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Design-based ”Optimal” Calibration Weights
Under Unit Nonresponse in Survey Sampling

Per Gösta Andersson, Department of Statistics, Stockholm University

Abstract

High nonresponse is a very common problem in sample surveys today. In
statistical terms we are worried about increased bias and variance of
estimators for population quantities such as totals or means. Different
methods have been suggested in order to compensate for this phenomenon.
We can roughly divide them into imputation and calibration and it is the
latter approach we will focus on here. A wide spectrum of possibilities is
included in the class of calibration estimators. We explore linear
calibration, where we suggest using a nonresponse version of the
design-based optimal regression estimator. Comparisons are made between
this estimator and a GREG type estimator. Distance measures play a very
important part in the construction of calibration estimators. We show that
an estimator of the average response propensity (probability) can be
included in the ”optimal” distance measure under nonresponse, which will
help reducing the bias of the resulting estimator. To illustrate empirically
the theoretically derived results for the suggested estimators, a simulation
study has been carried out. The population is called KYBOK and consists
of clerical municipalities in Sweden, where the variables include financial as
well as size measurements. The results are encouraging for the ”optimal”
estimator in combination with the estimated average response propensity,
where the bias was highly reduced for the Poisson sampling cases in the
study.

KEY WORDS: Distance measure; Nonresponse bias; Response propensity.
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1 Introduction

In a survey the response (nonresponse) mechanism for units is in reality
unknown. To avoid defining a proper probability measure which might not
be meaningful or realistic, one usually discusses the nonresponse situation
in terms of a propensity for a unit to participate. To be able to take into
account the possible nonresponse effect on estimators, it is however
practice to treat the propensities as probabilities to be estimated (e.g.
propensity scores). This can be done for individual units, for groups of
units or as an ”average” over the whole response set.
In e.g. Haziza and Lesage (2016) two main approaches are discussed:
calibration weighting with and without foregoing propensity score
weighting. The authors warn us about potential negative effects on the
bias and variance for the resulting estimators when not taking into account
the propensities. (These two options of weighting are referred to by the
authors as two-step and one-step procedures, respectively not to be
mistaken for the two- and single-step calibrations as defined by Särndal
and Lundström (2005).) However, in the simulation study by Haziza and
Lesage (2016) the sampling design plays no role, since there n = N and the
focus is solely on how the auxiliary information relates to the study
variable and the nonresponse mechanism.
In this paper we propose to use a nonresponse version of what in the full
response case is called the (design-based) optimal regression estimator.
The underlying distance measure is a quadratic form with a more complex
structure than the one leading to the GREG estimator (see Deville and
Särndal (1992)). As it turns out there is also room for refinement in terms
of the average response propensity (probability) when constructing the
distance measure under nonresponse, which leadis to a modified ”optimal”
estimator.

1.1 Outline of the paper

Section 2 starts with an introduction to the calibration idea under full
response before dealing with the nonresponse situation. In total there are
three estimators of a population total which are considered: the GREG
related estimator and two versions of the ”optimal” estimator. Some
theoretical results for the resulting bias follows. Section 3 contains a
simulation study where simple random sampling and Poisson sampling are
used for illustration. The Poisson design enables us to construct and
investigate a situation where the auxiliary information is involved in the
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design as well as in the nonresponse mechansim. We end with concluding
remarks in Section 4.

1.2 Notation and setup

We will start with a population U of size N from which we take a
probability sample s of size ns with inclusion probabilities π1, . . . , πN .
Nonresponse means that we only observe the response set r of size nr. Our
aim is to estimate the study variable total ty =

∑
U yk. We assume access

to an auxiliary variable vector x of dimension J , where either x = x∗ and
(x∗k)k∈U are known (the population level) or x = xo and (xok)k∈s are known
(the sample level) or possibly a mixture of these cases: x = (x∗

′
,xo

′
)′.

2 Calibration estimation

2.1 Calibration estimators under full response

Starting with the full response situation (r = s) and following the
procedure as established by Deville and Särndal (1992), the calibration
estimator is defined as

t̂y cal =
∑
s

wksyk,

where the sample dependent weights wks are chosen so that∑
s

wksxk = tx, (the calibration equation) (1)

while also minimizing the quadratic distance measure

(ws −w′0s)R(ws −w0s),

where ws = (wks)k∈s, w0s = (1/πk)k∈s = (dk)k∈s and R is diagonal.
(Alternative distance measures are considered in both Deville and Särndal
(1992) and Haziza and Lesage (2016).)
In other words, given the constraint (1) the wks should be ”as close as
possible” to the design weights dk, which is desirable since

∑
s dkyk is an

unbiased estimator of ty.
The resulting weights are

ws = w0s +R−1x′(XR−1X ′)−1(tx − t̂x)
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It turns out that the model assisted homoskedastic GREG estimator t̂y r
(Särndal, Swensson and Wretman (1992)) is a calibration estimator for
which

R = (w0sIns)
−1 ,

where Ins is the unit diagonal matrix of size ns.
Another calibration estimator is the optimal regression estimator t̂y opt (see
e.g. Rao (1994) and Montanari (1998)), for which

R =

(
πkl − πkπl
πklπkπl

)−1
k,l∈s

,

as shown by Andersson and Thorburn (2005).
Asymptotically, this estimator has (in a design-based sense) minimum
variance among linear regression type estimators.

2.2 Calibration estimators under nonresponse

In the nonresponse case, a possible calibration estimator is∑
r

wkryk,

where it should hold that ∑
r

wkrxk = X, (2)

where X =
∑
U x
∗
k, if the auxiliary information is known up to the

population level. Otherwise, X =
∑
s dkx

o
k, the unbiased estimator of tx.

(We can also combine the two types of information in the constraint X.)
For a variety of cases weights fulfilling the requirement (2) are presented
by e.g. Särndal and Lundström (2005). Using the direct approach, where
all information is used in one single calibration, we get

wkr = dk(1 + x′k(
∑
r

dkxkx
′
k)
−1(X −

∑
r

dkxk)) (3)

The resulting estimator will henceforth be denoted t̂y cal. (Other
approaches, including two-step procedures, are presented and investigated
by e.g. Andersson and Särndal (2016).)
An evident question to ask is: What is the underlying distance measure
generating these weights? Särndal and Lundström (2005) do not comment
on this particular issue, but according to Lundström and Särndal (1999),
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we should choose ”wk ’as close as possible’ to the dk”, which does not seem
quite adequate under nonresponse. Going back to Lundström (1997) we
will find that the corresponding distance measure is actually

(wr −w0r)
′(w0rInr)−1(wr −w0r),

where wr = (wkr)k∈r and w0r = (dk)k∈r.
If we have a random mechanism generating the response set r from the
sample s with probabilities θk of inclusion, we can view the nonresponse
situation as a two-phase design and this is the assumption we will make in
the following. Then we should minimize the distance between wkr and
dk · (1/θk). Using some modelling θk can be estimated by θ̂k, to be put to
use for the distance minimization. But in this paper we will not go in the
direction of model-based inference. In order to reduce the bias effect under
nonresponse one could instead in the distance measure think of comparing
wkr not with dk, but with dk,alt = dk · c, where c is a constant larger than
1, aiming to compensate for the ”average” nonresponse effect.
However, Lundström (1997) shows that in many important cases, namely
when one can find a vector µ for which µ′xk = 1, for all k, the
multiplicative increase in dk,alt implies the same resulting calibration
weights wkr. This follows from the result that if µ′xk = 1, for all k ∈ U ,
we can simplify the expression of wkr as

wkr = dkx
′
k(
∑
r

dkxkx
′
k)
−1X

Thus, we have an invariance property for the weights. The result holds
also when the population is partitioned into groups and the initial weights
are inflated with a constant within each group. Note that if we include a
constant, e.g. ”1”, as a first component of the auxiliary vector xk, we can
simply let µ′ = (1, 0, . . . , 0) to achieve µ′xk = 1.
With this as a background we propose to use alternative ”optimal” weights
resulting from the distance measure

(wr −w0r)
′
(
πkl − πkπl
πklπkπl

)−1
k,l∈r

(wr −w0r),

leading to t̂y opt. (πkl denotes the inclusion probability for the pair (k, l)).
It is to be observed that as for the full response situation, there are cases
for which the ”optimal” weights are identical to (3), as e.g. under simple
random sampling.
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Using quotation marks around optimal is deliberate, but under full
response optimal has a very clear meaning. As mentioned earlier, the
optimal regression estimator has asymptotically minimum variance among
linear regression estimators. Adding nonresponse where the nonresponse
mechanism is at least partially unknown, makes it difficult to define
optimality criteria in a proper way.
For this ”optimal” measure it might be fruitful to replace dk with dk,alt,
where we include in dk,alt the reciprocal of an estimate of the average
response probability θ̄U =

∑
U θk/N . One simple candidate is

ˆ̄θU = nr/ns,

thus yielding dk,alt = dk · (ns/nr). Another natural choice is

ˆ̄θU =
∑
r

dk/
∑
s

dk, (4)

since E(
∑
s dk) = N and E(

∑
r dk) =

∑
U θk = Nθ̄, which lead to

E(
∑
r dk/

∑
s dk) ≈ θ̄U . The resulting modified estimator is denoted by

t̂y optm. (Also observe that E(nr/ns) ≈
∑
U (θk/dk)/

∑
U 1/dk)

In the following simulation study we will focus on a sampling design where
generally t̂y cal 6= t̂y opt, namely Poisson sampling. The independence of
drawings simplifies the ”optimal” distance measure:

∑
r

π2k
1− πk

(wkr − dk)2 =
∑
r

(wkr − dk)2

dk(dk − 1)

and minimization yields

wkr = dk(1 + (dk − 1)x′k(
∑
r

dk(1− dk)xkx′k)−1(X −
∑
r

dkxk))

For the modified ”optimal” estimator dk is replaced by dk alt = dk · (1/ˆ̄θ),
with ˆ̄θU as in (4).

2.2.1 Bias for calibration estimators under nonresponse

We can write t̂y cal as

t̂y cal =
∑
r

dkyk + B̂U ;θ(X −
∑
r

dkxk), (5)

where B̂U ;θ = (
∑
r dkx

′
kyk)(

∑
r dkxkx

′
k)
−1. In order to arrive at an

approximate expression for the bias of t̂y cal and subsequently t̂y opt and
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t̂y optm, we follow the derivation in Särndal and Lundström (2005) and first
note that t̂y cal can be rewritten as

t̂y cal =
∑
r

dkyk +BU ;θ(X −
∑
r

dkxk) + (B̂U ;θ −BU ;θ)(X −
∑
r

dkxk),

where BU ;θ = (
∑
U θkx

′
kyk)(

∑
U θkxkx

′
k)
−1.

If we let t̂y cal − ty = A1 +A2, where
A1 =

∑
r dkyk − ty +BU ;θ(X −

∑
r dkxk) and

A2 = (B̂U ;θ −BU ;θ)(X −
∑
r dkxk), it can further be shown that

A1 =
∑
r

dkeθk −
∑
U

eθk +Bo
U ;θ(

∑
s

dkx
o
k −

∑
U

xok),

where eθk = yk −BU ;θxk and Bo
U ;θ = (

∑
U θkx

o
kx

o′
k )−1

∑
U θkx

o
kyk.

Then

E(t̂y cal)− ty ≈ E(A1) =
∑
U

θkeθk −
∑
U

eθk = −
∑
U

(1− θk)eθk,

since it can be argued that B̂U ;θ is a consistent estimator of BU ;θ and
therefore E(A2) ≈ 0.
The approximation for the bias of t̂y cal is called the nearbias:

nearbias(t̂y cal) = −
∑
U

(1− θk)eθk

The nearbias of t̂y cal is zero if θk = 1, for all k ∈ U and/or yk = BU ;θxk,
for all k ∈ U .
Then, if we consider t̂y opt, we have that

t̂y opt =
∑
r

dkyk + (X −
∑
r

dkxk)ĈU ;θ, (6)

where

ĈU ;θ =
(∑
k∈r

∑
l∈r

πkl − πkπl
πkl

x′k
πk

yl
πl

)(∑
k∈r

∑
l∈r

πkl − πkπl
πkl

xk
πk

x′l
πl

)−1
Since t̂y opt can be written as (6), which is of the same form as for t̂y cal in
(5), we will again arrive at the nearbias expression

nearbias(t̂y opt) = −
∑
U

(1− θk)eθk,
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where eθk = yk −CU ;θxk and with θkl denoting the response probability
for the pair (k, l):

CU ;θ =
(∑
k∈U

∑
l∈U

θkl(πkl − πkπl)
x′k
πk

yl
πl

)(∑
k∈U

∑
l∈U

θkl(πkl − πkπl)
xk
πk

x′l
πl

)−1
If we use the alternative weighting dk,alt = dk · (1/ˆ̄θ) = dk · (

∑
s dk/

∑
r dk),

we get that

nearbias(t̂y optm) = E(
∑
r

dk,alteθk−
∑
U

eθk) ≈
∑
U

θk
θ̄U
eθk−

∑
U

eθk = −
∑
U

(1− θk
θ̄U

)eθk,

where
∑
U (1− (θk/θ̄U )) = 0.

Unless µ′xk = 1, for all k ∈ U , an equivalent expression can be obtained
for t̂y cal. On the other hand, if the restriction µ′xk = 1, for all k ∈ U does
hold, it can be shown (Särndal and Lundström (2005)) that

nearbias(t̂y cal) = −
∑
U

eθk,

which holds independently of the sampling design and which is a result
completely in line with the aforementioned invariance property of the
calibration weights.

3 A simulation study

Properties of the estimators were studied by means of a Monte Carlo
simulation. We used an authentic population called KYBOK, which
consists of N = 832 clerical municipalities in Sweden in 1992. (This
population was also used for simulation purposes in Särndal and
Lundström (2005) and Andersson and Särndal (2016).)
The study variable yk is ”Expenditure on administration and maintenance”
(ty = 1 023 983). The population is divided into four groups with respect to
size, from the smallest to the largest. The group sizes are N1 = 218,
N2 = 272, N3 = 290 and N4 = 52. The moon vector is xok = (xo1k, . . . , x

o
4k)
′,

where xoik = 1 if the unit k belongs to population group i and otherwise 0,
i = 1, . . . , 4. The quantitative star variable x∗k is the square root of
”Revenue advances”, which is highly positively correlated with yk.
The sample size/expected sample size was 300 and we used the exponential
response probability θk = 1− exp(−c · x∗k), k ∈ U , where c is chosen
according to the desired average response probability; in this study varying

8



between 0.55 and 0.86. Two sampling designs have been considered
separately: simple random sampling and Poisson sampling. In the latter
case πk ∝ x∗k. For each combination of design, sample size/expected sample
size and average response probability, 10 000 samples were generated. For
each such sample s, a response set r was created by performing
independent Bernoulli trials with probability θk of success, k ∈ s.
An arbitrary estimator t̂y is assessed by the empirical (simulation

estimated) bias (B̂), variance (V̂ ) and mean squared error (M̂SE):

B̂ = Ê(t̂y)− ty =
1

K

K∑
j=1

t̂yj − ty

V̂ =
1

K

K∑
j=1

(t̂yj − Ê(t̂y))
2

M̂SE = B̂2 + V̂ ,

where K = 10 000.
Observe that expressions as ”the bias has increased” should be interpreted
in the following as an increase of the bias in absolute value.

3.1 Results

As a benchmark for the study where auxiliary information is not used at
the design stage, let us first consider the results for simple random
sampling in Table 1. This is a case where t̂y cal = t̂y opt. (Actually, to get
equality the ”star” information is x∗k = (1, x∗k)

′ for t̂y cal.) As expected the
results for the bias and variance are substantially worse for θ̄U = 0.70 than
for θ̄U = 0.86.
Looking instead at the results in Table 1 for Poisson sampling, we can first
observe that for t̂y cal, with the exception of the bias when θ̄U = 0.70, both
the bias and variance are higher than under simple random sampling.
Thus, although the Poisson sampling design incorporates the highly
explanatory auxiliary variable x∗k, t̂y cal does not make sufficient use of it.
t̂y opt on the other hand benefits from this design and shows improvement
in the bias and variance, resulting in a clear reduction of the mean squared
error.
Finally in Table 1 we observe a great improvement using t̂y optm instead of
t̂y opt regarding the bias. However, compared with t̂y opt the variance of
t̂y optm increases, leading to a trade-off effect, which implies only a modest
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reduction of the mean squared error. The most interesting effect of t̂y optm
is the change of sign for the bias: negative when θ̄U = 0.86 and positive (as
opposed to the other estimators) when θ̄U = 0.70. So, what happens in
between? Is there a monotonic behaviour of the bias for changing average
response probabilities? The answer to the last question is yes and Table 2
shows additional results for the bias of t̂y optm for other values of the
average response probabilities. The bias is actually zero for this estimator
when θ̄U ' 0.79.

Table 1. Empirical bias (B̂), variance (V̂ ) and mean squared error (M̂SE)
for t̂y cal (Cal) , t̂y opt (Opt) and t̂y optm (Optm) under simple random
sampling (n = 300) and Poisson sampling (E(n) = 300) with average
response probabilities 0.86 and 0.70.

Simple random sampling (Cal=Opt)

B̂ V̂ M̂SE
θ̄U = 0.86

Cal −2.44 · 104 8.40 · 108 1.44 · 109

θ̄U = 0.70
Cal −4.00 · 104 9.59 · 108 2.57 · 109

Poisson sampling

B̂ V̂ M̂SE
θ̄U = 0.86

Cal −2.50 · 104 3.89 · 109 4.52 · 109

Opt −2.41 · 104 6.53 · 108 1.23 · 109

Optm −6.77 · 103 1.00 · 109 1.05 · 109

θ̄U = 0.70
Cal −3.87 · 104 4.40 · 109 5.90 · 109

Opt −2.97 · 104 7.24 · 108 1.61 · 109

Optm 3.72 · 103 1.58 · 109 1.59 · 109
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Table 2. Empirical bias (B̂)∗10−4 for t̂y opt (Opt) and t̂y optm (Optm) under
Poisson sampling (E(n) = 300) with average response probabilities from
0.86 to 0.55.

θ̄U 0.86 0.75 0.65 0.55
Opt -2.41 –2.67 -3.43 -5.08

Optm -0.677 0.144 0.535 0.669

4 Concluding remarks

The family of linear calibration techniques in survey sampling contains a
variety of alternative weightings under full response, including GREG
estimators and the optimal regression estimator. The nonresponse
situation offers still more options and challenges and we have studied the
”optimal” estimator while also taking into account average response
propensities (probabilities). The approach has been design-based since the
”optimal” estimator can be motivated by asymptotic argumentation and
we have furthermore not used any modelling for the response propensities.
The results are encouraging, especially concerning reduction of the bias for
the suggested estimator. Further work will include the construction of a
variance estimator, which should be valid conditionally on the size of the
response set.
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