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1 Introduction

Consider a sample survey of the general population:
the survey goal is to estimate a particular popula-
tion entity, say, the population mean. Under most
standard sampling designs, such as simple random
sampling (SI) or strati�ed SI, this is a straightfor-
ward task, and suitable formulae are available in
any textbook dealing with sampling (e.g., Cochran
1977; Särndal et al. 1992). These textbooks, how-
ever, rarely o¤er any advice on how to estimate the
mean if a nonprobability procedure is used to select
the sample. In such cases, the design-based theory
does not hold, so inference must rely on model as-
sumptions.

This paper will focus on Web surveys, which typ-
ically su¤er from both a lack of appropriate sam-
pling frames and the low penetration of Internet
into the general population. In consequence, these
surveys must often rely on volunteer panels. A
simple estimator of the population mean, such as
the sample mean, may su¤er from severe selection
bias if applied to such panel data. To avoid this, a
model-based �propensity score estimator�has been
proposed. Under ideal conditions this estimator
would be free of selection bias. A remaining is-
sue, dealt with in this paper, is how to estimate its
variance.

1.1 The problem

Our starting point is a recurrent sample survey con-
sisting of two parts characterized by the data col-
lection means used� telephone (T ) or Web (W ).
The Web is the main medium used for data col-
lection, while data collection by telephone is rare,
performed for the sole purpose of aiding estimation.
The parameter to be estimated is the population

mean, �yU =
P

k2U yk=N , where U is the general
population (of size N) and yk is the �xed value of
study variable y for individual k 2 U .
The Web sample, sW , is selected from UW , a

subset of U . In practice, we think of sW as cho-
sen from a volunteer panel of Internet users, possi-
bly created by inviting visitors to popular Internet
sites and portals. This corresponds to Type 3 in
Couper�s taxonomy of Web surveys (Couper 2000).
The telephone sample, sT , on the other hand, is
an SI sample from U (to simplify matters, we as-
sume that the frame population of the telephone
survey coincides exactly with U). The sizes of sW ,
n = nT + nW .
The problem is to estimate the mean of U from

sW , supported by sT

1.2 Our approach

We deal with the situation described in section 1.1
by leaving the �nite population framework and re-
garding yk (k 2 U) as a random variable associ-
ated with the kth individual (the actual yk is taken
as a realization of this random variable). Our
viewpoint brings us to a model world sometimes
referred to as a superpopulation model (see, e.g.,
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Särndal et al. 1992, sec. 12.2); Cassel et al. 1977).
The random variables, y1; :::; yN , are regarded as
independently and identically distributed (iid) with
a common mean, E(yk) = �, and variance, V (yk) =
�2, for k 2 U . From the general properties of a
random sample (Casella and Berger 1990, theorem
5.2.2), the expectation and variance of �yU are then
given by

E(�yU ) = �; V (�yU ) =
�2

N
(1)

In this setting, the estimation problem discussed
in section 1 is translated into the one of estimat-
ing � and �2 from available data. To accomplish
this, consider the following conditions, correspond-
ing closely to those outlined in Rosenbaum and Ru-
bin (1983).
The �treatment assignment�of individual values

of k 2 U , here interpreted as the individual�s possi-
ble inclusion in the Web panel, is indicated by the
variable zk:

zk =

�
1 if k 2 UW
0 if k =2 UW

(2)

The treatment assignment is assumed to be strongly
ignorable given a random vector, xk, of covariates;
that is, yk (k 2 U) is conditionally independent of
zk given xk. It follows that the conditional ex-
pected value of yk given xk, E(yk jxk ), is inde-
pendent of zk. If treatment assignment is strongly
ignorable given xk, it is strongly ignorable given
any function of xk� any balancing score� such that
xk). One implication of this is that the conditional
expected value of yk given b(xk), E(yk jb(xk) ), is
independent of zk. The coarsest balancing score is
the propensity score, e (xk), de�ned as

e (xk) = Pr (zk = 1 jxk ) (3)

the �nest balancing score being xk itself. Now as-
sume that the propensity scores of all individuals
in U are known. Theoretically, propensity scores
may assume any values between 0 and 1. This
limits their practical use somewhat, since the num-
ber of individuals having the same propensity score
may be equal or close to zero. It seems plausi-
ble, however, for individuals having similar propen-
sity scores to have similar conditional expected val-
ues. Thus, we assume that if U is divided into
a large number, H, of classes, U1; :::; Uh; :::; UH ,

each containing individuals having similar propen-
sity scores, then individuals within a class will share
a common conditional mean and variance. For-
mally, we assume that

E(yk je(xk) ) = �h; V (yk je(xk) ) = �2h (4)

for all k 2 Uh (h = 1; :::;H). Then, � can be writ-
ten as

� =
HX
h=1

Dh�h (5)

where Dh denotes the probability that an individ-
ual, randomly selected from U , belongs to class Uh
(h = 1; :::;H).
Estimation of � requires knowledge of the class

membership of each individual k 2 s. For h =
1; :::;H, let intersection sW\Uh be denoted sWh (of
random size nWh), intersection sT \Uh be denoted
sTh (of random size nTh), and union sWh [ sTh be
denoted sh (of random size nh). Assuming class
membership to be known for sampled individuals,
we propose the following sample-based estimates of
Dh and �h. First, since sT is chosen by SI, the dis-
tribution of sT over classes is likely to resemble the
corresponding population distribution over classes
(if nT is su¢ ciently large.) Thus, it makes sense to
estimate Dh by dh = nTh=nT . Second, since treat-
ment assignment is strongly ignorable, estimation
of the class means, �h, can be based solely on sWh.
This motivates the estimation of �h by the class
mean of the Web sample: �ysWh

=
P

sWh
yk=nWh.

The resulting estimator of � is

�ys =
HX
h=1

dh�ysWh
. (6)

In practice, the propensity scores must be esti-
mated for k 2 s, which calls for some additional
modeling. A strategy that lies near at hand is to
formulate a logistic regression model for e (xk) as
a function of xk, and to estimate the propensity
scores using this model. Then, sample s is divided
into classes of similar estimated propensity scores.
The sample classes should then coincide reasonably
well with the classes in the population.
Estimator �ys, being intuitively appealing, is al-

ready in use in various Web surveys (see, e.g., Ter-
hanian, Smith, Bremer, and Thomas 2001). This
paper uses the model assumptions to derive its ex-
pectation and variance, and, most importantly, to
suggest an estimator of its variance.

2



2 The propensity score
weighting procedure

The propensity score weighting procedure of inter-
est in this paper comprises the following steps:

1. estimation of e (xk) for each k 2 s,

2. division of sample s into classes containing in-
dividuals having similar estimated values of
e (xk), and

3. estimation of �.

This section discusses some features of steps 1
and 2.
In step 1, the propensity scores, e (xk), are es-

timated by using the indicator variable, zk, and
the vector, xk, of the covariates, both of which
are available for all k 2 s. The covariates (some-
times referred to as �webographics�) might concern
lifestyle, attitudes, and self-perception. A standard
logistic regression model for e (xk) as a function
of xk is formulated (Neter, Kutner, Nachtsheim,
and Wasserman 1996, eqn. 14.37; Manly 1994, eqn.
8.3), according to which values of zk (k 2 U) are in-
dependent Bernoulli random variables having con-
ditional expected values:

E(zk jxk ) = e (xk) =
exp

�
�0xk

�
1 + exp

�
�0xk

� (7)

where

� =

26664
�0
�1
...

�p�1

37775 ; xk =

26664
1
x1k
...

xp�1;k

37775
If s is an SI sample from U , then� as in type (1)
in Manly (1994, p. 120)� application of logistic re-
gression is straightforward, and e (xk) is estimated
by

ê (xk) =
exp (b0xk)

1 + exp (b0xk)
(8)

where b is a vector of maximum likelihood (ML)
estimates of �0; �1; :::; �p�1. In our case, sW and
sT are lumped together to form s. As shown in
Seber (1984, p. 312) and discussed in Manly (1994,
sec. 8.10), when applied to lumped data, the model

in equation (7) needs modi�cation. In our setting,
intercept �0 should be reduced by

loge

�
nW (1� PW )
nTPW

�
, (9)

where PW = NW =N is the Web panel fraction of
the total population (the ML estimate of �0 must
of course be adjusted correspondingly).
Next, the total sample, s, is divided into weight-

ing classes containing individuals having similar es-
timated propensity scores. In the literature, one
sometimes �nds the recommendation to form sev-
eral (around �ve) groups, and to make them of
equal size in terms of nTh. This recommenda-
tion is based on an early paper by Cochran (1968),
in which subclassi�cation by a single covariate is
considered. In our setting, division of the sample
should aim to form groups of individuals having
similar propensity scores; if so, it makes no sense
to create groups of equal size. Instead, the group
members�closeness in terms of ê (x) is crucial.

3 Statistical modeling

To derive the statistical properties of �ys, we use
statistical models for yk and the vector nT =
(nT1; :::; nTh; :::; nTH). In this section, our mod-
els are formulated, and the corresponding statisti-
cal properties of �ys are investigated. Please note,
however, that several potential sources of bias and
variance are ignored, including

� the choice of x variables included in the logistic
regression model,

� the �t of the logistic regression model, and

� the division of the Web sample into classes by
ê (x) instead of e (x).

As will soon be discussed, we also ignore the ran-
domness of nW1; :::; nWH .
Our approach relies on the following random

models for yk and nT .

Model m1

Conditional on e (x), the study variable values yk
for k 2 sh, h = 1; :::;H, are iid random vari-
ables with expectation Em1

(yk) = �h and variance
Vm1(yk) = �

2
h.

3



From model m1 (and the general properties of
a random sample), the conditional expectation
and variance of �ysWh

(conditional on e (x) and
nWh) are Em1(�ysWh

) = �h and Vm1(�ysWh
) =

�2h=nWh, respectively. Also, �ysWh
and �ysWi

(h; i = 1; :::;H; i 6= h) are independent. Since sWh

is not a probability sample, the statistical proper-
ties of nWh are unknown. Therefore, throughout
our analysis, we condition on nWh.

Model m2

Each individual k 2 sT is independently assigned
membership in one of H classes. For each individ-
ual, the probability of being assigned to class h is
Dh. Thus, the random vector, nT , has a multino-
mial distribution with nT trials, H possible out-
comes, and cell probabilites D1; :::; DH .

Under model m2, the marginal distribution of nTh
(h = 1; :::;H) is binomially distributed with para-
meters nT and Dh. It follows that the expectation
and variance of nTh are Em2(nTh) = nTDh and
Vm2

(nTh) = nTDh (1�Dh), respectively.
In addition to models m1 and m2, we assume

that �ysWh
and dh (h = 1; :::;H) are independent.

This makes sense, since they are based on two dif-
ferent data sets, selected independently of U .

4 Statistical properties of �ys
The expectation and approximate variance of �ys,
based on the models formulated in sec. 3, are given
in theorem 4.1. The theorem is proved in the ap-
pendix.

Theorem 4.1 Under model m1 and m2, the esti-
mator �ys is model unbiased for �. The variance of
�ys is given by

Vm1m2
(�ys) = V1 + V2 (10)

where

V1 =
1

nT

HX
h=1

�
Dh (�h � �)

2
+Dh (1�Dh)

�2h
nWh

�
and

V2 =
HX
h=1

D2
h

�2h
nWh

:

We construct an estimator of Vm1m2
(�ys) using

the �method of moments� (Casella and Berger
1990, ch. 7). In this context, it means that we
replace the unknown model parameters in the vari-
ance expression with their sample analogues. This
gives the estimator

V̂ (�ys) = V̂1 + V̂2 (11)

where

V̂1 =
1

nT

HX
h=1

�
dh (�ysWh

� �ys)2 + dh (1� dh)
s2Wh

nWh

�
,

s2Wh =
P

k2sWh
(yk � �ysWh

)
2
= (nWh � 1), and

V̂2 =
HX
h=1

d2h
s2Wh

nWh
.

The method of moments is intuitively rather than
theoretically motivated. In consequence, there is
no guarantee that V̂ (�ys) is model unbiased for the
true variance.

5 Simulation

In this section, we will familiarize ourselves with
�ys and V̂ (�ys) through a simulation. We will create
an arti�cal target population, draw a large num-
ber of independent samples from the same, and use
these samples to investigate the estimators�statis-
tical properties.

5.1 Creation of the target popula-
tion

An arti�cial target population U of N = 50; 000
elements is constructed as follows.

Covariates: We simulate N values of a bivariate
standard normal distribution:

(X1; X2) � N(0;�)

with covariance matrix

� =

�
1 �
� 1

�
and N values of the Bernoulli-distributed vari-
able:

X3 � Be
�

exp (
0 + 
1X1 + 
2X2)

1 + exp (
0 + 
1X1 + 
2X2)

�
.
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Class Conditions
index h x1 x2 x3
1 � 0 � 0 0
2 � 0 > 0 0
3 > 0 � 0 0
4 > 0 > 0 0
5 � 0 � 0 1
6 � 0 > 0 1
7 > 0 � 0 1
8 > 0 > 0 1

Table 1: Division into classes.

This produces two continuous and one discrete
covariate. The model parameters are set to
� = :5, 
0 = 0, and 
1 = 
2 = 1.

Division into classes: We use the realized values
on the covariates to partition U into H = 8
classes, U1; :::; Uh; :::; UH , in accordance with
Table 1. The realized size of class Uh is de-
noted Nh.

Study variable: For class Uh (h = 1; :::; 8), we
simulate Nh values of a study variable as

Yh � N
�
�h; �

2
h

�
where �1 = �0:4 and �h = �h�1 + 0:1 for h >
1, and �h =

p
�2h = �0 + �1 j�hj. The model

parameters are set to �0 = �1 = 1. Note that
in this way, we obtain di¤erent study variable
means for di¤erent classes, larger means for
larger values on the covariates, and variances
proportional to the level of the means.

Treatment assignment: For class Uh
(h = 1; :::; 8), we simulate Nh values of
the Bernoulli variable:

Zh � Be(�h)

where �1 = 0:1 and �h = �h�1 + 0:1 for h > 1.
In this way, the treatment assignment is de-
pendent on all auxiliary variables (through the
forming of the classes). Furthermore, treat-
ment assignment is strongly ignorable in the
sense discussed in section 1.2.

5.2 Sampling from the arti�cal pop-
ulation

From the population, R = 10; 000 independent
samples s(1); :::; s(r); :::; s(R) are drawn. Each sam-
ple, s(r), is the union of sT (r) and sW (r), where
sT (r) is an SI sample from U , and sW (r) an SI sam-
ple from UW . Throughout, the sizes of sT (r) and
sW (r) are nT (r) = 1000 and nW (r) = 5000, respec-
tively.

5.3 Estimation and results

In the estimation, the class membership of each
sampled individual is assumed to be known. Thus,
we limit our attention to the favorable case in which
there is no uncertainty in the division of s(r) into
classes. For r = 1; :::; R, we calculate a propen-
sity score estimate �ys(r) in accordance with equa-
tion (6). In addition, we calculate the variance es-
timates V̂1(r) and V̂

�
�ys(r)

�
in accordance with the

formulae for V̂1 and V̂ (�ys), respectively, in equa-
tion (11). Averages of the sample estimates are
calculated as

�ys(r) =
1

R

RX
r=1

�ys(r); V̂ 1 =
1

R

RX
r=1

V̂1(r);

V̂
�
�ys(r)

�
=
1

R

RX
r=1

V̂
�
�ys(r)

�
(12)

and an approximation of the true variance of �ys as

V (�ys) =
1

N

RX
r=1

�
�ys(r) � �ys(r)

�2
: (13)

Figure 1 shows the frequency distribution of the
estimated relative bias in �ys,

�
�ys(r) � �

�
=�. On

average, the relative bias is very close to zero:

�ys(r) � �
�

= �:005.

This result was as expected, since the arti�cial pop-
ulation is constructed in accordance with our model
assumptions.
Fig. 2 shows the frequency distribution of the

ratio V̂1(r)=V̂
�
�ys(r)

�
. On average,

V̂ 1

V̂
�
�ys(r)

� = :642,
5
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�
.

which illustrates that the term V1 may represent a
large proportion of the total variance.

The relative bias of V̂
�
�ys(r)

�
, �nally, is approxi-

mately given by

V̂
�
�ys(r)

�
� V (�ys)

V (�ys)
= :113,

indicating that the suggested variance estimator is
quite conservative.

6 Conclusions and �nal re-
marks

The propensity score estimator has developed from
statistical practice and its needs, rather than as
a theoretical exercise. This is probably the rea-
son why its theoretical motivation is not made en-
tirely clear in the literature. In this paper, we have
formulated a simple (ideal) model world, in which
the propensity score estimator of the population
mean is unbiased for the same. In this setting, it is
straightforward to develop an expression for the es-
timator�s variance. By replacing unknown entities
in the variance formula with their sample counter-
parts, we arrive at an intuitive variance estimator.
Our variance expression consists of two terms,

V1 and V2, the second of which resembles the vari-
ance of a poststrati�ed estimator. One might feel
tempted to con�ne oneself to estimating V2. It is,
however, easy to conceive of situations in which this
would lead to serious underestimation of the to-
tal variance; for instance, if the class means di¤er
greatly, or if the telephone sample is small.
In the simulation study, we have made sure that

the propensity score estimator really is unbiased for
the true mean if the model assumptions hold. We
have demonstrated that the variance term, V1, may
represent a large proportion of the total variance,
and discovered that our variance estimator is likely
slightly to overestimate the true variance.
In the simulation, the propensity score of each

sampled individual was known; in reality, however,
they must be estimated from the sample data. Fur-
ther simulations are necessary to investigate the im-
pact of this additional step on the propensity score
estimator. The consequences of deviating from the
strong ignorability assumption also remain to be
investigated.
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A Proof of Theorem 3.1

We start with the expectation. Using the condi-
tional independency of �ysWh

and dh,

Em1m2(�ys) =
HX
h=1

Em2 (dh)Em1(�ysWh
) =

HX
h=1

Dh�h.

Now let us turn to the variance. From the gen-
eral properties of the variance of a sum of random
variables (see Ross 1997, eqn. 2.16),

Vm1m2
(�ys) =

HsX
h=1

Vm1m2
(dh�ysWh

)

+2

HsX
h=1

X
i<h

Covm1m2
(dh�ysWh

; di�ysWi
)

= V1 + V2

where Covm1m2
(dh�ysWh

; di�ysWi
) is the covariance

between dh�ysWh
and di�ysWi

.
Consider any term Vm1m2(dh�ysWh

) in V1. Since
dh and �ysWh

are independent,

Vm1m2
(dh�ysWh

) = [Em1
(�ysWh

)]
2
Vm2

(dh)

+ [Em2
(dh)]

2
Vm1

(�ysWh
)

+Vm2
(dh)Vm1

(�ysWh
)

= �2h
Dh (1�Dh)

nT
+D2

h

�2h
nWh

+
Dh (1�Dh)

nT

�2h
nWh

,

and

V1 =
HX
h=1

�
�2h
Dh (1�Dh)

nT
+D2

h

�2h
nWh

+
Dh (1�Dh)

nT

�2h
nWh

�
:

Now consider any covariance term in V2:

Covm1m2(dh�ysWh
; di�ysWi

)

= Em1m2(dh�ysWh
di�ysWi

)

�Em1m2(dh�ysWh
)Em1m2(di�ysWi

)

= Em1m2(dh�ysWh
di�ysWi

)

�Dh�hDi�i:
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By use of conditioning,

Em1m2
(dh�ysWh

di�ysWi
)

= Em1
[�ysWh

�ysWi
Em2

(dhdi jm1 )]

= Em1

�
�ysWh

�ysWi

�
1

n2T
Covm2

(nThnTi jm1 )

+ Em2
(dh jm1 )Em2

(di jm1 )]g

= Em1

�
�ysWh

�ysWi

�
1

n2T
Covm2

(nThnTi jm1 )

+ DhDi]g

where Covm2
(nThnTi jm1 ) is the covariance be-

tween nTh and nTi. Since nTh and nTi belong
to a multinomial distribution, from Agresti (1990,
p. 44),

Covm2(nThnTi jm1 ) = �nTDhDi;

and we arrive at

Em1m2
(dh�ysWh

di�ysWi
)

= Em1

�
�ysWh

�ysWi

�
DhDi

�
1� 1

nT

���
= DhDi

�
1� 1

nT

�
Em1

(�ysWh
�ysWi

)

= DhDi

�
1� 1

nT

�
�h�i:

Thus, V2 is given by

V2 = 2
HX
h=1

X
i<h

�
DhDi

�
1� 1

nT

�
�h�i

� Dh�hDi�i]

= � 2

nT

HX
h=1

X
i<h

DhDi�h�i

=
1

nT

24 HX
h=1

�2hD
2
h �

 
HX
h=1

�hDh

!235 :

Finally, we add V1 and V2:

V1 + V2 =
HX
h=1

�
�2h
Dh (1�Dh)

nT
+D2

h

�2h
nWh

+
Dh (1�Dh)

nT

�2h
nWh

�

+
1

nT

24 HX
h=1

�2hD
2
h �

 
HX
h=1

�hDh

!235
=

1

nT

"
HX
h=1

�2hDh �
HX
h=1

�2hD
2
h

+Dh (1�Dh)
�2h
nWh

+
HX
h=1

�2hD
2
h

�
 

HX
h=1

�hDh

!235+ HX
h=1

D2
h

�2h
nWh

=
1

nT

8<:
24 HX
h=1

�2hDh �
 

HX
h=1

�hDh

!235
+ Dh (1�Dh)

�2h
nWh

�
+

HX
h=1

D2
h

�2h
nWh

=
1

nT

HX
h=1

Dh

��
�h � ��(yje )

�2
+ (1�Dh)

�2h
nWh

�

+
HX
h=1

D2
h

�2h
nWh

which equals the stated expression for
Vm1m2

(�ys).
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