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A Classroom Approach to the Construction of
Bayesian Credible Intervals of a Poisson Mean

Per Gösta Andersson, Department of Statistics, Stockholm University

Abstract

The Poisson distribution is here used to illustrate Bayesian inference con-
cepts with the ultimate goal to construct credible intervals for a mean. The
evaluation of the resulting intervals is in terms of potential negative effects
of mismatched priors and posteriors. The discussion is in the form of an
imaginary dialogue between a teacher and a student, who have met earlier,
discussing and evaluating the Wald and score confidence intervals, as well
as confidence intervals based on transformation and bootstrap techniques.
From the perspective of the student the learning process is akin to a real
research situation. By this time the student is supposed to have studied
mathematical statistics for at least two semesters.

KEY WORDS: Gamma distribution; Posterior; Prior.
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1. INTRODUCTION

For illustration of statistical theory and practice the Poisson distribution
has proved to be of great value, due to its properties and simplicity, see
e.g. Casella and Berger (2002) and Hogg, McKean and Craig (2005). This
paper addresses Bayesian issues by way of a discussion between a teacher
and a student. They meet on three occasions, when the student is gradually
introduced to basic concepts. This ultimately leads to an understanding
of the construction of credible intervals and their properties for, in this
instance, a Poisson mean.
It is to be understood that during the meetings the teacher and student have
access to a whiteboard to facilitate the interaction between them.

2. THE FIRST MEETING

Teacher : Once again we meet to discuss interval estimation and as before we
are going to make use of the Poisson distribution for illustrative purposes.
This time however we will not focus on confidence interval constructions,
involving various types of approximations and transformations, but instead
primarily deal with an altogether different approach, involving Bayesian
credible intervals.
Student : I must admit that after our previous sessions I felt a certain wea-
riness of confidence intervals in combination with the Poisson distribution.
Though when you mention a Bayesian method, I become curious! Some
of my recent courses included Bayesian ideas, but not in a very deep and
systematic way. Primarily we studied procedures under normal distribution
assumptions. As I understand it, the teachers were not fully committed
Bayesians.
Reply : I believe that some scholars have fully adapted the Bayesian metho-
dology and others consider themselves pragmatic and use Bayesian methods
where they seem useful. There are also the ”anti-Bayesians” who believe
that the concept is fundamentally wrong, mostly due to its elements of
subjectivity. A major complication for us now is that comparisons with our
previous results using the classical so called frequentist approach are difficult
to make, due to the fundamentally different interpretation of the unknown
Poisson parameter θ from a Bayesian point of view.
Student : Well, that much I have understood. A Bayesian treats θ as the
outcome of a random variable, say Θ, with a prior distribution, which is
updated when we obtain data, thus arriving at a posterior distribution.
The resulting inference is then conditional on observed data, but is that not
always the case?
Reply : This is true enough, but a ”frequentist” is of course not able to make
a probabilistic statement about the resulting confidence interval in terms
of θ. Now, to get things going, let us start with the fundamental idea of
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Bayesian inference, which is the following application of Bayes’ rule:

π(θ|x) =
f(x|θ)π(θ)

g(x)
,

where g(x) represents the joint marginal distribution of X = (X1, . . . , Xn),
π(θ) the prior distribution of θ, f(x|θ) the conditional distribution of X
given θ and π(θ|x) the conditional posterior distribution of θ given x.
Student : So here we assume a random sample X1, . . . , Xn, where Xi ∼
Poi(θ), i = 1, . . . , n. Thus

f(x|θ) =
n∏
i=1

θxi

xi!
exp(−θ) =

1∏n
i=1 xi!

θ
∑n

i=1
xi exp(−nθ)

Reply : Yes, so far this is all we can say. But now we have the flexibility to
choose a prior π(θ). Actually, we can start with a situation where we want
to be neutral.
Student : I guess that a natural candidate as a prior of θ would then be a
uniform continuous distribution, but in that case I must decide on an upper
bound for the support.
Reply : Already we have another decision to make! But, as it turns out, π(θ)
does not have to be a proper probability density function (pdf).
Student : In that case, I simply let π(θ) = c, 0 < θ <∞ (c > 0).
Reply : This will work! We can furthermore note that f(x|θ)π(θ) represents
the so called mixed discrete continuous joint pdf f(x, θ). Also, π(θ) is an
example of a flat and improper prior.
Student : But will π(θ|x) be a proper pdf if π(θ) is not a proper pdf? Do
not say anything, I will check it!

f(x|θ)π(θ) =
1∏n

i=1 xi!
θ
∑n

i=1
xi exp(−nθ) · c

and

g(x) =

∫ ∞
0

f(x|θ)π(θ) dθ = (
n∑
i=1

xi = k) =
c∏n

i=1 xi!

∫ ∞
0

θkexp(−nθ) dθ

I can integrate θk exp(−nθ) by parts repeatedly. I recall from a math course
on Fourier series something called the Kronecker lemma, which leads to

∫ ∞
0

θk exp(−nθ) dθ = [−θk exp(−nθ)
n

− kθk−1 exp(−nθ)
n2

− · · · − k!
exp(−nθ)
nk+1

]∞0

=
k!

nk+1

So

g(x) =
c∏n

i=1 xi!

(
∑n
i=1 xi)!

n
∑n

i=1
xi+1
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Thus

π(θ|x) =
n
∑n

i=1
xi+1

(
∑n
i=1 xi)!

θ
∑n

i=1
xi exp(−nθ)

From the integration just performed I can see that this is indeed a proper
posterior pdf!
Reply : Good! Do you recognize the posterior distribution?
Student : Not immediately, but let me see (checking a list of distributions).
It is a gamma Γ(α, β) with α = k + 1 =

∑n
i=1 xi + 1 and β = 1/n.

Reply : Correct. By the way, you used Kronecker’s lemma (Berlin sitzungs-
berichte 1885 and 1889!) for the integration, but you might instead have
considered manipulating the pdf of a gamma distribution.
Student : Of course, that old trick!∫ ∞

0

1

Γ(α)βα
xα−1exp(−x/β)dx = 1

If I convert the notation to our situation: x = θ, α = k + 1, β = 1/n, so∫ ∞
0

θkexp(−nθ)dθ = Γ(k + 1)
( 1

n

)k+1
· 1 =

k!

nk+1

Reply : You can well imagine that integration to obtain a density soon gets
really complicated for more complex situations, such as when we construct
so called hierarchical models, where priors for hyperparameters, like α and
β for a gamma distribution, are taken into account. Computer intensive
methods like MCMC (Markov Chain Monte Carlo) to simulate samples from
distributions are then of great help
If we continue to consider the gamma distribution, what happens if we let
π(θ) ∼ Γ(α, β)? (α and β are assumed to be known.)
Student : When π(θ) was flat, the result was a gamma distribution, so a not
very wild guess would be that a gamma prior leads to a gamma posterior!
Reply : Correctly ”guessed”! What are the resulting gamma parameters?
Student : If I start with the prior π(θ) ∼ Γ(α, β),

f(x|θ)π(θ) =
1∏n

i=1 xi!
θkexp(−nθ) 1

Γ(α)βα
θα−1 exp(−θ/β)

=
1∏n

i=1 xi!

1

Γ(α)βα
θk+α−1exp(−(n+ 1/β)θ)

I do not need to evaluate g(x), since it does not depend on θ and is therefore
not contributing to information about the parameters. The posterior is then
Γ(k + α, 1/(n+ 1/β)).
Reply : You have illustrated that the family of gamma distributions is the
conjugate family of distributions for the Poisson distribution. It is not un-
problematic though to choose values or prior distributions of α and β for
a gamma prior, unless we have vast experience and/or access to a great
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amount of previous data. A compromise between the flat and gamma priors
is given by π(θ) ∝ 1/

√
θ. This could be reasonable if we tend to believe more

in lower than in higher values of θ. Furthermore, we do not have to choose
specific values of parameters. What is the posterior distribution given this
prior?
Student :

f(x|θ)π(θ) ∝ 1∏n
i=1 xi!

θ
∑n

i=1
xi exp(−nθ) 1√

θ
=

1∏n
i=1 xi!

θ
∑n

i=1
xi−1/2 exp(−nθ)

I trust that this is enough, verifying that we once again arrive at a gamma
distribution, this time with α =

∑n
i=1 xi + 1/2 and β = 1/n, a result close

to our first case with the flat prior.
Reply : I agree! Actually, this prior belongs to the class of Jeffreys priors,
where π(θ) ∝

√
I(θ), and where I(θ) is the Fisher information number.

Check that!
Student : All right, I(θ) = E((∂logf(X|θ)

∂θ )2), but since the Poisson distri-
bution belongs to an exponential family of distributions, we also have that

I(θ) = −E(∂logf(X|θ)
∂θ2

). Here logf(X|θ) = X log θ− logXi!−θ, which means

that ∂
∂θ2

logf(X|θ) = −X/θ2 and I(θ) = 1/θ, so
√
I(θ) = 1/

√
θ !

Reply : Good! Furthermore we can observe that the class of Jeffreys’s priors
belongs to a type of priors which are said to be noninformative, in the sense
that we have invariance under reparameterization.
Student : You say that the prior does not need to be flat in order to be called
noninformative? What does the invariance property signify here?
Reply : Yes and the invariance property means that if we let τ = u(θ), where
u is a one-to-one function, then π(θ) ∝

√
I(θ) implies π(τ) ∝

√
I(τ). Can

you show this?
Student : The density for π(τ), according to the general transformation ”for-

mula”, should be π(θ)| ∂θ∂τ | (θ = u−1(τ)) and I(τ) = E((∂logf(X|u
−1(τ))

∂τ )2).
A lot of brackets!
Reply : Well, you need all of them!
Student : Then, using the chain rule I get I(τ) = E((∂logf(X|θ)δθ

∂θ
∂τ )2) =

( ∂θ∂τ )2I(θ) and since π(θ) ∝
√
I(θ), I am done!

Reply : Excellent. We have not yet discussed the issue of constructing credi-
ble intervals for θ, but before doing that, let us briefly look at the expected
value E(Θ|x) for the three posterior distributions that you have derived.
Student : Generally for a Γ(α, β) the expected value is α · β, so

π(θ) flat : E(Θ|x) =

∑n
i=1 xi + 1

n

π(θ) ∝ I(θ) : E(Θ|x) =

∑n
i=1 xi + 1/2

n

π(θ) ∼ Γ(α, β) : E(Θ|x) =

∑n
i=1 xi + α

n+ 1/β
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The influence of the parameters on the priors decreases with increasing va-
lues of n. This makes sense!
Reply : Yes indeed! We can also observe that it seems relevant to call the
first two priors uninformative. Furthermore the expectations can be seen
as functions of the prior mean and the maximum likelihood estimate x̄ =
(1/n)

∑n
i=1 xi.

Student : That escaped me regarding the last expression, but let me try and
rewrite it:∑n

i=1 xi + α

n+ 1/β
=
β
∑n
i=1 xi

nβ + 1
+

αβ

nβ + 1
= x̄

nβ

nβ + 1
+ αβ

1

nβ + 1

This is elegant! We get a weighted average of the sample mean x̄ and the
prior mean α · β, where the first weight tends to 1 and the second weight to
0 when n→∞.
Reply : The conditional expectation E(Θ|x) is actually a Bayes’s point esti-
mate of θ. It is formally derived as the decision function δ(x) which minimi-
zes the conditional expectation of the loss function L(θ, δ(x)) = (θ− δ(x))2.
(Ideally we should perhaps call this a predicted value of Θ rather than an
estimated value of θ.)
We are now finally prepared for the Bayesian interval estimates of θ. They
are called credible intervals and are constructed as posterior prediction in-
tervals for Θ.
Student : Then if the posterior distribution is known, we can find, say, a and
b so that

P (a|x < Θ < b|x) = 1− p

(Intentionally I avoided the use of α at the right hand side!)
Reply : Yes, and it is important to acknowledge that a and b depend on x.
Student : And on α and β for the gamma prior!
Reply : True! As usual we can further choose, for the sake of uniqueness and
symmetry, a and b so that

P (Θ < a|x) = P (Θ > b|x) =
p

2

Bayes’s interval estimation is really more straightforward than Bayes’s point
estimation, where in the latter situation we have to specify a loss function.
It is also worth pointing out that x̄ is a sufficient statistic for the Poisson
parameter θ, so we can condition on x̄ instead of x.
Now I think it is time to study the behavior of credible intervals based on
the prior and posterior distributions we have considered here. This could
be accomplished analytically or by a simulation study, where you can labor
with different scenarios. There will be many degrees of freedom for you!
Student : I accept the challenge!
Reply : Good! We will meet again in a few days and discuss how to accom-
plish this.
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3. THE SECOND MEETING

So, have you given this enough thought, do you think?
Student : Well, at first it seemed a bit strange to evaluate credible intervals,
since what we get in the end is an interval with a prespecified probability of
coverage. Could the length be something to consider?
Reply : Impolitely I will reply to your question with another. Did you con-
sider comparisons with confidence intervals for a fixed parameter?
Student : That was tempting and I have been looking into what Casella
and Berger have to say about this very case with the Poisson distribution
parameter in their ”Statistical Inference”. They make comparisons between
confidence and credible intervals and I guess the main conclusion is that
a confidence interval evaluated as a credible interval can perform poorly
and vice versa. Is comparing these two concepts like comparing apples with
oranges?
Reply : Not even that! I have a colleague who says that it is like comparing
an apple with a lorry! It is really not very fruitful to make such comparisons,
since the underlying concepts differ so much.
Student : Evaluating cases where we use the ”wrong” prior might be so-
mething?
Reply : Yes, indeed! You have so far looked at three possible priors and why
not combine ”wrong” pairs of priors and posteriors? It is of course proble-
matic to discuss in terms of ”right” and ”wrong” in a Bayesian context, but
it seems to be a relevant way to illustrate the influence of the prior on the
posterior.
Student : In that case I should first compute a|x and b|x given whatever p
and prior I have and then use these limits to compute the probability of
coverage using a ”wrong” posterior? I take it that since the first two priors
we have discussed are similar, I may consider only two of them?
Reply : Yes, and do not forget to try different sample sizes to observe how
the effect of a ”wrong” prior changes.
Student : Another thing, I have been thinking about the derivation of the
posterior for the flat prior, where we obtained a gamma posterior. When I
generate a random number I want to use a uniform distribution with some
upper bound for the support and then the posterior will not exactly be a
gamma distribution?
Reply : No, but in this case we can approximate with a Γ(

∑n
i=1 xi + 1, 1/n).

The density function for the true posterior will have an adjustment factor,
which is quite close to 1 even for moderate sizes of n.
Student : I think I know what to do now, so I will get back to my computer
and MATLAB and hopefully return with some interesting results!
Reply : Good luck, see you next week!
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4. THE THIRD MEETING

Teacher : Now I am curious about your results!
Student : I find them quite interesting even though they are not dramatic.
Reply : Something undramatic can be important too!
Student : Maybe! Anyway, there are some nice functions in MATLAB for
generating values from distributions and computing probabilities and quan-
tiles, so programming this was not hard work. For the flat prior I have used
a uniform distribution on (0, 100) to cover a wide enough range of possible
values of θ. For the ”wrong” posterior as a first step I chose different combi-
nations of α and β in such a way that the expected value α ·β equalled that
of the prior (in this case 50). I have used the same p = 0.95 throughout and
the sample sizes n = 10, 50 and 100. 10 000 Poisson samples were generated
for each setup.
I could perhaps show the results of these cases first before I move on descri-
bing the other scenarios?
Reply : Please do!
Student : So, for the sake of completeness I include the results for all my
chosen sample sizes, even if the level of inclusion is close to 0.95 already for
n = 10.

Table 1: Empirical inclusion probabilities for credible intervals of a Poisson mean

given p = 0.95 for the uniform (0, 100) prior combined with the ”wrong” gamma

prior Γ(α, β), where α · β = 50.

n = 10
α = 5, β = 10: .944
α = 2.5, β = 20: .949
α = 0.25, β = 200: .949

n = 50
α = 5, β = 10: .948
α = 2.5, β = 20: .950
α = 0.25, β = 200: .950

n = 100
α = 5, β = 10: .949
α = 2.5, β = 20: .950
α = 0.25, β = 200: .949

Reply : By an inclusion probability you mean∫ b|x

a|x
f(θ|x)dθ,
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where f(θ|x) is a posterior based on a ”wrong” prior?
Student : Yes, I admit I have not defined it properly, but I think inclusion is
a proper expression, since θ is supposed to be random. Coverage does not
seem suitable here.
Reply : I agree. Actually, in design-based survey sampling theory the in-
clusion probability equals the probability that a unit in the population is
included in the random sample.
Looking at your results, in these cases there is not much penalty for assu-
ming the ”wrong” prior. Maybe you thought that we should get gradually
deteriorating results for decreasing values of α?
Student : Yes, since the skewness coefficient for a Γ(α, β) is 2/

√
α I expected

that, but then I realized that one should also consider variances: 1002/12 '
833 for the ”true” uniform prior and α · β2 ' 500 for the first gamma
combination (α = 5, β = 10) and 1000 for the second.
Reply : Yes, that could very well be the reason why we get this pattern of
inclusion probabilities. Did you try some ”uglier” scenarios?
Student : Well, the next setup was letting α · β = 25 with the following
results:

Table 2: Empirical inclusion probabilities for credible intervals of a Poisson mean

given p = 0.95 for the uniform (0, 100) prior combined with the ”wrong” gamma

prior Γ(α, β), where α · β = 25.

n = 10
α = 5, β = 5: .937
α = 2.5, β = 10: .947
α = 0.25, β = 100: .949

Reply : Still high inclusion probabilities!
Student : Next I tried α · β = 10:
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Table 3: Empirical inclusion probabilities for credible intervals of a Poisson mean

given p = 0.95 for the uniform (0, 100) prior combined with the ”wrong” gamma

prior Γ(α, β), where α · β = 10.

n = 10
α = 5, β = 2: .849
α = 2.5, β = 4: .924
α = 0.25, β = 40: .948

n = 50
α = 5, β = 2: .928
α = 2.5, β = 4: .950
α = 0.25, β = 40: .950

Finally something substantially lower than 0.95!
Reply : However, you have to be pretty far off the mark with respect to the
expected value to get this effect and then only for n = 10. There is clearly
some stability here.
Student : After this I turned to the opposite situation, where the ”true”
prior is a Γ(α, β), while ”falsely” assuming a flat improper prior. I started
with the same pairs of α and β values as for the previous situation. Here is
what happened for n = 10:

Table 4: Empirical inclusion probabilities for credible intervals of a Poisson mean

given p = 0.95 for a Γ(α, β) prior combined with the ”wrong” assumption of a flat

improper gamma prior.

α · β = 50, n = 10
α = 5, β = 10: .948
α = 2.5, β = 20: .949
α = 0.25, β = 40: .916

There is a tendency of decreasing inclusion probabilities for decreasing values
of α, so then I tested α = 0.25, β = 100, which gave me the inclusion
probability 0.924 and the combination α = 0.25, β = 40 resulted in 0.917.
Still the inclusion probabilities are higher than 90%, but for α = 0.1, β = 100
the result was 0.780. The same combination with n = 50 yielded 0.808 and
with n = 100 I got 0.820. Thus, this is an example of a situation where
we need a lot of information from the sample to ”correct” for a misspecified
prior.
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Reply : You have clearly shown that one can construct examples of ”wrong”
priors, which lead to unreliable credible interval limits in terms of reduced
inclusion probabilities. However, as we have mentioned earlier, the discus-
sion of ”right” or ”wrong” priors is conceptually problematic. In practice
the prior is chosen using information from previous similar situations and/or
your own belief which we consider to be subjective.
Student : I guess there is some degree of subjectivity in all types of approa-
ches including the frequentistic.
Reply : Yes, you can say that already in the choice of the approach to be
used you are actually being subjective.
Student : This has really been an interesting scientific yourney for me! It
is amazing how much you can illustrate in terms of statistical methodology
just using the Poisson distribution.
Reply : It is certainly a very useful distribution. I am glad you have appre-
ciated these excursions to ”Poissonland”!

4. SUMMARY

Once again the Poisson distribution and its parameter θ turn out to be
very useful for the illustration of statistical inference theory. Particularly
when working within the Bayesian approach where several technical steps are
required, we need a distribution which is simple to work with, yet inhabiting
interesting properties.This paper is aimed at the construction of credible
intervals and their properties when assuming ”wrong” priors in some simple
situations. The results indicate that even for small sample sizes there is a
quite substantial robustness against misspecified priors.
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