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Abstract

Statistical properties of four centrality measures are investigated.
Three of the measures are extensively used within the context of social
networks. The measures are investigated for two centrality concepts,
degree centrality and closeness centrality. The model assumed to gen-
erate realizations of social networks is a conditional Bernoulli model
where the edge probabilities are independently beta distributed. For
various shape parameter values of the beta distribution, properties of
the graph centrality measures are compared for degree-based central-
ity and closeness-based centrality.
Three of the graph centrality measures exhibit similar behaviour

when they are degree-based and closeness-based. The fourth measure,
the variance of the actor centralities, generate diverging tendencies
of the properties of the measure depending on whether it is degree-
based or closeness-based. This is interpreted as an indication that
the measure captures di¤erent features of the structures of the social
network when it is degree-based and closeness-based.
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1 Introduction
In various connections it is of interest to investigate properties of structures.
Social network analysis for instance is devoted to the structure of social
groups. One important property of such groups involves the degree of im-
portance or popularity of the members of it. The term, frequently used in
the literature for this concept, is centrality.
When centrality is based on degree, statistical properties such as esti-

mators of parameters or probability distributions of estimators are relatively
easy to derive analytically. For example, if the edges in an undirected graph
are generated independently from a Bernoulli(p)-distribution, the probability
distribution of the variance of the degrees is shown to be satisfactorily ap-
proximated with gamma distributions according to Hagberg (2000). Another
example is given by Frank (2000) who considers a directed graph where the
edges from i to j are assumed to be Bernoulli (pi)-distributed for i 6= j. If
the edge probabilities pi are beta (®; ¯)-distributed, the relative out-degree
is shown to be an unbiased estimator of the mean of pi. To perform sim-
ilar analytical derivations when centrality measures are based on closeness
is di¢cult. Therefore one has to rely on results obtained by computer sim-
ulations. The focus here is to investigate relationships between properties
of degree-based and closeness-based graph centrality measures from di¤erent
aspects. Based on the outcome of the simulation results, attempts are then
made to formulate statistical properties when centrality is closeness-based.
The results obtained by computer simulations are compared to well-known
theoretical derivations of statistical properties when centrality is based on
degree. For a speci…c su¢ciently large number of simulations the results
based on degree agree with the theoretical. It is assumed that this number
of simulations is also large enough to assure that the results agree with the
theoretical when centrality is closeness-based.
Notation needed is given in the next section. In Section 3 distributions

of various centrality measures are discussed and compared. In Section 4 two
approaches are taken to compare degree-based centralities with closeness-
based centralities. In Section 5 some associations between graph centrality
measures are investigated.

2 Notation
Let G be a directed random graph of known order n according to Frank
(2000). By convention no loops are allowed. The structure of G is speci…ed
by its corresponding n£n adjacency matrix A where the elements are given
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by

aij =

½
1 if there exists an edge between vertex i and vertex j
0 otherwise.

The elements aij are conditionally independent Bernoulli(pi)-distributed, where
pi are independent and assumed to be beta (®; ¯)-distributed. The density
of a beta distributed variable is given by

f (x j®; ¯ ) = 1

B (®; ¯)
x®¡1 (1¡ x)¯¡1 ; 0 6 x 6 1;

where ® > 0 and ¯ > 0 are shape parameters and B (®; ¯) denotes the beta
function,

B (®; ¯) =

Z 1

0

x®¡1 (1¡ x)¯¡1 dx:

The outdegree of actor i, the number of vertices adjacent from actor i, is
denoted ai and given by the row sums of the matrix A

ai =
X

aij:

The sum of the reciprocal distances from actor i to all other actors is denoted
ci and given by

ci =
X
j 6=i

1

dij
;

where the element dij is the length of the geodesic from vertex i to vertex
j. If no geodesic exist from vertex i to vertex j, i.e. the vertices are located
in di¤erent components, then dij = 1 and 1=dij is de…ned to equal zero.
For further conceptual clari…cations the reader is referred to Wasserman and
Faust (1994).
One of the primary issues within the …eld of social networks is to investi-

gate the structure of the interrelations of the actors. An important aspect of
the structural properties of the actors is centrality. There are mainly three
concepts of centrality: degree, closeness and betweenness. Freeman (1979)
gives a detailed discussion of actor centrality and network centrality. If the
actor centrality indices are aggregated across all actors we obtain a measure
of centrality on group level, graph centrality. Some writers advocate the aver-
age of the actor centralities as a measure of graph centrality. Bavelas (1950)
and Sabidussi (1966) reasoned that a group centrality measure indicates the
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compactness of a graph and proposed group measures based on the inverse of
sums of actor indices. A more common approach to graph centrality is that a
group level index should re‡ect the heterogeneity of actor centrality indices,
see Nieminen (1974) and Freeman (1977). A graph heterogeneity measure
suggested by Snijders (1981a, 1981b) and also considered by Hagberg (2000)
is the variance of the degrees. Two alternative measures of graph central-
ity are discussed in Tallberg (2000), the maximum of the actor centrality
indices, and the di¤erence of the maximum and the average of the actor
centralities. In the context of centrality in social networks, the maximum of
the centralities, the average of the centralities and the variance of the cen-
tralities are common and interesting graph centrality measures. Statistical
properties of these three measures and the di¤erence of the maximum and
the average of the actor centralities are discussed for degree-based centrality
and closeness-based centrality.
In this study we consider four degree-based centrality measures:

² T1 = max
i
ai

² T2 = ¹a = 1
n

nP
i

ai

² T3 = maxi ai ¡ ¹a
² T4 = s2a = 1

n

P
i

(ai ¡ ¹a)2

and the following corresponding four closeness-based centrality measures:

² T 01 = max
i
ci

² T 02 = ¹c = 1
n

nP
i

ci

² T 03 = max
i
ci ¡ ¹c

² T 04 = s2c = 1
n

P
i

(ci ¡ ¹c)2

3 Simulated distributions
When investigating statistical properties of estimators in random graphs, a
simple model frequently assumed to generate graphs is the Bernoulli (p)-
distribution with a …xed edge probability p. Hagberg (2000) gives a detailed
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Figure 1: Densities of beta (®; ¯)-distributed variables; a) beta (0:2; 0:2)-
distribution; b) beta (1:0; 0:5)-distibution.

discussion about properties of the variance of the degrees under this model.
The same model is used as a null hypothesis model by Karlberg (1999) for
testing transitivity in digraphs, and by Tallberg (2000) for testing centrality
in random graphs. A more realistic approach would be to assume that not
all the edge probabilities are equal in a random graph. Frank (2000) gives an
example where he suggests that the edge probabilities are latent centrality
properties, which are assumed to be independently beta (®; ¯)-distributed.
Guided by this idea we focus on relationships between properties of degree-

based quantities and closeness-based quantities for various values of ® and
¯. In this section simulated distributions of the degree-based measures and
the distance-based measures are compared.
As a simple example, the similarity of distributions of degree-based quan-

tities and closeness-based quantities are shown when pi are independently
beta (®; ¯)-distributed for ® = ¯ = 0:2 (Figure 1a)) and ® = 1:0; ¯ = 0:5
(Figure 1b)). The probability distributions are estimated by computer simu-
lations based on 10000 replications (simulated graphs) for the eight quantities
mentioned in Section 2.
In non-directed random graphs where the edge probabilities are assumed

to be equal between all actors, the distributions of some of the quanti-
ties can be derived. For example, the mean degree is (2=n)bin

¡¡
n
2

¢
; p
¢
-

distributed. Furthermore, Hagberg (2000) gives a detailed discussion about
how to approximate the distribution of the variance of the degrees with a
gamma(µ1; µ2)-distribution in the following way:
Consider a sequence Xi of n independent identically distributed normal

random variables with mean ¹ and variance ¾2. Let s2 = 1
n

Pn
i=1

¡
Xi ¡ ¹X

¢2
where ¹X = 1

n

Pn
i=1Xi. In a Bernoulli graph the degrees of the vertices are bi-

nomially distributed with ¹ = (n¡ 1) p and ¾2 = (n¡ 1) p (1¡ p). By mak-
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ing use of that binomially distributed random variables are approximately
normally distributed he argues that the variance of the degrees is approx-
imately gamma ((n¡ 1) =2; 2 (n¡ 1) p (1¡ p))-distributed. Due to depen-
dence between the vertex degrees he suggests a correction that improves the
approximation of the gamma-distribution.
If we instead would consider a directed random graph where pi are as-

sumed to be independently beta(®; ¯)-distributed, the distribution of the
mean outdegree conditional on the outcomes of pi is (1=n)bin

¡
2
¡
n
2

¢
; p
¢
-distributed.

Implementing the result of Hagberg (2000) to directed random graphs condi-
tional on pi yields that the variance of the degrees is approximately gamma
((n¡ 1) =2; 2 (n¡ 1) p (1¡ p))-distributed. Since there is independence be-
tween vertex out-degrees, adjustment is not required.
The unconditional distribution is known for T2, but not for the other

measures. If we let y = (n¡ 1)T2, then according to well-known properties
of the beta distribution and the binomial distribution the joint distribution
of y and p is given by

f (y; p) =

µ
n¡ 1
y

¶
¡ (®+ ¯)

¡ (®) ¡ (¯)
py+®¡1 (1¡ p)n¡y+¯¡2 :

The marginal probability distribution of Y is

f (y) =

µ
n¡ 1
y

¶
¡ (®+ ¯)

¡ (®) ¡ (¯)

¡ (y + ®) ¡ (n¡ 1¡ y + ¯)
¡ (n¡ 1 + ®+ ¯) ;

a distribution known as the beta-binomial.
To derive the distribution of s2 analytically should be di¢cult since s2

is gamma-distributed, and the beta family is not conjugate for the gamma
family.
Note the resemblance of the distributions of the degree-based measures

and the closeness-based measures, according to Figures 2 and 3. An excep-
tion is perhaps the variance of the centralities. The distributions of T2, T3,
T4, T 02, T

0
3 and T

0
4 should be satisfactory approximated with a normal(¹; ¾)-

distributions for su¢ciently large n.

4 The in‡uence of edge probabilities on cen-
trality

4.1 Some results on moments of degree centrality

Consider random graphs where the edge probabilities, pi, are assumed to be
independently beta (®; ¯)-distributed, and the outdegrees, ai, are condition-
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Figure 2: Simulated distributions of Ti and T 0i , i = 1; 2; 3; 4, when pi is beta
(0:2; 0:2) distributed and n = 20.
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Figure 3: Simulated distributions of Ti and T 0i , i = 1; 2; 3; 4, when pi is beta
(1:0; 0:5) distributed and n = 20.
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ally independent bin (n¡ 1; pi)-distributed. Then the expected value and
variance of ai is conveniently derived as

E (ai) = E [E (ai jpi )] = (n¡ 1)E (pi) = (n¡ 1)¹ (1)

V ar (ai) = E [V ar (ai jpi )] + V ar [E (ai jpi )] (2)

= E [(n¡ 1) pi (1¡ pi) + V ar [(n¡ 1) pi]]
= (n¡ 1)¹¡ (n¡ 1) £¾2 + ¹2¤+ (n¡ 1)2 ¾2
= (n¡ 1) £¹ (1¡ ¹) + (n¡ 2) ¾2¤ ;

where

¹ =
®

®+ ¯
(3)

and

¾2 = V ar (pi) =
®¯

(®+ ¯)2 (®+ ¯ + 1)
. (4)

E (ai) is estimated by

¹a =
1

n

X
i

ai; (5)

and V ar (ai) is estimated by

s2a =
1

n

X
i

(ai ¡ ¹a)2 : (6)

Note that the estimators given in (5) and in (6) are equal to T2 and T4
respectively. The moments of T2 and T4 are obtained from (1) and (2) in the
following way:

E (T2) = E (¹a) = (n¡ 1)¹ (7)

V ar (T2) = V ar (¹a) =
(n¡ 1)
n

£
¹ (1¡ ¹) + (n¡ 2)¾2¤

E (T4) = E
¡
s2a
¢
=
(n¡ 1)
n

V ar (ai) =
(n¡ 1)2
n

£
¹ (1¡ ¹) + (n¡ 2)¾2¤ (8)
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If unbiased estimators of ¹ and ¾2 are needed it can be shown that (see Frank
(2000))

E

µ
¹a

n¡ 1
¶

= ¹

E

½
n (n¡ 1)¡ 1
(n¡ 1) (n¡ 2)

s2a
(n¡ 1)2 ¡

1

n¡ 2
¹a

n¡ 1
µ
1¡ ¹a

n¡ 1
¶¾

= ¾2

Guided by the results of the analytical derivations, the objective in this
paper is to investigate relationships between T2 and its corresponding closeness-
based graph centrality measure T 02, and T4 and its corresponding closeness-
based graph centrality measure T 04. Attempts are also made to …nd structures
between T1 and T3 and their corresponding closeness-based graph centrality
measures T 01 and T

0
3.

4.2 Edge probabilities described by beta distribution
parameters

To formalize the relationships between degree-based measures and closeness-
based measures two approaches are taken. In this section the mean of each
quantity Ti is compared to the mean of its corresponding quantity T 0i ; i =
1; ::::; 4; as a function of the shape parameters in the beta-distribution, ® and
¯. In Section 4.2 the comparisons are made when each quantity is regarded
as a function of the mean and the variance of the probabilities for various
beta-distributions.
Let Ti (®; ¯) and T 0i (®; ¯) be the degree-based quantity and the closeness-

based quantity as a function of ® and ¯. The values chosen for the simulations
were ® = 0:2; 0:5; 1:0; 1:5; 2:0; 4:0 and ¯ = 0:2; 0:5; 1:0; 1:5; 2:0; 4:0, which
re‡ect di¤erent shapes of the beta distribution, of which two are illustrated
in Figure 1.
10000 realizations of random directed graphs are simulated for each of

the 36 combinations of the parameters ® and ¯. In every graph, the eight
quantities are evaluated. Then 36 averages of each quantity Ti (®; ¯) and
T 0i (®; ¯) are calculated and denoted mi (®; ¯) and m0

i (®; ¯) respectively. For
notational simplicity, ® and ¯ is dropped and the average of the simulated
measures as function of ® and ¯ is denoted mi and m0

i. Values of mi and m0
i

are given in Appendix A.
Explicit functional relationships of the measures and the beta distribu-

tion parameters were derived for the mean of the graph centralities and the
variance of the graph centralities for the degree-based actor centrality con-
cept. To be able to study similar functional relationships for closeness-based
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Figure 4: A plot of mi (®; ¯) and m0
i (®; ¯) ; i = 1; 2; 3; 4 based on 10000

replications for each combination of ® and ¯.

actor centrality measures no explicit formulas seem available. Closeness-
based measures are therefore studied by simulations. The simulated results
are provided in Figure 4 which shows the bivariate distributions of mi and
m0
i; i = 1; :::; 4. In general, it seems that there is a resemblance between

the behaviour of any degree-based quantity, mi, and the behaviour of the
corresponding closeness-based quantity m0

i. The three-dimensional plots are
di¢cult to interpret and therefore the quantities are plotted functions of ®
for various values of ¯ in Figures 5-8.
For two of the degree-based measures, m2 and m4, explicit analytical ex-

pressions were derived in Section 4.1. According to Formula (7), the expected
value of T2 is given by

m2 = (n¡ 1)¹ = (n¡ 1) 1

1 + ¯
®

; (9)

implying thatm2 is increasing in ® and decreasing in ¯. The relationships are
con…rmed in Figure 6a). Figure 6b) suggests that m0

2 could be approximated
with m2, at least for ¯ < 0:5, and that also m0

2 is increasing in ® and
decreasing in ¯.
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¯ ® n2¾2

0.2 0.16 72.6
0.5 0.34 52.4
1.0 0.62 36.1
1.5 0.88 27.6
2.0 1.14 22.3
4.0 2.15 12.7

Table 1: m4 (®; ¯) for various ® and ¯.

From Formula (8) we have that the expected value of T4 is given by

m4 =
(n¡ 1)2
n

£
¹ (1¡ ¹) + (n¡ 2) ¾2¤ (10)

=
(n¡ 1)2
n

½
®

®+ ¯

µ
1¡ ®

®+ ¯

¶
+ (n¡ 2) ®¯

(®+ ¯)2 (®+ ¯ + 1)

¾
:

Since m4 is a more complex function of ® and ¯, making a meaningful inter-
pretation troublesome, a simpli…cation is made. We see from Formula (10)
that n2¾2 is its dominating part for graphs of su¢ciently large order. There-
fore we investigate the behaviour of m4 by di¤erentiating ¾2 as a function of
®. The …rst di¤erential is

d¾2

d®
= ¡¯ 2®

2 + ®¯ + ®¡ ¯2 ¡ ¯
(®+ ¯)3 (®+ ¯ + 1)2

(11)

By setting equation (11) equal to zero and solving the equation, a maximum
of ¾2 in the domain of ® for …xed ¯, is obtained at

® = ¡1
4
¯ ¡ 1

4
+
1

4

q¡
9¯2 + 10¯ + 1

¢
; ® > 0; ¯ > 0: (12)

Maxima of n2¾2, for some …xed ¯ and ® - values obtained by (12), are
given in Table 1. By comparing maxima of n2¾2 with the curves in Figure 8,
it seems that n = 20 is su¢ciently large to acceptably approximate m4 with
n2¾2.
For ® = ¯, the variance of the edge probabilities are given by ¾2 =

1=4 (2¯ + 1), and for ® ¼ ¯ an approximation of the variance is given by
¾2 ¼ 1=4 (®+ ¯ + 1). This implies that for su¢ciently large n, the variance
of the out-degrees is given by

m4 =
n2

2¯ + 1
for ® = ¯
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or

m4 =
n2

®+ ¯ + 1
for ® ¼ ¯:

Note that m4=n
2 on the limit equals ¾2 as n ¡! 1. A su¢ciently large

number of replications have been made to achieve reliable results. By com-
paring the a) and b) parts of Figures 8 and 10, there seem to be no great
di¤erences between the variance centralities based on degree and on close-
ness. By investigating Figure 8, a slight di¤erence is observed that might
be crucial. m0

4 decreases relatively rapidly in ®, whereas m4 has a smoother
decreasing tendency.
We see in Figures 7 and 9, that the tendencies of m3 and its correspond-

ing closeness-based quantity, m0
3, are di¢cult to interpret. An attempt is

therefore made to investigate how the measures behave as functions of spe-
ci…c combinations of ® and ¯. The measures are illustrated as functions of
the ratio, ¯=®, in Figure 11. Furthermore, m (T3), m (T 03), m (T4) and m (T

0
4)

are given as functions of the sum, ®+ ¯, in Figure 12. The general trends of
the degree-based measures and the corresponding closeness-based measures
seem to agree. To draw extensive conclusions from the details appears to be
risky.
According to Figure 5a),m1 is an increasing function of ® and it converges
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to its maximum value n ¡ 1 for various ¯. Conditioning on ®, m1 increases
as ¯ decreases. For small ¯, ¯ < 0:5, m1 attains approximately a constant
value, n¡ 1, for all ®. A similar discussion holds for m0

1 according to Figure
5b).

4.3 Edge probabilities described by moments

A di¤erent aspect of the relationships between degree-based and closeness-
based measures is attained by interpreting the measures as functions of the
mean and the variance of p. Therefore an alternative approach is to consider
the mean of the measures as functions of ¹ and ¾2, instead of as a functions
of ® and ¯. Thus in this section, mi (¹; ¾

2) andm0
i (¹; ¾

2) ; i = 1; 2; 3; 4; is the
mean of degree-based and closeness-based measures. mi (¹; ¾

2) andm0
i (¹; ¾

2)
are obtained by computer simulations. 10000 realizations of random graphs
are generated. In each graph Ti and T 0i are evaluated numerically, and the
mean of each measure is computed. As in the previous section we denote the
means by mi and m0

i.
The shape parameters of the beta-distribution can be expressed as linear

functions of the mean , ¹, and the variance, ¾2.
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Figure 13: Densities of beta (®; ¯)-distributed variables with ¾2 = 0:01, ¹ =
0:2 and ¹ = 0:4; a) beta (3; 12)-distribution; b) beta (9:2; 13:8)-distribution.
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Figure 14: Densities of beta (®; ¯)-distributed variables with ¾2 = 0:04, ¹ =
0:2 and ¹ = 0:4; a) beta (0:6; 2:4)-distribution; b) beta (2; 3)-distribution.

® and ¯ are related to ¹ and ¾2 through the following equations

® =
¹2 (1¡ ¹)¡ ¹¾2

¾2
=
¹

¾2
£
¹ (1¡ ¹)¡ ¾2¤

¯ =
(1¡ ¹)2 ¹¡ (1¡ ¹) ¾2

¾2
=
(1¡ ¹)
¾2

£
¹ (1¡ ¹)¡ ¾2¤ ;

obtained by rewriting (3) and (4). The distribution parameters ® and ¯ are
determined for the eight combinations ¾2 = 0:01; 0:04 and ¹ = 0:2; 0:4; 0:6; 0:8.
Four of the densities of the beta distributions that have been used to simulate
edge probabilities to obtain the desired ¾2 and ¹, are shown in Figures 13
and 14.
Illustrations of the curves of mi and m0

i are provided in Figures 15-18.
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According to Figure 15, m1 and m0
1 are increasing for all ¹ and increasing

for ¾2. Furthermore, m1 and m0
1 seem to be dependent on the variance for

all ¹, since there is a gap between the two curves (solid lines, ¾2 = 0:01;
dotted lines, ¾2 = 0:04). A tendency of a decreasing gap of the curves as ¹
increases, indicates that the degree of the dependency of ¾2 is subsiding. As
¹ increases the curves converges to its maximum, n¡1, independently of ¾2,
which one intuitively would expect.
According to (7) in Section 4.1, m2 is linear in ¹ and it is not depending

on ¾2. This relationship agrees with the curves of m2 provided in Figure 16,
where m2 exhibits a perfectly linear relationship in ¹ and the two curves for
di¤erent ¾2 is coincident. Note that the two curves of m0

2 are approximately
coincident for ¹ > 0:4, implying that, at least for ¹ > 0:4, m0

2 is linear in ¹
and coincident for various ¾2. For smaller values of ¹ there is a dependence
on ¾2. Furthermore, both m2 and m0

2 are increasing in ¹ for all ¾
2.

The measures based on heterogeneity show, in contrast to the other two
measures, a non-increasing trend in ¹. Both m3 and m0

3 are decreasing in
¹ according to Figure 17, which is intuitively correct. Since both T1 and T 01
depend on ¾2, and due to the fact that T3 and T 03 are combinations of the
two measures, T1 ¡ T2 and T 01 ¡ T 02 respectively, it follows that m3 and m0

3

are depending on ¾2. The tendencies are, analogously with T1 and T 01, for T3
and T 03 that the strength of the dependency decreases in ¹.
According to Figure 18a), m4 behaves as a second degree polynomial

in ¹, although the in‡uence of ¹ is weak, that is symmetric about ¹ =
0:5. Due to the fact that the in‡uence of ¹ is weak implies that a good
approximation could be done with a function constant of ¹. Furthermore,
the gap between the two curves in 18a) indicating that a factor containing ¾2

ought to be included, agrees with the mathematical relationship derived in
Formula (8), see Section 4.1. In Section 4.2 it was pointed out thatm4 ¼ n2¾2
for su¢ciently large n, andm4 = (n¡ 1)2 [¹ (1¡ ¹) + (n¡ 2) ¾2] =n for small
n. According to Figure 18, the approximation, n2¾2, seems satisfactory for
n = 20. Note, that the behaviour of the curves of m4 and m0

4 as functions
of ¹ is di¤erent. While m4 is approximately constant in ¹, m0

4 is decreasing.
An intuitive explanation is as follows:
Assume that an edge is added from a vertex to any other vertex. Then the

actor centrality index based on degree is only increasing for the two vertices
involved. If a su¢ciently large number of edges are added from a minority
of actors, then the heterogeneity of the actor indices will increase leading to
a large value of T4. If we instead consider measuring centrality with close-
ness, then adding an edge from a vertex to any other vertex would not only
increase the actor centrality index for the two vertices involved, but possibly
for several other actors too. There is an indirect e¤ect on the closeness-
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Figure 15: m1 (¹; ¾
2) and m0

1 (¹; ¾
2) as functions of ¹ for various ¾2 when

n = 20.

based actor centralities leading to that the distance between many nodpairs
attain values one or two. Therefore the variance of ci rapidly decreases when
edges are added. A similar phenomenon is discussed in Tallberg (2000) where
the power functions of T4 and T 04 is compared when centrality is tested in
non-directed random graphs.

5 Associations of centrality measures
A simple illustrative example of the associations between degree-based mea-
sures and their corresponding closeness-based measures are given in Figure
19. 1000 random graphs were generated according to the same distribu-
tion. The shape parameters of the beta distribution were chosen so that the
di¤erence between the degree-based measures and the closeness-based mea-
sures are su¢ciently large, which occurs for small values of ¹ according to
for example Figures 15-18. The mean of the edge probabilities was set to
¹ = 0:2 and the variance of the edge probabilities was set to ¾2 = 0:01, i.e.
pi are independently beta(3; 12)-distributed. The general conclusion is the
same as in the previous section. The associations T1 versus T 01 and T2 ver-
sus T 02 are relatively strong, while the associations between the degree-based
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Figure 16: m2 (¹; ¾
2) and m0

2 (¹; ¾
2) as functions of ¹ for various ¾2 when

n = 20.
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2) as functions of ¹ for various ¾2 when

n = 20.
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Figure 18: m4 (¹; ¾
2) and m0

4 (¹; ¾
2) as functions of ¹ for various ¾2 when

n = 20.

and closeness-based dispersion measures tend to be weaker. This is true in
particular for the relationship between the variance of the actor centralities,
T4 versus T 04. Table 2 provides descriptive statistics for the eight measures.
Note that T4 yields biased estimates of the variance of the outdegrees. The
variance of the outdegrees, evaluated from Formula (2) given in Section 4.1,
is V ar (ai) = 6:46, while the simulated mean of the estimator, T4, yielded the
value m4 = 6:137. The result agrees with the derived expression in Formula
(8), see Section 4.1. T4 underestimates the variance of the outdegrees with a
factor (n¡ 1) =n.
The correlation coe¢cients of the degree-based measures and the corre-

sponding closeness-based measures given in Table 2 re‡ects what is already
stated by viewing the scatterplots in Figure 19. The correlations (Ti; T 0i ),
i = 1; 2; 3 are strong, while the correlation between the variance measures is
weak. This result emphasizes what has already been mentioned in Section
4.2. That is, by investigating social networks within centrality contexts, us-
ing the maximum centrality, the mean centrality or the di¤erence between
the mean and the maximum centrality, we would probably capture simi-
lar features of the structures irrespective of centrality concept. By using
the variance of the centralities, there is a signi…cant risk that the analysis
will yield crucially di¤erent result depending on the choice of concept, here
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Figure 19: Degree-based measures versus closeness-based measures obtained
by 1000 replications of random graphs of order n = 20 and where the edge
probabilities are independent beta(3; 12)-distributed.
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degree-based or closeness-based.

Min Max Mean St.Dev. Corr(Ti; T 0i )
T1 4.0 16.0 9.3 1.8 0.95
T 01 7.2 17.5 13.8 1.2
T2 1.6 5.7 3.8 0.6 0.88
T 02 3.12 11.8 9.2 1.1
T3 2.4 12.7 5.5 1.6 0.80
T 03 1.9 9.2 4.5 1.1
T4 1.4 14.4 6.1 2.1 0.44
T 04 1.9 27.0 10.5 5.1

Table 2: Descriptive statistics for the eight measures Ti and T 0i , i = 1,2,3,4.
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6 Concluding remarks
Statistical properties are investigated for three common graph centrality mea-
sures used in the …eld of social networks, and one measure introduced in
Tallberg (2000). The properties are discussed and compared for two actor
centrality concepts, degree centrality and closeness centrality. The model
generating the edges in a social network of …xed order n is assumed to be
conditionally independent Bernoulli(pi)-distributed, where the edge probabil-
ities, pi, are independently beta-distributed. The graph centrality measures
considered are the maximum actor centrality, the mean and the di¤erence
between the maximum and the mean of the actor centralities, and …nally the
variance of the actor centralities.
Simulated distributions of the quantities are obtained. Two di¤erent ap-

proaches are applied to investigate relationships between the degree-based
graph centrality measures and the corresponding closeness-based graph cen-
trality measures. The graph centrality measures are …rst considered as func-
tions of the shape parameters of the beta distribution. It is observed that
for the …rst three measures, the degree-based and closeness-based actor cen-
tralities yield similar results. For the fourth graph centrality measure, the
two actor centrality concepts seem to give di¤erent results. The graph cen-
trality measures are also considered as functions of the mean and variance of
the edge probabilities. Analogous results are obtained implying that similar
structural features of the social network are captured by the …rst three graph
centrality measures for both the actor centrality concepts. This doesn’t seem
to hold for the fourth graph centrality measure.
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A Tables
The results from the simulation study in Section 4.1 are given here. The
results are based on 10000 replications.

¯ 0.2 0.5 1.0 1.5 2.0 4.0
®
0.2 9.50 5.43 3.17 2.24 1.73 0.90
0.5 13.57 9.50 6.33 4.75 3.80 2.11
1.0 15.83 12.67 9.50 7.60 6.33 3.80
1.5 16.76 14.25 11.40 9.50 8.14 5.18
2.0 17.27 15.20 12.67 10.86 9.50 6.33
4.0 18.10 16.89 15.20 13.82 12.67 9.50

Table 3: E (ai) for various ® and ¯ and n = 20.
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¯ 0.2 0.5 1.0 1.5 2.0 4.0
®
0.2 65.82 44.93 24.23 15.12 10.40 3.84
0.5 44.93 47.50 34.62 24.94 18.67 8.02
1.0 24.23 34.62 33.25 28.01 23.22 12.16
1.5 15.12 24.94 28.01 26.13 23.27 14.20
2.0 10.40 18.67 23.22 23.27 21.85 15.08
4.0 3.84 8.02 12.16 14.20 15.08 14.25

Table 4: V (ai) for various ® and ¯ and n = 20.

¯ 0.2 0.5 1.0 1.5 2.0 4.0
®
0.2 19.00 18.45 15.55 12.85 10.88 6.61
0.5 19.00 18.92 17.67 15.73 14.01 9.50
1.0 19.00 18.99 18.47 17.29 15.98 11.77
1.5 19.00 19.00 18.72 17.91 16.91 13.15
2.0 19.00 19.00 18.84 18.26 17.44 14.16
4.0 19.00 19.00 18.98 18.78 18.38 16.22

Table 5: m1 (®; ¯) for various ® and ¯ and n = 20.

¯ 0.2 0.5 1.0 1.5 2.0 4.0
®
0.2 9.51 5.41 3.16 2.24 1.73 0.91
0.5 13.60 9.51 6.35 4.75 3.81 2.12
1.0 15.83 12.68 9.47 7.61 6.32 3.79
1.5 16.76 14.26 11.40 9.51 8.15 5.18
2.0 17.27 15.20 12.67 10.85 9.49 6.34
4.0 18.10 16.89 15.20 13.82 12.66 9.50

Table 6: m2 (®; ¯) for various ® and ¯ and n = 20.

27



¯ 0.2 0.5 1.0 1.5 2.0 4.0
®
0.2 9.49 13.04 12.39 10.62 9.15 5.71
0.5 5.40 9.42 11.32 10.98 10.20 7.38
1.0 3.17 6.31 9.00 9.68 9.65 7.98
1.5 2.24 4.74 7.32 8.40 8.76 7.97
2.0 1.73 3.80 6.17 7.40 7.94 7.82
4.0 0.90 2.11 3.78 4.95 5.72 6.72

Table 7: m3 (®; ¯) for various ® and ¯ and n = 20.

¯ 0.2 0.5 1.0 1.5 2.0 4.0
®
0.2 62.52 42.54 22.92 14.43 9.97 3.65
0.5 42.62 45.14 32.99 23.56 17.78 7.67
1.0 23.10 32.89 31.69 26.62 22.15 11.49
1.5 14.39 23.65 26.54 24.84 22.09 13.45
2.0 9.95 17.63 22.02 22.08 20.73 14.35
4.0 3.64 7.62 11.54 13.46 14.39 13.65

Table 8: m4 (®; ¯) for various ® and ¯ and n = 20.

¯ 0.2 0.5 1.0 1.5 2.0 4.0
®
0.2 19.00 18.71 16.89 14.76 12.94 8.05
0.5 19.00 18.96 18.33 17.31 16.30 12.68
1.0 19.00 18.99 18.73 18.14 17.48 15.12
1.5 19.00 19.00 18.86 18.45 17.95 16.03
2.0 19.00 19.00 18.92 18.63 18.22 16.57
4.0 19.00 19.00 18.99 18.89 18.69 17.61

Table 9: m0
1 (®; ¯) for various ® and ¯ and n = 20.
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¯ 0.2 0.5 1.0 1.5 2.0 4.0
®
0.2 11.46 7.64 4.98 3.59 2.74 1.28
0.5 15.63 12.80 10.18 8.50 7.25 4.20
1.0 17.31 15.54 13.59 12.27 11.21 8.26
1.5 17.86 16.56 15.01 13.90 13.03 10.55
2.0 18.13 17.08 15.77 14.80 14.03 11.88
4.0 18.55 17.95 17.10 16.41 15.82 14.18

Table 10: m0
2 (®; ¯) for various ® and ¯ and n = 20.

¯ 0.2 0.5 1.0 1.5 2.0 4.0
®
0.2 7.54 11.07 11.91 11.17 10.20 6.76
0.5 3.37 6.16 8.15 8.81 9.04 8.48
1.0 1.69 3.45 5.15 5.87 6.28 6.86
1.5 1.14 2.44 3.85 4.55 4.93 5.48
2.0 0.87 1.92 3.15 3.83 4.19 4.69
4.0 0.45 1.05 1.89 2.48 2.87 3.43

Table 11: m0
3 (®; ¯) for various ® and ¯ and n = 20.

¯ 0.2 0.5 1.0 1.5 2.0 4.0
®
0.2 57.42 51.64 36.19 25.54 18.58 6.59
0.5 24.65 33.91 35.65 33.64 30.87 18.97
1.0 8.31 13.94 17.75 19.47 20.63 21.26
1.5 4.20 7.38 9.88 11.21 12.27 15.14
2.0 2.65 4.87 6.69 7.47 8.12 10.28
4.0 0.91 1.92 2.91 3.44 3.74 4.18

Table 12: m0
4 (®; ¯) for various ® and ¯ and n = 20.
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The results from the simulation study in Section 4.2 are given here. The
results are based on 10000 replications.

m1 (¹; ¾
2) m0

1 (¹; ¾
2)

¾2 0.01 0.04 0.01 0.04
¹
0.2 9.30 13.35 13.79 15.94
0.4 13.00 15.70 16.00 17.35
0.6 16.30 18.06 17.65 18.53
0.8 18.73 19.00 18.86 19.00

Table 13: m1 (¹; ¾
2) and m0

1 (¹; ¾
2) for various ¹ and ¾2 and n = 20.
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m2 (¹; ¾
2) m0

2 (¹; ¾
2)

¾2 0.01 0.04 0.01 0.04
¹
0.2 3.80 3.80 9.29 7.54
0.4 7.60 7.59 13.17 12.82
0.6 11.40 11.41 15.20 15.16
0.8 15.20 15.21 17.10 17.09

Table 14: m2 (¹; ¾
2) and m0

2 (¹; ¾
2) for various ¹ and ¾2 and n = 20.

m3 (¹; ¾
2) m0

3 (¹; ¾
2)

¾2 0.01 0.04 0.01 0.04
¹
0.2 5.50 9.54 4.50 8.40
0.4 5.40 8.11 2.83 4.53
0.6 4.89 6.65 2.45 3.36
0.8 3.53 3.79 1.76 1.91

Table 15: m3 (¹; ¾
2) and m0

3 (¹; ¾
2) for various ¹ and ¾2 and n = 20.

m4 (¹; ¾
2) m0

4 (¹; ¾
2)

¾2 0.01 0.04 0.01 0.04
¹
0.2 6.14 15.79 10.29 28.24
0.4 7.58 17.37 2.55 9.34
0.6 7.60 17.36 1.91 4.96
0.8 6.10 15.83 1.53 4.22

Table 16: m4 (¹; ¾
2) and m0

4 (¹; ¾
2) for various ¹ and ¾2 and n = 20.
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