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Abstract 
Rising nonresponse rates in social surveys makes the issue of nonresponse bias highly contentious. 
Nonresponse may induce bias and increase data collection costs. We study the relationship between 
response rate and bias, assuming non-ignorable nonresponse and focusing on estimates of totals or 
means. 

We show that there is a ‘safe area’ enclosed by the response rate on the one hand and the correlation 
between the response propensity and the study variable on the other hand; in this area,  
1) the response rate does not greatly affect the nonresponse bias 
and 
2) the nonresponse bias is small. 
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1. Introduction 
Rising nonresponse levels in important social surveys in many countries in Europe, Australia and 
Northern America (de Leeuw and de Heer 2002) have caused concern also outside the community of 
statisticians. For example, Örstadius (2015) wrote in the respected Swedish daily Dagens Nyheter that 
the trend with rising nonresponse levels distorts official statistics, an article that spurred a debate on 
nonresponse and public trust. In the UK, when the PISA survey fell short of the desired response rate 
in 2003, the reports from the OECD excluded the UK which led to a debate on trust in official 
statistics (Micklewright et al. 2012).  

In parallel, and mainly within the statistical community, many survey methodologists have re-
evaluated the importance of high response rates, for example Kreuter (2013), Davern (2013) and 
Moore et al. (2016). See also other references in Brick (2013). Groves (2006, p. 670) put it succinctly: 
‘there is little empirical support for the notion that low response rate surveys de facto produce 
estimates with high nonresponse bias’. However, Bethlehem (2009, p. 212) writes: ‘Due to the 
negative impact nonresponse may have on the quality of survey results, the response rate is 
considered to be an important indicator of survey quality’.  

Another development is the broad emergence of surveys with response rates lower than 0.15. They 
arise because the sample selection in some current surveys is done in numerous steps. First, a database 
of email addresses of individuals are collected (either with random or nonrandom selection). Then, 
persons with the email addresses take part in a profile survey, and only after responding to the profile 
survey the owner of the email address may be invited to surveys that ask about study variables. The 
cumulation of nonresponse in the steps of the selection process makes it hard to reach response rates 
larger than roughly 0.15. Very low response rates can be observed also in some other types of surveys 
outside the area of official statistics.  

To go back in history, Cochran (1951, p. 652) stated that ‘unfortunately, any sizeable percentage of 
nonresponse makes the results open to question by anyone who cares to do so’. His argument was that 
we know little about the nonresponding part of the sample and hence a wide spread of estimates are 
feasible within the realm of the knowledge gained from the response set. Särndal, Swensson and 
Wretman (1992, p. 559) claimed that ‘the greater the nonresponse, the more one has reason to worry 
about its harmful effects on the survey estimates’, a statement that – in the view of the significant 
development of methods of estimation in the presence of nonresponse that we have seen since 1992 – 
has been qualified, not least by Carl-Erik Särndal himself. Other quotations that indicate the thinking 
of the time before turn of the millennium include: the “’Best Practices’ guide of the American 
Association for Public Opinion Research (AAPOR 1997, p. 5) states that ‘a low cooperation or 
response rate does more damage in rendering a survey’s results questionable than a small sample’” 
(quotation from Curtin et al. 2000, pp. 213-214 ). These statements are not necessarily incorrect.  

Theoretical work indicates that the nonresponse rate does play a direct and vital role for the 
nonresponse bias, see for example Bethlehem (2009, Ch. 9). Still, a number of recent empirical 
studies suggest rather the opposite. Groves (2006) and Groves and Peytcheva (2008) are often 
referenced. They compile nonresponse bias estimates from a large number of studies and conclude 
that the nonresponse rate is a poor predictor of nonresponse bias. Brick and Tourangeau (2017, p. 
738) re-analysed the data of Groves and Peytcheva (2008) and concluded that ‘response rates may not 
be very good predictors of nonresponse bias, but they are far from irrelevant’ and that unit response 
rates do provide useful indicators of nonresponse bias.  
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The purpose of this paper is to clarify in what situations the nonresponse rate affects the nonresponse 
bias. However, we do not attempt to provide a tool for the survey practitioner with which she or he 
can assess the nonresponse bias of a survey. The bias is the result of the interplay between correlation 
between the response propensity and the study variable, which unknown due to nonresponse, and the 
response rate.  

First we review some theoretical expressions for nonresponse bias. We focus on one from Bethlehem 
(1988). For our purposes Bethlehem’s expression suffices, although Särndal and Lundström (2005) 
have presented a more general expression. Brick (2013) provides an excellent review of the literature 
on nonresponse models end bias expressions. In Section 3, we discuss Bethlehem’s bias expression in 
practical terms. In Section 4 we attempt to transform the issue of what size of bias is acceptable into a 
line of thinking that can be used in practice.  

2. Expressions for nonresponse bias 
We assume that the aim is to estimate the population total 𝑡𝑡𝑦𝑦:𝑈𝑈 = ∑ 𝑦𝑦𝑘𝑘𝑈𝑈  or the population mean 𝑌𝑌� of a 
study variable 𝐲𝐲 = (𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑁𝑁)′  on a population U with unit labels {1,2, … ,𝑁𝑁}. We assume further 
that there is an auxiliary variable 𝐱𝐱 = (𝐱𝐱1, 𝐱𝐱2, … , 𝐱𝐱𝑁𝑁)′, with 𝐱𝐱𝑘𝑘 known for each element in U. A 
sample s of size n is taken and 𝑦𝑦𝑘𝑘 is observed for all units k in a response set 𝑟𝑟 ⊂ 𝑠𝑠. The inclusion 
probability of a unit k will be denoted by 𝜋𝜋𝑘𝑘. The inference framework is design-based. 

We now recapitulate two expressions for nonresponse bias. A well-known expression for nonresponse 
bias found in many textbooks, for example Cochran (1977, p. 361) and Biemer and Lyberg (2003, p. 
83) is 

𝐸𝐸(𝑦𝑦�𝑟𝑟) − 𝑌𝑌� = 𝑁𝑁𝑛𝑛𝑛𝑛
𝑁𝑁

(𝑌𝑌�𝑟𝑟 − 𝑌𝑌�𝑛𝑛𝑟𝑟), (1) 

where 𝑦𝑦�𝑟𝑟 is the average of the study variable among the respondents, 𝑌𝑌� is the population mean, 𝑌𝑌�𝑟𝑟 is 
the population mean of those who respond with probability one, and 𝑌𝑌�𝑛𝑛𝑟𝑟 is the population mean of 
those who have zero probability to respond, and 𝑁𝑁𝑛𝑛𝑟𝑟 𝑁𝑁⁄  is the population proportion of the 
nonrespondents. Expression (1) assumes deterministic nonresponse and uses the expansion estimator, 
which does not take advantage of auxiliary information. Thus, (1) is very restrictive and, frankly, not 
very interesting.  

The highly influential textbook Cochran (1977, pp. 361-363, with the same text in the 1953 edition) 
paints a very bleak picture of the negative effects of even modest nonresponse rates. I believe that this 
textbook and other papers by Cochran have been a major factor behind the view that high 
nonresponse rates are crucial. For example, Hansen, Hurwitz and Madow (1953) do not convey as 
despondent a message as Cochran. Unfortunately, Cochran based his reasoning on the same 
deterministic response model as (1), which may have been the best researchers could do at the time, 
but, as we know today, it is not very useful. 

Another well-known expression is due to Bethlehem (1988).  A population unit is assumed to have a 
propensity (probability) 𝜃𝜃𝑘𝑘 to respond to a particular survey item at a particular point in time, using 
the survey protocol. Then the bias is 

𝐸𝐸𝑝𝑝𝑝𝑝(𝑦𝑦�𝑟𝑟) − 𝑌𝑌� ≈ 𝐶𝐶𝐶𝐶𝐶𝐶(𝑦𝑦,𝜃𝜃)/�̅�𝜃𝑈𝑈, (2) 

where 𝐶𝐶𝐶𝐶𝐶𝐶(𝑦𝑦,𝜃𝜃) is the finite population covariance of 𝐲𝐲 and 𝛉𝛉 = (𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑁𝑁)′, �̅�𝜃𝑈𝑈 is the 
population mean of the propensities and the expectation is taken over the sampling design 𝑝𝑝(𝑠𝑠), 
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which is the probability that sample s is drawn, and the conditional response probability 𝑞𝑞(𝑟𝑟|𝑠𝑠), 
which is the probability that the response set is r.   

For constant response propensities the covariance in (2) vanishes and the bias is zero no matter the 
average response propensity, and hence the nonresponse rate.   

A shift in response propensities will affect the denominator in (2) but not the location invariant 
numerator. Thus, as with expression (1), a higher average propensity of responding will lead to 
smaller bias. The ratio of the biases from two surveys, the first of which with response propensities 𝛉𝛉, 
the other one with 𝛉𝛉 + 𝜅𝜅, where 𝜅𝜅 is a constant, everything else equal, is 1 + 𝜅𝜅 �̅�𝜃𝑈𝑈⁄ . For example, if a 
survey organisation manages with a successful change of protocol to increase the mean response rate 
from 0.5 to 0.6, everything else equal, the reduction of bias is 17%. However, in practice this 
reduction may not be important, if the bias was small in the first place.  

The main approximation in (2) arises from a first-order Taylor series approximation, which is 
ubiquitous in the survey sampling literature and empirically well supported. 

The expression (2) emanates from Bethlehem (1988; estimator (3.2)), �̂�𝑡𝐽𝐽𝐽𝐽:𝑟𝑟 = 𝑁𝑁∑ 𝑤𝑤𝑘𝑘𝑦𝑦𝑘𝑘𝑟𝑟 ∑ 𝑤𝑤𝑘𝑘𝑟𝑟⁄ , 
which estimates the population total. The notation Σ𝑟𝑟 stands for summation over the response set r 
and 𝑤𝑤𝑘𝑘 = 𝜋𝜋𝑘𝑘−1.  

The bias of an estimator of a population total will be denoted by 𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠𝑝𝑝𝑝𝑝(�̂�𝑡) = 𝐸𝐸𝑝𝑝𝑝𝑝(�̂�𝑡) − 𝑡𝑡. The 
relative bias is 

𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠𝑝𝑝𝑝𝑝��̂�𝑡𝐽𝐽𝐽𝐽:𝑟𝑟� 𝑡𝑡𝑦𝑦:𝑈𝑈� ≈ 𝜌𝜌(𝑦𝑦, 𝜃𝜃)𝑐𝑐𝐶𝐶𝑦𝑦𝑐𝑐𝐶𝐶𝜃𝜃 = 𝜌𝜌(𝑦𝑦,𝜃𝜃)𝑐𝑐𝐶𝐶𝑦𝑦𝜎𝜎𝜃𝜃 �̅�𝜃𝑈𝑈⁄ , (3) 

where 𝜌𝜌(𝑦𝑦,𝜃𝜃) is the finite population Pearson correlation coefficient of 𝐲𝐲 and 𝛉𝛉, 𝜎𝜎𝜃𝜃 is the population 
standard deviation of 𝛉𝛉 and 𝑐𝑐𝐶𝐶𝑦𝑦 is the population coefficient of variation of 𝐲𝐲 (see Bethlehem, 1988). 
If �̂�𝑡𝐽𝐽𝐽𝐽:𝑟𝑟 is replaced with the poststratification estimator, (2) becomes (as noted by Bethlehem, 1988) 

𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠𝑝𝑝𝑝𝑝��̂�𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝:𝑟𝑟� = ∑ 𝑁𝑁ℎ
∑ 𝜃𝜃𝑘𝑘𝑦𝑦𝑘𝑘𝑈𝑈ℎ

 𝑝𝑝𝜃𝜃:𝑈𝑈ℎ

𝐻𝐻
ℎ=1 − 𝑡𝑡𝑦𝑦:𝑈𝑈,  (4) 

where 𝑁𝑁ℎ is the number of units in poststratum h and 𝑡𝑡𝜃𝜃:𝑈𝑈ℎ = ∑ 𝜃𝜃𝑘𝑘𝑈𝑈ℎ , the sum taken over units in 
poststratum h. Note that poststratum refers here to a subset of the population, not a subset of the 
sample.  

For a binary study variable,  

𝑦𝑦𝑘𝑘 = �01  

and an estimate of the population proportion rather than the total, you can show with a little algebra 
that (4) is 

𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠𝑝𝑝𝑝𝑝��̂�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝:𝑟𝑟� = −∑ 𝑃𝑃ℎ(1𝐻𝐻
ℎ=1 − �̅�𝜃1ℎ/�̅�𝜃𝑈𝑈ℎ)        (5) 

where 𝑃𝑃ℎ is the proportion of ‘ones’ in poststratum h, �̅�𝜃1ℎ = ∑ 𝜃𝜃𝑘𝑘𝑦𝑦𝑘𝑘𝑈𝑈ℎ ∕ 𝑀𝑀ℎ, 𝑀𝑀ℎ being the number 
‘ones’ and �̅�𝜃1ℎ the average propensity of those who have 𝑦𝑦𝑘𝑘 = 1 in poststratum h. For a given 𝑃𝑃ℎ the 
main driver of bias is the difference between the average propensity of everybody in poststratum h, 
and that of those who possess the characteristic of interest (i.e. having value 𝑦𝑦𝑘𝑘 = 1). 
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One may at this stage ask how (2) and following formulae are connected to the concept of MAR. A 
missing at random (MAR) nonresponse mechanism is defined in Little and Rubin (2002, p. 12) in 
terms of the likelihood of missingness as 

𝑓𝑓(𝐌𝐌|𝐘𝐘,𝜙𝜙) = 𝑓𝑓(𝐌𝐌|𝐘𝐘𝑝𝑝𝑜𝑜𝑝𝑝,𝜙𝜙) for all 𝐘𝐘𝑚𝑚𝑚𝑚𝑝𝑝,𝜙𝜙, 

where 𝐘𝐘 is an n x p dataset, consisting of the observed data 𝐘𝐘𝑝𝑝𝑜𝑜𝑝𝑝 and the missing data 𝐘𝐘𝑚𝑚𝑚𝑚𝑝𝑝, including 
auxiliary variables, and M is the n x p matrix of  missingness indicators; 𝜙𝜙 are the unknown 
parameters. A design-based version of the MAR condition is  

𝑞𝑞(𝑟𝑟|𝑠𝑠,𝒙𝒙s,𝐲𝐲𝑝𝑝) =  𝑞𝑞(𝑟𝑟|𝑠𝑠,𝒙𝒙s, 𝐲𝐲𝑝𝑝𝑜𝑜𝑝𝑝),        (6) 

where 𝒙𝒙s is the auxiliary variables in the sample. The condition (6) is essentially the same as the 
condition for the response mechanism to be ‘unconfounded’, defined in Lee et al. (1994). In this 
paper, we shall say that the response mechanism is ignorable if (6) is satisfied.  

If 𝜌𝜌(𝑦𝑦,𝜃𝜃) = 0 in (3), then the response propensities are constant within poststrata in (4) and the bias 
vanishes. If 𝜌𝜌(𝑦𝑦,𝜃𝜃) = 0 the response mechanism is ignorable. Also, if �̅�𝜃1ℎ = �̅�𝜃𝑈𝑈ℎ for all h in (5), the 
response mechanism is ignorable. Note that ignorability hinges on the availability and choice of 
auxiliary variables in 𝒙𝒙s, which, for example, in poststratification is used to define poststrata. If one 
obtains auxiliary variables for poststratification that makes the response propensities constant within 
poststrata, one can say that ‘the auxiliary variables completely explains the response mechanism’. 
Then there will be no nonresponse bias.  

We adopt the view of Särndal and Lundström (2005, p. 105) when they say that “to hope that this 𝒙𝒙𝑘𝑘 
will achieve a ‘complete explanation’ of 𝜃𝜃𝑘𝑘 is utopian”, that is, for the response mechanism to be 
completely ignorable. In other words, in this paper the missing data mechanism is always viewed as 
non-ignorable, a far more realistic assumption than MAR.  

3. What do the expressions for nonresponse bias tell us? 
Now we shall look at some numerical examples of relative bias under non-ignorable missing data 
mechanisms. Särndal et al. (1992, p. 55) write that 0.5 ≤ 𝑐𝑐𝐶𝐶𝑦𝑦 ≤ 1 for ‘many variables and many 
populations’. The 𝑐𝑐𝐶𝐶𝑦𝑦 for income from salary was 1.7 in 2005 for all residents of Sweden 17 years of 
age or older (Statistics Sweden, 2008, p. 114). Data about the level and spread of response 
propensities and correlations with study variables are scarcer in the literature (Brick 2013). Kreuter et 
al. (2010) report on correlation between response and auxiliary variables in five large social surveys 
and find the most correlations are smaller than 0.10 in absolute terms. The standard deviation of the 
response propensity should in most cases be at most 𝜎𝜎𝜃𝜃 = 0.29, which is the standard deviation of a 
uniform distribution. It should at least not be much larger than 0.29. 

Figure 1 depicts 𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠𝑝𝑝𝑝𝑝��̂�𝑡𝐽𝐽𝐽𝐽:𝑟𝑟� 𝑡𝑡𝑦𝑦�  for 𝑐𝑐𝐶𝐶𝑦𝑦 = 1, 𝜎𝜎𝜃𝜃 = 0.29 and varying values of 𝜌𝜌(𝑦𝑦,𝜃𝜃). For 
example, for 𝜌𝜌(𝑦𝑦,𝜃𝜃) = 0.025 the relative bias is smaller than 2.5% when �̅�𝜃𝑈𝑈 ≥ 0.3. The open 
rectangle encloses mean population propensities larger than 0.3, and relative biases smaller than 0.05 
in absolute terms. Four important conclusions can be drawn from Figure 1. First, for smaller values of 
�̅�𝜃𝑈𝑈 than about 0.2 the relative bias will be high even for small values of 𝜌𝜌(𝑦𝑦,𝜃𝜃).  Second, for 𝜌𝜌(𝑦𝑦,𝜃𝜃) 
smaller than about 0.05 the relative bias is rather flat for all values of �̅�𝜃𝑈𝑈 greater than about 0.30. 
Third, for large correlations, say |𝜌𝜌(𝑦𝑦,𝜃𝜃)| > 0.15, the relative bias will be at least fairly large no 
matter the response rate. Fourth, there seems to be a ‘safe area’ which is enclosed in roughly �̅�𝜃𝑈𝑈 >
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0.30 and |𝜌𝜌(𝑦𝑦,𝜃𝜃)| < 0.05, assuming that 𝑐𝑐𝐶𝐶𝑦𝑦 = 1.

 

Figure 1. Size of relative bias, that is, the left-hand-side of (3), against mean propensity 
𝜽𝜽�𝑼𝑼  for various values of 𝝆𝝆(𝒚𝒚,𝜽𝜽), which are in italics. For all curves, 𝒄𝒄𝒗𝒗𝒚𝒚 = 𝟏𝟏 and 𝝈𝝈𝜽𝜽 =
𝟎𝟎.𝟐𝟐𝟐𝟐.  

Expressed in terms of non-ignorability and response rates, even for mildly non-ignorable missing data 
mechanisms, a response rate lower than about 0.2 will produce considerable bias. However, if  the 
response rate is higher than about 0.3, mildly non-ignorable missing data mechanisms produce small 
biases, and the bias is in practice nearly independent of the level of the nonresponse rate (provided 
that it is larger than about 0.3). Note that if the missing data mechanism were MAR, the curves would 
coincide with the horizontal line 𝑦𝑦 = 0, which would be the case if 𝜌𝜌(𝑦𝑦,𝜃𝜃) = 0.  

Figure 2 is similar to Figure 1. In Figure 2, 𝑐𝑐𝐶𝐶𝑦𝑦 = 0.5, other than that it is essentially the same as 
Figure 1. Here the ‘safe area’ seems enclosed in roughly �̅�𝜃𝑈𝑈 > 0.30 and |𝜌𝜌(𝑦𝑦,𝜃𝜃)| < 0.10. 

It should be noted that for smaller values of 𝜎𝜎𝜃𝜃 than 0.29, the curves would be flatter and closer to 
zero bias for �̅�𝜃𝑈𝑈 > 0.30, and have sharper bends and steeper ascents for �̅�𝜃𝑈𝑈 < 0.20. In this sense, 
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Figures 1 and 2 are conservative.

 

Figure 2. Size of relative bias, that is, the left-hand-side of (3), against mean propensity 
𝜽𝜽�𝑼𝑼  for various values of 𝝆𝝆(𝒚𝒚,𝜽𝜽), which are in italics. For all curves, 𝒄𝒄𝒗𝒗𝒚𝒚 = 𝟎𝟎.𝟓𝟓 and 
𝝈𝝈𝜽𝜽 = 𝟎𝟎.𝟐𝟐𝟐𝟐.  

Figure 3 shows bias in (5) for one poststratum with 𝑃𝑃ℎ = 0.5. For example, the dot in the top left 
corner represents  �̅�𝜃𝑈𝑈ℎ = 0.95 and �̅�𝜃1ℎ = 0.05, for which the bias is 0.47. The straight line and the 

diagonal just above the straight line represent �̅�𝜃𝑈𝑈ℎ = 𝜃𝜃�1ℎ and �̅�𝜃𝑈𝑈ℎ − 𝜃𝜃�1ℎ = 0.025, respectively. The 

bias is smaller than 0.05 for differences between �̅�𝜃𝑈𝑈ℎ  and �̅�𝜃1ℎ of at most 0.025 in absolute terms for 

�̅�𝜃𝑈𝑈ℎ ≥ 0.25. It is smaller than 0.03 for differences of at most 0.025 in absolute terms for �̅�𝜃𝑈𝑈ℎ ≥
0.425. Large biases in the lower right triangle have been supressed.  

4. Is there a bias level that is acceptable? 
What can we say about the maximum acceptable bias? One view is to accept bias that does not distort 
the coverage probability of confidence intervals badly. A bias ratio, 𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠(�̂�𝑡) √𝑉𝑉(�̂�𝑡)⁄ , less than 0.30 is 
in practice negligible for the coverage of a 95% confidence interval, see Särndal et al. (1992, pp. 
164-165). In practice the coverage probability often falls short of 95% due to underestimation of the 
customary Taylor series variance of the generalised regression estimator. See Wu and Deng (1983) for 
coverage probabilities of the ratio estimator, and Hedlin (2002) for various estimators in two business 
surveys. In the light of the actually realised coverage probability, we may even accept a bias ratio 
equal to 0.5. Let 𝐹𝐹 = 𝑉𝑉��̂�𝑡𝐽𝐽𝐽𝐽:𝑟𝑟� 𝑉𝑉(�̂�𝑡𝐻𝐻𝐻𝐻:𝑝𝑝)⁄  be the ‘estimator and nonresponse effect’, where  �̂�𝑡𝐻𝐻𝐻𝐻:𝑝𝑝 is the 
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Horvitz-Thompson estimator based on full response. Then, ignoring the finite population correction, 
the bias ratio is 

 

Figure 3. A bubble plot of the size of bias as in equation (5) in one poststratum, with 𝜽𝜽�𝑼𝑼𝒉𝒉 
along the y-axis and 𝜽𝜽�𝟏𝟏𝒉𝒉 along the x-axis. The straight line represents 𝜽𝜽�𝑼𝑼𝒉𝒉 = 𝜽𝜽�𝟏𝟏𝒉𝒉. The areas 
of the dots are proportional to the bias. The proportion to be estimated is 0.5. 

 

𝐽𝐽𝑚𝑚𝐵𝐵𝑝𝑝𝑝𝑝𝑝𝑝��̂�𝑝𝐽𝐽𝐽𝐽:𝑛𝑛�
�𝐹𝐹⋅𝑉𝑉(�̂�𝑝𝐻𝐻𝐻𝐻:𝑠𝑠)

≈ 𝜌𝜌(𝑦𝑦,𝜃𝜃)𝑐𝑐𝐶𝐶𝑦𝑦𝑐𝑐𝐶𝐶𝜃𝜃𝑡𝑡𝑦𝑦(𝑉𝑉(�̂�𝑡𝐻𝐻𝐻𝐻:𝑝𝑝) ⋅ 𝐹𝐹)−0.5 = 𝜌𝜌(𝑦𝑦,𝜃𝜃)𝑐𝑐𝐶𝐶𝜃𝜃�𝑛𝑛 𝐹𝐹⁄ ≈ 𝜌𝜌(𝑦𝑦,𝜃𝜃)𝑐𝑐𝐶𝐶𝜃𝜃√𝑛𝑛𝑟𝑟 , (7) 

where in the last approximation we have conservatively assumed that 𝐹𝐹 ≈ 𝑛𝑛𝑝𝑝 𝑛𝑛𝑟𝑟⁄ , which makes 𝑐𝑐𝐶𝐶𝑦𝑦 to 
cancel out. To obtain a bias ratio of size b, then the mean response propensity should be 

�̅�𝜃𝑈𝑈 ≥ 𝜌𝜌(𝑦𝑦,𝜃𝜃)𝜎𝜎𝜃𝜃𝑏𝑏−1√𝑛𝑛𝑟𝑟  (8) 

The benefit of (8) is that it turns our thinking from what bias we can accept, which is generally 
difficult to decide on, to the quantity bias ratio which is easier to discuss in terms of what coverage 
probability we may accept.  

Consider a numerical example. For 𝜎𝜎𝜃𝜃 = 0.29, 𝜌𝜌(𝑦𝑦,𝜃𝜃) = 0.05, 𝑏𝑏 = 0.50 and 𝑛𝑛𝑟𝑟 = 100 in a stratum, 
�̅�𝜃𝑈𝑈 ≥ 0.29, which is a very modest response rate. For these numbers, the relative bias is 5% (see 
Figure 1). So if we accept a bias ratio of a half and the missing data mechanisms is mildly non-
ignorable, we need to collect data from at least 100 out of 344 persons in a stratum. In this sense, we 
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can corroborate the term ‘safe area’ for the rectangle in Figure 1; the relative bias is not only rather 
flat within the rectangle even for greatly varying response rates, it is also small in terms of what 
coverage probability we may be willing to accept.  

5. Discussion 
We have focused on non-ignorable missing data mechanisms, where the correlation between the study 
variable and the response propensity, 𝜌𝜌(𝑦𝑦,𝜃𝜃), is greater than zero in absolute terms. If it is zero within 
groups (e.g. poststrata), then there is no nonresponse bias. We believe that the assumption that 
𝜌𝜌(𝑦𝑦,𝜃𝜃) = 0 is unrealistic. 

The conflicting messages of, on the one hand, Groves (2006) and Groves and Peytcheva (2008) and 
on the other hand, the theoretical expression (3) seem resolved in Figures 1-3; for mild non-
ignorability (small values of 𝜌𝜌(𝑦𝑦,𝜃𝜃)), the response rate is only weakly associated with the size of 
nonresponse bias as long as the response rate is not very low. The fact that Groves (2006) and Groves 
and Peytcheva (2008) do not detect a strong association suggests that in many surveys the correlation 
between the study variable and the response propensity is in general indeed low. However, there are 
exceptions, and both papers emphasise that there may be a large variation of bias over study variables 
in the same survey. Also note the importance of the availability and choice of auxiliary variables in 
sampling design and estimation; for one choice of poststrata the non-ignorability may be modest, for 
another, less successful, choice the nonresponse can turn out to be deleterious.  

Another side of the coin is the fact that if 𝜌𝜌(𝑦𝑦,𝜃𝜃) is larger than about 0.15 within groups (e.g. 
poststrata), the nonresponse bias may be considerable even for response rates as large as 0.70.  

Brick and Tourangeau (2017) provide a useful typology of response propensity models. In their first 
three models, the random, the design-driven and the demographic-driven propensities model, most of 
the variation in response propensities are due to ‘transient influences’ (e.g. the sampled person is 
putting her or his baby in the bed when the call comes), design features or demographic characteristics 
that are only weakly associated with the characteristics of the sampled persons (e.g. incentives or age 
in some surveys), respectively. Of course, age is strongly associated with many common survey 
variables, but often you can poststratify by age and other demographic variables, and within poststrata 
the association may be weak. The fourth response propensities model is referred to as correlated 
propensities by Brick and Tourangeau (2017). This model is similar to the not missing at random 
response mechanism, NMAR (Little and Rubin, 2002), or a non-ignorable response mechanism. Brick 
and Tourangeau (2017) mentions ‘a sense of civic obligation’ as a cluster of variables (e.g. whether 
you vote) often related to response propensity. If such a variable is also a study variable, the 
correlated propensity model may be the model in the typology that fits best. We have in this paper 
focused on correlated propensity situations, where |𝜌𝜌(𝑦𝑦,𝜃𝜃)| > 0. However, that does not mean that 
𝜌𝜌(𝑦𝑦,𝜃𝜃) must be large.  

Let us now change to focus from 𝜌𝜌(𝑦𝑦,𝜃𝜃) to the response rate. Going back to the statement by Särndal 
et al. (1992, p. 559) mentioned in the Introduction, that ‘the greater the nonresponse, the more one has 
reason to worry about its harmful effects on the survey estimates’, we have shown that this is to some 
extent true, there is a reason to be worried. In a situation when a survey practitioner has no knowledge 
about plausible sizes of 𝜌𝜌(𝑦𝑦,𝜃𝜃), the risk for bias is higher if the nonresponse rate is 0.30 than if it is 
0.70.  
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Lastly, a final word about surveys with very low response rates. If the response rate is very low, say 
20% or lower, then we probably should not trust that survey, because then there may be considerable 
nonresponse bias even if 𝜌𝜌(𝑦𝑦,𝜃𝜃) is miniscule. 
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