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Abstract

When testing centrality in random graphs it is of importance to
specify models that capture the irregularities in the structure due to
centrality. In this paper we propose using the well-known block mod-
els in an attempt to capture such irregularities. The baseline model,
revealing no centrality structure, used in this paper is the Bernoulli
model. It is shown that the maximum likelihood estimators of the pa-
rameters in the block model are tedious to obtain, and that the distri-
bution of the likelihood ratio is di¢cult to derive analytically. There-
fore, various tests of centrality in random graphs are presented where
the power functions of the test quantities are estimated by perform-
ing computer simulations. The tests are based on centrality indices
that are evaluated at actor level. These indices are then aggregated
across all actors in order to obtain a centrality index at group level.
Two of the tests proposed are based on degree and eight of them are
based on distance. None of the tests is uniformly most powerful. The
tests where the group level index is de…ned as an average of the actor
level indices show poor power compared to the tests that indicate the
variability of the actor level indices. Among the tests based on vari-
ability of the actor level indices, the test quantities that include the
maximum of the actor level indices generate a higher power than the
tests based on the variance of the actor level indices.
Keywords: Random block models, Bernoulli graph, Degree cen-

trality, Closeness centrality, Power of centrality tests
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1 Introduction

1.1 Social network modeling

In an association of members it may be desireable to possess the knowledge
if any of them can be considered as more popular, important or in‡uencial in
some aspect. If we can ascertain that this is the case, we may then wish to
inform ourselves of some properties or characteristics of these members for
di¤erent reasons. One reason could be just of descriptive nature; we want
to examine the background characteristics of these central members. If we
have several associations of similar kind the next step would be to compare
the background characteristics of the central members in the associations in
order to detect similarities and di¤erences.
In this paper block models are presented in an attempt to capture di-

versions among members in a social network due to centrality. When block
modeling is mentioned in social network literature the approach is usually
slightly di¤erent. There are two main approaches to block modeling. In
the …rst one, which is primarily descriptive, the focus is to capture some of
the general features of a network’s structure by partitioning members with
the same or similar adjacency structure into the same block. In the sec-
ond approach, stochastic block modeling, actors in the same block must not
necessarily have the same or similar realized structure, but the probability
distribution over the set of possible structures is the same. These models are
described by Holland, Laskey and Leinhardt (1983), Wang and Wong (1987)
and Wasserman and Anderson (1987). Frank, Hallinan and Nowicki (1985),
Frank, Komanska and Widaman (1985) used the block modeling technique
as a data analytic method to reduce the number of parameters in log-linear
models. However, the purpose of this paper is to show that block modeling
can be a useful technique in testing centrality in social networks.
In Section 2 the stochastic model assumed under non-centrality is de-

scribed. Moreover, the idea behind the concept block modeling within the
context of centrality is treated and some desired properties induced by cen-
trality are discussed. In Section 3 maximum likelihood estimators are derived,
both without any restrictions on the parameters and with restrictions that
one would expect under centrality structure. In Section 4 ten test quanti-
ties for testing centrality structure are described, and in Section 5 the power
functions of the tests are estimated by simulation methods.
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1.2 Notation

The members and their relation structure are represented by graphs, where
the members are referred to as vertices and the relations are referred to as
edges.
Let G be an undirected graph without loops where n, the order of the

graph, is known. Let V = f1; :::; ng be the vertex set of G and E the edge
set. Further, we let A be the corresponding n £ n adjacency matrix of G
where the elements are given by

aij = aji =

½
1 if there exists an edge between vertex i and vertex j, i 6= j
0 otherwise.

In the context of graph theory the number of edges in G is often referred to
as the size of G and it is given by

jEj =
n¡1X
i=1

nX
j=i+1

aij:

The degree of any vertex i in G is de…ned as the number of edges incident
to vertex i and is denoted by ai, thus

ai =
nX
j=1

aij =
nX
j=1

aji:

The maximum degree in G is denoted maxi ai and the mean degree of G is
denoted ¹a and given by

¹a =
1

n

nX
i=1

ai =
1

n

nX
i=1

nX
j=1

aij :

Finally the variance of the degrees is denoted s2a and given by

s2a =
1

n

nX
i=1

(ai ¡ ¹a)2 :

A walk in a graph is an alternating sequence of vertices and edges, start-
ing and ending with vertices, in which each edge is incident with the vertices
following and preceding it in the sequence. Vertices and edges may be re-
peated. A path is a walk in which all vertices and edges are distinct. The
length of a path is the number of edges used. The geodesic is the shortest
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path between two vertices. If any two vertices are connected by a walk the
graph is said to be connected. The maximal connected subgraphs of a dis-
connected graph are called the connected components of the graph. Let D be
an n£ n distance matrix of G where the element dij is de…ned as the length
of the geodesic between vertex i and vertex j. If there is no geodesic be-
tween vertex i and vertex j, i.e. the vertices are in two di¤erent components,
dij =1. A consequence is that mathematical functions of the distance such
as the average distance can only be evaluated in connected components. In
a connected graph, the average distance is given by

¹d =
1¡
n
2

¢ n¡1X
i=1

nX
j=i+1

dij :

If the graph is disconnected the average distance can be calculated in each
connected component. For a more detailed description of concepts in graph
theory see Palmer (1985), or the extensive work on social networks byWasser-
man and Faust (1994).

2 Centrality and block models

2.1 Centrality concepts

Three centrality concepts are usually mentioned in the literature, see for ex-
ample Freeman (1979), Wasserman and Faust (1994), namely degree central-
ity, closeness centrality and betweenness centrality. All three are in di¤erent
ways trying to capture the popularity, in‡uence or importance of members
or actors in a social network. The choice of an appropriate centrality con-
cept and its associated measure depends on the context of the application.
According to Freeman (1979) degree-based measures are indexes of an actors
communication activity, betweenness-based measures are useful if we are in-
terested in an actors control of communication, and closeness-based measures
indicates the level of an actors independence or e¢ciency.
Centrality indices are evaluated for all n actors indicating the status of

each actor according to popularity, in‡uence etc.. To obtain a centrality index
at group level the centrality indices are aggregated across all actors. There
are di¤erent measures at group level such as the maximum, the average,
or the variance of the actor level indices. By using average as measure we
de…ne group level centrality as the compactness of the network. According
to Freeman (1979) the group level index should be high if one single actor is
more central than all the other actors. Therefore an appropriate group level
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index should capture the variability of the actor centrality indices. In this
paper a social network is considered as central if the actors can be partitioned
into blocks where the probability of an edge between two actors is distinct
in di¤erent blocks. If this is the case, we should obtain a larger variability of
the centrality indices at actor level.
Centrality based on degree focuses on adjacency; an actor adjacent to

a large number of actors in the network is considered as central. Hence,
degree is the actor level centrality measure. Group level centrality measures
are for instance the di¤erence between the maximum degree and the average
degree, which is suggested in this paper, and the variance of the degrees
recommended by Snijders (1981a, 1981b).
Centrality based on geodesic distances is more dependent on indirect ties

compared to centrality based on degree which only involves direct ties. The
point of using distance as a measure of centrality is that an actor will be
considered as central if he can interact quickly with all others. A desireable
property of a distance-based centrality index is, that it decreases for actor
i when the distance to the other actors increases. Such an index, based on
the inverse of the sum of the distances from actor i to all the other actors,
was proposed by Sabidussi (1966). The disadvantage with Sabidussi’s index is
that it can only be evaluated for connected graphs, since the distance between
two disconnected vertices is set to in…nity. In this paper similar measures
are introduced with weights allowing us to handle distance in disconnected
graphs.
The third centrality concept, also based on geodesics, is betweenness cen-

trality. If actor j and actor k has to pass actor i in order to reach each other
on their shortest path, then actor i is de…ned as being between actor j and
actor k. Freeman (1977) introduced a centrality index based on betweenness
where all geodesics between actor j and actor k are equally likely to be used.
The number of geodesics between actor j and actor k is denoted gjk and the
probability of using any one is g¡1jk . The betweenness index for actor i is
then evaluated as the sum of the probabilities of choosing the geodesics he
is contained in, X

j<k

gjk (i)

gjk

for i distinct from j and k, where gjk (i) is the number of geodesics from j
to k containing actor i. A group index can be obtained as an average or as
a variability measure in analogy with the de…nitions for the other centrality
concepts.
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2.2 Models

2.2.1 The Bernoulli model

As our stochastic nullhypothesis model showing no centrality structure we
will use the Bernoulli (p) model. That is, the edges of G are generated
independently with an unknown common edge probability p = P (aij = 1);
i 6= j. The probability of G is given by

P (G) =

(
pr (1¡ p)(n2)¡r ; if G is of order n with r edges
0; otherwise.

This model, commonly used to study random graph properties, see for in-
stance Palmer (1985), is in this paper considered as a baseline model for
testing centrality.

2.2.2 Block models with centrality

As an alternative random graph model that captures centrality against which
we can test the Bernoulli (p) model, we use a block model. Block modeling
means that we have a graph of …xed order n where V is partitioned into K
mutually exclusive non-empty vertex blocks, V1; :::; VK . Each pair of vertices
in the graph is independently given an edge with a probability that depends
on which blocks the vertices belong to.
Let pkl be the edge probability between any vertex i in block k and any

vertex j in block l, for all k; l. The block with the largest edge probability,
max
k
pkk, is de…ned as the central block. Moreover, we let Ekl denote the set

of edges between any vertex i in block k and any vertex j in block l.
Since there are K blocks in G, there are K +

¡
K
2

¢
edge probabilities (K

within blocks and
¡
K
2

¢
between blocks) of which some may be equal. Note

that a minimal requirement for the model to be a block model, is that not
all the pkk is equal. In order to estimate these probabilities we also need to
identify the vertex blocks. IfK is large this will be a tedious task even though
it can be handled with more computing time. For illustrative purposes when
deriving analytical results and performing simulation studies, the number of
blocks is limited to be two.
In the case K = 2, centrality block models with block 1 as the central

block is de…ned by ½
p11 > p22
p11 ¸ p12 (1)
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or ½
p11 > p22
p12 ¸ p22 : (2)

In (1) we don’t allow the edge probability between the blocks to be larger
than the edge probability within the central block, whereas in (2) the edge
probability between the blocks is not allowed to be smaller than the edge
probability within the non-central block. By applying restrictions on the
probabilities, we will obtain some desired properties in a graph that is con-
sidered as central.

Lemma 1 The expected degree of any central vertex is larger than the ex-
pected degree of any non-central vertex.

The proof is given only when the restrictions under the …rst formulation
hold. A proof when the restrictions under the second formulation hold can
be obtained in a similar way. Some further notation and remarks are in order
before the proof.
Let V1 = f1; :::; n1g be the vertex set in G consisting of central vertices

with a common edge probability p11. Let V2 = fn1 + 1; :::; n1 + n2g ; n1 +
n2 = n; be the vertex set in G consisting of non-central vertices with a
common edge probability p22, where V = V1 [ V2 and V1 \ V2 = Á. Let p12
be the common edge probability between any vertex i in V1 and any vertex
j in V2.
According to theBernoulli(p)model the degree of vertex i; ai; i = 1; :::; n,

is a random variable

ai =
X
j2V

aij = aiV

and its distribution is Bin(n¡ 1; p). Note that ai are not independent sincePn
i=1 ai = 2r.
An arbitrarily chosen vertex i in V can be adjacent to vertices in both

V1 and V2 and its degree can be obtained as the sum of the following two
numbers:

² aiV1 = the number of edges from vertex i to vertices in V1,

aiV1 =
X
j2V1

aij ; i 2 V

where ½
aiV1 » Bin (n1 ¡ 1; p11) ; i 2 V1
aiV1 » Bin (n1; p12) ; i 2 V2 :
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² aiV2 = the number of edges from vertex i to vertices in V2,

aiV2 =
X
j2V2

aij ; i 2 V

where ½
aiV2 » Bin (n2; p12) ; i 2 V1

aiV2 » Bin (n2 ¡ 1; p22) ; i 2 V2 :

Proof. We shall prove that

E(aiV1) + E(aiV2) > E(ajV2) + E(ajV1) for i 2 V1 and j 2 V2, that is
(n1 ¡ 1) p11 + n2p12 > (n2 ¡ 1) p22 + n1p12, or equivalently

(n1 ¡ 1) p11 > (n2 ¡ 1) p22 + (n1 ¡ n2) p12. (3)

Replacing the left hand side of this inequality with

(n1 ¡ n2 + n2 ¡ 1) p11 = (n2 ¡ 1) p11 + (n1 ¡ n2) p11
and applying (1) we see that the inequality is true if either n1 > 1 or n2 > 1:

Note that for n1 = 1 and n2 > 1 we obtain from (3) that p12 > p22, and
for n1 > 1 and n2 = 1 that p11 > p12.
If V is partitioned into two blocks, V1 and V2, there are three probabil-

ities that we need to estimate, namely P = (p11; p22; p12). If the blocks are
unknown we also need to estimate V1 and V2.

3 Maximum likelihood estimators of central-
ity structure

3.1 Maximum likelihood estimators if the blocks are
known

Let G be a random graph of a …xed and known order n consisting of K
blocks. Note that an important assumption in this paper is that the order of

the blocks nk; where
KP
k=1

nk = n, is also considered as …xed and known. The

number of edges between block k and block l is denoted rkl; and r =
KP
k=1

KP
l=k

rkl

is the number of edges in G.
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If the blocks are known then it is possible to observe rkl and obtain the
maximum likelihood estimators of the edge probabilities P . Since indepen-
dent dyads are assumed, i.e. the edges between di¤erent pairs of individuals
are assumed stochastically independent, the likelihood for a realization of G
is

L (P ) =

"
KY
k=1

KY
l=k

prklkl (1¡ pkl)nkl¡rkl
#
;

where

nkl =

½ ¡
nk
2

¢
for k = l

nknl for k 6= l

and P = (pkl) and R = (rkl).
It can easily be proved that in this case the maximum likelihood estimator

of each parameter pkl is

p̂kl =
rkl
nkl

for all k; l: (4)

3.2 Maximum likelihood estimators if the blocks are
unknown

3.2.1 Without restrictions on the parameters

When K = 2 and the vertex sets are unknown we have to estimate the
three probabilities P = (p11; p22; p12) and one partition into two blocks, V1
and V2. The likelihood is now a function of P and V1 (since V2 = V \ ¹V1),
where V1 is latent, and the likelihood is dependent on V1 only through r11.
Therefore, rkl is now seen as a function of V1, but for notational simplicity
we will drop V1, and denote rkl (V1) as rkl in most of the paper. Note that
in a realization of a random graph the elements of A; aij; are observable and
therefore r =

Pn¡1
i=1

Pn
j=i+1 aij is observable, but since V1 and V2 not are

known each edge frequency r11; r12 and r22 is unobservable. The likelihood
function for K = 2 with unknown V1 is given by

L (P; V1) = pr1111 (1¡ p11)n11¡r11 pr2222 (1¡ p22)n22¡r22
£pr¡r11¡r2212 (1¡ p12)n12¡r+r11+r22 :

We want to obtain the maximum likelihood estimators of P and V1 simul-
taneously. Similar problems are dealt with by Bock (1996) and Jansson
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(1997) where the maximum of the likelihood function is determined itera-
tively. Bock mentioned the procedure as the ”classi…cation maximum likeli-
hood approach” and maximized the likelihood over clusters and parameters.
Two approaches to obtain the maximum likelihood estimators are dis-

cussed here. In the …rst approach the likelihood function is considered for
…xed P , where it depends on V1 only through r11 and r22. If the factors that
are not depending on r11 and r22 are put into a constant, we can write the
likelihood as

L (P; V1) =

µ
p11

1¡ p11
1¡ p12
p12

¶r11 µ p22
1¡ p22

1¡ p12
p12

¶r22
£ constant.

We see that the maximum of L (P; V1) is depending on P . Without the
restrictions on P given in (1), there are numerous ways to choose V1 as any
set of n1 vertices that maximizes L (P; V1). Even with restrictions on P
the maximum likelihood estimator of V1 is not unique. Examples of graphs
where there exist no unique maximum likelihood estimator of V1 are given in
Section 3.2.2 and illustrated in Figure 2.
A more feasible approach is to consider V1 as …xed and the likelihood as a

function of P without restrictions. L(P; V1) is maximized over P by P̂ given

by (4), where L
³
P̂ ; V1

´
depends on V1 (and indirectly on V2) only through

R = (r11; r12; r22). The likelihood function is given by

L
³
P̂ ; V1

´
=

µ
r11
n11

¶r11 µ
1¡ r11

n11

¶n11¡r11 µ r22
n22

¶r22 µ
1¡ r22

n22

¶n22¡r22
£
µ
r ¡ r11 ¡ r22

n12

¶r¡r11¡r2 µ
1¡ r ¡ r11 ¡ r22

n12

¶n12¡r+r11+r22
:

The behaviour of the likelihood function is investigated through the dif-
ferentials of the log likelihood function. For notational simplicity we denote
L
³
P̂ ; V1

´
as L̂ in the rest of this section. In order to obtain the di¤erentials

we use the entropy function

h (p) = ¡ (p ln p+ q ln q) ; p+ q = 1:

Then the likelihood function can be expressed as

ln L̂ = ¡
µ
n11h

µ
r11
n11

¶
+ n22h

µ
r22
n22

¶
+ n12h

µ
r ¡ r11 ¡ r22

n12

¶¶
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The …rst di¤erentials are

@ ln L̂

@r11
= ¡h0

µ
r11
n11

¶
+ h0

µ
r ¡ r11 ¡ r22

n12

¶
= ln

r11
n11

1¡ r11
n11

+ ln
1¡ r¡r11¡r22

n12
r¡r11¡r22

n12

@ ln L̂

@r22
= ¡h0

µ
r22
n22

¶
+ h0

µ
r ¡ r11 ¡ r22

n12

¶
= ln

r22
n22

1¡ r22
n22

+ ln
1¡ r¡r11¡r22

n12
r¡r11¡r22

n12

and the second di¤erentials are

@2 ln L̂

@r211
= ¡ 1

n11
h00
µ
r11
n11

¶
¡ 1

n12
h00
µ
r ¡ r11 ¡ r22

n12

¶
=

1

r11

³
1¡ r11

n11

´ + 1

(r ¡ r11 ¡ r22)
³
1¡ r¡r11¡r22

n12

´
@2 ln L̂

@r222
= ¡ 1

n22
h00
µ
r22
n22

¶
¡ 1

n12
h00
µ
r ¡ r11 ¡ r22

n12

¶
=

1

r22

³
1¡ r22

n22

´ + 1

(r ¡ r11 ¡ r22)
³
1¡ r¡r11¡r22

n12

´
@2 ln L̂

@r11r22
= ¡ 1

n12
h00
µ
r ¡ r11 ¡ r22

n12

¶
=

1

(r ¡ r11 ¡ r22)
³
1¡ r¡r11¡r22

n12

´ :
Due to the fact that all the second di¤erentials are positive and from the
following inequalities (

@2 ln L̂
@r211

> @2 ln L̂
@r11r22

@2 ln L̂
@r222

> @2 ln L̂
@r11r22

;

the matrix of second di¤erentials must be positive de…nit. Hence, there exists
a local minimum. The optimal values giving the minimum of the likelihood
is obtained by solving the equation system

@ ln L̂

@r11
= 0

@ ln L̂

@r22
= 0:

In an arbitrarily chosen graph the minimum is obtained when the proportions
of edges in the central and the non-central blocks both equal the proportion of
edges in the graph, r11

n11
= r22

n22
= r

(n2)
. Since the matrix of second di¤erentials
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is positive de…nite, V1 and V2 that maximizes L̂ must be chosen such that
(r11; r22) is a boundary point. The complexity of determining V1 and V2 is
illustrated in Figure 1. The subplots to the left show di¤erent realizations of
assumed block model graphs of order n = 7 and with a central block of order
n1 = 3. The subplots to their right are the corresponding level curves of
the natural logarithm of the likelihood function. In Figure 1a), V̂1 = f2; 3; 7g
where r̂11 = 3 and r̂22 = 5. That is L̂ is maximized when the number of edges
within the central block and within the non-central block is maximized in
its range in G. In Figure 1b) V̂1 = f2; 3; 6g, r̂11 = 3 and r̂22 = 1. Thus,
L̂ obtains its maximum if the number of edges within the central block is
maximized in its range and the number of edges within the non-central block
is minimized in its range. In Figure 1c) V̂1 = f1; 3; 5g, r̂11 = 0 and r̂22 = 0.
Thus, to obtain the maximum of L̂ the number of edges within the central
block and the number of edges within the non-central block is minimized
in its range. The last case illustrated in Figure 1d) shows that L̂ obtains
its maximum for two sets of V1. That is there exists no unique maximum
likelihood estimator of V1. L̂ is maximized if the number of edges within the
central block is maximized in its range, which is the case for V̂1 = f1; 2; 4g
or V̂1 = f3; 5; 6g where r̂11 = 3 and r̂22 = 4.
We see that in one realization of G both r̂11 and r̂22 should be maximized

to obtain V̂1 that maximizes the likelihood function. In a second realization
of G both r̂11 and r̂22 should be minimized and in a third realization one
of them should be minimized and the other should be maximized to obtain
V̂1 that maximizes L̂. These examples illustrate that there is no simple rule
how to choose V̂1 to maximize the likelihood function. Note that r11 and
r22 are descrete variables and that r11 doesn’t take all the values in the
interval 0 6 r11 6 min (n11; r) and r22 doesn’t take all the values in the
interval 0 6 r22 6 min (n22; r). In Figure 1 admissible values of (r11; r22) are
represented with dots.

3.2.2 With restrictions on the parameters

We now proceed to derive the maximum likelihood estimators with restric-
tions on the probabilities P . Deriving the maximum likelihood estimators
under the restrictions proposed in (1) involves complicated analytical meth-
ods. For simplicity, suppose that the edge probability within the central
block is the same as the edge probability between the central block and the
non-central block. Then the restrictions on the edge probabilities are given
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Figure 1: The left subplots show realizations of assumed block model graphs
of order n = 7 and with a central block of order n1 = 3. The right subplots
are the corresponding level curves of the logarithm of the likelihood function.
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by

p11 ¡ p22 > 0 (5)

p11 = p12

which enables us to derive the maximum likelihood estimators of P; V1 and
V2. When the number of blocks is restricted to be two it is convenient to
reparametrize. If we let p22 = p and introduce a new parameter

¢ = p11 ¡ p > 0;
the block model is reformulated with the two unknown parameters, p and
¢. p is now the edge probability within the non-central block, and p +¢ is
the edge probability within the central block and between the two blocks.
As in Section 3.2.1 there are two approaches to determine the maximum

likelihood estimators iteratively. First we consider the likelihood function for
…xed p and ¢.

L (p;¢; V2) = (p+¢)
r¡r22 (1¡ p¡¢)(n2)¡r¡n22+r22 pr22 (1¡ p)n22¡r22 :

If the factors not depending on r22 are put into a constant we can rewrite
the likelihood function as

L (p;¢; V2) =

µ
p (1¡ p¡¢)
(1¡ p) (p+¢)

¶r22
£ constant

=

µ
q ¡¢
q

p

p+¢

¶r22
£ constant ; ¢ > 0; p+ q = 1.

Since q¡¢
q
< 1 and p

p+¢
< 1, L (p;¢; V2) is a decreasing function of r22. Thus,

V̂2 is any set of n2 vertices with minimal number of edges r̂22 = r22

³
V̂2

´
.

The objective then is to …nd p and ¢ maximizing L(p;¢; V̂2).
Alternatively, we consider L (p;¢; V2) for …xed V2 as a function of p and

¢. L (p;¢; V2) is maximized over p and ¢ by p̂ = r22
n22

and ¢̂ = r¡r22
(n2)¡n22

¡
r22
n22
, where L

³
p̂; ¢̂; V2

´
depends on V2 only through r22 (V2). The likelihood

function is then given by

L
³
p̂; ¢̂; V2

´
=

Ã
r ¡ r22¡
n
2

¢¡ n22
!r¡r22 Ã

1¡ r ¡ r22¡
n
2

¢¡ n22
!(n2)¡r¡n22+r22

(6)

£
µ
r22
n22

¶r22 µ
1¡ r22

n22

¶n22¡r22
:
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From investigating the …rst and second di¤erentials of L
³
p̂; ¢̂; V2

´
we see

that it is a convex function with a minimum at r22 = r n22
(n2)
. Therefore,

L
³
p̂; ¢̂; V2

´
must obtain its maximum on the boundary. Due to the restric-

tion ¢ > 0, L
³
p̂; ¢̂; V2

´
is maximized if V̂2 is any set of n2 vertices with r̂22

edges where r̂22 is the lower boundary value of r22, 0 6 r̂22 6 r n22(n2)
.

The maximum likelihood estimator of V2 is not unique. There is usually
more than one solution V̂2 that will maximize L

³
p̂; ¢̂; V2

´
.

An alternative to …nd V2 with a minimal r22, is to …nd V1 with a maximal
r11+ r12. This is due to the relationship r11+ r12 = r¡ r22. If the likelihood
is expressed as a function of V1 instead of as a function of V2, L

³
p̂; ¢̂; V1

´
is a convex function with a minimum at r11 + r12 = r

µ
(n2)¡n22
(n2)

¶
. Then V̂1

maximizing L
³
p̂; ¢̂; V1

´
must be any set of n1 vertices with r̂11+ r̂12 chosen

as the upper boundary value of r11 + r12 so that r
µ
(n2)¡n22
(n2)

¶
6 r̂11 + r̂12 6

min
¡¡
n
2

¢¡ n22; r¢.
Note that …nding V̂1 with a maximal r̂11 + r̂12 is not necessarily equal to

…nding V̂1 with maximum sum of degrees. There is a distinction between the
two cases even though they might seem similar. The sum of the degrees of
V1 is

P
i2V1

ai = 2r11 + r12 and hence, r11 + r12 =
P
i2V1

ai ¡ r11. For n1 = 1 it
follows that r11 = 0 and the quantities are equal.
For n1 = 2, the procedure of obtaining V̂1 is a bit more complex. Since

r11 + r12 =

8<:
P
i2V1

ai: ¡ 1; if r11 = 1P
i2V1

ai:; if r11 = 0
; (7)

the procedure of …nding V̂1 can conveniently distinguish two cases:

1. If there are at least two non-adjacent vertices with maximum degree,
then we must choose two of them arbitrarily to form V̂1:

2. If we there are at least two adjacent vertices with maximum degree that
are reciprocally adjacent, V̂1 must contain one of them. The choice of
the other one leaves us with two options; either we chose one with
maximum degree adjacent to the …rst one, or we choose one with one

15



6

5 71 3

2

a)

1

5

3 2

4

b)

4

4

5

6

2 31

c)

7

6

Figure 2:

degree less than maximum degree that is not adjacent to the …rst one.
Both sets of V̂1 will yield the same r̂11+ r̂12 and therefore maximize the
likelihood.

Figure 2a) illustrates how V̂1 is obtained in case 1. Both vertex number
3 and vertex number 5 have maximum degree. If n1 = 1, one of them is
chosen arbitrarily for V̂1. That is, V̂1 = f3g or V̂1 = f5g. If n1 = 2, the only
solution is V̂1 = f3; 5g. This is due to the fact that vertex number 3 and
vertex number 5 are non-adjacent.
Figure 2b) illustrates how V̂1 is chosen in a graph that corresponds to

case 2. Vertex number 3 and vertex number 5 still have maximum degree.
Thus, V̂1 has the same solution as in …gure 2a) for n1 = 1. For n1 = 2,
V̂1 = f3; 5g is again one solution but it is not unique. Since vertex number 3
and vertex number 5 are adjacent a second solution is obtained if V̂1 consists
of two non-adjacent vertices, one vertex with maximum degree and one vertex
with degree one less than maximum degree. V̂1 = f3; 4g, V̂1 = f3; 6g and
V̂1 = f5; 6g are therefore also solutions.
Figure 2c) illustrates a graph that corresponds to case 2 for n1 = 3.

By choosing V̂1 to contain the three vertices with maximum degree that
are reciprocally adjacent, V̂1 = f3; 4; 5g, we have that 2r̂11 + r̂12 = 9 and
r̂11+ r̂12 = 6. This is not the solution that maximizes the likelihood function.
If we instead choose V̂1 to contain two of the adjacent vertices with maximum
degree and one vertex with degree one less than maximum not adjacent to
any of these two vertices, for example V̂1 = f2; 4; 5g, then we have that
2r̂11 + r̂12 = 8 and r̂11 + r̂12 = 7. The sum of the degrees is less for the
solution V̂1 = f2; 4; 5g, but L

³
p̂; ¢̂; V1

´
depends on V̂1 only through the
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su¢cient statistics r̂11 + r̂12. Since r̂11 + r̂12 is larger for V̂1 = f2; 4; 5g than
for V̂1 = f3; 4; 5g, L

³
p̂; ¢̂; V1

´
is maximized by V̂1 = f2; 4; 5g and not by

V̂1 = f3; 4; 5g.
As n1 increases the number of ways to choose V̂1 increases leading to more

time consuming work. If n1 is large and n2 is small it is more convenient
trying to …nd r22

³
V̂2

´
that maximizes L

³
p̂; ¢̂; V2

´
.

If at least one of n1 or n2 is equal to 1 or 2 the degree of each vertex is
enough as a su¢cient statistic to estimate V1 and V2. If n1 = 3 and n2 > 3
(or n2 = 3 and n1 > 3), we see from the procedure described above of …nding
V̂1

³
or V̂2

´
that a su¢cient statistic is every vertex degree and the column

elements in the adjacency matrix, A, for the vertices with maximum degree.
As n1 and n2 increase, we need more information of the structure in A for
the statistic to be su¢cient. If n1 and n2 is large enough the complete matrix
A is needed in order to obtain a su¢cient statistic.

Suppose we have a realization of a graph generated by a random process
and we want to test if we have centrality. A standard test procedure is to
perform the likelihood ratio test. Assuming a Bernoulli distribution with a
common edge probability under the null hypothesis and a block model under
the alternative hypothesis, the likelihood ratio is

LR =
L (H0)

L (H1)
=

L0 (p̂)

L1

³
P̂ ; V̂2

´ = L0 (p̂)

max
r̂22

L1

³
P̂ ; V2

´ ;
where the numerator is

L0 (p̂) =

Ã
r¡
n
2

¢!rÃ1¡ r¡
n
2

¢!(n2)¡r
and the denominator is as de…ned in (6). Now we need to …nd a critical region

of size ® to be able to carry out the test. The null hypothesis is rejected if
the likelihood ratio, LR, is less than or equal to some constant c. That is,
we need to obtain a critical region, C = fLR 6 cg, of size ® for testing H0
against H1, where c is selected such that P (LR 6 c;H0) = ®.
In order to …nd C we have to know the distribution of LR. It will be

a di¢cult task to derive the distribution analytically. An alternative is to
estimate the distribution by performing computer simulations. Since this
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procedure also includes determining r22 (V2), which involves complicated and
tedious work as already has been discussed, it is more convenient to focus
on computer simulations from the start. That is, we decide on a proper test
that will capture centrality and then estimate the distribution of the test by
computer simulations. Tables of C are then obtained for the desired levels of
size ®. A bene…t with this approach is that we don’t have to limit ourselves
to test quantities based on degree. Therefore, the group of tests are extended
to include test quantities based on distance. These tests are compared with
tests based on degree by investigating the power functions.

4 Tests of centrality

4.1 Introduction

Abandoning the idea of testing centrality by comparing the likelihood func-
tions for di¤erent block models we concentrate instead of developing tests
where the key concept is computer simulation. The distributions and the
critical values of the test statistics are estimated under the null hypothesis.
In order to decide which of the test statistics is most suitable for testing cen-
trality, we want to know how likely the test is to reject the null hypothesis
of no centrality if the graph has been generated by some model of central
actors. Thus, the power functions are estimated and compared for the di¤er-
ent test statistics. Performing simulation studies allows us to use tests based
on other centrality measures than those based on degree. In this study ten
tests are investigated, eight of them are based on distance and two of them
are based on degree.

4.2 Tests based on degree.

The two tests in this study that are based on degree both measure the vari-
ability of the vertex centrality indices. The …rst test quantity is the di¤erence
of the maximum degree and the mean degree,

T1 = max
i

ai ¡ ¹a:

The second test, the variance of the degrees

T2 = s
2
a

is often recommended as an index of group level centrality; see for instance
Snijders (1981a,1981b). There is a wide range of other test quantities based
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Figure 3: Simulated null distributions of two centrality test statistics where
the edges are generated from a Bernoulli (p) graph of order n = 30 and edge
probability p = 0:1. The number of simulations is 1000000; a) The simulated
probability distribution of T1; b) The simulated probability distribution of
T2.

on degree proposed in the literature; see, for instance, Kephart (1950), Blau
(1977) and Freeman (1979).
In the literature, the distributions of the test statistics have only been

studied for one of them, namely T2. From Figure 3, showing the simulated
null distributions of T1 and T2, we see that the distribution of T2 can be
approximated with a gamma distribution. For a more detailed reading on
the degree variance in Bernoulli graphs, see Hagberg (2000).

4.3 Tests based on distance

Out of the eight tests based on distance, six measure the variability of the
actor level indices and two are averages of the actor level indices. The eight
tests are separated into two groups, each group including four tests.
In the …rst group of centrality indices we focus on connected components.

Let ni be the number of vertices in the component of vertex i. The average
distance from vertex i to its other connected vertices is denoted by ¹di. Since
the minimum value of ¹di is 1 for ni > 1, we de…ne ¹di = 1 if vertex i is
isolated. To obtain a centrality index that increases as the length of the
geodesics decrease, we use the reciprocal of ¹di rather than ¹di as a centrality
index on actor level. The range of 1= ¹di is between 0 and 1, and its maximum is
obtained for any vertex i that is adjacent to all the other vertices in the same
component. If a Bernoulli model generates graphs with a small common
edge probability we will obtain a relatively large proportion of vertices in
components of small order. These vertices have high centrality values and
will therefore to a large extent determine the group level centrality index.
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If the probability is small enough a vast number of vertices will be isolated
and the consequence is that we will accept centrality. The interpretation is
that we have a realization of a random graph consisting of isolated vertices
that are central in their own component. Therefore the actor centrality
index is multiplied with a weight of size ni=n, whose purpose is to give more
importance to vertices in larger components. The centrality index for vertex
i is then given by ci = ni=n ¹di for ni > 1. Note that if G is connected then
ci = 1= ¹di.
In the second group of test statistics based on distance we de…ne 1

dij
= 0

if dij = 1. By applying this de…nition we don’t have to focus on distance
in connected components. A second centrality index for any vertex i is now
given by

c0i =
1

n¡ 1
X
j 6=i

1

dij
:

c0i also possesses the desireable property of a centrality index of having a range
between 0 and 1 where a maximum attained index value implies centrality.
The following eight tests of centrality based on ci and c0i are presented in

this study :

² T3 = max
i
ci

² T4 = ¹c = 1
n

nP
i

ci

² T5 = max
i
ci ¡ ¹c

² T6 = s2c = 1
n

P
i

(ci ¡ ¹c)2

² T7 = max
i
c0i

² T8 = ¹c0 = 1
n

nP
i

c0i

² T9 = max
i
c0i ¡ ¹c0

² T10 = s2c0 = 1
n

P
i

(c0i ¡ ¹c0)2
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5 Power against centrality
To decide which of the tests that are most suitable for testing centrality,
we want to know how likely the test is to reject the null hypothesis of no
centrality if a realization of G is generated by a block model containing a
central block. That is, we want to know the power of the tests. In order
to investigate the power of the di¤erent test statistics, we have performed
a simulation study. The model that generates the graphs is limited to be
determined by the two parameters introduced in Section 3.2.2, p and ¢. As
an illustration of the behaviour of the power function of the test statistics we
assigned p the value 0:1 and ¢ the values 0:0 (the null distribution model),
0:2, 0:4, 0:6, and 0:8. Any value of p could have been used but the tests are
good for small values of p or equivalently, for large values of ¢.
1000000 random graphs with a …xed order of 20 were generated for each¢.

For¢ = 0, the critical values, ci;®, were determined such that we could obtain
signi…cance levels of approximately the same size for all the test quantities
in order to be able to compare the power functions. Since the test statistics
are discrete we may, particularly in graphs of smaller order for which the
possible values of the test statistics are small, …nd it di¢cult to obtain critical
values at the desired signi…cance level ®. In this study a less commonly
used signi…cance level of approximately size 0:032 (for T3 ® = 0:035) was
conveniently chosen. In Table 1, showing the results of the estimated power
functions for various values of ¢ for n1 = 1 and n1 = 2, the estimated
signi…cance level of each test statistic is given for ¢ = 0.
From Table 1 and Figure 4 it is clear that none of the test quantities is

uniformly most powerful. If we distinguish between the two block sizes we
see that for n1 = 1, T1 is a uniformly most powerful test. For n1 = 2, there
are three test quantities that yield power functions that are similar, namely
T2, T3 and T7.
Of the two test statistics based on degree, T1 and T2, we see that for

n1 = 1, T1 yields a slightly better power than T2 and for n1 = 2, T2 yields a
slightly better power than T1.
A test quantity based on ci corresponding to the same test quantity based

on c0i; generates approximately the same power function. This is due to the
fact that both indices are weighted means; ci can be considered as the inverse
of the arithmetic mean and c0i is the inverse of the harmonic mean.
In general, the tests based on variability of the actor level centralities show

higher power than the two tests where the group level index is an average of
the actor level centralities. An exception is that T4 and T8 has higher power
than T5 and T9 for n1 = 2.
T6 and T10, the variance of ci and c0i respectively, besides showing a poor
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n1 = 1
¢ T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
0.0 3.2 3.2 3.5 3.2 3.2 3.3 3.2 3.2 3.2 3.2
0.2 32.2 29.1 29.1 18.6 20.8 15.1 29.7 16.1 23.1 11.3
0.4 89.6 84.6 83.3 58.7 73.6 37.8 84.8 48.3 78.2 23.3
0.6 99.9 99.7 99.5 93.6 98.3 49.0 99.6 85.7 99.0 20.6
0.8 100.0 100.0 100.0 100.0 100.0 24.9 100.0 99.7 100.0 3.9

n1 = 2
¢ T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
0.0 3.2 3.2 3.5 3.2 3.2 3.3 3.2 3.2 3.2 3.2
0.2 44.6 53.5 53.5 44.4 22.1 21.0 54.3 39.0 22.0 14.6
0.4 97.1 98.7 98.0 94.2 68.8 33.8 98.3 89.1 69.4 16.0
0.6 100.0 100.0 100.0 100.0 96.9 23.4 100.0 99.8 97.5 6.8
0.8 100.0 100.0 100.0 100.0 100.0 37.6 100.0 100.0 100.0 2.8

Table 1: For n1 = 1 and n1 = 2 the simulated power functions of the test
statistics are given for n = 20, p = 0.1 and various ¢ based on 1000000
replications
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Figure 4: The simulated power functions of the tests in random graphs of
order n = 20, p = 0:1 and various¢ based on 1000000 replications; a) n1 = 1;
b) n2 = 2.
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Figure 5: The simulated distributions of T1 in random graphs of order n = 20,
p = 0:1 and various ¢ based on 1000000 replications.

power also has a power function that is approximately decreasing for¢ > 0:4.
The explanation to this behaviour of the power function is that if central-
ity exists, then the expected degree is higher for the central actors. As ¢
increases the expected geodesic distance between this actor and any other
actor decrease, resulting in that also the expected geodesic distance between
any pairs of actors in G will decrease. Consequently we will obtain a larger
homogeneity in the actor centrality indices which implies that also the vari-
ability will decrease. Therefore the variance of the actor centrality indices
is not a consistent measure when centrality is based on distance. That is, if
centrality means that some actors in the social network generate edges with
a larger probability. In Figures 5 - 9 the distributions of T1, T2, T3, T5 and
T6 are illustrated for various ¢.

As ¢ increases the simulated distributions of the tests T1, T2, T3 and
T5 move to the right which implies that the power functions also increase.
Figure 9 shows that the simulated distribution of T6 doesn’t move to the right
which implies that T6 has a non-increasing power function. Furthermore, the
distribution appears to be uni-modal under the null hypothesis, but when
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Figure 6: The simulated distributions of T2 in random graphs of order n = 20,
p = 0:1 and various ¢ based on 1000000 replications.
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Figure 7: The simulated distributions of T3 in random graphs of order n = 20,
p = 0:1 and various ¢ based on 1000000 replications.
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Figure 8: The simulated distributions of T5 in random graphs of order n = 20,
p = 0:1 and various ¢ based on 1000000 replications.
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Figure 9: The simulated distributions of T6 in random graphs of order n = 20,
p = 0:1 and various ¢ based on 1000000 replications.
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¢ increases the distribution more and more attains a bi-modal shape. As
is explained above, the reason for this behaviour could be that the geodesic
between a pair of vertices mainly takes two values. As ¢ increases the main
body of the distribution is centered around the lower value since most of the
vertices will be adjacent.

6 Concluding remarks
The Bernoulli(p) model is considered as the stochastic model when no cen-
trality exists. Under centrality, block models of unknown blocks of known
orders are considered. Likelihood ratio testing is attempted but the proce-
dure is rejected partly because of the complexity of obtaining the maximum
likelihood estimators. The procedure of obtaining the maximum likelihood
estimators includes identifying the blocks, which turns out to be a rather
tedious and time consuming work when the blocks are of order larger than
two. Since another di¢culty is to derive the distribution of the likelihood
ratios analytically, the idea of using the likelihood ratio test procedure is
abandoned.
Instead the focus is on estimating the distributions of some test statistics

that capture centrality by performing computer simulations. A large number
of graphs of order 20 is generated and the critical values and power functions
are estimated. There exists no test that is uniformly most powerful, but
the test quantities that are based on the maximum of the centrality indices
generate large power functions. Test T2, the variance of the vertex degrees,
performs well whereas the two tests T6 and T10, the variance of the actor
level indices when centrality is based on distance, constantly exhibit a poor
power. This is due to the paradox that increasing actor centrality induces
less variability when centrality is based on distance.
The rather simple null hypothesis model, Bernoulli(p), may not cover all

the non-centrality irregularities and therefore it is always a risk that we are
testing other deviations than the ones based on centrality. One may also be
sceptical to what actually is rejected if the null hypothesis states that the
edges are generated accordingly to a Bernoulli model for which no vertices
are central. Now, rejection of the null hypothesis might be due to inaccuracy
in the modeling of the non-centrality structure rather than evidence of cen-
trality. Another critical assumption is the validity of independent dyads. In-
tuitively one should expect a dyad dependency that is inversely proportional
to the order of G. Modeling with dependent dyads should open possibilities
to obtain more elaborate models; see Frank and Strauss (1986).
In this study the order of G has been …xed and the order of the central
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blocks under the alternative hypothesis has been restricted to n1 = 1 and
n1 = 2. Furthermore, the number of blocks under the alternative hypothesis
are only considered for K = 2. An extension in future work would be to
allow a larger variation of the edge probabilities and the number of blocks.
Further we should consider not only to have randomized size, but also as-
sume a model with a randomized order of G and a randomized order of the
blocks. These generalizations induce complexity that might be required of
appropriate models.
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