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Abstract

Where there is auxiliary information in survey sampling, the de-

sign based ”optimal (regression) estimator” of a finite population to-

tal/mean is known to be (at least asymptotically) more efficient than

the corresponding GREG-estimator. The GREG-estimator was origi-

nally constructed using an assisting linear superpopulation model. It

may also be seen as a calibration estimator; i.e. as a weighted lin-

ear estimator, where the weights obey the calibration equation and,

with that restriction, are as close as possible to the original ”Horvitz-

Thompson weights” (according to a suitable distance). We show that

also the optimal estimator can be seen as a calibration estimator in

this respect, with a quadratic distance measure closely related to the

one generating the GREG-estimator. Simple examples will also be

given, revealing that this new measure is not always easily obtained

though.
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1. NOTATION AND BASICS

Consider a finite population U consisting of N objects labelled 1, . . . , N

with associated study values y1, . . . , yN and J-dimensional auxiliary (column-)

vectors x1, . . . ,xN . We want to estimate the population total ty =
∑

i∈U yi

by drawing a random sample s of size n (fixed or random) from U , with first

and second order inclusion probabilities πi = P (i ∈ s), πij = P (i, j ∈ s),

i, j = 1, . . . , N . The study values and the auxiliary vectors are recorded for

the sampled objects and before the sample is drawn we assume that at least

tx =
∑

i∈U xi is known.

Finally some comments on matrix notation in this paper: Generally, the

transpose of a matrix A is denoted by AT and if A is square, the inverse (a

generalised inverse) is written A−1(A−). We further let the column vectors

y = (yi)i∈s and w0 = (1/πi)i∈s, X be the J × n ”design” matrix of the

auxiliary information from s and finally In means a unit diagonal matrix of

size n.

2. REGRESSION AND CALIBRATION ESTIMATORS

An unbiased simple estimator of ty is the Horvitz-Thompson estimator

t̂y =
∑

i∈s yi/πi = yT w0. However, more efficient estimators may be obtained

utilising the auxiliary information, e.g. the well-known model assisted GREG-

estimator, see Särndal et al. (1992). Constructed from the assumption of

e.g. a homoscedastic linear regression superpopulation model, the GREG

estimator is
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t̂y r = yT w0 + (yT RrX
T )(XRrX

T )−1(tx − t̂x) (1)

= yT g, (2)

where Rr = w0In, t̂x =
∑

i∈s xi/πi and

g =
(

1

πi

(1 + xT
i (XRrX

T )−1(tx − t̂x))
)

i∈s
.

Now, the expression (2) for the GREG-estimator is interesting since we

also have that

xT g = tx, (3)

which is called the calibration equation. This brings us to an alternative

possible derivation of the GREG-estimator according to Deville and Särndal

(1992). Suppose that we seek an estimator yT w of ty with a vector w

of sample-dependent weights (wi)i∈s, which respects the corresponding cal-

ibration equation, while also minimising the distance between w and w0

according to the quadratic distance measure

(w −w0)
T R(w −w0),

where R = (w0In)−1.

This results in

w = w0 + R−1xT (XR−1XT )−1(tx − t̂x), (4)

which means that w = g, since here R = R−1
r .
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Turning to the optimal estimator, consider first the vector (t̂y, t̂
T

x ) and

let Σy,x be the covariance (row) vector of t̂y and t̂x and Σx,x the covariance

matrix of t̂x. Now, the minimum-variance, see Montanari (1987), unbiased

linear estimator (in t̂y and t̂x) of ty is the difference estimator

t̂y + Σy,xΣ
−1
x,x(tx − t̂x). (5)

Since Σy,x and Σx,x in practice are unknown, we let the optimal estimator

be

t̂y opt = yT w0 + Σ̂y,xΣ̂
−1

x,x(tx − t̂x)

= t̂y + (yT RoptX
T )(XRoptX

T )−1(tx − t̂x), (6)

where Ropt =
(
(πij − πiπj)/(πijπiπj)

)
i,j∈s

.

In an asymptotic context, where n→∞ and N →∞, Σ̂x,y and Σ̂x,x may

be viewed as components of the asymptotic covariance matrix of (t̂y, t̂
T

x ).

Under the assumption of consistency of Σ̂x,y and Σ̂x,x, which holds under

very mild conditions, see Andersson et al. (1995), the optimal estimator has

the same asymptotic variance as the difference estimator (5). In particular

it follows that the optimal estimator is asymptotically better than the usual

GREG estimator, see Rao (1994), Montanari (2000) and Andersson (2001),

i.e. its asymptotic variance is never larger and usually smaller. However,

one does not know anything about the efficiency for finite samples, since the

covariance estimator may converge slowly. Note also that in some cases there

exist asymptotically even better estimators which are not linear.

Now, the fact that the GREG-estimator is also a calibration estimator
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using

(w −w0)
T R−1

r (w −w0) (7)

as the distance measure and comparing (1) with (6), leads one to believe that

replacing Rr by Ropt in (7) should imply that we instead derive the optimal

regression estimator as a calibration estimator. That this actually holds is

shown below.

3. THE MAIN RESULT

In order to show existence of a distance measure corresponding to the

optimal estimator, we will first state and prove a result in the general case.

Lemma: With R denoting an arbitrary positive definite n× n matrix,

(w −w0)
T R(w −w0) (8)

is subject to the constraint Xw = tx minimised by

w = w0 + R−1XT (XR−1XT )−1(tx − t̂x).

Proof: Introducing the J × 1 vector λ of Lagrange multipliers, we get after

differentiation the equation system

2R(w −w0) + XT λ = 0 (9)

XW− tx = 0 (10)

Multiplying (9) by XR−1, using (10) and solving for λ, yields with Xw0 =

t̂x:

λ = 2(XR−1XT )−1(t̂x − tx). (11)
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Putting this into (9) and solving for w finally leads to

w = w0 + R−1XT (XR−1XT )−1(tx − t̂x).

From the lemma we thus have the following main result:

Theorem: With Ropt being positive (semi-) definite and using the optimal

calibration distance-measure, which we get by letting R = R−1
opt (R−

opt) in

(8), the calibration estimator will become the optimal regression estimator.

Remark: Ropt may in some cases be indefinite (see below). The only thing

we know is that it is an unbiased estimator of a covariance matrix. If it is

not positive semi-definite there also exist x-values such that XRoptX
T is

not positive semi-definite, but the probability of such x-values goes to zero

as the population and sample sizes increase (and if Σx,x is positive definite).

A strict minimisation of a distance with ”a negative component” would lead

to infinitely large corrections. This problem of the optimal estimator has, to

our knowledge, not been pointed out previously.

The simplest way to find a distance which gives the optimal estimator as a

calibration estimator is to find a matrix Rdist which has the same eigenvectors

as Ropt but where the eigenvalues are replaced by their absolute values. (This

result can be shown along the same lines as the proof of the lemma above.

The distance can be seen as the sum of the products of the eigenvalues and the

squared eigenvectors. Putting the derivatives equal to zero means that in the

proposition we found the extremes i.e. the minima for positive eigenvalues

and the maxima for negative eigenvalues. By changing all negative signs the

extremes will all be minima).

6



4. EXAMPLES

Positive-definite Ropt : Suppose that the objects in U are independently

drawn with inclusion probabilities π1, . . . , πN (Poisson sampling); thus imply-

ing a random sample size n, where E[n] =
∑

i∈U πi. Due to the independence

of drawings, Ropt is diagonal and specifically

R−1
opt = In

(
π2

i

1− πi

)
i∈s

.

Positive-semidefinite Ropt : Suppose n objects are drawn according to simple

random sampling, i.e. each object has inclusion probability πi = n/N . The

elements of Ropt then are

i = j :
(

N
n

)2
N−n

N

i 6= j :
(

N
n

)2
n−N

N(n−1)
.

This means that Ropt is singular with rank n− 1.

Non-positive semi-definite Ropt : Let U consist of four elements and s of two

elements. Suppose that a systematic sample is taken with probability 0.94

and a simple random sample with probability 0.06, i.e. π13 = π24 = 0.48 and

π12 = π14 = π23 = π34 = 0.01. In that case

Ropt =

 2 23/12

23/12 2

 (12)

with probability 0.96 and

Ropt =

 2 −96

−96 2

 (13)
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with probability 0.04. The second matrix has a negative eigenvalue.

The problem does not necessarily disappear if N is large. Consider instead

a population consisting of N/4 strata with four elements each. Suppose that

the above sampling procedure is used independently in each stratum. In that

case Ropt will consist of a matrix with the above 2 × 2-matrices along the

diagonal and zeroes elsewhere.
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