

For N = 50 the probability of obtaining parameter estimates can be es-
timated by the percentage shares of the simulation runs where the ML
estimate existed. These are shown in column a) of Table 4.5. There are
hardly ever problems with non-existence for the �high-wide�model with
almost 100 % existence for all three designs. The same thing applies to the
�high-narrow�model if the D-optimal design is used. The situation is not
quite as good for the �low-wide�model where the 81 % associated with
the 8-point design is the highest proportion. Nevertheless, it is a lot better
than for the �low-narrow�case where existence in 12 % of the times (for
the D-optimal design) is the maximum.

For N = 100 the percentage shares of the simulations where the ML es-
timate existed are given in column b) of Table 4.5. There are no longer
any problems with non-existence for the �high-wide�model for any of the
designs. If the D-optimal or 8-point design is chosen for the �high-narrow�
model the problem is also avoided. By choosing one of the non-optimal de-
signs for the �low-wide�model almost 100 % existence of the ML estimate
can be expected. When the D-optimal design was used for the �low-narrow�
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model existence occurred in only 35 % of the times even though the sample
size is quite large.

Table 4.4: The number of possible samples, the number of samples where the
ML estimate exists and the probability that the ML estimate exists for N=10
and N=20.

Type of response curve Design # samples

# samples
where the ML
estimate exists

P(ML)

a) N=10
D-opt 144 68 0:35

�high-wide� 7-p 432 544 0:49

8-p 576 488 0:49

D-opt 144 68 0:35

�high-narrow� 7-p 432 544 0:014

8-p 576 488 0:11

D-opt 80 12 2:5 � 10�3
�low-wide� 7-p 432 544 0:11

8-p 576 488 0:096

D-opt 80 12 2:5 � 10�3
�low-narrow� 7-p 432 544 2:4 � 10�5

8-p 576 488 2:6 � 10�3

b) N=20
D-opt 1225 927 0:76

�high-wide� 7-p 12288 11944 0:82

8-p 20736 20384 0:84

D-opt 1225 927 0:74

�high-narrow� 7-p 12288 11944 0:046

8-p 20736 20384 0:42

D-opt 448 180 0:016

�low-wide� 7-p 12228 11944 0:27

8-p 20736 20384 0:36

D-opt 448 180 0:016

�low-narrow� 7-p 12228 11944 4:4 � 10�5
8-p 20736 20384 0:015
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Table 4.5: The percentage share of the simulations where the ML estimate
existed for N=50 and N=100.

Type of response curve Design
% of the simulation
samples where the ML

estimate existed

a) N=50 b) N=100
D-opt 98 100

�high-wide� 7-p 99 100
8-p 99 100

D-opt 98 100
�high-narrow� 7-p 34 69

8-p 84 98

D-opt 12 36
�low-wide� 7-p 73 97

8-p 81 99

D-opt 12 35
�low-narrow� 7-p � 0 � 0

8-p 8 22

4.4.2 Estimation Results

Tables 4.6 to 4.11 report the results for sample sizes N = 10 and N = 20.
These are based on complete enumeration of all possible samples, thus the
results are exact. The mean squared error, mean and variance of the ML and
FL estimators are given in the tables. Furthermore, the mean and variance
of the variance estimators are presented in the tables. The theoretical
approximate variance derived using asymptotic results (abbreviated as AV )
is also included as a reference point. Tables 4.12 to 4.17 report analogous
results based on the 10000 simulation runs for sample sizes N = 50 and
N = 100. The occurrences of degenerated estimates (according to the
de�nition in the previous section) is also documented. The probability of
obtaining a degenerated estimate is given for sample sizes N = 10 and
N = 20 and the relative frequency of such estimates in the simulations is
given for sample sizes N = 50 and N = 100: For the ML estimator the
probability that the estimate does not exist is reported separately. All the
reported results are based only on those estimates that are not degenerated.
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Thus, the results should be interpreted as given that the estimate is not
degenerated and exists (in case of the ML estimator). When referring to
the estimators from now on this is assumed implicitly. Plots of the sampling
distributions of the estimators can be found in the Appendix. Below follows
some summarizing comments to the results.

N = 10, Tables 4.6 to 4.8

The D-optimal design is most often associated with the lowest mean squared
error, as expected. The exceptions are estimation of the parameter � for
all models but the �high-narrow�model and estimation of � for he �high-
narrow�model. However, these di¤erences are quite small. Especially when
compared to the gains that can be made by using the D-optimal design when
estimating any of the other parameters. It can be noted that the bias is
really small for the parameter � in all cases when any of the two symmetric
designs (D-optimal or 8-point) is used. The variances of the estimators are
almost always quite di¤erent from the theoretical approximate variance,
that is the asymptotic results are not applicable for such small samples.
Neither do the variance estimators work any good.

The FL estimator performs much better than the ML estimator with ref-
erence to the probability that an estimate is not degenerated for the high
models and the symmetric designs (D-optimal and 8-point). It is also better
for the low models, though it is far from good, the risk of obtaining degen-
erated estimates is still very high. For the 7-point design the FL estimator
is substantially better than the ML estimator in terms of the number of
�good�estimates for the �high-wide�model only. None of the two estima-
tors can be favored based on comparing their mean squared errors.

It should be noted that the probability to obtain an estimate is extremely
small in several cases (particularly for the ML estimator and both the low
models). In these cases there exist only a limited number of estimates,
which is also re�ected in the plots of the sampling distributions (see the
Appendix).

N = 20, Tables 4.9 to 4.11

For the most part, the mean squared errors of the estimators are lowest
when the D-optimal design is used. The exceptions occur for estimation of
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�, as was also the case for N = 10. The two non-optimal designs alternately
succeeds better in these events. Overall, the di¤erences in mean squared
errors are fairly large in favor of the D-optimal design. The 7-point design
is generally the worst choice. The shape of the distributions are also more
symmetric for the the D-optimal and 8-point designs. There are still dis-
agreements between the variance of the estimators in comparison with the
asymptotic variance as well as with the mean of the variance estimators.

The FL estimator is superior to the ML estimator in terms of the probability
of usable estimates, especially when the D-optimal design is used. On the
other hand, for the two most problematic cases (�low-narrow�model and
the non-optimal designs) the FL estimator also fails. Generally, the problem
with non-existence and/or degenerated estimates remains, even though it
is somewhat reduced. Again, none of the estimators is consistently better
than the other in terms of mean squared error.

N = 50, Tables 4.12 to 4.14

The magnitude of the mean squared error varies between the designs, still
being generally lowest for the D-optimal design. Once again, the majority
of the exceptions appear for the parameter �: On the whole, the D-optimal
design is better than the 8-point design which is usually better than the 7-
point design. When the proportion of �good�estimates is close to 1, as for
the D-optimal design and the high models, the variances of the estimators
are close to asymptotic variance. The variance estimator also works well
for these examples. In the corresponding plots the distributions of the
estimators are coming closer to resemble a normal distribution.

The problem of degenerated estimates has nearly completely vanished for
all the �high-wide� models and the �high-narrow� model together with
the D-optimal design. Though, the percentage of failed estimates is still
remarkably large for several of the low models.

N = 100, Tables 4.15 to 4.17

Comparing the designs, the superiority of the D-optimal design prevails.
Estimation of the parameter � remains to be an exception to this rule for
some cases. The reduction in mean squared error if the D-optimal design is
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chosen is appreciable for several cases. The same can be said about the 8-
point design compared to the 7-point design. As for the sample sizeN = 50,
the variances of the estimators come close to the asymptotic variance when
the percentage of useful estimates amounts to 100 %. In addition, the
variance estimators succeed well in the same cases. Some of the plots in the
appendix are almost symmetric and well-shaped, while the opposite is true
for others (particularly for the �low-narrow�model).

For the largest sample size, there are still severe problems with non-existence
for the ML estimator for some combinations, e.g. for the low models and
the D-optimal design. In such cases the FL estimator o¤ers quite a large
improvement in the number of usable estimates, sometimes at the expense
of a higher mean squared error. For the �high-wide� model, the mean
squared errors are comparable for the two estimators (a little lower for the
FL estimator). For the rest, which of the two estimators is associated with
the lowest mean squared error shifts by model and design.

4.5 Discussion

Non-existence of the ML estimator proved to be a substantial problem for
the quadratic logistic model and the sets of true parameters examined here,
especially for small samples. How severe the problem is depends on the
true parameters and the design. The non-optimal designs considered here
were sometimes better than the D-optimal design in this respect, due to
the increased number of design points. The models where the response
curve � (x) is low were more problematic, in particular the �low-narrow�
model where existence practically never occurred for the smallest sample
size (N = 10) and only in 35 % of the times for the largest sample size
(N = 100). The practical consequence is that large samples, demanding
big time and money e¤orts, need to be taken and yet there may be a large
risk of not obtaining estimates.

The D-optimal design was generally preferred over the non-optimal designs
in terms of mean squared error. Some exceptions occurred, mainly for es-
timation of the parameter �. Furthermore, the di¤erences between the de-
signs were relatively small in these cases. Unless estimation of � is the main
objective, there is potential for considerable improvements by choosing the
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D-optimal design. It was particularly the case for estimation of the para-
meter �, corresponding to estimation of the point of maximum response.
Among the non-optimal designs the better choice was the symmetric 8-
point design, speci�cally with regard to estimation of �. The results were
not as clear-cut when it came to the problems with non-existence for the
ML estimator. The choice of design did have a large impact on the severity
of these problems. The complications of degenerated estimates for the FL
estimator were the least serious when the D-optimal design was used.

There turned out to be large discrepancies between the asymptotic sampling
distributions of the estimators and the small-sample distributions (given
that estimates exist and are not degenerated). It was only for large N and
when the proportion of useful estimates was close to 100 %, that the sim-
ulation sample variance was close to the theoretical approximate variance.
This is problematic since the optimal designs are derived based on the as-
sumption that the theoretical approximate variance is true. The accuracy
of the variance estimator was also a¤ected by the proportion of degenerated
estimates.

The FL estimator is proposed as a solution to the non-existence problems. It
performed better in this respect, but instead it su¤ered from other problems
resulting in poor estimates. The extent of these problems was related to
the proportion of non-existence for the ML estimator, the worst examples
are also associated with a high proportion of degenerated FL estimates.
However, in several cases the proportion of failed estimates was greatly
reduced, especially for the D-optimal design.

All in all, the parameter dependence issue set aside, choosing the D-optimal
design would be preferable. Sequential experimentation is available as a pos-
sible solution to the problem of parameter dependence. Sequential designs
is the topic of the next two chapters.
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Table 4.6: Maximum likelihood estimation (ML) and estimation based on
Firths�modi�ed likelihood (FL).
Sample size: N=10
Design: D-optimal
a) The probability that the ML estimate does not exist
b) The probability that the estimate is degenerated

Model
�high-wide�
� = (2;�0:1; 0)0

�high-narrow�
� = (2;�4; 0)0

�low-wide�
� = (�2;�0:1; 0)0

�low-narrow�
� = (�2;�4; 0)0

Estimator ML FL ML FL ML FL ML FL

a 0:65 0:65 1:00 1:00
b 0:03 0:04 0:02 0:03 0:00 0:61 0:00 0:61

MSE
0:90
0:00
1:33

1:14
0:00
1:08

0:77
2:84
0:14

1:09
2:99
0:07

4:49
0:00
0:01

2:00
0:00
1:68

4:49
4:66
0:00

2:00
2:42
0:04

E
�b�� 1:33

�0:07
0:00

1:93
�0:09
0:00

1:49
�2:84
0:01

1:96
�3:71
0:01

0:10
�0:05
0:00

�0:64
�0:07
0:00

0:10
�1:98
0:00

�0:64
�2:93
0:00

V
�b�� 0:45

0:00
1:33

1:14
0:00
1:08

0:51
1:50
0:14

1:09
2:90
0:07

0:10
0:00
0:01

0:14
0:00
1:68

0:10
0:58
0:00

0:14
1:29
0:04

AV
�b�� 2:50

0:00
0:65

2:06
6:01
0:02

2:38
0:03
10:01

2:38
55:57
0:25

E
hbV �b��i 2:10

0:00
5:06

2:98
0:00
8:02

3:21
6:33
27:70

3:45
7:69
9:03

1:03
0:01
5:75

1:16
0:01
28:62

1:03
11:32
0:14

1:16
16:70
0:71

V
hbV �b��i 0:10

0:00
1:1 � 102

1:65
0:00

4:9 � 103

1:4 � 102
1:60
> 104

2:8 � 102
9:92
> 104

0:01
0:00
2:10

0:01
0:00

4:5 � 103

0:01
0:36
0:00

0:07
1:12
2:85
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Table 4.7: Maximum likelihood estimation (ML) and estimation based on
Firths�modi�ed likelihood (FL).
Sample size: N=10
Design: 7-point
a) The probability that the ML estimate does not exist
b) The probability that the estimate is unusable

Model
�high-wide�
� = (2;�0:1; 0)0

�high-narrow�
� = (2;�4; 0)0

�low-wide�
� = (�2;�0:1; 0)0

�low-narrow�
� = (�2;�4; 0)0

Estimator ML FL ML FL ML FL ML FL

a 0:51 0:99 0:89 1:00
b 0:11 0:06 0 0:69 0:01 0:85 0 1:00

MSE
1:26
0:01
9:19

0:65
0:00
2:30

3:61
12:20
0:32

6:61
15:65
3:61

4:12
0:17
2:00

2:26
0:01
7:95

3:98
12:44
0:27

1:74
15:81
4:23

E
�b�� 2:36

�0:13
�0:79

2:03
�0:10
0:04

0:19
�0:51
�0:44

�0:51
�0:05
�1:08

�0:08
�0:39
0:57

�0:55
�0:03
�0:00

�0:01
�0:47
�0:45

�0:69
�0:02
�1:19

V
�b�� 1:14

0:01
8:56

0:65
0:00
2:30

0:33
0:02
0:12

0:31
0:01
2:46

0:46
0:08
1:67

0:16
0:00
7:95

0:01
0:01
0:07

0:01
0:00
2:81

AV
�b�� 1:22

0:01
2:35

10:11
13:85
0:04

2:07
0:07
14:21

94:22
2:6 � 102
1:57

E
hbV �b��i 29:57

0:03
1:9 � 102

2:9 � 102
0:01
> 104

1:71
0:65
1:55

0:78
0:01
0:29

2:02
0:41
7:02

0:79
0:01
> 104

1:49
0:63
1:71

0:66
0:01
0:34

V
hbV �b��i > 104

0:01
> 104

> 104

0:00
> 104

0:65
0:04
0:22

0:78
0:01
0:29

1:1 � 102
0:15

3:2 � 103

64:65
0:00
> 104

0:02
0:01
0:05

0:03
0:00
1:31
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Table 4.8: Maximum likelihood estimation (ML) and estimation based on
Firths�modi�ed likelihood (FL).
Sample size: N=10
Design: 8-point
a) The probability that the ML estimate does not exist
b) The probability that the estimate is degenerated

Model
�high-wide�
� = (2;�0:1; 0)0

�high-narrow�
� = (2;�4; 0)0

�low-wide�
� = (�2;�0:1; 0)0

�low-narrow�
� = (�2;�4; 0)0

Estimator ML FL ML FL ML FL ML FL

a 0:51 0:89 0:90 1:00
b 0:08 0:05 0 0:01 0:01 0:53 0 0:80

MSE
0:62
0:01
4:03

0:65
0:00
2:81

0:96
6:06
0:13

4:51
15:42
0:06

7:04
0:73
6:15

1:23
0:00
4:78

8:02
4:92
0:19

0:79
15:81
0:16

E
�b�� 1:79

�0:12
0:00

1:96
�0:09
0:00

1:09
�1:57
0:00

�0:05
�0:07
0:00

0:56
�0:67
0:00

�0:96
�0:03
0:00

0:82
�1:80
0:00

�1:13
�0:02
0:00

V
�b�� 0:57

0:01
4:03

0:66
0:00
2:81

0:12
0:14
0:13

0:32
0:00
0:06

0:51
0:41
6:15

0:15
0:00
4:78

0:04
0:09
0:19

0:04
0:00
0:16

AV
�b�� 1:63

0:00
1:01

5:05
23:97
0:05

2:02
0:04
13:72

7:90
1:7 � 102
0:59

E
hbV �b��i 6:36

0:02
33:84

21:17
0:01
> 104

1:98
2:73
0:29

0:82
0:01
0:03

5:68
0:92
76:38

0:98
0:01

5:4 � 102

2:03
3:72
0:28

1:05
0:01
0:02

V
hbV �b��i 1:3 � 103

0:01
> 104

> 104

0:00
> 104

0:03
1:81
0:01

0:01
0:00
0:00

> 104

2:18
> 104

18:25
0:00
> 104

0:04
0:74
0:01

0:00
0:00
0:00
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Table 4.9: Maximum likelihood estimation (ML) and estimation based on
Firths�modi�ed likelihood (FL).
Sample size: N=20
Design: D-optimal
a) The probability that the ML estimate does not exist
b) The probability that the estimate is degenerated

Model
�high-wide�
� = (2;�0:1; 0)0

�high-narrow�
� = (2;�4; 0)0

�low-wide�
� = (�2;�0:1; 0)0

�low-narrow�
� = (�2;�4; 0)0

Estimator ML FL ML FL ML FL ML FL

a 0:24 0:26 0:98 0:98
b 0:01 0:01 0:00 0:00 0:00 0:15 0:00 0:15

MSE
0:73
0:00
0:71

0:97
0:00
0:59

0:73
2:20
0:03

1:10
2:88
0:02

0:81
0:01
0:10

0:81
0:00
0:51

0:81
9:10
0:00

0:82
6:15
0:01

E
�b�� 2:05

�0:10
�0:01

2:05
�0:10
0:02

1:94
�4:03
0:00

2:03
�4:01
0:00

�1:27
�0:03
0:00

�1:02
�0:09
0:00

�1:27
�1:25
0:00

�1:60
�2:38
0:00

V
�b�� 0:72

0:00
0:71

0:97
0:00
0:59

0:73
2:20
0:03

1:10
2:88
0:02

0:27
0:00
0:10

0:16
0:00
0:95

0:27
1:56
0:00

0:66
3:54
0:01

AV
�b�� 1:02

0:00
0:38

1:25
3:02
0:01

1:59
0:02
4:29

1:59
27:42
0:11

E
hbV �b��i 1:23

0:00
2:19

1:32
0:00
1:96

15:15
3:92
24:12

2:37
4:13
1:69

1:05
0:01
48:15

1:01
0:01
13:25

1:38
10:36
1:71

1:57
16:85
> 104

V
hbV �b��i 0:89

0:00
1:3 � 103

0:74
0:00

4:8 � 102

> 104

2:08
> 104

> 104

5:67
> 104

0:05
0:00

1:0 � 103

24:47
0:00
> 104

2:3 � 103
2:09

5:3 � 103

15:83
29:92
> 104
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Table 4.10: Maximum likelihood estimation (ML) and estimation based on
Firths�modi�ed likelihood (FL).
Sample size: N=20
Design: 7-point
a) The probability that the ML estimate does not exist
b) The probability that the estimate is degenerated

Model
�high-wide�
� = (2;�0:1; 0)0

�high-narrow�
� = (2;�4; 0)0

�low-wide�
� = (�2;�0:1; 0)0

�low-narrow�
� = (�2;�4; 0)0

Estimator ML FL ML FL ML FL ML FL

a 0:18 0:95 0:73 1:00
b 0:07 0:03 0 0:10 0:02 0:58 0 0:99

MSE
0:78
0:01
2:95

0:68
0:00
1:88

1:28
5:27
0:05

8:51
15:32
0:33

1:96
0:30
3:32

0:73
0:01
2:93

1:79
11:71
0:40

0:23
15:83
0:57

E
�b�� 2:29

�0:12
�0:34

2:11
�0:10
�0:16

1:14
�1:77
�0:03

�0:84
�0:09
�0:09

�0:73
�0:44
0:23

�1:31
�0:04
0:45

�0:71
�0:59
�0:29

�1:65
�0:02
0:34

V
�b�� 0:70

0:00
2:83

0:67
0:00
1:85

0:53
0:30
0:05

0:44
0:01
0:32

0:35
0:19
3:26

0:26
0:00
2:72

0:14
0:10
0:32

0:10
0:00
0:55

AV
�b�� 0:65

0:00
0:89

4:06
7:50
0:03

1:13
0:03
6:58

64:22
2:2 � 102
1:28

E
hbV �b��i 5:12

0:00
42:65

6:2 � 102
0:00
> 104

1:88
1:92
0:14

0:54
0:01
0:03

1:10
0:48
15:25

0:59
0:01
2:90

1:13
0:67
1:07

0:66
0:00
0:21

V
hbV �b��i > 104

0:00
> 104

> 104

0:00
> 104

0:24
0:29
0:07

0:05
0:00
0:01

1:21
0:65

4:2 � 104

0:13
0:00

5:6 � 102

0:04
0:41
0:19

0:02
0:00
0:06
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Table 4.11: Maximum likelihood estimation (ML) and estimation based on
Firths�modi�ed likelihood (FL).
Sample size: N=20
Design: 8-point
a) The probability that the ML estimate does not exist
b) The probability that the estimate is degenerated

Model
�high-wide�
� = (2;�0:1; 0)0

�high-narrow�
� = (2;�4; 0)0

�low-wide�
� = (�2;�0:1; 0)0

�low-narrow�
� = (�2;�4; 0)0

Estimator ML FL ML FL ML FL ML FL

a 0:16 0:58 0:64 0:99
b 0:07 0:02 0 0:00 0:02 0:56 0 0:90

MSE
0:66
0:01
2:53

0:64
0:00
1:75

0:55
2:93
0:05

3:89
14:89
0:33

2:03
0:72
2:94

0:77
0:01
13:41

1:75
6:17
0:13

0:28
15:82
0:62

E
�b�� 2:26

�0:13
�0:04

2:11
�0:10
�0:08

1:58
�2:91
�0:02

0:11
�0:14
0:32

�0:71
�0:64
�0:02

�1:22
�0:03
�1:13

�0:74
�1:58
0:07

�1:50
�0:02
�0:40

V
�b�� 0:58

0:01
2:53

0:64
0:00
1:75

0:38
1:75
0:05

0:32
0:01
0:23

0:37
0:43
2:94

0:16
0:00
12:12

0:15
0:30
0:13

0:03
0:00
0:46

AV
�b�� 0:65

0:00
0:80

2:03
9:82
0:02

0:83
0:03
7:88

3:25
69:49
0:25

E
hbV �b��i 2:57

0:01
25:55

> 104

0:00
> 104

1:36
6:01
0:07

0:37
0:01
0:04

1:34
1:11
30:28

0:37
0:01
8:77

0:95
4:24
0:30

0:52
0:00
0:13

V
hbV �b��i 4:7 � 104

0:00
> 104

> 104

0:00
> 104

0:17
16:64
0:00

0:04
0:00
0:00

20:49
3:78
> 104

1:7 � 103
0:00
> 104

0:00
4:77
0:02

0:00
0:00
0:06
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Table 4.12: Simulation results of maximum likelihood estimation (ML) and
estimation based on Firths�modi�ed likelihood (FL).
Sample size: N=50
Design: D-optimal
a) Percent of the simulations where the ML estimate did not exist
b) Percent of the simulations where the estimate degenerated

Model
�high-wide�
� = (2;�0:1; 0)0

�high-narrow�
� = (2;�4; 0)0

�low-wide�
� = (�2;�0:1; 0)0

�low-narrow�
� = (�2;�4; 0)0

Estimator ML FL ML FL ML FL ML FL

a 0:02 0:02 0:88 0:88
b 0 0:00 0 0 0:02 0:10 0:02 0:10

mse
0:68
0:00
0:15

0:60
0:00
0:14

0:69
1:75
0:00

0:60
1:39
0:00

0:35
0:00
1:02

0:43
0:00
1:42

0:48
6:12
0:30

0:44
3:60
0:05

mean
�b�� 2:16

�0:11
0:01

2:01
�0:10
0:01

2:18
�4:36
�0:00

2:03
�4:03
�0:00

�1:85
�0:05
0:01

�1:79
�0:08
0:01

�1:84
�1:97
�0:00

�1:78
�3:23
�0:00

var
�b�� 0:66

0:00
0:15

0:60
0:00
0:14

0:66
1:62
0:00

0:59
1:38
0:00

0:32
0:00
1:02

0:39
0:00
1:42

0:46
2:00
0:30

0:40
3:01
0:05

AV
�b�� 0:55

0:00
0:12

0:55
1:26
0:00

0:59
0:01
1:77

0:59
10:92
0:04

mean
hbV �b��i 0:67

0:00
0:16

0:64
0:00
0:18

0:68
1:61
0:00

0:64
1:48
0:00

0:63
0:00

1:3 � 102

0:62
0:01
95:98

1:1 � 102
7:10

2:9 � 102

1:17
9:38
3:27

var
hbV �b��i 0:10

0:00
0:06

0:15
0:00
0:08

0:11
0:48
0:00

0:15
0:52
0:00

0:12
0:00
> 104

0:20
0:00
> 104

> 104

3:71
> 104

88:36
11:70
3:0 � 102
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Table 4.13: Simulation results of maximum likelihood estimation (ML) and
estimation based on Firths�modi�ed likelihood (FL).
Sample size: N=50
Design: 7-point
a) Percent of the simulations where the ML estimate did not exist
b) Percent of the simulations where the estimate degenerated

Model
�high-wide�
� = (2;�0:1; 0)0

�high-narrow�
� = (2;�4; 0)0

�low-wide�
� = (�2;�0:1; 0)0

�low-narrow�
� = (�2;�4; 0)0

Estimator ML FL ML FL ML FL ML FL

a 0:01 0:66 0:27 1:00
b 0:01 0:00 0 0:00 0:03 0:22 0 0:95

mse
0:45
0:00
0:99

0:31
0:00
0:74

0:87
1:27
0:01

6:69
13:22
0:35

0:64
0:28
2:71

0:35
0:01
4:46

0:01
12:97
0:43

0:21
15:84
1:53

mean
�b�� 2:23

�0:11
�0:20

2:06
�0:10
�0:11

1:88
�3:43
�0:01

�0:49
�0:40
�0:46

�1:43
�0:40
0:10

�1:76
�0:06
0:06

�1:90
�0:40
�0:66

�2:43
�0:02
�0:57

var
�b�� 0:40

0:00
0:95

0:31
0:00
0:73

0:86
0:95
0:01

0:50
0:30
0:14

0:31
0:19
2:70

0:29
0:00
4:45

0
0
0

0:02
0:00
1:21

AV
�b�� 0:25

0:00
0:38

1:57
2:50
0:01

0:44
0:01
2:80

19:37
60:62
0:42

mean
hbV �b��i 0:65

0:00
3:98

0:36
0:00
2:32

1:56
2:20
0:01

0:33
0:09
0:02

0:66
0:38
15:60

0:33
0:01
3:53

0:98
0:29
1:34

0:62
0:00
90:90

var
hbV �b��i 65:04

0:00
2:2 � 103

0:77
0:00

6:1 � 103

0:28
0:52
0:00

0:02
0:05
0:00

1:38
0:55
> 104

0:01
0:00

1:5 � 102

0
0
0

1:39
0:00
> 104
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Table 4.14: Simulation results of maximum likelihood estimation (ML) and
estimation based on Firths�modi�ed likelihood (FL).
Sample size: N=50
Design: 8-point
a) Percent of the simulations where the ML estimate did not exist
b) Percent of the simulations where the estimate degenerated

Model
�high-wide�
� = (2;�0:1; 0)0

�high-narrow�
� = (2;�4; 0)0

�low-wide�
� = (�2;�0:1; 0)0

�low-narrow�
� = (�2;�4; 0)0

Estimator ML FL ML FL ML FL ML FL

a 0:01 0:16 0:19 0:92
b 0:00 0:00 0 0 0:02 0:17 0 0:61

mse
0:37
0:00
0:53

0:31
0:00
0:39

0:44
2:85
0:01

0:97
7:63
0:05

0:62
0:86
2:55

0:32
0:01
4:11

0:54
4:96
0:10

0:17
15:78
0:36

mean
�b�� 2:16

�0:11
0:02

2:04
�0:10
0:01

2:03
�4:11
0:00

1:40
�2:00
0:00

�1:42
�0:58
�0:00

�1:76
�0:06
0:02

�1:47
�2:01
�0:00

�2:33
�0:03
0:01

var
�b�� 0:35

0:00
0:53

0:31
0:00
0:39

0:44
2:83
0:01

0:60
3:64
0:05

0:29
0:63
2:55

0:26
0:00
4:11

0:26
1:00
0:10

0:07
0:00
0:36

AV
�b�� 0:27

0:00
0:28

0:84
4:00
0:01

0:34
0:01
3:04

1:32
27:90
0:10

mean
hbV �b��i 0:37

0:00
1:39

0:31
0:00
0:70

0:88
4:31
0:02

0:50
1:17
0:05

0:66
0:85
21:80

0:49
0:00

1:5 � 102

0:68
5:60
0:22

0:42
0:00
30:28

var
hbV �b��i 2:15

0:00
1:5 � 103

0:05
0:00
31:37

0:15
4:98
0:00

0:33
7:05
0:00

3:77
4:92
> 104

0:49
0:00
> 104

0:01
13:46
0:03

0:01
0:00

3:2 � 102
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Table 4.15: Simulation results of maximum likelihood estimation (ML) and
estimation based on Firths�modi�ed likelihood (FL).
Sample size: N=100
Design: D-optimal
a) Percent of the simulations where the ML estimate did not exist
b) Percent of the simulations where the estimate was unusable

Model
�high-wide�
� = (2;�0:1; 0)0

�high-narrow�
� = (2;�4; 0)0

�low-wide�
� = (�2;�0:1; 0)0

�low-narrow�
� = (�2;�4; 0)0

Estimator ML FL ML FL ML FL ML FL

a 0 0:00 0:64 0:65
b 0 0 0 0 0:04 0:05 0:03 0:05

mse
0:33
0:00
0:07

0:28
0:00
0:07

0:33
0:78
0:00

0:28
0:64
0:00

0:19
0:00
0:80

0:21
0:00
1:27

0:19
2:87
0:08

0:22
2:84
0:11

mean
�b�� 2:10

�0:10
0:00

2:01
�0:10
0:00

2:10
�4:18
0:00

2:01
�4:01
0:00

�1:95
�0:07
0:01

�1:88
�0:09
0:02

�1:95
�2:94
�0:00

�1:87
�3:69
0:00

var
�b�� 0:32

0:00
0:07

0:28
0:00
0:07

0:32
0:74
0:00

0:28
0:64
0:00

0:19
0:00
0:80

0:20
0:00
1:27

0:19
1:75
0:08

0:20
2:75
0:11

AV
�b�� 0:26

0:00
0:06

0:26
0:61
0:00

0:28
0:00
0:91

0:28
5:46
0:02

mean
hbV �b��i 0:29

0:00
0:07

0:28
0:00
0:07

0:29
0:69
0:00

0:28
0:66
0:00

0:28
0:00
5:65

0:31
0:00
10:12

1:77
4:57
14:63

6:12
5:77
15:74

var
hbV �b��i 0:01

0:00
0:00

0:01
0:00
0:00

0:01
0:03
0:00

0:01
0:02
0:00

0:01
0:00

3:4 � 102

0:14
0:00

4:4 � 103

1:7 � 103
0:88
> 104

> 104

3:58
> 104
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Table 4.16: Simulation results of maximum likelihood estimation (ML) and
estimation based on Firths�modi�ed likelihood (FL).
Sample size: N=100
Design: 7-point
a) Percent of the simulations where the ML estimate did not exist
b) Percent of the simulations where the estimate degenerated

Model
�high-wide�
� = (2;�0:1; 0)0

�high-narrow�
� = (2;�4; 0)0

�low-wide�
� = (�2;�0:1; 0)0

�low-narrow�
� = (�2;�4; 0)0

Estimator ML FL ML FL ML FL ML FL

a 0 0:31 0:03 1:00
b 0:00 0:00 0 0 0:01 0:05 0 0:82

mse
0:17
0:00
0:31

0:14
0:00
0:28

0:75
0:96
0:00

1:03
1:80
0:03

0:28
0:26
1:63

0:23
0:01
2:76

0:53
9:92
0:18

1:22
15:81
1:61

mean
�b�� 2:10

�0:11
�0:10

2:02
�0:10
�0:05

2:10
�4:01
0:00

1:91
�3:80
�0:02

�1:74
�0:32
0:10

�1:87
�0:08
�0:05

�2:02
�0:90
�0:32

�3:08
�0:02
�0:63

var
�b�� 0:16

0:00
0:30

0:14
0:00
0:28

0:74
0:96
0:00

1:02
1:76
0:03

0:22
0:21
1:62

0:21
0:01
2:76

0:53
0:31
0:08

0:05
0:00
1:22

AV
�b�� 0:13

0:00
0:19

0:76
1:28
0:01

0:22
0:01
1:39

10:31
33:37
0:22

mean
hbV �b��i 0:15

0:00
0:39

0:14
0:00
0:38

0:86
1:40
0:01

0:83
1:41
0:02

0:32
0:27
9:14

0:31
0:01
77:03

0:92
0:80
0:72

0:55
0:00

1:0 � 102

var
hbV �b��i 0:03

0:00
14:73

0:02
0:00
11:20

0:13
0:26
0:00

0:21
0:74
0:00

0:34
1:74
> 104

0:53
0:00
> 104

0:00
0:30
0:58

0:18
0:00
> 104
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Table 4.17: Simulation results of maximum likelihood estimation (ML) and
estimation based on Firths�modi�ed likelihood (FL).
Sample size: N=100
Design: 8-point
a) Percent of the simulations where the ML estimate did not exist
b) Percent of the simulations where the estimate degenerated

Model
�high-wide�
� = (2;�0:1; 0)0

�high-narrow�
� = (2;�4; 0)0

�low-wide�
� = (�2;�0:1; 0)0

�low-narrow�
� = (�2;�4; 0)0

Estimator ML FL ML FL ML FL ML FL

a 0 0:02 0:01 0:78
b 0 0 0 0 0:01 0:04 0 0:23

mse
0:16
0:00
0:21

0:13
0:00
0:18

0:47
2:15
0:01

0:54
3:17
0:01

0:24
0:36
1:46

0:19
0:01
2:49

0:32
3:43
0:07

0:86
15:73
0:80

mean
�b�� 2:08

�0:10
�0:01

2:01
�0:10
�0:01

2:14
�4:28
�0:00

1:92
�3:68
�0:00

�1:74
�0:35
0:00

�1:87
�0:08
0:01

�1:84
�2:65
0:01

�2:85
�0:04
�0:10

var
�b�� 0:15

0:00
0:21

0:14
0:00
0:18

0:45
2:08
0:00

0:53
3:08
0:01

0:18
0:29
1:46

0:17
0:01
2:49

0:30
1:61
0:07

0:15
0:09
0:79

AV
�b�� 0:13

0:00
0:15

0:40
1:92
0:00

0:17
0:01
1:56

0:63
13:41
0:05

mean
hbV �b��i 0:14

0:00
0:22

0:14
0:00
0:21

0:49
2:23
0:00

0:42
1:75
0:01

0:26
0:24
20:89

0:25
0:01

3:8 � 102

0:49
6:28
0:12

0:34
0:02
75:36

var
hbV �b��i 0:00

0:00
3:42

0:00
0:00
0:20

0:08
0:98
0:00

0:15
2:17
0:00

0:11
1:02
> 104

0:38
0:00
> 104

0:02
11:73
0:02

0:01
0:17
> 104



Chapter 5

Sequential Designs

One of the main interests for RSM is to determine the optimum operating
conditions, i.e. to locate the point of maximum or minimum response.
Examples on response variables to be optimized are di¤erent quality aspects
of a product, such as yield or strength. The fact that the optimal design
depends on the unknown true model parameters for the quadratic logistic
model is troublesome. Of course, there would be no point in performing
experiments if the true parameters were known. One approach to solve this
problem is to use sequential designs. Starting with a preliminary estimate
or guess of the parameters a locally optimal design can be constructed.
This design is then used to update the parameter estimates, which in turn
leads to another locally optimal design, new parameter estimates and so on.
Sequential designs for binary data with the purpose to estimate a percentile
of the response curve are treated in Wu (1985).

The theory of stochastic approximation provides an alternative method for
estimation of the optimum point of a response function. Stochastic approx-
imation started with the work of Robbins and Monro (1951) and Kiefer
and Wolfowitz (1952) and is a nonparametric sequential approach. The
design points are determined successively according to a recursive scheme
such that the resulting sequence will converge to the point of optimum re-
sponse. A stochastic approximation method is evaluated for binary data in
the case of estimating a percentile of the response curve in Wu (1985). Wu
(1986) goes through the connections and di¤erences between the stochas-
tic approximation method and a parametric approach based on maximum
likelihood estimation.
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Here, two sequential design approaches are considered. The �rst sequen-
tial design is an adaptive nonparametric stochastic approximation approach
based on the recursion of Kiefer and Wolfowitz. In accordance with a re-
cursive scheme successive observations are made on the response variable in
a way that the sequence of design points x1; x2; ::: converges to �. This ap-
proach is adaptive in the sense that it makes use of the information gained
so far by adjusting the step from xr to xr+1. The second approach is para-
metric; optimal designs are derived sequentially based on the assumption
that the most recent parameter estimates are true. Locally c-optimal de-
signs consisting of two equally weighted designs points are computed at each
stage, using two versions of the standardized information matrix. The �rst
is the regular version that re�ects the information in the candidate design
and the second one is a weighted version that also takes into account the
information in the already observed points.

5.1 A Nonparametric Sequential Design

Let f (x) denote a response function that is unknown. Robbins and Monro
(1951) give a stochastic approximation method for �nding the solution x = �
to the equation f (x) = d, where d is a constant. It is assumed that f (x) = d
has a unique solution � and that for every x observations can be made on a
random variable Y (x) such that E [Y (x)] = f (x). Starting at an arbitrary
x1 consecutive observations are made on Y (x) at x2; x3; ::: in such a way
that xr converges to � as r ! 1. At xr the next design point, xr+1, is
chosen according to the following scheme

xr+1 = xr + ar (yr � d) ; (5.1)

where farg is a �xed in�nite sequence of decreasing positive constants sat-
isfying

P
a2r < 1. The choice of the constants farg is important for the

performance of the sequence fxrg : In the sense of achieving minimal asymp-
totic variance it is optimal to set ar equal to � [rf 0 (�)]�1, see e.g. Chung
(1954) and Sacks (1958). However, f 0 (�) is generally unknown and needs to
be estimated. One possible estimator is the least squares estimator of the
slope in the regression Y on x. An adaptive version of the Robbins-Monro
procedure, where the estimate of f 0 (�) is updated at each step by using the
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least squares estimator, is given by

xr+1 = xr �
�
nb�r��1 (yr � d) ; (5.2)

where b�r =

P
yi (xi � xr)P
(xi � xr)2

; xr =

P
xr
n
:

This procedure is described by Anbar (1978) and was reviewed and evalu-
ated for binary data in Wu (1985). The adaptive procedure (5:2) was proven
to be asymptotically equivalent to the nonadaptive Robbins-Monro proce-
dure (5:1) with ar = � [rf 0 (�)]�1 by Anbar (1978) and Lai and Robbins
(1979).

The Robbins-Monro procedure was further developed by Kiefer and Wol-
fowitz (1952) and extended to the case of estimating the maximum of a
response function. The unknown response function f (x) has its maximum
at the point � and f (x) is assumed to be strictly increasing (decreasing) for
x < � (x > �) : Furthermore it is assumed that observations can be taken
on the random variable Y (x) at any level x and that E [Y (x)] = f (x) : The
principle is the same as for the Robbins-Monro procedure, that is succes-
sive observations are made on Y (x) according to a speci�ed scheme. The
di¤erence is that observations are made in pairs at each step. Starting at
an arbitrary x1, the following x2; x3; ::: are obtained by making observations
at xr � cr, i.e. both Y (xr � cr) and Y (xr + cr) are observed at each step.
The sequence fxrg is de�ned as

xr+1 = xr + ar
y (xr + cr)� y (xr � cr)

2cr
= xr + arzr (5.3)

and converges to � as r ! 1: farg and fcrg are preassigned in�nite se-
quences of positive numbers such that

cr ! 0;P
ar = 1;P

arcr < 1;P
a2rc

2
r < 1:

For example ar = r�1 and cr = r�1=3 satisfy these conditions. The ran-
dom variable Zr = [Y (xr + cr)� Y (xr � cr)] = (2cr) can be viewed as an
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approximation to the derivative of the response function at xr. This reduces
the problem to �nd the maximum of f (x) to that of �nding the solution
to the equation f 0 (x) = 0. The recursion (5:3) can then be thought of as
a special case of the Robbins-Monro method for �nding the solution x = �
to f 0 (x) = 0 by making successive observations on Z.

In this thesis the procedure of Kiefer and Wolfowitz is combined with the
adaptive Robbins-Monro procedure (5:2) described above for estimating
the maximum of the response function � (x), abbreviated as KW here-
after. At each step m observations are taken at xr � cr so that the nu-
merical derivative becomes Zr = [Y (xr + cr)� Y (xr + cr)] = (2mcr) where
Y (xr + cr) � bin (m;� (xr + cr)) and Y (xr � cr) � bin (m;� (xr � cr)). A
graphical illustration is given in Figure 5.1. Starting at an arbitrary x1, the
value on xr is then updated via the adaptive Robbins-Monro procedure

xr+1 = xr �
�
nb�r��1 zr

where b�r is the least squares estimator of the slope in the regression Z on
x. The estimate of the optimum point at the r : th step will then be given
by b�r = xr:
Kiefer and Wolfowitz (1952) put some conditions on the response function
that prevents it from being too steep or to �atten out towards zero. If
the curve is too steep it may cause unduly large changes in x and any
observations taken where the response curve is zero will be uninformative,
making it impossible to know in which direction to take the next step. Kiefer
and Wolfowitz comment however, that it will be su¢ cient if the conditions
are ful�lled in an interval [D1; D2]. No observations will be taken outside
the limits of this interval. The �atness of the logistic response curve may
pose some problems unless there is knowledge about an appropriate interval
before the experiment is started. In some situations it may be the case that
such information is not available. The success of this procedure is also
dependent upon good choices of the starting values x1, �1 and c1: If the
starting point is too far o¤, there will be essentially zero probability of
obtaining a response so that no information can be gained. The starting
value for cr should be small enough to avoid unduly large changes in x
and large enough to enable the sequence to move away from a bad starting
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point. The relation between the number of observations taken at each step
and the number of steps is another aspect that probably will be important.
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Figure 5.1: A graphical illustration of the KW approach.

5.2 c-optimal Sequential Designs

The point of maximum response of the quadratic response curve is equal to
the parameter �. Estimating � with minimum variance would be desirable
justifying the use of a c-optimal design with c =(0; 0; 1)0. As an attempt
to handle the problem of parameter dependence, the c-optimal design is
updated sequentially. It was established in Chapter 3 that a c-optimal
design for estimation of the point x = � consists of two points with equal
weight. In essence, two points are taken at a certain distance from each
other, a distance that does not necessarily decrease, as opposed to the
KW approach. This parametric sequential approach, called COPT, can be
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described by the following steps:

1. Choose an initial design �(initial)

2. Estimate the parameters b�(initial)
3. Minimize bcTM�1

�
�; b�(initial)�bc to �nd the locally c-optimal design

given b�(initial) ! ��1 =

�
x1 x2
0:5 0:5

�
4. Take m observations at the design points in ��1 and estimate the pa-

rameters: b�(1)
5. Minimize bcTM�1

�
�; b�(1)�bc to �nd the locally c-optimal design given

b�(1) ! ��2 =

�
x3 x4
0:5 0:5

�
etc.

The parameter estimates b� are the usual maximum likelihood estimates.
The estimate of the optimum point after r steps is then given by b�r:
If the initial design contains N� observations and 2m observations are taken
at each step there are N� + 2mr = Ntot observations in total after r steps.
The observed standardized information matrix can then be expressed as

Mobs

�
�; b�� = NtotP

i=1

1

Ntot
b�i (1� b�i)

0@ 1

(xi � b�)2
�2b� (xi � b�)

1A00@ 1

(xi � b�)2
�2b� (xi � b�)

1A
where b�i = �ex0ib�� =�1 + ex0ib�� : Another version of the previous sequential
design, called COPT2, makes use of the observed information matrix in
the following way. M

�
�; b�� is replaced by a weighted information matrix

computed as

MW

�
�; b�� = Ntot

Ntot + 2m
Mobs

�
�obs; b��+ 2m

Ntot + 2m
M
�
�; b��
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and bcTM�1
W

�
�; b��bc is minimized instead. Mobs is the information matrix

based on all observations up to this point and �obs is the design consisting of
these observations. This is potentially an improvement because it also takes
into account the information from the preceding steps. Besides the changed
information matrix everything is the same as for the COPT procedure.





Chapter 6

A Simulation Study of
Sequential Designs

6.1 Simulation Setup

In this chapter the e¢ ciencies of the two proposed sequential designs are
evaluated in a simulation study. The results of the simulations are also
reported in Fackle Fornius (2008). There are many questions to bring clarity
about including: Is any of the approaches superior? Is there an optimal
choice of c for the KW approach? Is the weighted version of the information
matrix preferred over the unweighted? What is best, taking few steps with
many observations at each step, or taking many steps with few observations?
Are the performances robust to misspeci�cations of the model?

Two parameter sets are considered here: �A=(2;�0:1; 0)
0
and �B=(2;�4; 0)

0
.

The sequential design approaches described in the preceding chapter are an-
alyzed in the simulations. Di¤erent sample sizes ranging from N = 200 to
N = 1000 as well as di¤erent batch sizes are explored. To study the e¤ects
of misspeci�cations in the model an alternative to the linear predictor is
also tested.

All the three approaches; KW, COPT and COPT2 are started from the
same initial design before they take separate paths. Two di¤erent initial
designs are used, see Table 6.1. Design 1 is constructed to be better than
Design 2 for estimation of the point of maximum response �. It is bet-
ter in the sense that it is symmetric around � = 0: c-optimal designs are
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similarly characterized by design points placed symmetrically around �,
but limited to two points. However, it is not possible to obtain maximum
likelihood estimates of the model parameters with a c-optimal design be-
cause two points are not su¢ cient to estimate three parameters. Design
2 is constructed based on the same principle but pushed aside, intended
to represent a beforehand assumption that � is close to 2. The initial de-
signs consist of a fairly large amount of observations (N� = 150) to avoid
the problem of non-existing maximum likelihood estimates, which is also a
motive for choosing many design points.

Table 6.1: Two initial designs.

Design 1
�

�5 �3 �1 �0:5 0:5 1 3 5
5=150 10=150 20=150 40=150 40=150 20=150 10=150 5=150

�

Design 2
�

�3 �1 1 1:5 2:5 3 5 7
5=150 10=150 20=150 40=150 40=150 20=150 10=150 5=150

�

The c-optimal procedures are executed as follows. At the start, observa-
tions are made on the response variable Y at the design points speci�ed

by the initial design. Initial maximum likelihood estimates b�(initial) are
then calculated. Both the COPT and COPT2 approaches are now ready
to start from Step 3 (as described in Section 5.2) with the minimization ofbcTM�1

�
�; b�(initial)�bc: The formulae derived in Chapter 3 can be used to

carry out this task. m response values are now generated at each of the two
c-optimal design points, resulting in a new c-optimal design and so on. 2m
observations are generated per batch until the total number of observations
amounts to N .

The KW approach needs at least two observations on

Z = [Y (x+ c)� Y (x� c)] = (2mc)

before a least squares estimate of the slope parameter in the Z on x regres-
sion can be obtained. As discussed before the KW approach is also sensitive
to the choices of x1 and �1: Some e¤ort is therefore put in selecting good
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starting values. A preliminary estimate of the point of maximum response
is obtained from the initial design. The �rst design point in KW is set equal
to this estimate:

x1 = b�initial:
This point plus the two points given by 0:7� (b�initial), as depicted in Figure
6.1, comprise a start design for the KW approach. There is no elaborate
reason for choosing 0.7 speci�cally, other than that it seemed to work good
in comparison with several alternatives. Observations are made at these
three design points that will result in three observations on Z which then
can be used to obtain the starting value �1: For r = 2; 3; ::: the design points
are obtained according to (5:3) from Section 5.1. Several values on cr are
tested, namely cr = cr�1=3 with c = 1; 3; 5; 7; 9; 11; 13; 15. Three batch sizes
are considered: m = 5; m = 10 and m = 20:
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Figure 6.1: A representation of the choice of �rst design points for the KW
approach. The true response curve is given by the solid line and the estimated
curve is given by the broken line.

To examine the e¤ects of a misspeci�ed model another model with a di¤er-
ent predictor � is also evaluated. Model C de�ned according to
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�i = �abs (x) ;

�i =
e�i

1 + e�i
;

is displayed in Figure 6.2 together with models A and B. The optimum
point has the same location as for the logistic models but the response curve
is lower at the maximum and it has a di¤erent shape. The responses are
generated according to this model while the COPT and COPT2 approaches
still (incorrectly) assume that the three parameter logistic model is true.
The KW approach is nonparametric apart from the initial stage where the
(inaccurate) logistic assumption remains unchanged.
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Figure 6.2: Models A (broken line), B (dotted line) and C (solid line).

6.2 Results

The simulation results are presented in Tables 6.2 to 6.6. Each table shows
the mean squared error (mse) of b� based on 500 simulated samples. The
mse of b� before any of the sequential procedures is started, which is based
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on the initial maximum likelihood estimates of the parameters, is presented
in the second column. In the following columns the mse of b� is given after
in turn N = 200; N = 600 and N = 1000 observations in the sequential
designs, in addition to the N� = 150 observations that was made at the
initial stage. If b�initial is a �bad� point that is far from � it may cause
di¢ culties. For the parametric approaches there may be numerical problems
related to the parameter estimation. These problems appear in either that
the maximum number of iterations is reached or that the computations
result in NaN . NaN stands for �not a number�and turns up in Matlab
when the computations do not produce a numerical result. Being at a
position where the probability to obtain a response is nearly zero, it is
impossible for the KW approach to know in which direction to take next
step; for such cases this approach never leaves the starting point. It can also
happen that the KW sequence ends up at such a position even though the
starting point is �good�. b� is considered deteriorated when jb�j > 10: The
number of deteriorated starting points is shown in brackets in the second
column. The simulation samples that failed, either because of numerical
problems or because b� is deteriorated are discarded and the number of
such samples is shown in brackets. In each table there are four sections;
a� d where a; b and c contain the results for m = 20; m = 10 and m = 5,
respectively. As a reference, section d contains the mse of b� based on taking
all N� + N observations at the initial design and making one maximum
likelihood estimate of �. The N� +N observations are divided among the
initial design points according to the same distribution as for the case with
N� observations. This nonsequential alternative is tested to make certain
that one cannot do just as good without bothering about any sequential
issues.

Model A, design 1. The mse for the two parametric approaches; COPT
and COPT2, are remarkably similar for all N: The choice between di¤erent
values of m does not seem to have any impact on the mse. For the KW
approach it is evident that the constant c is important, the best choice of c
varies from 7 to 11. If c is too small or too large there is a greater risk that
the sequence degenerates to a point that is too far o¤ from where it cannot
recover. This happens more often when m is small. The best KW approach
has about twice the mse of the COPT approaches for m = 20 and m = 10
and up to three times for m = 5. Both the sequential procedures beats the
alternative of making all observations at one time.
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Model A, design 2. The number of �bad� starting points has increased
compared to the previous case because initial design 2 is inferior to design
1. The COPT approaches manage to sort out some of these problematic
cases whereas the number stays the same or even increases for the KW
approach. The mse for COPT and COPT2 are still similar. Although the
mse is greater compared to when design 1 was used at the initial stage it
is about the same size as before for all N: For the KW method the best
choice of c seems to be somewhere between 9 and 13. The mse for the
KW approach does not di¤er that much compared to when initial design 1
was used for the well-behaved cases. However it should be noted that the
problematic cases have increased in number. The COPT approaches are
preferred over the KW approach for all N . The sequential procedures are
still performing better than the non-sequential alternative for all N with
mse in view, while there exist no failing cases when all observations are
made at the same time. All three alternatives for m give about the same
results.

Model B, design 1. The mse is lower even at the initial stage for this model
and it decreases even more as N increases for the COPT approaches. The
KW scheme remains at b�initial almost every time which is also re�ected in
the fact that the mse is not changing. The COPT routines are associated
with the lowest mse followed by the non-sequential alternative. The results
are also the same regardless of the size of m.

Model B, design 2. Another problem that can occur is that of nonexist-
ing maximum likelihood estimates. If the data pattern is such that the
responses are separated from the nonresponses it is not possible to obtain
any maximum likelihood estimates, see Albert and Anderson (1984). It is
only when data are overlapped such that it is not possible to separate the
two di¤erent response types, that parameter estimates exist. For design
2 there are mainly two data points (�1) where both responses and non-
responses can be observed, at all other design points the probability for
a response is nearly zero. Almost all samples will therefore be separated,
only about 2 percent of the samples are overlapped which is the reason for
not presenting these results. This shows how important it is to take the
problems with non-existing estimates seriously.

Model C, design 1. The mse of b� at the initial design is lower when compared
to model A but higher in comparison with model B. The COPT and COPT2
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procedures continue to perform equally well. As more observations are made
the mse decreases although the reduction is not as large as for model A, so
the mse is a little higher than for the other two models for all N . It would
be surprising if the parametric approaches were completely una¤ected by
the misspeci�cation of the model. The nonparametric approach on the
other hand, that would be expected to handle the erroneous model the
best, works no good. For m = 20 the mse even increases with N for some
constants c and for some c it is unchanged. For m = 10 or m = 5 the mse
is at best slightly reduced. The response curve for model C is lower and
has a di¤erent shape which results in that z becomes equal to zero more
often. As a consequence it is more common that the sequence gets stuck
at some point. The descending order of performance turned out to be as
follows; parametric sequential > parametric nonsequential >nonparametric
sequential.

Model C, design 2. The fact that design 2 is poor is re�ected in a higher
mse at the initial stage. COPT and COPT2 recover to almost the same
level as when design 1 was used in the following steps. The results for the
nonparametric procedure show the same tendency that the mse sometimes
gets even higher asN grows or just decreases a little. The same order of per-
formance that puts the parametric sequential design before the parametric
nonsequential followed by the nonparametric method prevails.

6.3 Conclusions

The parametric approach based on constructing a c-optimal design at each
step was superior in all cases that were examined here. It even excelled
the nonparametric approach in the case with an incorrect model. The re-
sults suggest that the problems of parameter dependence can be worked out
by using any of the two parametric approaches. The e¤ect of having the
wrong beforehand idea of the location of the optimum point almost disap-
peared after taking 200 observations sequentially. The sequential paramet-
ric approaches always outperformed the nonsequential strategy of maximum
likelihood estimation of � based on making all observations at once. The
potential improvement from using the observed information matrix in the
construction of designs failed to appear. In fact the performances of COPT
and COPT2 were almost identical.
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Choosing a good constant c is of crucial importance for the success of the
KW approach. In this setting a good choice turned out to be choosing c
somewhere around 10. The main advantage with the nonparametric ap-
proach is its simplicity, that is, not having to make any distributional as-
sumptions. Opposite to what might be expected it was more sensitive to
the misspeci�ed model than the parametric approaches. There were several
cases where the KW approach was outperformed by the nonsequential al-
ternative of making all observations at the initial stage. It was dependent
upon good initial estimates and thereby on a good initial design in the sense
of avoiding a large number of degenerated estimates. There were also many
cases for which the KW approach did not leave the starting point at all.
Possibly, an interval with appropriate limits that prevents the sequence to
degenerate could be a remedy.

Non-existing maximum likelihood estimates may cause problems as was
apparent by the lack of results for model B in combination with design 2.
There were no such problems for model A in combination with design 2
and the only di¤erence between these two response curves is the scale on
the control variable. This implies that considering the measurement scale
of the control variable might be worthwhile.

The di¤erent combinations of the number of observations taken at each
step and the number of steps did not have that large impact on the results
for neither of the approaches, though the problems with degenerated cases
tended to be more frequent for m = 5.

The empirical results imply that there are gains to be made by using a
sequential c-optimal approach for �nding the point of optimum response.
More extensive evaluations and evaluations of theoretical nature are re-
quired.
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Table 6.2: Simulation results of three sequential designs for estimating the
optimum point in model A with initial design 1, mse based on 500 samples .

Design
initial
design N = 200 N = 600 N = 1000

a) m=20

COPT 0:41 (1) 0:020 (1) 0:0075 (0) 0:0044 (0)
COPT2 0:41 (1) 0:023 (1) 0:0071 (0) 0:0043 (0)

KW; c = 1 0:41 (1) 1:25 (1) 0:87 (1) 0:84 (1)
KW; c = 3 0:41 (1) 0:27 (1) 0:11 (1) 0:088 (1)
KW; c = 5 0:41 (1) 0:075 (1) 0:043 (1) 0:037 (1)
KW; c = 7 0:41 (1) 0:040 (1) 0:020 (1) 0:017 (1)
KW; c = 9 0:41 (1) 0:086 (1) 0:015 (1) 0:010 (1)
KW; c = 11 0:41 (1) 0:24 (1) 0:023 (1) 0:011 (1)
KW; c = 13 0:41 (1) 0:35 (1) 0:072 (1) 0:021 (1)
KW; c = 15 0:41 (1) 0:40 (1) 0:17 (1) 0:057 (1)

b) m=10

COPT 0:55 (1) 0:024 (0) 0:0084 (0) 0:0048 (0)
COPT2 0:55 (1) 0:022 (0) 0:0071 (0) 0:0044 (0)

KW; c = 1 0:55 (1) 2:40 (10) 1:73 (14) 1:91 (14)
KW; c = 3 0:55 (1) 0:21 (4) 0:16 (4) 0:14 (4)
KW; c = 5 0:55 (1) 0:10 (5) 0:060 (5) 0:056 (5)
KW; c = 7 0:55 (1) 0:047 (2) 0:029 (2) 0:025 (2)
KW; c = 9 0:55 (1) 0:034 (2) 0:019 (2) 0:013 (2)
KW; c = 11 0:55 (1) 0:072 (2) 0:015 (2) 0:011 (2)
KW; c = 13 0:55 (1) 0:20 (1) 0:020 (1) 0:011 (1)
KW; c = 15 0:55 (1) 0:33 (1) 0:040 (1) 0:014 (1)

c) m=5

COPT 0:51 (1) 0:021 (0) 0:0075 (0) 0:0045 (0)
COPT2 0:51 (1) 0:023 (0) 0:0071 (0) 0:0047 (0)

KW; c = 1 0:51 (1) 4:66 (35) 3:67 (40) 3:87 (46)
KW; c = 3 0:51 (1) 0:47 (3) 0:27 (3) 0:24 (3)
KW; c = 5 0:51 (1) 0:15 (8) 0:11 (8) 0:085 (8)
KW; c = 7 0:51 (1) 0:10 (4) 0:052 (4) 0:050 (4)
KW; c = 9 0:51 (1) 0:048 (3) 0:030 (3) 0:025 (3)
KW; c = 11 0:51 (1) 0:099 (3) 0:022 (3) 0:016 (3)
KW; c = 13 0:51 (1) 0:16 (1) 0:043 (1) 0:041 (1)
KW; c = 15 0:51 (1) 0:10 (2) 0:017 (2) 0:012 (2)

d) all N� +N observations at the initial design

0:45 (1) 0:14 (0) 0:055 (0) 0:037 (0)



92 Chapter 6. A Simulation Study of Sequential Designs

Table 6.3: Simulation results of three sequential designs for estimating the
optimum point in model A with initial design 2, mse based on 500 samples.

Design
initial
design N = 200 N = 600 N = 1000

a) m=20

COPT 2:67 (14) 0:021 (14) 0:016 (10) 0:0043 (9)
COPT2 2:67 (14) 0:022 (13) 0:0081 (9) 0:0046 (8)

KW; c = 1 2:67 (14) 1:92 (32) 1:18 (32) 1:07 (32)
KW; c = 3 2:67 (14) 0:55 (29) 0:29 (29) 0:27 (29)
KW; c = 5 2:67 (14) 0:25 (23) 0:21 (22) 0:20 (22)
KW; c = 7 2:67 (14) 0:27 (20) 0:18 (20) 0:18 (20)
KW; c = 9 2:67 (14) 0:12 (20) 0:022 (20) 0:013 (20)
KW; c = 11 2:67 (14) 0:68 (16) 0:19 (16) 0:17 (16)
KW; c = 13 2:67 (14) 0:98 (18) 0:25 (18) 0:18 (18)
KW; c = 15 2:67 (14) 1:38 (16) 0:42 (16) 0:23

b) m=10

COPT 2:86 (23) 0:022 (10) 0:0080 (4) 0:0042 (4)
COPT2 2:86 (23) 0:023 (11) 0:0068 (2) 0:0044 (2)

KW; c = 1 2:86 (23) 4:02 (48) 3:14 (53) 2:59 (57)
KW; c = 3 2:86 (23) 0:25 (42) 0:19 (42) 0:17 (42)
KW; c = 5 2:86 (23) 0:099 (32) 0:27 (31) 0:27 (31)
KW; c = 7 2:86 (23) 0:067 (24) 0:038 (23) 0:040 (23)
KW; c = 9 2:86 (23) 0:11 (24) 0:030 (24) 0:020 (24)
KW; c = 11 2:86 (23) 0:11 (21) 0:022 (21) 0:018 (21)
KW; c = 13 2:86 (23) 0:25 (23) 0:035 (23) 0:017 (23)
KW; c = 15 2:86 (23) 0:55 (23) 0:052 (23) 0:021 (23)

c) m=5

COPT 2:26 (21) 0:10 (8) 0:0080 (7) 0:0044 (7)
COPT2 2:26 (21) 0:021 (9) 0:0069 (9) 0:0041 (9)

KW; c = 1 2:26 (21) 4:99 (66) 5:02 (75) 5:08 (82)
KW; c = 3 2:26 (21) 0:60 (33) 0:31 (34) 0:30 (34)
KW; c = 5 2:26 (21) 0:14 (32) 0:10 (32) 0:099 (32)
KW; c = 7 2:26 (21) 0:22 (27) 0:25 (27) 0:24 (27)
KW; c = 9 2:26 (21) 0:10 (28) 0:080 (28) 0:076 (28)
KW; c = 11 2:26 (21) 0:053 (26) 0:033 (26) 0:025 (26)
KW; c = 13 2:26 (21) 0:17 (26) 0:019 (26) 0:016 (26)
KW; c = 15 2:26 (21) 0:16 (26) 0:024 (26) 0:020 (26)

d) all N� +N observations at the initial design

2:67 (12) 0:87 (1) 0:21 (0) 0:11 (0)
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Table 6.4: Simulation results of three sequential designs for estimating the
optimum point in model B with initial design 1, mse based on 500 samples .

Design
initial
design N = 200 N = 600 N = 1000

a) m=20

COPT 0:0019 (1) 0:00041 (0) 0:00015 (1) 0:00010 (1)
COPT2 0:0019 (1) 0:00040 (0) 0:00015 (1) 9:8 � 10�5 (1)

KW; c = 1 0:0019 (1) 0:020 (1) 0:24 (1) 0:30 (1)
KW; c = 3 0:0019 (1) 0:0019 (1) 0:0019 (1) 0:0018 (1)
KW; c = 5 0:0019 (1) 0:0019 (1) 0:0019 (1) 0:0019 (1)
KW; c = 7 0:0019 (1) 0:0019 (1) 0:0019 (1) 0:0019 (1)
KW; c = 9 0:0019 (1) 0:0019 (1) 0:0019 (1) 0:0019 (1)
KW; c = 11 0:0019 (1) 0:0019 (1) 0:0019 (1) 0:0019 (1)
KW; c = 13 0:0019 (1) 0:0019 (1) 0:0019 (1) 0:0019 (1)
KW; c = 15 0:0019 (1) 0:0019 (1) 0:0019 (1) 0:0019 (1)

b) m=10

COPT 0:0020 (1) 0:00046 (1) 0:00018 (1) 9:3 � 10�5 (1)
COPT2 0:0020 (1) 0:00048 (1) 0:00016 (1) 9:8 � 10�5 (1)

KW; c = 1 0:0020 (1) 0:39 (3) 0:71 (3) 0:76 (3)
KW; c = 3 0:0020 (1) 0:0020 (1) 0:0021 (1) 0:0014 (1)
KW; c = 5 0:0020 (1) 0:0020 (1) 0:0020 (1) 0:0020 (1)
KW; c = 7 0:0020 (1) 0:0020 (1) 0:0020 (1) 0:0020 (1)
KW; c = 9 0:0020 (1) 0:0020 (1) 0:0020 (1) 0:0020 (1)
KW; c = 11 0:0020 (1) 0:0020 (1) 0:0020 (1) 0:0020 (1)
KW; c = 13 0:0020 (1) 0:0020 (1) 0:0020 (1) 0:0020 (1)
KW; c = 15 0:0020 (1) 0:0020 (1) 0:0020 (1) 0:0020 (1)

c) m=5

COPT 0:0019 (3) 0:00041 (3) 0:00015 (3) 0:00011 (3)
COPT2 0:0019 (3) 0:00048 (3) 0:00017 (3) 9:9 � 10�5 (3)

KW; c = 1 0:0019 (3) 0:13 (6) 0:20 (7) 0:21 (7)
KW; c = 3 0:0019 (3) 0:0019 (3) 0:0027 (3) 0:0048 (3)
KW; c = 5 0:0019 (3) 0:0019 (3) 0:0019 (3) 0:0018 (3)
KW; c = 7 0:0019 (3) 0:0019 (3) 0:0019 (3) 0:0019 (3)
KW; c = 9 0:0019 (3) 0:0019 (3) 0:0019 (3) 0:0019 (3)
KW; c = 11 0:0019 (3) 0:0019 (3) 0:0019 (3) 0:0019 (3)
KW; c = 13 0:0019 (3) 0:0019 (3) 0:0019 (3) 0:0019 (3)
KW; c = 15 0:0019 (3) 0:0019 (3) 0:0019 (3) 0:0019 (3)

d) all N� +N observations at the initial design

0:0020 (3) 0:00080 (0) 0:00043 (0) 0:00024 (0)
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Table 6.5: Simulation results of three sequential designs for estimating the
optimum point in model C with initial design 1, mse based on 500 samples.

Design
initial
design N = 200 N = 600 N = 1000

a) m=20

COPT 0:13 (0) 0:035 (0) 0:014 (0) 0:0087 (0)
COPT2 0:13 (0) 0:036 (0) 0:015 (0) 0:0096 (0)

KW; c = 1 0:13 (0) 0:98 (4) 1:34 (5) 1:31 (6)
KW; c = 3 0:13 (0) 0:19 (0) 0:21 (0) 0:19 (0)
KW; c = 5 0:13 (0) 0:21 (0) 0:24 (0) 0:22 (0)
KW; c = 7 0:13 (0) 0:14 (0) 0:17 (0) 0:16 (0)
KW; c = 9 0:13 (0) 0:13 (0) 0:12 (0) 0:10 (0)
KW; c = 11 0:13 (0) 0:13 (0) 0:13 (0) 0:12 (0)
KW; c = 13 0:13 (0) 0:13 (0) 0:13 (0) 0:13 (0)
KW; c = 15 0:13 (0) 0:13 (0) 0:13 (0) 0:13 (0)

b) m=10

COPT 0:12 (0) 0:030 (0) 0:013 (0) 0:0084 (0)
COPT2 0:12 (0) 0:032 (0) 0:013 (0) 0:0090 (0)

KW; c = 1 0:12 (0) 1:14 (6) 1:35 (8) 1:49 (9)
KW; c = 3 0:12 (0) 0:21 (2) 0:23 (3) 0:30 (3)
KW; c = 5 0:12 (0) 0:10 (0) 0:34 (2) 0:46 (2)
KW; c = 7 0:12 (0) 0:10 (0) 0:060 (1) 0:052 (1)
KW; c = 9 0:12 (0) 0:12 (0) 0:097 (0) 0:082 (0)
KW; c = 11 0:12 (0) 0:12 (0) 0:10 (0) 0:091 (0)
KW; c = 13 0:12 (0) 0:12 (0) 0:11 (0) 0:11 (0)
KW; c = 15 0:12 (0) 0:12 (0) 0:12 (0) 0:11 (0)

c) m=5

COPT 0:13 (0) 0:033 (0) 0:012 (0) 0:0079 (0)
COPT2 0:13 (0) 0:034 (0) 0:014 (0) 0:0082 (0)

KW; c = 1 0:13 (0) 2:70 (13) 2:95 (18) 2:86 (19)
KW; c = 3 0:13 (0) 0:63 (3) 1:01 (4) 1:09 (4)
KW; c = 5 0:13 (0) 0:25 (0) 0:54 (3) 0:61 (3)
KW; c = 7 0:13 (0) 0:11 (0) 0:15 (0) 0:14 (1)
KW; c = 9 0:13 (0) 0:12 (0) 0:10 (0) 0:084 (0)
KW; c = 11 0:13 (0) 0:13 (0) 0:10 (0) 0:098 (0)
KW; c = 13 0:13 (0) 0:13 (0) 0:12 (0) 0:11 (0)
KW; c = 15 0:13 (0) 0:13 (0) 0:12 (0) 0:11 (0)

d) all N� +N observations at the initial design

0:13 (0) 0:067 (0) 0:031 (0) 0:022 (0)
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Table 6.6: Simulation results of three sequential designs for estimating the
optimum point in model C with initial design 2, mse based on 500 samples.

Design
initial
design N = 200 N = 600 N = 1000

a) m=20

COPT 0:59 (2) 0:047 (0) 0:015 (0) 0:010 (0)
COPT2 0:59 (2) 0:042 (0) 0:015 (0) 0:0097 (0)

KW; c = 1 0:59 (2) 2:23 (9) 2:09 (9) 2:04 (9)
KW; c = 3 0:59 (2) 0:63 (6) 0:61 (6) 0:69 (6)
KW; c = 5 0:59 (2) 0:51 (5) 0:46 (5) 0:41 (5)
KW; c = 7 0:59 (2) 0:66 (2) 0:56 (2) 0:58 (2)
KW; c = 9 0:59 (2) 0:49 (3) 0:51 (3) 0:48 (3)
KW; c = 11 0:59 (2) 0:54 (2) 0:53 (2) 0:46 (2)
KW; c = 13 0:59 (2) 0:57 (2) 0:54 (2) 0:52 (2)
KW; c = 15 0:59 (2) 0:59 (2) 0:55 (2) 0:49 (2)

b) m=10

COPT 0:63 (0) 0:044 (0) 0:015 (0) 0:0091 (0)
COPT2 0:63 (0) 0:046 (0) 0:016 (0) 0:010 (0)

KW; c = 1 0:63 (0) 2:63 (11) 2:82 (14) 2:82 (14)
KW; c = 3 0:63 (0) 0:76 (4) 0:90 (4) 1:09 (4)
KW; c = 5 0:63 (0) 0:54 (3) 0:55 (4) 0:55 (4)
KW; c = 7 0:63 (0) 0:53 (0) 0:44 (0) 0:44 (1)
KW; c = 9 0:63 (0) 0:41 (1) 0:32 (1) 0:27 (1)
KW; c = 11 0:63 (0) 0:38 (2) 0:28 (3) 0:24 (3)
KW; c = 13 0:63 (0) 0:53 (1) 0:46 (1) 0:42 (1)
KW; c = 15 0:63 (0) 0:54 (1) 0:49 (1) 0:46 (1)

c) m=5

COPT 0:52 (2) 0:045 (0) 0:016 (0) 0:0095 (0)
COPT2 0:52 (2) 0:035 (0) 0:014 (0) 0:0088 (0)

KW; c = 1 0:52 (2) 5:00 (16) 5:19 (19) 5:32 (20)
KW; c = 3 0:52 (2) 1:54 (7) 1:98 (10) 2:05 (10)
KW; c = 5 0:52 (2) 0:71 (2) 0:89 (2) 0:92 (4)
KW; c = 7 0:52 (2) 0:36 (2) 0:45 (2) 0:50 (2)
KW; c = 9 0:52 (2) 0:30 (4) 0:24 (4) 0:47 (5)
KW; c = 11 0:52 (2) 0:56 (2) 0:50 (2) 0:48 (2)
KW; c = 13 0:52 (2) 0:50 (2) 0:44 (2) 0:40 (2)
KW; c = 15 0:52 (2) 0:62 (2) 0:60 (2) 0:66 (2)

d) all N� +N observations at the initial design

0:65 (1) 0:20 (0) 0:070 (0) 0:040 (0)





Chapter 7

Concluding Remarks

This concluding chapter summarizes the results and gives some suggestions
for further research. This thesis has treated optimal design of experiments
when the purpose is to estimate the model parameters in the quadratic
logistic model. Special attention was given to estimation of the point of op-
timum response. Optimizing the quadratic response curve corresponds to
searching for the optimum operating conditions in the RSM context. RSM
is often concerned with processes involving several variables. An immedi-
ate extension is to consider more than one control variable to increase the
number of applications.

Locally optimal designs were derived in Chapter 3. The procedure to obtain
locally D-optimal designs was illustrated step by step. Some formulae for
obtaining the designs, given the assumption of either 3 or 4 design points,
were provided. The solutions to these formulae can be obtained numerically,
which is rather straightforward if one has access to some mathematical
software (e.g. Matlab or Mathcad). An advantage is that the formulae can
be implemented directly. In contrast to using for example algorithms, which
involve issues like �nding a good initial design, deciding when convergence
is achieved etc.

It was shown that when deriving D-optimal designs it su¢ ces to consider
the standardized response �� based on ��. Thus, the locally D-optimal
design depends only on the parameter � since �� only includes �: A 3-
point design with equal design weights was shown to be D-optimal for the
two low response curves. The optimal design for estimation of the high
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response curve required four points and with the design weights now being
di¤erent. A common feature for the designs was that the design points were
placed symmetrically around the point of maximum response. It should be
remembered that the possibility that the locally D-optimal design consists
of more than four points for some set of true parameters cannot be ruled out.
Though, no such example has yet been encountered. It is open for further
research to establish the number of design points of the locally D-optimal
designs.

In Chapter 3 locally c-optimal designs were derived via the canonical design
space. The purpose of estimating one single model parameter was consid-
ered. Exploring the canonical design space graphically led to a deeper
understanding of the design problem. For instance, a c-optimal design for
estimation of the parameter � turned out to consist of two equally weighted
design points placed symmetrically around �. Estimation of � requires one
design point and the c-optimal design for estimation of � varies between
three and four points (depending on the probability of response at the max-
imum). Formulae to �nd both the design points and the associated design
weights were presented. The canonical design space can also be applied
for D-optimality. The D-optimal design would then be found as the con-
tact points between the canonical design space and the smallest covering
ellipsoid. An analysis of the canonical space could bring clarity about the
arrangement of the optimal design points and weights. Presumably, it could
also lead to formulae for obtaining the D-optimal design points. Further-
more, it is likely that there is a turning point in terms of maximum prob-
ability of response where the number of design points is altered. Possibly,
the canonical space can give information about this turning point.

There are two main problems with the locally optimal designs, the �rst is
the parameter dependence and the second the fact that the derivation of
the designs involves the asymptotic information matrix. A simulation study
was performed with the purpose to address these issues. Two parameter
estimators were used in the simulations, the standard maximum likelihood
estimator and an alternative estimator that instead maximizes a penalized
likelihood. A di¢ culty with the ML estimator is that it is not guaranteed
to exist for all samples. The alternative FL estimator was included because
it has been suggested as a solution to this problem.
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The non-existence of the ML estimator came about as a severe problem for
all the investigated cases. The probability that the ML estimator exists
was dependent on the choice of design and the true parameters, besides
the sample size. From this viewpoint the non-optimal designs sometimes
bene�ted from the many design points. Bayesian designs typically include
more design points, therefore it would be interesting to evaluate such designs
for this model. The risk of coming across non-existence has to be taken into
account if the ML estimator is to be used. Consider facing the situation
of having already performed an experiment and no estimates are available.
Good strategies for choosing additional points need to be developed for
such situations. Designs that are optimal with respect to maximizing the
probability to obtain estimates could also be of interest.

The FL estimator do provide estimates in all cases. However, using the
FL estimator was associated with other complications which made the es-
timates useless for practical purposes. These complications often coincided
with a high proportion of non-existence for the ML estimator. For some of
the most severe cases the FL estimator was, if not as bad as, not a large
improvement compared to the ML estimator. On the other hand, there
were also examples where the FL estimator o¤ered a great improvement.
To sum up, the FL estimator did not o¤er a completely satisfactory alterna-
tive. Estimation of the quadratic response curve was particularly di¢ cult
for the low models. In general, it can not be expected to be known at the
start of the experiment whether the curve is high or low.

In terms of mean squared error the optimal designs were superior com-
pared to the non-optimal designs for the most cases. There were generally
rather large disagreements between the small sample variances of the para-
meter estimators and their asymptotic analogue. This may cause problems
since the asymptotic information matrix is the basis for the construction
of the optimal designs. Although the di¤erences diminished when N was
increased, they were still appreciable for several cases when N = 100 and
the response curve was low. Much work remains concerning the implica-
tions of the departures from the asymptotic results in small samples. It is
of interest to investigate if the locally optimal designs derived on the basis
of the true sampling distribution would deviate a lot from those based on
asymptotics. Another potentially important aspect which has not been in-
vestigated here is the use of approximations to the continuous designs. The
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e¢ ciencies of the approximate exact designs ought to be compared to the
optimal continuous designs.

In Chapter 5 two sequential approaches were proposed as a solution to
the parameter dependence issue. One is a parametric approach based on
c-optimality and the other one is nonparametric. The advantage of the non-
parametric approach is to avoid having to make any distributional assump-
tions whereas a parametric approach makes more use of the information.
The two sequential strategies were evaluated in a simulation study (Chap-
ter 6) for the case when the aim is to �nd the point of maximum response
x = �. In the parametric approach, c-optimal designs are derived sequen-
tially based on the assumption that the most recent parameter estimates are
true. Two versions of the standardized information matrix were evaluated.
The nonparametric alternative is an adaptive stochastic approximation ap-
proach. Di¤erent combinations of initial design, number of batches and
batch sizes were considered. Furthermore, another alternative to the linear
predictor was included.

The results of the simulations are really promising for the c-optimal se-
quential designs that consistently outperformed the other alternatives. The
choice between the two versions of the information matrix did not matter
as they were almost identical. The success of the stochastic approximation
approach was limited to some cases and it was sometimes inferior to the
nonsequential approach. In addition it was more sensitive to the initial
design and to the misspeci�ed model. Furthermore it required the speci-
�cation of a constant that proved to have a large impact on the results.
There were not any large di¤erences pertaining to the division between the
number of batches and the batch size for any of the approaches. A practical
consideration that should be mentioned in this context is that sequential
designs with a large number of steps are limited to applications were the
response time is short. It is called for more extensive evaluations of the se-
quential designs, regarding for example smaller sample sizes. For example,
the choices of initial design and number of batches are likely to be more
in�uential for smaller sample sizes. Theoretical evaluations are also desired
but complicated by the dependency between the sequential steps.
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The parameter dependence issue is probably perceived as problematic from
a practitioners point of view. Undeniably, it is a drawback if one needs to
know the location of the point of optimum response prior to the experiment
in order to estimate the same point. The lessons learned here imply that
sequential designs can circumvent these problems. To conclude, it is the
belief of the author that the theory of optimal design can be made to good
use for binary response experiments.
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Figure 7.1: Distribution of the ML and FL estimators.
Sample size: N=10
Design: D-optimal



105

−5 0 5 10
0

0.05

0.1

0.15

0.2

α̂

−1.5 −1 −0.5 0
0

0.05

0.1

0.15

0.2

β̂

−10 0 10
0

0.05

0.1

µ̂

−2 0 2 4
0

0.05

0.1

0.15

0.2

α̂∗

−1 −0.5 0
0

0.05

0.1

0.15

0.2

β̂∗

−10 0 10
0

0.05

0.1

0.15

0.2

µ̂∗

(a) �high-wide�

−5 0 5 10
0

0.5

1

α̂

−1.5 −1 −0.5 0
0

0.5

1

β̂

−10 0 10
0

0.5

1

µ̂

−2 0 2 4
0

0.1

0.2

0.3

0.4

α̂∗

−1 −0.5 0
0

0.1

0.2

0.3

0.4

β̂∗

−10 0 10
0

0.1

0.2

0.3

0.4

µ̂∗

(b) �high-narrow�

−5 0 5 10
0

0.1

0.2

0.3

0.4

α̂

−1.5 −1 −0.5 0
0

0.1

0.2

0.3

0.4

β̂

−10 0 10
0

0.1

0.2

0.3

0.4

µ̂

−2 0 2 4
0

0.1

0.2

0.3

0.4

α̂∗

−1 −0.5 0
0

0.1

0.2

0.3

0.4

β̂∗

−10 0 10
0

0.05

0.1

0.15

0.2

µ̂∗

(c) �low-wide�

−5 0 5 10
0

0.5

1

α̂

−1.5 −1 −0.5 0
0

0.5

1

β̂

−10 0 10
0

0.5

1

µ̂

−2 0 2 4
0

0.2

0.4

0.6

0.8

α̂∗

−1 −0.5 0
0

0.2

0.4

0.6

0.8

β̂∗

−10 0 10
0

0.2

0.4

0.6

0.8

µ̂∗

(d) �low-narrow�

Figure 7.2: Distribution of the ML and FL estimators.
Sample size: N=10
Design: 7-point
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Figure 7.3: Distribution of the ML and FL estimators.
Sample size: N=10
Design: 8-point
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Figure 7.4: Distribution of the ML and FL estimators.
Sample size: N=20
Design: D-optimal
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Figure 7.5: Distribution of the ML and FL estimators.
Sample size: N=20
Design: 7-point
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Figure 7.6: Distribution of the ML and FL estimators.
Sample size: N=20
Design: 8-point
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Figure 7.7: Distribution of the ML and FL estimators based on 10000 simula-
tion runs.
Sample size: N=50
Design: D-optimal
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Figure 7.8: Distribution of the ML and FL estimators based on 10000 simula-
tion runs.
Sample size: N=50
Design: 7-point
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Figure 7.9: Distribution of the ML and FL estimators based on 10000 simula-
tion runs.
Sample size: N=50
Design: 8-point
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Figure 7.10: Distribution of the ML and FL estimators based on 10000 simu-
lation runs.
Sample size: N=100
Design: D-optimal
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Figure 7.11: Distribution of the ML and FL estimators based on 10000 simu-
lation runs.
Sample size: N=100
Design: 7-point
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Figure 7.12: Distribution of the ML and FL estimators based on 10000 simu-
lation runs.
Sample size: N=100
Design: 8-point
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