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Abstract

The sampling strategy that couples probability proportional-to-size sam-
pling with the GREG estimator has sometimes been called “optimal”, as it
minimizes the anticipated variance. This optimality, however, relies on the as-
sumption that the finite population of interest can be seen as a realization of a
superpopulation model that is known to the statistician. Making use of the same
model, the strategy that couples model-based stratification with the GREG es-
timator is an alternative that, although theoretically less efficient, has shown to
be sometimes more efficient than the so-called optimal from an empirical point
of view. We compare the two strategies from both analytical and simulation
standpoints and show that optimality is not robust towards misspecifications
of the model. In fact gross errors may be observed when a misspecified model
is used.

Keywords: Survey sampling; Optimal strategy; GREG estimator; Model-
based stratified sampling; Probability propotional-to-size sampling.



1 Introduction

When planning the sampling strategy (i.e. the couple sampling design and estima-
tor) in a finite population survey setup, the statistician is often looking for “the
most” efficient strategy. Godambe (1955), Lanke (1973) and Cassel et al. (1977) show
that there is no uniformly best estimator, in the sense of being best for all popula-
tions. There is no best design either. Nevertheless, it is often possible to identify a set
of strategies that can be considered as candidates. Our task is to choose one among
this set. The “industry standard”for busines surveys, for example, has since long
been stratified simple random sampling. The population is stratified into industry
and within industry by some size variable. An alternative design, which is also often
used, is probability proportional-to-size sampling.

The setup that will be used throughout this paper is as follows. We are interested
in the estimation of the total of a study variable. The values of an auxiliary variable
are known from the planning stage for all the elements. We will assume that ideal
survey conditions hold. The auxiliary variable can be used at the design stage, the
estimation stage or both, for obtaining an efficient strategy, where efficiency will be
understood in terms of design-based variance.

The strategy that couples proportional-to-size sampling with the regression estima-
tor (denoted mps—reg) has sometimes been called optimal (see, for example, Sarndal et
al. (1992), Brewer (1963), Isaki and Fuller (1982)). This optimality, however, relies on
a superpopulation model which might not (and most certainly will not) hold exactly
in practice. Wright (1983) proposed strong model-based stratification, which, mak-
ing use of the same superpopulation model, defines a sampling strategy that couples
stratified simple random sampling with the regression estimator.

Both strategies mentioned above rely on the assumption that the finite population
can be seen as a realization of a particular model (section 2.2). The aim of this paper
is to compare these strategies and try to answer the following question: is mps-reg still
the best strategy when the model is misspecified? Besides the two strategies already
mentioned, three more will be included in the study.

There are articles focused on a particular concrete situation, for example Kozak
and Wieczorkowski (2005) who study 7ps and stratified designs in an agricultural
survey. Rosén (2000a) investigates optimality of 7ps by means of simulations and
theory. Holmberg and Swensson (2001) present a minor simulation study comparing
these strategies. Our intention is to compare them from both analytical and simulation
standpoints.

The contents of the article are arranged as follows. The framework is defined in
section 2, where the estimators and designs of interest, as well as the superpopulation
model, are presented. In section 3 we verify empirically the optimality of mps—reg
under a correctly specified model. The case of a misspecified model is studied in
section 4. Finally, some conclusions are presented in section 5.

2 Framework
The aim is to estimate the total t, = >, yx of one study variable y' = (y1,¥2, -+, yn)

in a population U with unit labels {1,2,---, N} where N is known. It is assumed
that there is one auxiliary variable ' = (z1,22, -+ ,zn), T > 0, known for each
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element in U. A without-replacement sample s of size n is selected and y;, is observed
for all units k € s.

In this section we shall describe the six strategies that are spanned by two designs,
stratified simple random sampling —STSI— and proportional-to-size sampling —
mps— on the one hand; and three estimators, the Horvitz-Thompson estimator —
HT—, the poststratified estimator —pos— and the regression estimator —reg— on
the other hand.

The reasoning behind these strategies is as follows. Regarding the design, simple
random sampling does not make any use of the auxiliary information, whereas mps
makes, what we call, strong use of it. STSI lies in between, we will say that it makes
weak use of the auxiliary information. In a similar way, regarding the estimator, the
HT estimator does not make use of the auxiliary information, as opposed to the reg-
estimator that makes strong use of it. The pos-estimator lies in between, making weak
use of the auxiliary information. Then the six strategies make use of the auxiliary
information at a different degree.

The general regression estimator —GREG— is described in the first part of this
section. The HT, pos and reg estimators are shown to be particular cases of it. In
the last part of the section, the superpopulation model is described.

Before moving on, a note on notation is convenient. Throughout the paper we will
use the symbols E and E for expectation and model residuals, respectively.

2.1 The GREG estimator

In the general setting, we have J auxiliary variables, i.e. the vector ¢y = (x1x, Tok, - -+ , Tyx)
is available for each k € U. The GREG estimator of ¢, is defined as

taree = Z Yk + Z G,

where 7, is the inclusion probability of the kth element, exs = yp — U and g = mkﬁ

with .
~ x) Xy, T Y
B = u b 1
(o) v "
The a-values will be defined later. No closed expression for the variance of the GREG
estimator is available, but it can be approximated by (see Sdrndal et al., 1992)

€ .
A tGREG Z Z Tkl — 7Tk7Tl —k—l with € = Y — QIkB (2)

T T

where 7, is the second order inclusion probability of k£ and [ and
’ -1 /
LTk LYk
B = k :
(o) o
U U

This is the same expression for the variance of the HT estimator with e instead of

Y. From now on we will write V,, [tGREg} instead of AV, [tGREg} , i.e. we assume that
the approximation exactly coincides with the variance.

The following are sufficient but not necessary conditions for (2) being equal to
Zero:




i. e = 0 for all £k € U. The e; depend only on the estimator, not the design,
therefore a GREG estimator that correctly explains the study variable will lead to
small residuals. (In this case, not only the approximation but the true variance is
equal to zero, and the GREG estimator is exactly equal to t,.)
ii. ™, = neg /t with t, = >, ex. Even if the e, were known this condition cannot
be fulfilled as some residuals will be smaller than zero while some will be larger than
zero, thus leading to negative probabilities.
iii. 7rk = nlt"“‘| together with my = mym if k € U and [ € U™, where t)o) = > |ex]
= {k,er > 0} and U~ = {k,e; < 0}. One method to satisfy the second part of
the condition would be to stratify the population with respect to the sign of e, which,
however, requires knowledge about the finite population at a level of detail that is
seldom available. We will therefore assume that this knowledge is not available and
we will settle for the next condition.
ii’, m, = n% which is obtained if we drop the m,; = 77 part of condition iii. Note
that iii’ does not yield a zero variance. Why consider condition iii’ then? First, as
will be shown below, the HT estimator can be seen as a particular case of the GREG
estimator and if we have y; > 0, it is equivalent to condition ii above, thus leading to
a zero variance. Second, it will be useful for defining the so-called optimal strategy
and model-based stratification.

As can be seen, in the context of the GREG estimator, conditions i and iii’
suggest the specific role of the design and the estimator in the sampling strategy. The
estimator must explain the trend of the study variable with respect to the auxiliary
variable, leading to small residuals. The design, on the other hand, must explain the

residuals, in other words, how the study variable is spread around the trend.

The Horvitz-Thompson estimator as a particular case of the GREG esti-
mator Consider the case where the auxiliary vector is of the form x; = 0 for all
k € U. If we allow 0/0 = 0 (this terrible blasphemy is justified by using a generalized
inverse in (1) instead of the inverse, and noting that 0 is a generalized inverse of itself)
we have that

~ T, T, - T Y
B = k R =0
(o) s
then g, = wkﬁ =0and exs =y — Y = Y — 0 = yr. The GREG estimator becomes
> ~ €ks Yk ;
foe = Y0+ 0% = Y0+ D,
U s U s

which explicitly shows that the HT estimator can be seen as the case where no auxil-
iary information is used into the GREG estimator. Note also that e, = yp— a1 B = s,
therefore (2) becomes the exact variance of the HT estimator.

The poststratified estimator Let Uj,U;--- Ul be a partition of U. Consider
the case where the auxiliary vector is of the form xy = (14, ok, -+ , Tar) With zg

defined as
{1 it kel
Lok =

0 otherwise



This means that the auxiliary information for each element is a vector that indicates
a group (poststratum) to which the element belongs.

The poststratified estimator, or simply pos-estimator, is obtained when this par-
ticular type of auxiliary information is used in the GREG estimator. The residuals
become

ly/a
ek =ypr— By, with B, = t?;—’g (keU,)
a7g

where t,/,, = ZUg 2 and 14, = ZU; o~ We will consider the case where aj is

constant within poststrata, a; = ¢,, then B, = Yuy-

The regression estimator Consider the case where the auxiliary vector is of the
form x; = (1, zx), with z; the result of a known function applied to the known z.
The regression estimator, or simply reg-estimator, is obtained when this @, is used in
the GREG estimator. The residuals become

tl/atzy/a - tz/aty/a Zfz/a

ty/a
andBozi—B

er = Yr — (Bo + Biz;) with By = 17—
( ) t1/atz2/a — tg/a t1/a l1/a

22 z
where t1,, = > i, tya =Dy Z—:, tefa =y Z—’Z, t2/e =2 = and .y = YU Z—z’“

. . Ntoy—t.t t
We will consider the case where ap = ¢, then By = #_;; and By = ¥ — Bl%zf7
z

where t, =Y Uk, te = Dy 2k b2 = Yy 2k and by = > 2Kk

2.1.1 The GREG estimator and STSI

In STSI the population U is partitioned (stratified) into H groups (strata) denoted
Up, h =1,---, H, with sizes N,. In each stratum a simple random sample, s;, of
a predefined size n;, is selected. Under STSI sampling, the (approximation to the)
variance of the GREG estimator becomes

H

Vsrst [forpa] = Y N 1252 (3)
R o n, Nh eUp,
where SfUh = ﬁ ZUh(ek — ey, )?, with ey as defined above and ey, = Nih ZUh €.

According to Dalenius and Hodges (1959) there are four operations that must be
defined when using stratified sampling: i. the choice of the stratification variable;
ii. the choice of the number of strata, H; iii. the boundaries of the strata; and,
iv. the allocation of the sample size, n, into the strata. For the purposes of this
paper, the first operation is not under discussion: all we have is . We will also let
H to be arbitrarily defined. For the third operation, we will use the approximation
to the cumy/f-rule as described by Sarndal et al. (1992). Finally, Neyman optimal
allocation will be used for the fourth operation.

2.1.2 The GREG estimator and 7ps

A sampling design satisfying the following conditions will be called a strict wps: i.
being a without-replacement design; ii. having a fixed sample size (3, m = n);
iii. the inclusion probabilities induced by the design, 7, coincide with some desired
inclusion probabilities, 7}; iv. second order inclusion probabilities strictly larger than
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zero, T > 0 Vk, I € U; v. m easy to compute; vi. selection scheme easy to
implement for any sample size n =1,--- | N.

In the literature we find many designs that satisfy some but not all the condi-
tions above. Hanif and Brewer (1980) and Tillé (2006), for example, present reviews
of available designs. Rosén (1997) introduces Pareto mps, which satisfies the condi-
tions above except iii. and v. However, the difference between the actual inclusion
probabilities and the desired ones is negligible (Rosén, 2000b). Also, approximate
expressions for my; are available. Therefore, Pareto mps will be the mps considered in
this paper.

Under 7ps, the (approximation to the) variance of the GREG estimator becomes
(Rosén, 2000a)

N + tg(l—ﬂ'*)
2 ) T T
N1 |ty

Vips [fGREG] = fre (1)

where tez1_pe)me = open(l — ) /5, tei—ny = Doper(l — ) and tre(ipry =
> v mi(1 =), with e, as defined above.

2.2 The superpopulation model and the strategies under com-
parison

At the beginning of this section six sampling strategies were mentioned. Five of them
will be defined here in the frame of a superpopulation model. The reasons for not
considering the remaining one will be given.

We will assume that when defining the sampling strategy, the statistician is willing
to admit that the following model adequately describes the relation between the study
variable, y, and the auxiliary variable, . The values of the study variable y are
realizations of the model &,

Y}c = 50 + 511‘% + € (4)

The error terms €, are random variables satisfying
B[] =0 Vg la] = 0307 Eg lere] =0 (k #1)

where the moments are taken with respect to the model &, and ¢§; are constant
parameters.

It is worth recalling that this model is considered at the planning stage of the
survey, when no y-values are available. Therefore it is not possible to consider the
estimation of the d-parameters and the best that can be done is to propose some guess
or to consider some values taken from previous studies.

The term &g + (513522 in model &, will be called trend, where dq is the intercept, ds
is the shape and ¢; is a scale factor. The term 532,95%54 will be called spread, where 4, is
the shape and d3 is a scale factor. Brewer (1963; 2002, p. 111 and p. 200-201) shows
rather heuristically that for most survey data 1/2 < §4 < 1 when §, = 1.

Model &, as defined above is then used for assisting the definition of the sampling
strategy as follows.

9
Strategy 1, mps(ds)—reg(d2) At the design stage consider wps with m, = n:’f At

-
the estimation stage consider the reg-estimator with xy = (1, x%).
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Justification If model &, is assumed, it is natural to consider the GREG estimator
with o), = (1, x%) at the estimation stage. In this case, we have

= By + leiQ + e but also yr = 0 + 511’? + €

where ¢ is the residual resulting from fitting the regression underlying the GREG
estimator and €}, is a realization of the random variable €. Then, for large populations
(so that convergence for By and B; has been approximately achieved), we have

€ — ((50 — Bo) -+ ((51 — Bl).’ﬂiQ -+ 6;; ~ EZ

In order to minimize the variance in the sense of condition iii’ one would like to use

a design having m; = n'tel’““ Using the approximation above, we get

lex| = |ex| = \/ €k \/ Eg, [ Ek 254 535524

Therefore the design must satisfy 7, = n—
4

A comprehensive definition of this strategy can be found in, for example, Sarndal et
al. (1992). This strategy is often found in the literature and referred to as “optimal”,
in the sense that it minimizes an approximation to the anticipated variance, E¢ V,, [ﬂ,
a model dependent statistic.

Strategy 2, STSI(d,)-reg(d2) At the design stage consider STSI with strata de-
fined by using the cum-/f-rule on xi‘* and Neyman allocation. At the estimation stage
consider the reg-estimator with a = (1,252).

Justification Assuming the model &, the GREG estimator with @), = (1,2) is
used again and we get |egx| =~ (53!Ei4. Ignoring the factor d3, the strata are then
constructed using the approximation to the cum-+/f-rule on xi“ together with Neyman
allocation.

This strategy, known as model-based stratification, was proposed by Wright (1983),
who also showed a lower bound for its efficiency compared to mps(dy)-reg(ds). For a
comprehensive description, see, for example, Sdrndal et al. (1992, section 12.4).

Strategy 3, STSI(d,)-HT At the design stage consider STSI with strata defined
by using the cum+/f-rule on xiz and Neyman allocation. At the estimation stage

consider the HT estimator.

Justification As mentioned above, the HT estimator can be seen as the case when
null auxiliary information is used in the GREG estimator. In this case the residuals
are e, = y and in order to have a small variance (3) we look for strata leading to a
small sum-of-squares-within, SSW, = Zle ZUh (yr — Ju, )*.

Using the model, a proxy for y; is yx ~ dg + (5@22, which leads to

SSW, = ZZ Uk — Ju,)’ = 5 ZZ(mk —ap) = RSSWe ()

h=1 Uy, h=1 Uy
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So we have to look for strata leading to a small SSW of x?. The strata are then
created using the approximation to the cums/f-rule on x% together with Neyman
allocation.

The first two strategies make use of the auxiliary information at both the design
and the estimation stage. On the other hand, the strategy that couples STSI with
the HT estimator uses auxiliary information only at the design stage in a way that
we call weak. This strategy will be considered as a benchmark.

54

Strategy 4, mps(ds)—pos(d,) At the design stage consider mps with ), = n % X
4

At the estimation stage consider the pos-estimator with poststrata defined by using

the cumy/f-rule on 22,

Justification It is worth justifying the reason for considering this strategy. On
one hand, the regression estimator makes an explicit assumption of an underlying
model &, which in practice will almost certainly not be fully correct. On the other
hand, the HT estimator completely ignores the available auxiliary information. The
poststratified estimator can be seen as a compromise between those two scenarios.

In this case we have two decisions to make, namely, how will the poststrata be
defined in order to have small residuals, e;, and how will the inclusion probabilities
be defined in order to explain the resulting residuals. Regarding the first task, recall
that the residuals of the pos-estimator can be written as ey = y, — Yuy forall k € U !
where gy, is the average of the y-values in the gth poststratum. When looking for
poststrata that minimize these e, a natural criterion would be to minimize its square
sum, »_,; ez, but note that

DEEDMILE DRIy

g=1 U} g=1 U

which is the SSW shown in (5) above. Therefore we use the same approach, and the
poststrata will be created using the approximation to the cum+/f-rule on :1:22.

Regarding the second task, we use an approach analogous to the one considered
for mps-reg. Note that y, = By + e; but also y, = dp + (5@22 + €, where ey, is the
residual resulting from fitting the poststratification estimator and ¢, is a realization
of the random variable €;,. Then

ep = 5O+51x22 +¢, — By

In order to minimize the variance in the sense of condition iii’ one would like to use a

design having m, = n ‘te‘"“ As the e are unknown, we use the following approximation

lex] = 100 + 0125 + € — Byl = \/ (G0 + 0128 — By + 1)’

\/ Ee, [(50 + 0,22 — By + e,ﬂ ~ \/ (60 + 6122 — B,)” + Be,[€2] ~ 052t

The first approximation uses the expected value of the random variable €, as an
approximation to a realization from it; the second approximation assumes that con-

vergence has been achieved for By; and 4% ~ x‘;}/ was used in order to obtain the last
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expression. Using condition iii’ and these proxies for the residuals, we have that the
é

xk4 )

tx54

design must satisfy 7, =n

Strategy 5, STSI(d4)—pos(d2) At the design stage consider STSI with strata de-
fined by using the cum+/f-rule on xi“ and Neyman allocation. At the estimation stage
consider the pos-estimator with poststrata defined by using the cum+/f-rule on IL‘iQ.

Justification In this case the poststratified estimator is used again in the same
way as in the strategy above, which means that poststrata are created using the
approximation to the cum+/f-rule on :L’iQ. The same approximated residuals are then
obtained.

The strata are defined by applying the approximation to the cum+/f-rule on z
and the sample is allocated using Neyman allocation.

04

A simulation study by Rosén (2000a) suggests that, for d = 1 and 1/2 < 44 < 1,
mps sampling with the GREG estimator is better than nps sampling with the HT
estimator. This is an argument for not considering the strategy mps—HT any longer.

3 Simulation study under a correctly specified model

In this section we will assume that the model considered by the statistician holds, i.e.
the y-values are realizations of the model &,

Yk = 50+511’22 + € with Efo [Ek] =0 Vgo [Ek] = (5%%%64 E§0 [Ekﬁl] =0 (k 7é l)
(6)
We will compare the performance of the five strategies under different conditions. As
mentioned in the last section, wps(d4)-reg(d2) is expected to perform the best.
Under the model (6), the design variance becomes a random variable as it varies
with every finite population generated by the superpopulation model. Therefore, we
will say that the most efficient strategy is the one that yields the smallest expectation
E¢,Vplf], the anticipated variance. Closed expressions for this value are not easily
obtained, therefore we appeal to a simulation study, defined as follows.

1. The auxiliary variable x is generated as N realizations from a gamma distri-

bution with shape equal to a = % and scale A = 1292, where v is the desired

skewness, plus one unit. In this way we have E[X] = % 21292 4+ 1 = 49.

2.y are realizations from Y}, = §y + (51:ci2 + €, with ¢, ~ N(0, 5§x2§4).

The design variance of a sample of size n is then computed for each strategy.

- W

Steps 1 to 3 are repeated R = 5000 times.

5. The anticipated variance for each strategy is approximated as the mean of the
R replicates of the design variance, i.e. Eg,V, [f] ~ £ S8 VIV[f] = V, [{].

The simulation depends on several factors (the size of the finite population, N; the
skewness of X, 7; the sample size, n; the parameters in the model, §;). In addition,
the number of strata and poststrata, H and G, must be specified for four strategies.
The following values (levels) were considered:
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The population size was fixed at N = 5000 and the sample size at n = 500, thus
obtaining a fixed sampling fraction of f =n/N = 0.1.

Two levels of skewness were considered: moderate (7 = 3) and high (y = 12).
The number of strata/poststrata was fixed at H = G = 5.

Only the case with no intercept, dg = 0, will be studied. Three values for the
trend shape are considered: d, = 0.75, 1 and 1.25 (concave, linear and convex
association, respectively). Also three values for the spread shape are considered:
d4 = 0.5, 0.75 and 1 (low, moderate and high heteroscedasticity, respectively).

As mentioned by Rosén (2000a), one of the two parameters d; or d3 is redundant.
Therefore we consider only the case §; = 1. The value of 03 required for obtaining
a given Pearson’s Correlation Coefficient —PCC—, p, is

A202-00) (Do + 1+ 65) — al'(a 4 65))°

52 = Flatdy)
D+ 204) al'(a)p?

NGO

(7)
where I'(+) is the gamma function and o and A as defined above. Given all the
other parameters, we found the values of d3 required for obtaining a desired
PCC of p = 0.65 and 0.95 (moderate and high correlation respectively).

The simulation defined in this way leads to 36 = 2 x 3 x 3 x 2 (two levels for ~,

three levels for d, three levels for d, and two levels for p) scenarios. Table 1 shows the
simulated expected variance Eg, V,[t] of each strategy in each scenario. The results
are shown as a percentage of the expected variance of STSI(d2)-HT, which is shown in
the column “Reference”. The rows are sorted from the scenario that yields the least
gain with respect to STSI(d2)-HT to the one yielding the largest gain. Bold values
indicate the most efficient strategy in each scenario. The main results are summarized
as follows:

e As expected, the strategies using auxiliary information at both stages are in

general more efficient than the reference.

No strategy was always more efficient than STSI(d2)-HT. However, STSI(d4)—
reg(dy) and mps(ds)-pos(d2) were better in almost every scenario. In fact they
yield the best results in most scenarios where v = 12 and 64 > 0.75.

7ps(ds)-reg(dz) was the most efficient strategy in most scenarios. This is, how-
ever, not a surprise as it is supposed to be optimal. What comes as a surprise
is the fact that it is not always the best. This is explained by the fact that
it minimizes an approximation to the anticipated variance, not the anticipated
variance itself. Its optimality relies on several assumptions, like the model being
correct (which is true in this case) and the population size being so large that
By and Bj; have essentially no variance. When the simulations are run with
N = 300000 (results not shown), mps(ds)-reg(ds) becomes indeed the best in
every scenario.

It is worth to remark that although asymptotically optimal, 7wps(ds)-reg(dz)
might be quite inefficient in highly skewed or highly heteroscedastic populations
even when the model is correct.
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Table 1: Simulated E¢,V,[f] as a percentage of the anticipated variance of STSI(8,)-
HT

Y oop 0o 04 | Reference | mps—reg STSI-reg 7ps—pos STSI-pos
3 0.65 0.75 0.50 | 1.32-107 84.7 98.7 88.9 102.7
3 065 1.00 0.50| 2.43-10° 80.3 93.7 83.6 97.3
3 065 1.00 0.75| 1.63-108 7T 97.6 82.9 101.7
3 0.65 125 0.75| 2.76-10° 76.7 96.4 80.2 100.5
3 0.65 0.75 0.75| 9.61-10° 75.2 94.4 83.2 100
3 0.65 1.25 1.00| 1.79-10° 74.8 100.2 81.0 104.8
3 065 1.25 0.50| 4.51-10° 72.6 84.7 75.4 88.4
3 0.65 1.00 1.00 | 1.14-10% 70.1 93.7 82.3 100
12 0.65 0.75 0.50 | 1.14-107 68.7 83.5 69.6 84.2
3 0.65 0.75 1.00| 7.32-10° 62.3 83.3 82.6 91.5
12 095 125 1.00| 1.43-107 218.3 81.6 62.2 350.7
3 095 1.00 0.50 | 2.58-107 59.8 69.7 91.4 104.5
3 095 1.25 0.50| 3.64-108 56.3 65.6 91.5 112.8
12 095 075 0.50| 6.64-10° 53.9 65.5 74.0 76.7
3 095 125 0.75| 2.55-10% 52.1 65.4 92.5 110.6
3 095 1.00 0.75| 1.95-107 51.5 64.7 97.7 100
12 0.65 0.75 0.75| 1.06-10° 51.7 86.0 51.3 100
3 095 0.75 0.50| 1.28-10° 50.8 59.3 96.1 101.1
12 0.65 1.00 0.75| 5.40-107 51.2 88.3 47.6 93.4
3 095 1.25 1.00 | 1.94-108 43.1 57.8 115.9 100.9
12 095 1.00 0.75| 5.10-10° 43.0 73.6 59.2 128.0
3 095 1.00 1.00 | 1.56-107 40.5 54.2 142.2 100
12 0.65 1.00 1.00 | 4.84-10° 261.8 82.2 39.8 100
3 095 0.75 0.75| 1.07-10° 39.4 49.4 114.1 100
12 095 1.25 0.75| 2.03-10% 39.2 68.8 44.8 106.3
12 0.65 1.25 1.00| 1.86-108 295.9 113.0 38.4 134.0
12 0.65 1.25 0.75| 3.57-10° 40.0 70.5 37.0 72.6
12 0.65 1.00 0.50 | 1.13-10° 36.0 43.8 36.2 44.0
12 095 1.00 0.50 | 9.02-107 35.8 43.5 39.5 46.2
3 095 0.75 1.00| 9.37-10° 28.4 37.9 199.4 102.6
12 0.65 0.75 1.00 | 2.89-10° 96.8 28.0 33.1 79.4
12 095 1.00 1.00 | 1.21-10° 83.2 26.0 64.3 100
12 095 125 0.50| 4.87-10° 24.5 29.8 26.7 31.9
12 0.65 1.25 0.50 | 8.88-10'° 24.4 29.7 24.4 29.8
12 095 0.75 0.75| 1.93-10° 13.0 21.8 49.8 100
12 095 075 1.00 | 1.57-10° 8.3 2.3 46.2 98.6

4 The case of a misspecified model

In the previous section we verified empirically that when the finite population is
generated by the model &, mps(ds)-reg(dy) is in fact the best among the strategies
being compared. In this section we will study how robust the results are when the
model is misspecified. In the first part we will define the type of misspecification that
will be studied in the paper. The results of a simulation study will be presented in
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section 4.2. In section 4.3, expressions for approximating the anticipated variance will
be presented. These expressions are assessed in section 4.4.

4.1 The misspecified model

First, we will define how “misspecification”shall be understood in this paper. &
(which from now on will be called working model) reflects the knowledge or beliefs the
statistician has about the relation between & and y at the design stage. Nevertheless,
one hardly believes that this is the true generating model. We will assume that this
true model exists but it is unknown to the statistician. It will be denoted by £. Any
deviation of & with respect to £ is a misspecification of the model. As this definition
is too wide and in order to keep the analysis tractable, we will limit ourselves to a
very simple type of misspecification, which is when the working model is of the form
(4) or (6) and the true model, &, is

Yk = ﬂo + /81Ik2 + €k Wlth Eg [Ek] = O Vg [Ek] = gl’im Eg [erl} = 0 (k’ 7é l)
with 52 7é 52 or 54 7é 54.

4.2 Simulation study under the misspecified model

A simulation study was carried out in order to compare the performance of the five
strategies under this type of misspecification. The results are divided into three
groups. The first one, when the trend term is correct (2 = fs) but the spread is
misspecified (64 # B4). The second one, when the spread term is correct (64 = f4)
but the trend is misspecified (62 # f2). The last case is when both, trend and spread,
are misspecified (dy # B2 and 84 # By).

The setup is similar to the one used in the simulations in section 3. The only
difference being that now y, are realizations from Y, = [y + 6@52 + €, with e, ~
N(0, B%xiﬁ *). Now, the most efficient strategy is the one that yields the smallest
anticipated variance under &, E¢V,[{].

Regarding the factors, we set N = 5000, n = 500, H = 5, /o = 0, 5, = 1,
v=3,12, f5 = 0.75,1,1.25 and 84 = 0.5,0.75, 1. B3 as defined in (7) replacing d5 and
d4 by B9 and (4, respectively. The strategies are defined using do = 0.75,1,1.25 and
0, = 0.5,0.75, 1.

Table 2 shows the results for the 72 scenarios in the case of correct trend but
misspecified spread. The results are shown as a percentage of the expected variance
of STSI(d2)-HT. The scenarios are sorted from the one that yields the least gain with
respect to STSI(dy)-HT to the one yielding the largest gain. Bold values indicate the
most efficient strategy in each scenario. The absence of a bold value indicates that
STSI(05)-HT was the most efficient strategy. The main results are summarized as
follows:

e There were several cases where STSI(d5)-HT was the most efficient strategy.

o Although 7ps(d4)-reg(ds) was still the best strategy in most scenarios, there
were many cases were it was overcome by either STSI(d4)-reg(da) or mps(dy)—
pos(dz). Unlike the simulation in section 2, results do not get better when the
population size is increased.

12



Table 2: Simulated E¢V,[t] in the case of correct trend
and misspecified spread.

yooop 0o B4 04 | mps—reg STSI-reg mps—pos STSI-pos
12 0.65 1.25 1.00 0.50 356.0 357.5 361.3 412.7
12 0.65 1.00 1.00 0.50 275.2 257.4 286.6 305.3
12 095 1.25 1.00 0.50 254.3 257.5 1019.8 997.4
12 0.65 0.75 0.50 1.00 166.9 189.9 166.7 191.2
12 095 0.75 0.50 1.00 130.0 149.6 140.0 172.2
12 095 1.25 1.00 0.75 115.9 146.2 164.4 682.8
3 0.65 1.25 1.00 0.50 105.4 137.4 112.1 147.1
3 0.65 0.75 0.50 1.00 140.8 102.3 152.6 106.9
3 0.65 1.00 1.00 0.50 98.6 128.8 105.4 136.6
3 0.65 1.00 0.50 1.00 133.6 97.1 139.9 100
3 0.65 0.75 0.50 0.75 96.5 95.9 102.4 100
12 0.65 0.75 0.50 0.75 94.8 98.7 95.0 100
3 0.65 1.00 0.50 0.75 91.5 91.0 95.1 93.8
3 0.65 1.25 0.50 1.00 120.7 87.8 123.6 89.6
3 0.65 0.75 1.00 0.50 87.6 114.3 95.1 121.5
12 095 1.00 0.50 1.00 87.3 99.0 87.7 100
3 0.65 1.00 0.75 1.00 86.7 95.6 95.7 100
12 0.65 1.00 0.50 1.00 86.7 99.9 86.4 100
3 0.65 1.00 0.75 0.50 86.4 110.2 91.1 115.6
12 0.65 1.00 0.75 0.50 88.9 85.9 91.9 90.3
3 065 125 0.75 1.00 85.6 94.5 90.0 97.4
3 0.65 1.25 0.75 0.50 85.3 108.8 89.7 115.0
12 0.65 0.75 1.00 0.50 99.4 84.9 117.7 110.1
3 0.65 0.75 0.75 1.00 83.9 92.5 99.8 98.7
12 065 0.75 0.75 0.50 88.2 83.5 95.6 90.3
3 0.65 0.75 0.75 0.50 83.5 106.5 89.3 112.0
3 0.65 1.25 0.50 0.75 82.8 82.3 84.9 84.8
3 0.65 1.25 1.00 0.75 80.6 111.3 85.6 117.7
12 095 1.00 1.00 0.50 85.8 80.4 350.7 275.8
3 0.65 1.00 1.00 0.75 75.5 104.2 82.6 110.2
12 095 0.75 0.50 0.75 74.3 77.6 85.1 100
3 095 1.00 0.50 1.00 99.5 72.3 161.4 100
12 095 1.00 0.75 0.50 74.8 72.1 140.9 119.9
12 0.65 1.25 0.75 0.50 69.9 68.3 71.2 71.1
3 095 1.25 0.50 1.00 93.6 68.1 132.6 91.0
3 095 1.00 0.50 0.75 68.3 67.9 103.1 94.5
3 0.65 0.75 1.00 0.75 67.0 92.6 77.3 100
12 095 1.25 0.75 0.50 68.6 67.0 123.5 118.6
12 065 0.75 0.75 1.00 72.9 96.1 64.7 110.1
3 095 1.25 0.50 0.75 64.1 63.7 92.4 95.3
12 0.65 1.25 1.00 0.75 162.7 203.0 63.6 244.5
3 095 0.75 0.50 1.00 84.5 61.5 210.2 108.8
12 095 1.00 0.75 1.00 61.1 82.6 63.5 100
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Table 2 — Continued from previous page

vooop 09 o 0y | mps—reg STSI-reg mps—pos STSI-pos
12 0.65 1.00 0.75 1.00 72.5 98.4 60.9 100
3 095 1.25 1.00 0.50 60.8 79.4 126.7 167.7
12 0.65 1.00 1.00 0.75 143.5 147.7 60.8 204.1
12 0.95 1.25 0.50 1.00 59.3 68.2 59.1 68.9
12 0.65 1.25 0.50 1.00 59.1 68.0 58.9 68.0
3 095 1.25 0.75 1.00 58.1 64.1 113.6 96.8
3 095 1.25 0.75 0.50 58.0 73.9 108.0 140.9
3 095 0.75 050 0.75 57.9 57.6 120.7 100
3 095 1.00 0.75 1.00 57.4 63.3 139.5 100
3 095 1.00 0.75 0.50 57.2 72.9 98.9 118.8
3 095 1.00 1.00 0.50 57.0 74.3 109.1 131.8
12 0.65 1.00 0.50 0.75 50.0 51.9 49.9 52.1
12 095 1.00 0.50 0.75 49.7 51.6 50.7 54.7
12 095 1.25 0.75 1.00 55.5 77.1 49.4 96.1
12 0.65 1.25 0.75 1.00 56.5 78.7 48.0 79.7
3 095 1.25 1.00 0.75 46.6 64.3 99.6 123.9
12 095 1.00 1.00 0.75 45.3 46.1 99.9 272.1
3 095 075 0.75 1.00 43.9 48.4 194.0 105.0
3 095 0.75 0.75 0.50 43.7 55.7 97.7 105.6
3 095 1.00 1.00 0.75 43.6 60.2 101.1 104.5
3 095 0.75 1.00 0.50 39.9 52.1 101.6 109.1
12 065 0.75 1.00 0.75 56.4 48.8 38.6 100
12 095 1.25 0.50 0.75 33.7 35.1 33.9 36.6
12 065 1.25 0.50 0.75 33.7 35.0 33.6 35.1
3 095 0.75 1.00 0.75 30.6 42.2 116.0 100
12095 0.75 0.75 0.50 22.4 21.2 92.1 60.4
12 095 0.75 0.75 1.00 18.3 24.0 51.4 102.8
12095 0.75 1.00 0.50 8.2 7.0 92.4 54.4
12 095 0.75 1.00 0.75 4.6 4.1 48.4 100

Values are shown as a percentage of the expected variance of STSI(d2)-HT. Bold
values indicate the most efficient strategy in each scenario. The absence of a bold
value indicates that STSI(d2)-HT was the most efficient strategy.

Table 3 shows the results for the 72 scenarios in the case of correct spread but
misspecified trend. It can be seen that, except in a few scenarios, mps(ds)-reg(ds)
is no longer the best strategy. In fact, it becomes the worst one in most scenarios,
sometimes with a variance more than ten times bigger than that of any other strategy.

Table 3: Simulated E¢V,[t] in the case of correct spread
and misspecified trend.

vooop 04 09 By | mps—reg STSI-reg wps—pos STSI-pos
3 0.65 1.00 1.25 0.75 244.7 91.7 127.6 98.8
Continued on next page
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Y oop 04 P By | mps—reg STSI-reg mps—pos STSI-pos
3 0.65 1.00 1.25 1.00 106.0 97.3 91.6 102.8
3 0.65 1.00 1.00 0.75 121.0 90.9 109.9 100
3 0.65 050 0.75 1.25 95.7 100.5 88.9 104.6
3 0.65 050 0.75 1.00 88.9 99.8 88.7 103.7
3 065 0.75 1.00 0.75 89.6 95.0 88.6 100
3 065 0.75 1.25 0.75 116.2 90.1 87.9 94.3
3 0.65 050 1.00 1.25 83.3 94.6 84.1 98.8
3 0.65 050 1.00 0.75 82.9 92.0 83.8 95.3
3 0.65 075 1.25 1.00 83.5 94.4 81.6 98.4
3 065 0.75 1.00 1.25 86.0 98.7 81.6 102.7
3 065 0.75 0.75 1.00 87.0 95.8 79.8 100
3 095 050 0.75 1.25 164.0 79.0 96.4 120.5
3 065 075 0.75 1.25 107.2 96.4 78.6 100
3 0.65 1.00 1.00 1.25 99.6 95.5 74.9 100
3 0.65 050 1.25 0.75 81.8 81.3 74.8 83.5
3 095 050 0.75 1.00 93.4 74.4 92.8 109.5
3 0.65 050 1.25 1.00 74.1 83.8 74.8 86.6
3 095 050 1.00 1.25 88.6 73.9 99.9 124.5
12 095 0.50 0.75 1.00 102.0 83.5 72.5 85.1
12 095 050 0.75 1.25 188.9 88.4 72.1 86.2
12 0.65 0.50 0.75 1.00 72.3 84.7 69.6 84.8
12 0.65 0.50 0.75 1.25 76.2 84.8 69.3 84.6
3 0.65 1.00 0.75 1.00 101.6 85.5 68.9 90.6
3 095 0.75 1.00 1.25 131.3 68.2 88.0 110.7
3 095 075 0.75 1.25 323.8 68.1 73.3 100
3 095 0.75 0.75 1.00 138.4 65.8 82.9 100
3 0.65 1.00 0.75 1.25 172.0 86.8 65.0 90.0
3 095 050 1.25 1.00 74.5 63.0 81.5 89.0
3 095 1.00 0.75 1.25 879.6 65.6 61.2 90.3
3 095 0.75 1.25 1.00 113.5 60.8 100 91.7
3 095 1.00 1.00 1.25 297.8 59.5 91.1 100
12 0.95 1.00 1.00 1.25 5555.1 153.9 58.7 100
3 095 1.00 0.75 1.00 318.9 57.7 90.2 95.1
12 0.95 1.00 1.25 1.00 2461.9 64.7 54.3 216.3
3 095 050 1.00 0.75 83.8 53.9 94.0 85.5
3 095 1.00 1.25 1.00 258.7 53.8 173.1 90.3
12 095 0.75 1.00 1.25 367.5 98.0 53.8 121.6
12 095 0.75 0.75 1.00 456.1 126.4 52.9 100
12 095 0.75 0.75 1.25 1741.9 241.9 52.1 100
12 0.65 0.75 0.75 1.00 101.1 103.0 51.9 100
12 0.65 0.75 0.75 1.25 164.0 109.1 51.8 100
12 095 0.75 1.00 0.75 292.5 50.3 53.3 108.7
12 095 0.75 1.25 1.00 222.6 68.1 48.4 115.4
12 0.65 0.75 1.00 0.75 94.5 83.0 47.6 92.9
3 095 0.75 1.00 0.75 145.7 47.4 140.3 86.7
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vooop 0y 09 By | mps—reg STSI-reg mps—pos STSI-pos
12 065 0.75 1.00 1.25 70.8 90.4 46.9 91.7
12 095 1.00 1.00 0.75 687.2 48.6 46.6 100
3 095 050 1.25 0.75 136.4 46.5 80.5 63.9
3 095 1.00 1.00 0.75 369.9 42.5 307.7 100
12 0.65 1.00 1.00 0.75 583.9 64.7 42.3 100
3 095 1.00 1.25 0.75 862.0 42.2 314.7 75.7
3 095 075 125 0.75 306.0 41.8 133.9 68.4
12 0.65 1.00 1.25 1.00 829.9 103.3 40.7 141.3
12 095 0.75 1.25 0.75 684.6 62.2 39.3 94.6
12095 0.50 1.00 0.75 68.3 39.1 45.9 47.9
12 095 0.50 1.00 1.25 47.5 44.3 38.4 45.7
12 065 0.75 1.25 1.00 56.7 70.5 37.6 74.8
12 065 0.75 1.25 0.75 145.1 69.3 36.9 74.6
12 0.65 0.50 1.00 0.75 37.9 43.7 36.5 44.2
12 0.65 0.50 1.00 1.25 36.7 43.8 36.0 43.9
12 0.65 1.00 1.00 1.25 801.8 105.8 34.0 100
12 0.95 1.00 0.75 1.00 2133.4 191.9 32.2 61.6
12 065 1.00 1.25 0.75| 13779 81.0 31.8 98.6
12 095 1.00 1.25 0.75 | 1756.6 70.0 30.5 93.5
12095 050 1.25 0.75 93.8 28.5 32.4 34.7
12 095 050 1.25 1.00 30.5 29.8 27.5 32.2
12 0.65 0.50 1.25 0.75 28.0 29.7 24.8 30.0
12 0.65 0.50 1.25 1.00 24.9 29.7 24.6 29.9
12 095 1.00 0.75 1.25 | 13444.2 745.2 23.3 51.1
12 0.65 1.00 0.75 1.00 650.6 89.7 21.0 57.5
12 0.65 1.00 0.75 1.25| 1494.4 126.0 18.2 55.0

Values are shown as a percentage of the expected variance of STSI(d2)-HT. Bold

values indicate the most efficient strategy in each scenario.

Table 4 shows the results for the 144 scenarios in the case of misspecified trend
and spread. Again, mps(ds)-reg(d2) is no longer the best strategy; in fact, it is the
worst one, with variances more than ten times bigger than that of any other strategy
in several scenarios. On the other hand, STSI(d4)-reg(d2) and mps(ds)—pos(ds) are

now the best options.

Table 4: Simulated E¢V,[t] in the case of misspecified
trend and spread.

ot B mps—reg STSI-reg mps—pos STSI-pos
12 0.65 1.25 1.00 0.50 1.00 486.8 301.9 349.4 378.0
12 0.65 1.00 1.25 0.50 1.00 510.6 315.7 296.0 337.9
12 095 1.00 1.25 0.50 1.00 | 2153.3 247.9 580.8 518.0
12 095 0.75 1.25 0.50 1.00 | 5489.4 290.0 230.6 192.0
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p 09 B 0y By | mps—reg STSI-reg mps—pos STSI-pos
0.65 0.75 1.00 1.00 0.50 1754 191.8 167.8 191.3
0.95 0.75 1.25 1.00 0.50 461.3 205.8 166.9 190.2
0.65 0.75 1.25 1.00 0.50 183.8 193.3 166.3 192.4
0.95 0.75 1.00 1.00 0.50 246.9 193.9 164.4 188.7
0.65 0.75 1.25 0.50 1.00 716.5 187.6 155.9 176.8
0.65 0.75 1.00 0.50 1.00 374.5 157.7 153.8 165.7
0.95 1.25 1.00 0.50 1.00 880.2 117.1 497.0 434.5
0.65 1.00 0.75 0.50 1.00 294.4 109.3 158.9 151.4
0.95 1.00 1.25 0.75 1.00 | 2778.8 212.0 108.7 405.3
095 0.75 1.25 0.50 0.75 | 1402.4 132.6 121.8 108.2
0.65 1.25 1.00 0.50 1.00 108.0 133.5 109.4 140.6
0.65 1.25 0.75 0.50 1.00 565.8 108.0 150.3 148.6
0.65 1.25 0.75 0.50 1.00 122.9 123.5 106.3 128.7
0.65 1.00 1.25 0.50 1.00 105.1 131.1 106.8 140.3
0.65 0.75 1.25 1.00 0.50 201.9 104.2 142.8 105.9
0.65 0.75 1.00 1.00 0.50 163.2 103.6 145.4 106.4
0.65 1.00 0.75 0.50 1.00 103.0 123.5 104.9 130.5
0.65 0.75 1.25 0.50 0.75 185.0 100.1 98.6 98.4
0.65 1.00 1.25 1.00 0.50 147.5 97.9 136.6 100
0.65 0.75 1.25 0.75 0.50 119.7 97.4 99.1 100
0.65 0.75 1.00 0.75 0.50 105.1 96.9 99.9 100
0.65 1.25 0.75 0.75 1.00 138.2 100.3 96.5 106.6
0.65 0.75 1.00 0.50 0.75 133.9 96.4 99.5 97.8
095 0.75 1.25 0.75 0.50 249.4 113.0 95.8 100
0.65 1.00 0.75 1.00 0.50 156.6 95.7 151.6 100
0.65 0.75 1.00 0.75 0.50 99.5 100.2 95.6 100
0.65 0.75 1.25 0.75 0.50 104.4 100.7 95.4 100
0.65 0.75 1.25 0.50 1.00 107.6 117.8 95.3 125.2
0.65 0.75 1.00 0.50 1.00 95.2 116.5 94.8 123.5
0.95 0.75 1.00 0.75 0.50 1374 102.8 94.7 100
0.65 1.00 0.75 1.00 0.75 122.6 93.6 114.8 100
0.65 1.25 1.00 1.00 0.75 105.8 92.8 96.8 96.4
0.65 1.00 1.25 0.75 0.50 97.2 91.8 94.3 94.5
0.95 1.25 1.00 0.75 1.00 | 1130.6 91.4 110.5 367.8
0.65 1.00 1.25 0.50 0.75 90.7 111.6 91.9 118.0
0.65 1.00 1.25 1.00 0.75 107.2 96.9 90.6 100
0.65 1.00 0.75 0.75 1.00 92.3 100.3 90.6 107.4
0.95 1.00 1.25 0.50 0.75 316.6 89.9 132.8 120.8
0.65 1.00 0.75 0.50 0.75 89.8 107.2 91.3 112.1
0.65 0.75 1.00 1.00 0.75 114.2 94.2 89.5 98.1
0.65 1.00 0.75 0.75 0.50 99.2 89.4 98.6 92.8
0.65 1.25 0.75 1.00 0.75 200.2 89.4 120.4 94.2
0.65 0.75 1.25 0.50 0.75 98.7 109.0 89.3 114.6
0.65 0.75 1.00 0.50 0.75 89.2 108.0 88.9 113.3
0.95 1.00 1.25 1.00 0.50 120.8 100.3 88.0 100

Continued on next page
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Y oop 09 Ba 0y By | mps—reg STSI-reg mps—pos STSI-pos
12 0.65 1.00 1.25 0.50 0.75 104.1 87.8 89.8 89.5
3 0.65 125 1.00 0.75 1.00 91.1 108.2 87.7 114.2
12095 0.75 1.00 0.50 1.00 930.4 87.7 177.9 129.5
3 065 1.25 0.75 0.50 0.75 98.5 101.5 87.5 104.9
3 065 1.25 1.00 0.50 0.75 87.2 106.6 88.2 111.1
12 0.65 1.00 0.75 1.00 0.50 92.2 99.6 87.0 100
12 065 1.00 1.25 1.00 0.50 89.1 100 86.9 100
3 065 1.25 1.00 1.00 0.50 132.8 86.8 127.3 89.0
3 065 075 1.25 1.00 0.75 167.0 95.1 86.4 97.5
12095 0.75 1.00 0.50 0.75 400.2 85.2 121.8 101.1
3 065 1.25 0.75 1.00 0.50 191.0 84.8 141.0 87.9
3 095 0.75 1.25 1.00 0.50 700.0 82.5 111.5 100.4
12 095 1.00 0.75 1.00 0.50 172.7 92.7 81.9 100
3 0.65 1.25 1.00 0.75 0.50 86.9 81.4 85.8 83.8
3 095 1.00 1.25 0.50 1.00 104.7 81.3 123.2 165.2
3 065 1.00 1.25 0.75 1.00 87.4 106.0 80.7 111.8
3 095 0.75 1.00 1.00 0.50 293.6 79.3 137.7 104.9
3 095 0.75 1.25 0.50 0.75 179.7 79.3 98.2 1294
3 095 0.75 1.25 0.50 1.00 196.6 79.1 102.4 136.7
3 0.65 125 0.75 0.75 0.50 107.4 79.0 89.5 81.7
3 095 1.00 1.25 0.50 0.75 95.3 78.3 110.2 145.6
12 0.65 1.00 0.75 0.50 0.75 116.1 77.4 90.2 86.1
3 095 1.00 1.25 1.00 0.50 255.1 75.4 130.5 100
3 095 0.75 1.00 0.50 0.75 94.9 73.7 94.0 117.2
3 095 0.75 1.25 0.75 0.50 295.0 73.5 87.2 100
3 095 0.75 1.25 1.00 0.75 784.8 73.0 73.6 94.5
3 065 0.75 1.00 0.75 1.00 82.5 94.4 72.8 100
3 095 1.25 1.00 0.50 1.00 92.0 72.7 104.3 118.6
3 095 0.75 1.00 0.75 0.50 141.5 72.4 96.8 100
3 095 0.75 1.00 0.50 1.00 99.4 72.3 98.3 123.8
3 065 0.75 1.25 0.75 1.00 108.9 95.3 71.3 100
3 095 1.00 1.25 0.75 0.50 128.4 70.5 95.8 102.5
3 095 1.25 1.00 0.50 0.75 82.7 69.1 92.5 105.3
12 0.65 1.25 1.00 0.50 0.75 81.6 68.4 74.1 73.2
12 0.65 1.25 1.00 0.75 1.00 398.5 178.0 68.2 246.5
3 095 0.75 1.00 1.00 0.75 292.6 67.7 100.1 99.3
12 0.65 0.75 1.25 1.00 0.75 291.0 121.7 67.5 110.6
3 095 1.00 1.25 1.00 0.75 263.1 67.5 98.2 100
12 0.65 0.75 1.00 1.00 0.75 161.6 115.5 66.7 110.2
3 095 1.25 1.00 1.00 0.50 211.7 64.8 164.2 85.5
3 095 1.00 1.25 0.75 1.00 143.2 64.8 89.1 117.8
12 095 0.75 1.25 1.00 0.75 | 3406.4 275.2 63.7 104.1
12095 1.25 1.00 0.50 0.75 193.7 63.4 129.2 116.4
3 095 0.75 1.25 0.75 1.00 357.3 63.2 69.0 100
12 0.95 1.00 1.25 1.00 0.75 724.9 106.4 62.6 100
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v ooop 09 Ba 04 By | mps—reg STSI-reg mps—pos STSI-pos
12 0.65 1.25 0.75 0.50 0.75 142.1 62.3 71.9 69.4
12 0.65 1.00 1.25 1.00 0.75 111.2 100.4 60.7 100

3 095 1.25 1.00 0.75 0.50 107.7 60.6 98.1 82.9

3 095 125 1.00 1.00 0.75 224.9 60.2 159.5 88.8
12 095 0.75 1.00 1.00 0.75 835.2 147.9 59.9 99.1

3 095 0.75 1.00 0.75 1.00 145.2 59.5 79.5 100
12 065 1.25 1.00 1.00 0.50 60.6 67.4 58.9 67.5

3 095 1.00 0.75 1.00 0.50 317.9 58.9 274.2 100
12 0.65 1.00 0.75 1.00 0.75 156.7 93.0 58.7 100
12 095 1.25 1.00 1.00 0.50 76.9 67.1 58.7 68.3
12 0.65 1.25 0.75 1.00 0.50 68.8 67.4 58.5 67.5

3 095 1.25 1.00 0.75 1.00 125.1 58.4 108.3 97.7
12 095 1.25 0.75 1.00 0.50 254.0 67.8 55.8 70.4
12 0.65 1.00 0.75 0.75 1.00 304.7 84.8 52.9 136.4

3 095 1.00 0.75 0.75 0.50 141.2 52.8 137.0 85.2

3 095 1.00 0.75 0.50 0.75 87.0 52.5 99.5 91.1

3 095 1.25 0.75 1.00 0.50 670.2 52.2 269.9 76.8
12 065 1.00 1.25 0.75 1.00 399.8 182.1 51.7 198.3

3 095 1.00 0.75 0.50 1.00 91.6 50.4 105.9 94.8
12 095 1.00 0.75 0.75 0.50 93.5 50.3 50.9 60.7

3 095 1.00 0.75 1.00 0.75 337.3 50.1 283.8 100
12 0.65 1.00 0.75 0.75 0.50 52.5 51.9 50.0 52.4
12 095 1.00 0.75 1.00 0.75 558.3 59.5 50.0 100
12 095 1.00 1.25 0.75 0.50 65.1 52.3 49.9 53.4
12 0.65 1.00 1.25 0.75 0.50 50.5 51.8 49.5 51.8
12 095 1.25 1.00 1.00 0.75 446.5 74.2 49.0 99.9
12 095 0.75 1.00 0.75 1.00 | 1156.7 170.9 48.6 100
12 0.65 1.25 1.00 1.00 0.75 91.4 78.3 47.9 80.6

3 095 1.25 0.75 1.00 0.75 773.9 47.1 290.1 76.8

3 095 1.25 0.75 0.50 0.75 153.8 46.5 86.2 67.6
12 0.65 1.25 0.75 1.00 0.75 276.2 77.6 45.6 80.5

3 095 1.25 0.75 0.50 1.00 167.6 45.2 91.1 69.2

3 095 1.25 0.75 0.75 0.50 269.6 44.8 127.3 66.8
12 0.65 125 0.75 0.75 1.00 697.7 98.0 44.0 129.7

3 095 1.00 0.75 0.75 1.00 155.3 42.2 149.1 87.4
12 095 1.00 0.75 0.75 1.00 362.6 41.9 55.4 116.6
12 095 0.75 1.25 0.75 1.00 | 6874.0 675.7 40.3 100
12 095 125 0.75 0.75 1.00 853.2 61.0 39.6 102.3

3 095 1.25 0.75 0.75 1.00 337.4 38.2 142.9 68.2
12 095 125 0.75 1.00 0.75 | 1380.7 71.8 34.7 89.7
12 095 125 0.75 0.75 0.50 129.9 37.8 34.4 42.7
12 095 1.25 1.00 0.75 0.50 42.4 35.3 34.3 37.4
12 0.65 1.25 1.00 0.75 0.50 34.5 35.2 33.8 35.3
12 0.65 125 0.75 0.75 0.50 38.5 35.2 33.5 35.4
12 0.65 0.75 1.00 0.75 1.00 350.5 118.8 31.2 100
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Y oop 09 B 04 By | mps—reg STSI-reg mps—pos STSI-pos
12 095 1.25 0.75 0.50 0.75 498.9 30.8 88.6 72.5
12 095 1.00 0.75 0.50 0.75 232.5 27.6 104.6 77.2
12 065 0.75 1.25 0.75 1.00 762.8 158.5 27.3 100
12 095 1.25 0.75 0.50 1.00 636.7 24.7 100.2 79.8
12095 1.00 0.75 0.50 1.00 275.7 16.5 113.0 79.7

Values are shown as a percentage of the expected variance of STSI(d2)-HT. Bold
values indicate the most efficient strategy in each scenario. The absence of a bold
value indicates that STSI(d2)-HT was the most efficient strategy.

The simulations in this section yield evidence that the so-called optimal strategy,
7ps(ds)-reg(dz), is not robust towards misspecifications of the model. This fact will
be reinforced analytically by means of the approximations to the anticipated variance
that are shown in the following section.

4.3 The anticipated variance

In this section, approximated expressions for the anticipated variance, E;V,, [t], will be
obtained for each strategy defined in section 2.2. The following notation will be used:
TG = 52 24T Seaa = w7 2oa(@h — 25)(af — 2%), where ¢ and d are constants, A
is a subset of U and N, its cardinality. If A is not indicated, then A = U.

Before starting with the approximations, the following result is required. In it,
an approximation of 3 in terms of 3; and the correlation between  and y, R, ,, is

established. The proof of this result can be found in the Appendix.
Result 1. Under &,

Sts, — R2,51.158,.6

R:%,yZEQ’&l Sl,l

B2~ BiF,  with Fy = (8)

>ules—Zu)(ye—Tu)
V2o (@e—Zu)? Xy (ye—Tu)?
between & and y.

where R, , = is the finite population coefficient of correlation

The following result establishes an approximation to the anticipated variance for
each of the five strategies defined in section 2.2.

Result 2. If & is assumed when £ is the true model, then:

1. the anticipated variance of mps(ds)-reg(ds) can be approximated by

N2 04

. _ Sha s
AAg rps [freg] = 57 — ((562,62—64 - 50/82552,—64> — g

(552752—54 - x62552,—54)

552,52

S - -
+ Gole (552,52—54 - x625527—54) + F013254_54> (9)



2. the anticipated variance of STSI(d4)-reg(ds) can be approximated by

N2 S 822 2
AAg STSI [ reg] = 51 Z m ((Sﬂz,ﬂz,Uh 2862’52 Sﬂ2,52,Uh + Si .0 5527627Uh + FOCL’2B4
2,62

h 2,6 82,82
(10)
Note that if we let vy = z? — 2?2 ?E:Q ::2 (10) can be written as
— N2 2 234 : 2 1 — 2
AAg STSI [ reg] = 51 Z o, (S U + F()ZL' > with Sv,Uh = Fh (Uk - UUh)
h Up,
3. the anticipated variance of STSI(d5)-HT can be approximated by
c N Vi 25
Al¢srst [fur] = 67 . (552,/32,Uh + Foxy, ) (11)

h
4. the anticipated variance of 7ps(d,)—pos(dz) can be approximated by

(ZN ('362:52 04,Ug — ‘ngSﬁm 54,Ug) +NFOx2ﬂ4 54)

(12)

AAﬁ,ﬂ'ps [ pos} = 51

5. Let Uy = Up N U; be the intersection between the hth stratum and the gth

poststratum. The anticipated variance of STSI(d4)—pos(d2) can be approximated
by

—5-2
AA, STSI pos ﬂ% Z " (Nh ZNhg ( 282 foﬁ x% + a: ) _

2
N (ZNhg (22, —x‘é%)) + Ryt | (13)

It can be seen that even under this simple misspecification of the model, wps(d4)—
reg(d2) does not minimize the approximation to the anticipated variance. Let us
compare, for example, (9) and (10) in the case where d; = fs. In that case we get

2

. N —
AA{,wps [treg] = 5%7[:‘01'54 2Pa—04 and AAg STSI reg 6%170 Z h 2’84

If we allow Sy, 5, constant, and take into account that Neyman optimal allocation
was used, we get that AAg ;6 [ reg] > AA¢ st [ reg} when 23, < 64 and 9, > 0.

We will not focus on this type of comparisons, instead we will empirically assess
how good these approximations are.
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4.4 Assessing the approximations to the anticipated variance

The expressions in result 2 are asymptotic as they assume N — oo, they also assume
n/N is small. It is then natural to ask how good are these approximations for finite
values of N. Therefore, in order to assess them, the simulations were run once more
with NV = 50000, n = 50 and R = 200. Every time @ is generated, the approximation
to the anticipated variance is computed and compared with the anticipated variance
obtained by simulation, as follows

oA - ey (0]

D =
BV ]

Table 5 shows the percentage of cases where D) was less than 0.05 for each strategy
in each scenario. The rows have been sorted from the one that yields the worst
results to the best one. It can be seen that the expressions in result 2 approximate
the intended anticipated variance very well in most cases. Some care must be taken
when the skewness is large, however.

Table 5: Percentage of cases where D(") was less than 0.05.

o' p B2 b2 Ba 04 nps—reg STSI-reg STSI-HT #«ps—pos STSI-pos
12 065 1.25 1.25 0.50 1.00 41.0 40.5 41.5 41.0 41.5
12 0.65 1.25 075 0.50 0.75 47.0 41.0 42.0 42.0 42.0
12 065 1.25 0.75 0.50 0.50 45.5 42.0 42.0 44.5 43.5
12 065 1.25 1.00 0.50 1.00 45.0 44.5 44.5 45.0 44.5
12 0.65 1.25 1.00 0.50 0.50 45.5 45.5 45.0 46.5 46.0
12 065 1.25 1.25 0.50 0.75 46.0 46.0 45.5 46.5 47.5
12 065 1.25 0.75 0.50 1.00 51.0 46.0 46.5 45.5 46.0
12 0.65 1.25 1.00 0.50 0.75 47.5 46.5 47.0 47.0 47.5
12 0.65 1.25 1.25 0.50 0.50 47.5 47.5 48.0 48.5 48.5
12 095 1.25 1.25 0.50 0.75 53.0 53.0 57.0 60.0 63.5
12 095 1.25 1.25 0.50 1.00 52.0 52.5 60.5 56.0 66.0
12 065 1.25 1.25 0.75 0.50 59.0 58.0 59.5 61.5 61.0
12 0.65 1.25 0.75 0.75 0.50 65.5 56.0 58.0 59.0 61.0
12 065 1.25 125 0.75 0.75 60.0 59.0 62.0 60.0 60.0
12 0.65 1.25 1.00 0.75 1.00 77.0 57.0 60.0 59.0 60.0
12 065 1.25 075 0.75 1.00 95.5 54.5 55.0 53.5 55.5
12 0.65 125 1.25 0.75 1.00 62.0 62.0 64.5 63.5 65.0
12 0.65 1.00 1.25 0.50 0.75 64.0 63.0 63.0 63.5 64.5
12 0.65 1.00 1.25 0.50 1.00 64.5 64.5 63.0 62.5 64.5
12 0.65 1.25 1.00 0.75 0.50 63.5 62.0 65.0 65.0 67.0
12 095 1.25 1.00 0.50 1.00 76.5 58.0 66.0 57.5 66.0
12 0.65 1.00 1.00 0.50 1.00 65.0 66.0 66.5 65.5 66.5
12 0.65 125 075 0.75 0.75 80.5 62.0 63.5 62.0 63.5
12 0.65 1.00 0.75 0.50 0.50 67.5 65.5 65.0 68.0 66.0
12 0.65 1.00 1.00 0.50 0.50 65.5 66.5 66.5 69.5 67.0
12 095 1.25 1.25 0.50 0.50 57.0 55.5 64.0 81.0 77.5
12 0.65 1.25 1.00 0.75 0.75 71.5 65.0 68.5 64.0 66.5
12 0.65 1.00 1.00 0.50 0.75 66.5 68.0 68.0 68.0 68.5
12 0.65 1.00 0.75 0.50 1.00 68.0 68.5 70.0 66.0 69.0
12 095 1.25 1.00 0.50 0.75 77.5 56.5 68.0 67.0 73.5
12 095 0.75 0.75 1.00 0.75 38.5 33.0 88.5 94.0 90.0
12 095 1.00 1.00 0.50 1.00 62.0 64.5 76.5 65.5 76.0
12 095 0.75 0.75 1.00 0.50 40.0 39.0 92.0 88.5 86.0
12 0.65 1.00 0.75 0.50 0.75 69.5 68.0 69.5 69.0 69.5
12 0.95 1.00 1.00 0.50 0.75 64.0 64.5 72.0 71.0 75.5
12 0.65 1.00 1.25 0.50 0.50 69.5 68.5 70.5 70.0 69.5
12 095 1.25 1.00 0.50 0.50 69.0 56.0 65.0 80.5 77.5
12 065 1.25 1.25 1.00 1.00 62.0 74.5 78.0 65.5 79.0
12 095 1.25 1.25 1.00 1.00 68.0 66.5 90.5 49.5 89.5
12 095 0.75 0.75 0.75 0.75 43.0 39.5 94.5 95.0 94.5
12 095 0.75 0.75 1.00 1.00 41.0 39.5 87.5 100 99.5
12 095 1.25 125 0.75 1.00 68.0 67.0 79.5 74.5 80.5

Continued on next page
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¥ o B2 02 B4 04 nps—reg STSI-reg STSI-HT #wps—pos STSI-pos
12 095 1.25 125 0.75 0.75 65.5 63.5 80.5 74.0 87.5
12 095 1.25 1.00 1.00 1.00 100 80.5 84.5 26.0 88.5
12 095 0.75 0.75 0.50 0.75 69.0 69.0 81.5 79.5 81.5
12 095 1.25 0.75 0.50 1.00 99.0 73.0 77.5 60.0 73.0
12 095 125 125 1.00 0.75 70.0 62.5 86.0 68.0 96.5
12 095 0.75 0.75 0.75 0.50 52.5 52.0 94.0 94.0 92.0
12 065 075 0.75 1.00 1.00 57.5 77.5 84.0 78.0 87.5
12 095 1.00 1.25 0.50 1.00 88.0 71.5 76.5 72.5 78.0
12 095 1.25 0.75 0.50 0.75 98.5 66.5 76.5 70.5 76.0
12 095 1.25 1.00 0.75 1.00 100 70.0 75.5 65.0 77.5
12 095 1.00 1.25 0.50 0.75 83.0 69.5 78.0 78.0 81.0
12 095 1.00 0.75 0.50 1.00 90.0 73.5 78.5 71.0 77.0
12 0.65 1.25 1.00 1.00 0.75 89.0 75.5 77.5 69.5 79.5
12 095 075 075 0.75 1.00 57.5 46.0 91.5 98.0 99.5
12 095 1.00 1.00 0.50 0.50 69.5 68.5 79.5 91.5 84.5
12 065 1.25 1.00 1.00 1.00 91.0 79.5 80.5 65.5 80.5
12 095 1.00 0.75 0.50 0.50 84.5 67.0 80.0 86.5 82.5
12 0.65 1.25 1.25 1.00 0.50 79.0 77.5 78.5 82.0 85.0
12 0.65 1.25 1.25 1.00 0.75 88.5 79.0 81.0 71.5 82.5
12 095 0.75 1.00 1.00 0.50 96.5 50.0 100 83.5 76.5
12 095 0.75 0.75 0.50 1.00 73.0 72.0 88.5 80.0 94.0
12 0.65 1.25 1.00 1.00 0.50 83.5 78.5 76.5 83.5 85.5
12 0.65 1.25 0.75 1.00 0.50 87.0 80.5 77.5 81.0 83.0
12 095 0.75 0.75 0.50 0.50 70.5 71.0 88.0 93.5 87.5
12 095 1.25 0.75 0.50 0.50 96.5 66.0 76.5 86.0 86.0
12 095 1.25 1.00 0.75 0.75 100 71.0 79.5 72.5 88.5
12 095 1.25 1.25 0.75 0.50 67.0 67.0 83.5 96.5 98.0
12 065 125 0.75 1.00 1.00 99.5 85.5 83.0 61.0 83.5
12 0.65 1.25 0.75 1.00 0.75 98.5 80.0 82.5 69.5 83.5
12 095 125 0.75 1.00 1.00 100 100 95.5 21.5 98.5
12 095 1.00 1.25 0.50 0.50 87.0 73.5 79.0 89.5 87.0
12 095 125 1.00 1.00 0.75 100 71.5 84.0 68.5 96.0
12 095 1.00 0.75 0.50 0.75 92.0 75.5 86.0 81.5 86.0
12 0.65 0.75 0.75 1.00 0.75 86.0 82.5 88.0 82.5 88.0
12 095 1.25 1.25 1.00 0.50 72.0 72.0 84.5 99.5 100
12 095 0.75 1.00 0.75 0.50 98.0 59.5 100 91.5 88.0
12 0.65 1.00 0.75 0.75 0.75 95.0 85.5 87.5 83.0 88.5
12 095 1.25 1.00 0.75 0.50 91.5 75.0 80.0 95.5 98.0
12 095 0.75 1.00 1.00 0.75 100 56.5 100 97.5 87.5
12 065 0.75 125 1.00 0.75 100 78.5 97.0 84.0 82.0
12 095 0.75 1.00 0.75 0.75 100 58.5 100 95.5 88.0
12 095 1.25 0.7 0.75 0.75 100 85.0 90.5 75.5 92.5
12 095 0.75 1.00 0.50 0.75 97.5 77.5 95.0 87.0 87.0
12 065 075 1.00 1.00 0.75 97.5 83.0 92.0 84.0 88.0
12 095 0.75 1.00 0.50 1.00 99.5 82.5 91.5 82.0 91.5
12 065 075 1.00 1.00 1.00 95.0 83.5 91.0 87.0 91.0
12 095 125 0.75 0.75 1.00 100 98.5 89.5 69.0 91.0
12 095 0.75 1.25 1.00 0.50 100 71.0 100 93.0 85.5
12 095 0.75 125 1.00 0.75 100 65.0 100 100 85.5
12 095 0.75 1.00 0.50 0.50 97.5 78.0 95.5 92.5 87.5
12 0.65 0.75 0.75 1.00 0.50 90.0 90.5 89.0 90.5 91.0
12 0.65 1.00 125 0.75 0.75 94.0 87.5 93.0 87.5 89.5
12 095 0.75 1.25 0.50 0.75 100 81.0 94.0 92.0 85.5
12 0.65 0.75 1.25 1.00 0.50 96.5 85.5 98.0 86.5 87.0
12 0.65 0.75 1.00 1.00 0.50 92.0 87.0 94.0 91.0 90.0
12 0.65 1.00 1.00 0.75 0.75 91.0 90.5 92.5 90.0 91.0
12 095 1.25 1.00 1.00 0.50 97.0 80.0 79.5 99.0 99.5
12 0.65 1.00 1.25 0.75 0.50 92.5 90.0 94.0 91.5 92.0
12 095 1.00 1.00 1.00 1.00 60.0 100 100 100 100
12 0.65 1.00 0.75 0.75 0.50 94.0 91.0 91.0 91.5 93.0
12 0.65 0.75 0.75 0.50 1.00 90.5 93.0 93.5 91.5 93.5
12 065 075 075 0.50 0.75 92.0 92.0 93.0 92.5 93.0
12 095 0.75 1.25 0.50 1.00 100 88.5 95.0 85.5 94.0
12 0.65 1.00 1.00 0.75 1.00 93.5 91.5 93.5 91.5 93.5
12 095 1.25 0.75 1.00 0.75 100 91.5 98.0 74.5 99.5
12 095 0.75 125 0.75 0.50 100 76.0 100 97.5 90.5
12 095 0.75 125 0.75 0.75 100 72.5 100 100 91.5
12 095 1.00 1.00 0.75 0.75 90.5 87.5 97.0 93.0 97.0
12 0.65 1.00 1.25 0.75 1.00 99.0 91.5 92.5 92.0 91.5
12 0.65 1.00 1.00 1.00 1.00 67.0 100 100 100 100
12 095 0.75 1.25 0.50 0.50 100 84.5 96.0 97.0 90.0
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v p B2 b2 Ba 04 nps—reg STSI-reg STSI-HT #«ps—pos STSI-pos
12 0.65 0.75 1.00 0.50 0.50 95.5 93.0 93.5 95.5 93.0
12 0.65 0.75 1.25 0.50 1.00 97.5 93.5 93.5 93.5 93.5
12 065 0.75 1.00 0.50 1.00 94.5 94.5 95.0 93.0 95.0
12 0.65 0.75 0.75 0.50 0.50 95.0 93.5 94.5 96.5 95.5
12 0.65 0.75 1.25 0.50 0.50 99.0 93.5 93.0 96.0 93.5
12 095 125 0.75 0.75 0.50 100 90.0 89.5 96.5 99.0
12 0.65 0.75 125 1.00 1.00 100 87.0 99.5 98.0 91.0
12 0.65 1.00 0.75 0.75 1.00 99.0 94.5 93.0 94.0 95.0
12 0.65 1.00 1.00 0.75 0.50 95.0 94.5 96.5 94.5 95.5
12 065 0.75 1.00 0.50 0.75 95.5 94.5 95.5 95.5 95.5

3 065 1.25 1.25 0.50 0.50 94.5 94.5 96.0 96.0 96.0
12 0.65 0.75 1.25 0.50 0.75 99.0 94.0 95.0 95.0 94.5
12 095 1.00 125 0.75 0.75 100 87.0 99.0 96.0 98.5
12 0.95 1.00 1.00 0.75 1.00 95.0 92.5 98.5 96.5 98.5
12 095 1.00 0.75 0.75 0.75 100 93.5 97.5 93.5 97.5

3 065 1.25 1.00 0.50 0.75 97.0 96.0 97.0 97.0 97.0
12 095 1.00 0.75 0.75 0.50 100 90.5 95.5 99.0 99.5
12 095 1.00 1.00 0.75 0.50 93.5 93.0 99.5 99.5 99.5

3 065 125 0.75 0.50 0.50 98.0 97.0 97.0 97.0 97.0

3 065 1.25 1.00 0.50 0.50 97.0 96.5 97.0 98.0 98.0

3 065 1.25 0.75 050 1.00 100 96.5 97.0 96.5 97.0

3 065 125 1.25 0.50 0.75 97.0 97.0 97.5 97.5 98.0

3 065 1.25 0.75 050 0.75 99.5 97.0 97.0 97.0 97.0
12 095 1.00 1.25 0.75 1.00 100 92.5 99.5 97.5 100

3 065 1.25 1.00 0.50 1.00 98.5 98.0 98.0 98.0 98.0
12 095 0.75 1.00 0.75 1.00 100 90.5 100 100 100
12 095 1.00 1.25 0.75 0.50 100 91.0 99.5 100 100
12 095 0.75 1.00 1.00 1.00 100 91.0 100 100 100
12 095 1.00 0.75 0.75 1.00 100 100 98.0 93.0 100
12 0.65 1.00 0.75 1.00 1.00 93.5 100 100 99.5 100

3 065 1.00 1.00 0.50 0.50 98.5 98.5 99.0 99.0 99.0

3 065 1.00 0.75 050 0.75 99.0 98.5 99.0 99.0 99.0

3 065 1.00 1.25 0.50 0.50 99.0 98.5 99.0 99.5 99.0

3 065 1.25 1.25 0.50 1.00 99.0 99.0 99.0 99.0 99.0
12 0.65 1.00 1.25 1.00 1.00 95.5 100 100 100 100

3 065 125 1.25 0.75 0.50 99.0 99.0 99.0 99.5 99.5
12 095 1.25 0.75 1.00 0.50 100 98.0 98.0 100 100

3 095 1.00 1.00 0.50 0.50 98.5 98.0 100 100 100

3 095 1.00 1.00 0.50 0.75 98.0 98.5 100 100 100

3 065 0.75 0.75 050 0.75 98.5 99.0 100 100 100

3 065 1.00 0.75 0.50 0.50 99.5 99.5 99.5 99.5 99.5

3 065 1.00 0.75 0.50 1.00 99.5 99.5 99.5 99.5 99.5

3 065 1.25 1.00 0.75 0.50 99.5 99.5 99.5 99.5 99.5

3 065 125 125 0.75 1.00 99.5 99.5 99.5 99.5 99.5
12 095 0.75 1.25 0.75 1.00 100 97.5 100 100 100

3 065 0.75 1.00 050 0.75 100 99.0 99.5 100 99.5

3 065 075 125 050 0.75 100 98.5 100 100 99.5

3 065 1.25 1.00 0.75 0.75 100 99.5 99.5 100 99.5

3 065 0.75 1.00 0.50 0.50 100 99.5 100 100 99.5

3 065 0.75 1.25 0.50 1.00 100 99.0 100 100 100

3 095 1.00 1.00 0.50 1.00 99.5 99.5 100 100 100

3 065 1.00 1.25 0.50 0.75 100 99.5 99.5 100 100

3 09 1.25 125 050 0.75 99.5 99.5 100 100 100

3 095 1.00 0.75 0.50 0.50 100 99.5 100 100 100

3 065 1.00 1.00 0.50 0.75 100 99.5 100 100 100

3 095 1.00 1.25 0.50 0.75 100 99.5 100 100 100

3 095 1.25 1.00 0.50 0.75 100 99.5 100 100 100
12 0.65 0.75 0.75 0.75 1.00 99.5 100 100 100 100
12 095 0.75 1.25 1.00 1.00 100 99.5 100 100 100

3 065 0.75 0.75 050 0.50 100 100 100 100 100

3 095 075 0.75 050 0.50 100 100 100 100 100

3 095 0.75 0.75 050 0.75 100 100 100 100 100

3 065 0.75 0.75 050 1.00 100 100 100 100 100

3 095 0.75 0.75 050 1.00 100 100 100 100 100

3 095 0.75 1.00 0.50 0.50 100 100 100 100 100

3 095 0.75 1.00 0.50 0.75 100 100 100 100 100

3 065 0.75 1.00 0.50 1.00 100 100 100 100 100

3 095 0.75 1.00 0.50 1.00 100 100 100 100 100

3 065 0.75 1.25 050 0.50 100 100 100 100 100

3 095 0.75 1.25 0.50 0.50 100 100 100 100 100

3 095 075 125 050 0.75 100 100 100 100 100
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Table 5 — Continued from previous page

¥ o B2 02 B4 04 nps—reg STSI-reg STSI-HT #wps—pos STSI-pos
3 095 075 1.25 0.50 1.00 100 100 100 100 100
3 065 0.75 0.75 0.75 0.50 100 100 100 100 100
3 095 0.75 0.75 0.75 0.50 100 100 100 100 100
3 065 0.75 0.75 0.75 0.75 100 100 100 100 100
3 095 0.75 0.75 0.75 0.75 100 100 100 100 100
3 065 0.75 0.75 0.75 1.00 100 100 100 100 100
3 095 0.75 0.75 0.75 1.00 100 100 100 100 100
3 065 0.75 1.00 0.75 0.50 100 100 100 100 100
3 095 0.75 1.00 0.75 0.50 100 100 100 100 100
3 065 075 1.00 0.75 0.75 100 100 100 100 100
3 095 0.75 1.00 0.75 0.75 100 100 100 100 100
3 065 0.75 1.00 0.75 1.00 100 100 100 100 100
3 095 0.75 1.00 0.75 1.00 100 100 100 100 100
3 065 0.75 1.25 0.75 0.50 100 100 100 100 100
3 095 075 1.25 0.75 0.50 100 100 100 100 100
3 065 0.75 1.25 0.75 0.75 100 100 100 100 100
3 095 075 125 0.75 0.75 100 100 100 100 100
3 065 075 1.25 0.75 1.00 100 100 100 100 100
3 095 075 1.25 0.75 1.00 100 100 100 100 100
3 065 0.75 0.75 1.00 0.50 100 100 100 100 100
3 095 0.75 0.75 1.00 0.50 100 100 100 100 100
3 065 0.75 0.75 1.00 0.75 100 100 100 100 100
3 095 0.75 0.75 1.00 0.75 100 100 100 100 100
3 065 0.75 0.75 1.00 1.00 100 100 100 100 100
3 095 0.75 0.75 1.00 1.00 100 100 100 100 100
3 065 075 1.00 1.00 0.50 100 100 100 100 100
3 095 0.75 1.00 1.00 0.50 100 100 100 100 100
3 065 0.75 1.00 1.00 0.75 100 100 100 100 100
3 095 0.75 1.00 1.00 0.75 100 100 100 100 100
3 065 0.75 1.00 1.00 1.00 100 100 100 100 100
3 095 0.75 1.00 1.00 1.00 100 100 100 100 100
3 065 0.75 1.25 1.00 0.50 100 100 100 100 100
3 095 0.75 1.25 1.00 0.50 100 100 100 100 100
3 065 0.75 1.25 1.00 0.75 100 100 100 100 100
3 095 0.75 1.25 1.00 0.75 100 100 100 100 100
3 065 0.75 1.25 1.00 1.00 100 100 100 100 100
3 095 0.75 1.25 1.00 1.00 100 100 100 100 100
3 095 1.00 0.75 050 0.75 100 100 100 100 100
3 095 1.00 0.75 0.50 1.00 100 100 100 100 100
3 065 1.00 1.00 0.50 1.00 100 100 100 100 100
3 095 1.00 1.25 0.50 0.50 100 100 100 100 100
3 065 1.00 1.25 0.50 1.00 100 100 100 100 100
3 095 1.00 1.25 0.50 1.00 100 100 100 100 100
3 065 1.00 0.75 0.75 0.50 100 100 100 100 100
3 095 1.00 0.75 0.75 0.50 100 100 100 100 100
3 065 1.00 0.75 0.75 0.75 100 100 100 100 100
3 095 1.00 0.75 0.75 0.75 100 100 100 100 100
3 065 1.00 0.75 0.75 1.00 100 100 100 100 100
3 095 1.00 0.75 0.75 1.00 100 100 100 100 100
3 065 1.00 1.00 0.75 0.50 100 100 100 100 100
3 095 1.00 1.00 0.75 0.50 100 100 100 100 100
3 065 1.00 1.00 0.75 0.75 100 100 100 100 100
3 095 1.00 1.00 0.75 0.75 100 100 100 100 100
3 065 1.00 1.00 0.75 1.00 100 100 100 100 100
3 095 1.00 1.00 0.75 1.00 100 100 100 100 100
3 065 1.00 1.25 0.75 0.50 100 100 100 100 100
3 095 1.00 1.25 0.75 0.50 100 100 100 100 100
3 065 1.00 1.25 0.75 0.75 100 100 100 100 100
3 095 1.00 1.25 0.75 0.75 100 100 100 100 100
3 065 1.00 1.25 0.75 1.00 100 100 100 100 100
3 095 1.00 1.25 0.75 1.00 100 100 100 100 100
3 065 1.00 0.75 1.00 0.50 100 100 100 100 100
3 095 1.00 0.75 1.00 0.50 100 100 100 100 100
3 065 1.00 0.75 1.00 0.75 100 100 100 100 100
3 095 1.00 0.75 1.00 0.75 100 100 100 100 100
3 065 1.00 0.75 1.00 1.00 100 100 100 100 100
3 095 1.00 0.75 1.00 1.00 100 100 100 100 100
3 065 1.00 1.00 1.00 0.50 100 100 100 100 100
3 095 1.00 1.00 1.00 0.50 100 100 100 100 100
3 065 1.00 1.00 1.00 0.75 100 100 100 100 100
3 095 1.00 1.00 1.00 0.75 100 100 100 100 100
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Table 5 — Continued from previous page

v p B2 b2 Ba 04 nps—reg STSI-reg STSI-HT #«ps—pos STSI-pos
3 065 1.00 1.00 1.00 1.00 100 100 100 100 100
3 095 1.00 1.00 1.00 1.00 100 100 100 100 100
3 065 1.00 1.25 1.00 0.50 100 100 100 100 100
3 095 1.00 1.25 1.00 0.50 100 100 100 100 100
3 065 1.00 125 1.00 0.75 100 100 100 100 100
3 095 1.00 1.25 1.00 0.75 100 100 100 100 100
3 065 1.00 1.25 1.00 1.00 100 100 100 100 100
3 095 1.00 1.25 1.00 1.00 100 100 100 100 100
3 095 1.25 0.75 050 0.50 100 100 100 100 100
3 095 125 0.75 050 0.75 100 100 100 100 100
3 095 1.25 0.75 050 1.00 100 100 100 100 100
3 095 1.25 1.00 0.50 0.50 100 100 100 100 100
3 095 1.25 1.00 0.50 1.00 100 100 100 100 100
3 095 1.25 1.25 0.50 0.50 100 100 100 100 100
3 095 125 1.25 050 1.00 100 100 100 100 100
3 065 1.25 0.75 0.75 0.50 100 100 100 100 100
3 095 125 075 0.75 0.50 100 100 100 100 100
3 065 1.25 0.75 0.75 0.75 100 100 100 100 100
3 095 125 075 0.75 0.75 100 100 100 100 100
3 065 125 0.75 0.75 1.00 100 100 100 100 100
3 095 1.25 0.75 0.75 1.00 100 100 100 100 100
3 095 1.25 1.00 0.75 0.50 100 100 100 100 100
3 095 1.25 1.00 0.75 0.75 100 100 100 100 100
3 065 125 1.00 0.75 1.00 100 100 100 100 100
3 095 1.25 1.00 0.75 1.00 100 100 100 100 100
3 095 125 1.25 0.75 0.50 100 100 100 100 100
3 065 125 125 0.75 0.75 100 100 100 100 100
3 095 125 125 0.75 0.75 100 100 100 100 100
3 095 125 125 0.75 1.00 100 100 100 100 100
3 065 1.25 0.75 1.00 0.50 100 100 100 100 100
3 095 125 0.75 1.00 0.50 100 100 100 100 100
3 065 1.25 0.75 1.00 0.75 100 100 100 100 100
3 095 125 075 1.00 0.75 100 100 100 100 100
3 065 1.25 0.75 1.00 1.00 100 100 100 100 100
3 095 1.25 0.75 1.00 1.00 100 100 100 100 100
3 065 1.25 1.00 1.00 0.50 100 100 100 100 100
3 095 1.25 1.00 1.00 0.50 100 100 100 100 100
3 065 1.25 1.00 1.00 0.75 100 100 100 100 100
3 095 1.25 1.00 1.00 0.75 100 100 100 100 100
3 065 125 1.00 1.00 1.00 100 100 100 100 100
3 095 1.25 1.00 1.00 1.00 100 100 100 100 100
3 065 1.25 1.25 1.00 0.50 100 100 100 100 100
3 095 1.25 1.25 1.00 0.50 100 100 100 100 100
3 065 1.25 125 1.00 0.75 100 100 100 100 100
3 095 125 1.25 1.00 0.75 100 100 100 100 100
3 065 1.25 1.25 1.00 1.00 100 100 100 100 100
3 095 125 1.25 1.00 1.00 100 100 100 100 100
12 0.65 0.75 0.75 0.75 0.50 100 100 100 100 100
12 065 0.75 075 0.75 0.75 100 100 100 100 100
12 0.65 0.75 1.00 0.75 0.50 100 100 100 100 100
12 0.65 0.75 1.00 0.75 0.75 100 100 100 100 100
12 0.65 0.75 1.00 0.75 1.00 100 100 100 100 100
12 0.65 0.75 125 0.75 0.50 100 100 100 100 100
12 0.65 0.75 1.25 0.75 0.75 100 100 100 100 100
12 0.65 0.75 125 0.75 1.00 100 100 100 100 100
12 0.65 1.00 0.75 1.00 0.50 100 100 100 100 100
12 095 1.00 0.75 1.00 0.50 100 100 100 100 100
12 0.65 1.00 0.75 1.00 0.75 100 100 100 100 100
12 095 1.00 0.75 1.00 0.75 100 100 100 100 100
12 0.95 1.00 0.75 1.00 1.00 100 100 100 100 100
12 0.65 1.00 1.00 1.00 0.50 100 100 100 100 100
12 0.95 1.00 1.00 1.00 0.50 100 100 100 100 100
12 0.65 1.00 1.00 1.00 0.75 100 100 100 100 100
12 095 1.00 1.00 1.00 0.75 100 100 100 100 100
12 065 1.00 1.25 1.00 0.50 100 100 100 100 100
12 095 1.00 1.25 1.00 0.50 100 100 100 100 100
12 0.65 1.00 125 1.00 0.75 100 100 100 100 100
12 095 1.00 1.25 1.00 0.75 100 100 100 100 100
12 095 1.00 125 1.00 1.00 100 100 100 100 100
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The assumption of N — oo in result 2 is actually required only for getting closed and
nice expressions that can be printed in a paper. Alternatively, one could resort to
simulations in order to approximate the anticipated variance. We have developed a
program that performs these type of simulations.!

5 Conclusions

The strategy that couples mps with the regression estimator is optimal when the
superpopulation model exists and some of its parameters are known. This fact was
verified by a simulation study in section 3.

Taking into account how strong these assumptions are, it was shown in section 4
that this optimality breaks down when there is a misspecification of the model. Ap-
proximations to the anticipated variance of five strategies were obtained for a simple
type of misspecification. They were used to verify that mwps—reg is not necessarily
optimal anymore. In fact its use may lead to variances many times bigger than some
other strategies, e.g. STSI-reg, that seem to be more robust.
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Appendix. Proof of results

Proof of Result 1. The following expectations are required in the proof of the result

E¢Yy = B¢ [50 + By + Gk] = Bo + Bz} (14)

EeYy = B {(50 + 519552 + Ek) 2] = B¢ [(50 + 5137k2)2 +2 (ﬁo + 5156’232) € + ez] =
(BO * /5’1%2)2 2 (50 + 51""552) Ee [ex] + B¢ [e] = (60 + le,f)Q + B2 (15)

E:Y, EcY? and E¢2Y are obtained using (14) and (15),

E.Y = Ee l%zn Z%ZE@@:%Z(ﬁo+ﬁ1$£2>:50+51ﬁ (16)
U U U

— 1
E Y2 = E; [N > Y
U

= %Z ((ﬁo + 51$§2)2 + ﬂ%xiﬁ‘*) =
U

B2+ 2Bof1aP2 + B2x2P: 4 (252 (17)

— 1 1 1 -
R =5 [3 S| = & bt & Sonta e = 57
U U U

(18)
Now, using (16), (17) and (18) we get

Ee [2Y —ZY] = (BT + fra®T) = T(o + pra) = B(aP 71 —Tak) = 5115, (19)

Be [Y2 = V7| = (83 + 260810% + 5727 + B30%%) — (B + Bra™)* =

— _2 —_— [
5% (x2ﬁ2 - > + ﬂ:’?wzﬁ‘l = 6%552”32 + B§$254 (20)

Using (19) and (20), we obtain an approximation to the correlation coeflicient, R, ,,

N @-mp _ BEv-av] _ gs,
Y@= -7 Ee [@ — ) (W . ?2)} S11(BSs,,8, + B32201)
(21)
Solving (21) for B2 we get (8), as desired. O

Proof of Result 2. Parts 1 and 2. Some results are required before we obtain (9) and
(10). If the model ¢ is true but the reg-estimator with @), = (1,2}*) is fitted, we have

Y, = Bo+ Bzl + E,  butalso Y, =0+ 5 +e
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Nt —t t
where By = tﬁy = W Then
T 202
Nt s, —t s, 1
E¢B; = E TRy wEY - N z2E.Y, — ¢ EY. | =
5 1 £|: Ntxg(gz —ti52 Ntw252 _ti‘SQ ; k 5 k xéz; 5 k

N'[I 25 t2 (Nzx /BO +lek ) lysa Z<BO +51$k2)> =

U
1

Nt 25 —t25 (NBOZ$i2+NB12$§2+62—Nﬁozx%—ﬁlz,l’?z:xkz) =
ZC22 x°2 U U U U U

pB2td2 _ P2 b2 _ 3 Sﬁ2,52 (22>
A
x 2 — X 2 62,52

1 N
EEBO E§ |:N N :| = N ZEng - $62E§Bl =

1 ﬁ & 8,32 02
_ ﬁ—f‘ﬁlﬁ —deﬁ 22—6 —i—ﬁl‘ﬂ? Bx52 —
N g( 0 14 ) 552 52 0 1 1 552 52

Bo — 5 (9052 Sts ﬁ) (23)

563,62

Using (22) and (23) we obtain E¢F), and an approximation to E¢E?,

EcE), = Ee [BO — By + Bz — B2 + ek} = By — E¢Bo + 12 — B¢ By + Eeej, =

50—50+ﬁ1<x52gﬂ262—ﬁ)—i—ﬁlx; By 562,82 x40 =

62 52 562 52

o (ot - 7) = 22 (o - 7)) o)

2
EEEE = Ef |:<60 - BO + ﬂlku — Bl.fll'? + Ek) :| ~

2
(BO — BO + 51.1'52 - Bll’%) + 2 <ﬁ0 — B(] + ﬁ1I£Q — Bl.l‘?) Egek + EgEZ ~

S 2,02 . S 2,02 ? 4
(50 — Bo— B <1U52 SB d +$[32> +51$k - 5 b 93?) +B§$iﬁ =

52 (52 552752

(ot - 7%) - 2 (o)) e 29

02,02

The approximations in (25) are obtained by assuming N — oo, so that By and By
have essentially no variance under the model. EsE_h and an approximation to E¢E?
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are obtained using (24) and (25),

— 1
U,

WE( (072 7)) -
i (7 - 77) - 22 (o - 7)) eo)
EcE2 = B ZEk NLhZEgE,%z
Up
£ (ﬂl (o =) - () ) ) -

S& ,02

1 2 B2 _ T By 2 552752 Bz _ " Bs o T8, 552,52 5o
th & (xk —:v2> _2m<$k _952><xk _$2>+ (xk_ ) + B
Uh 2,02

5 o B —2 S
Ieh ((miﬁz — 282 g 4 gPo > — 92kt <x62+52

N % x’82 2% 12 222 4 zPe :1:52) +
62,02

2,02

562’52 (:E%;SQ 2:55255 + 2% >> +ﬁ32xiﬁ4 (27)
5

Assuming that the population is large enough, we approximate the variance of mps
sampling by the variance of with-replacement pps, i.e

EeVirps (freg) [ > m (— — tE)2] ~ %Z Eef (28)

o P

with p, =

. The last approximation is obtained by using tg ~ 0. Using (25) into
(28) we get

_ZEg 251 (( —ﬁ)—%(x?_ )) 62 264
U

af?
U t sy
2 — — —)
ildh (62 ((x2ﬁ2*54 — 9P gha—ba 4 $ﬁ22x*54> —
n
25/82752

< Pat02—bs _ g2 pPa—bs _ pPa gpba—04 | pPa 02 $—54> +
55,62

13
5,3227 2 <:L‘252 —64 __ zxdg 19204 +x62 = )) +B2x2ﬂ4 54) =
02,62

2

N2__ _

YIM (ﬁf ((552,52—54 - 13525,32’_54) -
2

Sﬁ2,52

_ 52 _
S <362’62_64 - $52Sﬁ2’_64) + Sﬂ27 : (S52,52—54 - x625527—54> + 53?1’264_54
52752 S

2,02

31

3T}

2,.284

)-



Replacing 32 by (8) we obtain (9).
Regarding the variance of STSI we have

~ N2 np Nh 5 =2
EeVsrsr (frer) = Fe [Z n, (1 N, ) N, —1 (E’z & )

~
~

h=1

H
NP (— ——
|32 (7 - )

2

H
N .
~Y Sk (EfE —EgEh2> (29)
np

The approximations are obtained assuming that N — oo, so that, in the first case, the
with-replacement variance can be used instead of its without-replacement counterpart,
and, in the second case, the variance of EJ, is essentially zero. Using (26), (27) and
(8) into (29) we obtain (10), as desired. O

Proof of Result 2. Part 3. Some results are required before we obtain (11). Using 14
and 15 we get

— 1
E:Y, = E; [Fh > i
Un

= Nih Z E¢Y) = Nih Z (50 + le?) = Bo + 5133_52 (30)
Un Un

EcY? = Ee

1
PG

ZEEYk = Z <50 + 25051I + foiBQ 53390_/1264)
Up,
(31)
The anticipated variance of strategy 3 is

H
~ N2 np Nh 55 —2
¢ Vsrst (tHT) ¢ [ E - ( Nh) N, —1 R h

h=1
H
N2 —
Ee [Z - (Yzf - th)

h=1

Using (30), (31) and (8) we obtain (11) as desired. O

Proofs of Result 2. Parts 4 and 5. Some results are needed before we obtain (12) and

(13). If the model £ is true, but the pos-estimator as defined for strategies 4 and 5 in
section 2.2 is fitted, we have

Y, = B, + Ej but also Y, = 6o + ﬁlx? + €

where B, = N%, >y, Y Then

E¢B, = E¢ ZYk —NigZEgyk—NiZ<5o+ﬁlez) :50+5195_52 (32)
Ug

gUg
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Using (32) we obtain E¢Ej, and and approximation to E¢EZ,

EéEk: = Eg |:50 + 51%52 — Bg + 6k::| = BO + 511‘52 — Eng + EgEk =
Bo + 519552 — Bo — 513552 =0 <$£2 - 1’§2> (33)

~

2
EgE]z = Ef |:<BO + ﬁlku _ Bg + €k> :| ~

2
(ﬁO + 6137k2 - Bg) + 2 (60 + ﬁﬂlf% — Bg) Eg&k + Eﬁi ~
(Bo-+ Buae — o — prap?) + Sha™ = 57 (w2 — )+ Bt (30)

E¢E), and an approximation to E¢E? are obtained using (33) and (34),

EeBh =~ ZEEEk— ZB (o2 = 22?) = ﬁlzNhg@hg—xg) (35)

— 1 1 —
BT = LB ) CICEEART O
Upn
(5 (S0 -2 S+ S i)+ i)

1
N (Bf Z Nig <x,21§2 - ng%hg + x?Q ) + ﬁgthQﬁ“) (36)
g=1

Assuming that the population is large enough, the anticipated variance of strategy
4 is approximated by (28) with E¢E? approximated by (34), and we obtain

Eg 61 < x52> +ﬁ§$iﬁ4
PN =
U U k
t 254

Nads S
x (51 ( xzﬁz—64_QZIgz$£2—64+ng o )_I_Bgz 24— 54> _
U
N 4
x (ﬁl (ZN:EQ,& 04 QZng2 B2—04 _}_Zng ZL'g_64) +53Zx254 64>

(37)

Using (8) into (37), we obtain the desired result (12).
Finally, (13) is obtained in an analogous way, using (35), (36) and (8) into
H
) N2/ —
EcVirst (fpos) = > o (EgE,Ql — EcE, )
h=1
L]
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