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SPEEDING UP MCMC BY DELAYED ACCEPTANCE AND DATA

SUBSAMPLING

MATIAS QUIROZ*

Abstract. The complexity of Markov Chain Monte Carlo (MCMC) algorithms arises from

the requirement of a likelihood evaluation for the full data set in each iteration. Payne

and Mallick (2014) propose to speed up the Metropolis-Hastings algorithm by a delayed

acceptance approach where the acceptance decision proceeds in two stages. In the �rst

stage, an estimate of the likelihood based on a random subsample determines if it is likely

that the draw will be accepted and, if so, the second stage uses the full data likelihood

to decide upon �nal acceptance. Evaluating the full data likelihood is thus avoided for

draws that are unlikely to be accepted. We propose a more precise likelihood estimator

which incorporates auxiliary information about the full data likelihood while only operating

on a sparse set of the data. It is proved that the resulting delayed acceptance MCMC is

asymptotically more e�cient compared to that of Payne and Mallick (2014). Furthermore,

we adapt the method to handle data sets that are too large to �t in Random-Access Memory

(RAM). This adaptation results in an algorithm that samples from an approximate posterior

with well studied theoretical properties in the literature.

Keywords: Bayesian inference, Markov chain Monte Carlo, Delayed acceptance MCMC,

Large data, Survey sampling

1. Introduction

Markov Chain Monte Carlo (MCMC) methods have been the workhorse for sampling from

nonstandard posterior distributions in Bayesian statistics for nearly three decades. Recently,

with increasingly more complex models and/or larger data sets, there has been a surge of
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interest in improving the O(n) complexity emerging from the necessity of a complete data

scan in each iteration of the algorithm.

There are a number of approaches proposed in the literature to speed up MCMC. Some

authors divide the data into di�erent partitions and carry out MCMC for the partitions

in a parallel and distributed manner. The draws from each partition's subposterior are

subsequently combined to represent the full posterior distribution. This line of work includes

Scott et al. (2013); Neiswanger et al. (2013); Wang and Dunson (2013); Minsker et al. (2014),

among others. Other authors use a subsample of the data in each MCMC iteration to speed

up the algorithm, see e.g. Korattikara et al. (2013), Bardenet et al. (2014), Maclaurin and

Adams (2014), Maire et al. (2015), Bardenet et al. (2015) and Quiroz et al. (2015a, 2015b).

Finally, delayed acceptance MCMC has been used to speed up computations (Banterle et al.,

2014; Payne and Mallick, 2014). The main idea behind this approach is to avoid computations

if there is an indication that the draw will ultimately be rejected.

This paper extends the delayed acceptance algorithms presented in Payne and Mallick

(2014) merging with ideas developed in Quiroz et al. (2015a, 2015b). This combination

provides an interesting alternative to the Pseudo-marginal MCMC (PMCMC) approach in

Quiroz et al. (2015a, 2015b) if exact inference is of importance. Their algorithm targets a

(slightly) perturbed posterior, whereas the delayed acceptance MCMC has the true posterior

as invariant distribution.

The delayed acceptance algorithm in Payne and Mallick (2014) uses a random sample

of the data in the �rst stage to obtain a computationally cheap estimate of the likelihood,

which is used to compute a �rst Metropolis-Hastings (M-H) acceptance ratio. If accepted, the

second stage computes the true (based on all data) M-H ratio. The algorithm speeds up the

standard MCMC because it avoids evaluation of the full data likelihood for proposals that are

unlikely to be accepted. However, the log-likelihood estimate in Payne and Mallick (2014) is

based on a random sample obtained by simple random sampling (SI). In SI all observations

are equally probable to be included in the sample. Quiroz et al. (2015a) conclude that

an estimate based on this sampling scheme is ine�cient because the contribution to the
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log-likelihood function varies substantially across observations. Ideally, observations who

contribute more should be included in the sample with a higher probability. They propose

to use Probability Proportional-to-Size sampling (PPS) to achieve this. In a related setting,

Quiroz et al. (2015b) propose to use SI combined with the di�erence estimator from the

survey sampling literature to estimate the log-likelihood unbiasedly. Broadly speaking, this

estimator subtracts an approximation of each log-likelihood contribution from each log-

likelihood contribution to obtain a new population with elements that are roughly of the

same size, thereby avoiding the need for PPS sampling. We propose to use the di�erence

estimator in a delayed acceptance MCMC setting. The variance of the resulting likelihood

estimate is much smaller compared to the estimator used by Payne and Mallick (2014).

Consequently, our method is more e�ective in �ltering out proposals with a low acceptance

probability and promoting good proposals to the second stage.

The delayed acceptance MCMC needs to compute the full data likelihood whenever the

�rst stage is passed, which makes it unsuitable for data sets too large to �t in RAM. Payne

and Mallick (2014) combine their algorithm with the consensus Monte Carlo in Scott et al.

(2013) to overcome this issue. The consensus Monte Carlo samples from an approximate

posterior and currently lacks any theoretical guarantees. To handle extremely large data

sets we instead propose to replace the true likelihood evaluation in the second stage with an

estimate. We call this method delayed acceptance PMCMC which, like the consensus Monte

Carlo, samples from an approximate posterior. However, the theoretical framework devel-

oped in Quiroz et al. (2015a) can straightforwardly be applied to prove that the approximate

posterior is within O(m−1/2) of the true posterior, where m is the size of the subsample used

for estimation in the second stage.

This paper is organized as follows. Section 2 outlines the methodology and its extension

to the so called big data setting. Section 3 applies the method to a micro-economic data

set containing nearly 5 million observations. Section 4 concludes and Appendix A proves

Theorem 1.
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2. Methodology

2.1. Delayed acceptance MCMC. The delayed acceptance MCMC was initially devel-

oped in Christen and Fox (2005) for inference in computationally expensive inverse problems.

Payne and Mallick (2014) realize the potential of using this framework to speed up compu-

tations in the large data setting.

Let θ denote the vector of parameters. Let p(y|θ) and p(θ) denote the likelihood and prior,

respectively, and we often suppress dependence on covariates for notational clarity. The aim

is to design an MCMC algorithm which admits the posterior

π(θ) =
p(y|θ)p(θ)
p(y)

, with p(y) =

ˆ
p(y|θ)p(θ)dθ,

as invariant distribution. Moreover, the likelihood p(y|θ) should only be evaluated if there

is a good chance of accepting the proposed θ.

Let p̂(y|θ, v) be an approximation of p(y|θ) based on a subsample of the data represented

by v. We discuss p̂(y|θ, v) in detail in Section 2.2. The algorithm in Payne and Mallick

(2014) proceeds as follows. Let θc denote the current state of the Markov chain. In the �rst

stage, propose θ′ ∼ q1(·|θc) and compute

α1(θc, θ
′) = min

{
1,
p̂(y|θ′, v)p(θ′)/q1(θ

′|θc)
p̂(y|θc, v)p(θc)/q1(θc|θ′)

}
.(2.1)

Now, propose

θp =


θ′ w.p. α1(θc, θ

′)

θc w.p. 1− α1(θc, θ
′),

and accept to move the chain to the next state θi = θp with probability

α2(θc, θp) = min

{
1,
p(y|θp)p(θp)/q2(θp|θc)
p(y|θc)p(θc)/q2(θc|θp)

}
,(2.2)

where

q2(θp|θc) = α1(θc, θp)q1(θp|θc) + r(θc)δθc(θp), r(θc) = 1−
ˆ
α1(θc, θp)q1(θp|θc)dθp,
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and δ is the Dirac delta function. If rejected we set θi = θc.

The transition kernel of the Markov chain generated by this algorithm is

T (θc → dθp) = T (θc → θp)dθp + r̃(θc)δθc(dθp)

where

T (θc → θp) = q2(θp|θc)α2(θc, θp), r̃(θc) = 1−
ˆ
T (θc → θp)dθp,

and δθc(dθp) = 1 if θc ∈ dθp, and zero otherwise.We now show that T (θc → θp) satis�es

the detailed balance condition and therefore π(θ) is the invariant distribution (Chib and

Greenberg, 1995). In fact, since

α2(θc, θp) =
π(θp)q1(θc|θp)α1(θp, θc)

π(θc)q1(θp|θc)α1(θc, θp)
α2(θp, θc),

we get

π(θc)T (θc → θp) = π(θc)α1(θc, θp)q1(θp|θc)α2(θc, θp)

= π(θp)α1(θp, θc)q1(θc|θp)α2(θp, θc)

= π(θp)T (θp → θc).

Note that when θp = θc then α2(θc, θp) = 1. Otherwise, it can be shown that (Result 1 in

Payne and Mallick, 2014)

α2(θc, θp) = min

{
1, Rm =

p̂(y|θc, v)/p(y|θc)
p̂(y|θp, v)/p(y|θp)

}
,(2.3)

where we introduce the dependence on the sample size m. We note from Equation (2.3)

that if p̂(y|θc, v) and p̂(y|θp, v) are good approximations of p(y|θc) and p(y|θp), respectively,

then α2(θc, θp) will be close to 1 and the algorithm is e�cient (it evaluates the full data set

only for good proposals). The likelihood estimators are discussed in the next subsection but

we already now state the following theorem, which implies that an algorithm with a more

accurate estimator of Rm will (on average) result in a higher α2(θc, θp).
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Theorem 1. Suppose that we have two delayed acceptance algorithms with the ratios in (2.3)

denoted by

R(1)
m =

p̂(1)(y|θc, v)/p(y|θc)
p̂(1)(y|θp, v)/p(y|θp)

and R(2)
m =

p̂(2)(y|θc, v)/p(y|θc)
p̂(2)(y|θp, v)/p(y|θp)

,

where p̂(i) is the likelihood estimator for the ith algorithm. Let

σ2
1 = Vv[log(R(1)

m )], σ2
2 = Vv[log(R(2)

m )], and assume σ2
1 < σ2

2.

Then, asymptotically in m,

Ev[α
(1)
2 (θc, θp)] > Ev[α

(2)
2 (θc, θp)],

where α
(i)
2 (θc, θp) denotes the acceptance probability in the second stage for the algorithm with

ratio R
(i)
m .

Proof. See Appendix A. �

Lemma 1 in Appendix A derives σ2 for the di�erence estimator and the estimator in Payne

and Mallick (2014). We illustrate in our application that, for a given sample size m, σ2 is

lower for the di�erence estimator, and hence it is a more e�cient algorithm (with respect to

α2) by Theorem 1.

2.2. Likelihood approximators. Consider a model parametrized by p(yk|θ, xk), where yk

is a potentially multivariate response vector and xk is a vector of covariates for the kth

observation. Let lk(θ) = log p(yk|θ, xk) denote the kth observation's log-density, k = 1, . . . , n.

Given conditionally independent observations, the likelihood function can be written

(2.4) p(y|θ) = exp [l(θ)] ,

where l(θ) =
∑n

k=1
lk(θ) is the log-likelihood function. This setting is more general than iid.

observations, although we require that the log-likelihood can be written as a sum of terms

where each term depends on a unique piece of data information.
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To approximate p(y|θ) we estimate l(θ) based on a subsample by methods from survey

sampling and use Equation (2.4). See Särndal et al. (2003) for an introduction to survey

sampling. Let F = (1, . . . , n) denote the indices of the full population and de�ne v =

(v1, . . . , vn), where vk = 1 if observation k is included in the subsample and vk = 0 otherwise.

Let S denote the set of indices in the subsample with |S| =
∑n

k=1 vk = m. With simple

random sampling without replacement (SI) we have

Pr(vk = 1) =
m

n
for k ∈ F.

We can obtain an unbiased estimate of l(θ) by the Horvitz-Thompson (H-T) estimator

(Horvitz and Thompson, 1952), which under SI is

(2.5) l̂m(θ) =
n

m

∑
k∈S

lk(θ), with V [l̂m(θ)] = n2 (1− f)

m
s2F ,

where f = m/n is the sampling fraction and s2F = 1
n−1

∑
k∈F (lk(θ) − l̄F (θ))2 with obvious

notation. The likelihood approximator in Payne and Mallick (2014) is

p̂pm(y|θ) = exp(l̂m(θ)), with l̂m(θ) as in (2.5).(2.6)

We now turn to the di�erence estimator in Quiroz et al. (2015b) which we propose to use

in the likelihood approximator. Let wk(θ) denote an approximation of lk(θ) and decompose

l(θ) =
∑
k∈F

wk(θ) +
∑
k∈F

[lk(θ)− wk(θ)]

= w + d,

where

w =
∑
k∈F

wk(θ), d =
∑
k∈F

dk(θ), and dk(θ) = lk(θ)− wk(θ).

Here w is known prior to sampling and we estimate d with the H-T estimator

(2.7) d̂m(θ) =
n

m

∑
k∈S

dk(θ), with V [d̂m(θ)] = n2 (1− f)

m
s2F
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and s2F = 1
n−1

∑
k∈F (dk(θ)− d̄F (θ))2. The di�erence estimator is

l̂m(θ) = w + d̂m(θ)(2.8)

and the likelihood approximator becomes

p̂de(y|θ) = exp(w + d̂m(θ)), with d̂m(θ) as in (2.7).(2.9)

SI usually gives a huge variance of H-T and many other estimators. The di�erence estimator

omits this problem because, since wk(θ) is an approximation of lk(θ), lk(θ) − wk(θ) should

be roughly of the same size for all k ∈ F . We follow Quiroz et al. (2015b) and set wk(θ)

to a Taylor series approximation of lk(θ). Moreover, to overcome the O(n) complexity of

computing w, we obtain a sparse set of the data through local data clusters, see Quiroz et al.

(2015b) for details.

The approximators in (2.6) and (2.9) di�er from the class of estimators considered in

Quiroz et al. (2015a) on two aspects. First, they are not bias-corrected. This correction is

not needed in the delayed acceptance setting because the �nal acceptance decision is based

on the true likelihood. Second, the sampling is without replacement. The reason Quiroz

et al. (2015a) use with replacement is to facilitate the derivation of explicit upper bounds

of the error in the approximation. The delayed acceptance method is exact and we choose

without replacement because it gives a smaller variance of the estimator (Särndal et al.,

2003). However, Theorem 1 is proved under the assumption of with replacement sampling.

Whenm << n this provides a good approximation of the corresponding without replacement

sampling.

2.3. Delayed acceptance PMCMC. For data sets to large to �t in RAM, Payne and

Mallick (2014) suggest to combine the delayed acceptance algorithm with the consensus

Monte Carlo (Scott et al., 2013). At present, there are no theoretical results to assess the

errors in the consensus method.

As an alternative we propose to combine the delayed acceptance algorithm with the

pseudo-marginal framework for data subsampling initially developed in Quiroz et al. (2015a),
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which we call delayed acceptance PMCMC. The method replaces the true likelihood evalua-

tion in the second stage of the delayed acceptance with an estimator based on m̃ observations.

In the �rst stage an approximation of this estimator is computed using m < m̃ observations

to determine if the proposed draw is likely to pass the second stage.

Let u be a vector of auxiliary variables corresponding to the subset of observations to

include when estimating p(y|θ) in the second stage. Let p̂m̃(y|θ, u) denote a biased estimator

of p(y|θ) with expectation

pm̃(y|θ) =

ˆ
p̂m̃(y|θ, u)p(u)du.(2.10)

The sampling is now on the augmented space (θ, u), targeting the posterior

(2.11) π̃m̃(θ, u) = p̂m̃(y|θ, u)p(u)p(θ)/pm̃(y), with pm̃(y) =

ˆ
pm̃(y|θ)p(θ)dθ.

We follow Quiroz et al. (2015b) and use the estimator

p̂m̃(y|θ, u) = exp
(
l̂m̃ − σ̂2

z/2
)
,(2.12)

where l̂m̃ is similar as in (2.8) but using with replacement sampling of m̃ observations,

z = l̂ − l is the estimation error and σ̂2
z is an unbiased estimate of σ̂2

z = V [z]. Quiroz et al.

(2015b) outline in detail how to sample from (2.11) which here constitutes the second stage

in the delayed acceptance PMCMC. In the �rst stage, we use an approximation of p̂m̃(y|θ, u)

which we denote p̂(y|θ, u, v) and corresponds to p̂(y|θ, v) in Section 2.2. Applying the same

computations as in Section 2.1, but for the transition kernel

T {(θc, uc)→ (dθp, dup)}

on the augmented space, it is straightforward to show that the detailed balance condition is

ful�lled for π̃m̃(θ, u). Thus, π̃m̃(θ, u) is the invariant distribution with the perturbed posterior

πm̃(θ) =

ˆ
π̃m̃(θ, u)du
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as marginal distribution. Quiroz et al. (2015a) prove that, for a particular class of estimators,

πm̃(θ) is within O(m̃−1/2) of π(θ) and derive expressions for the upper bound of the error in

the approximation. The di�erence estimator in (2.12) belongs to this class (Quiroz et al.,

2015b) and therefore the delayed acceptance PMCMC is theoretically justi�ed by Theorem

1 in Quiroz et al. (2015a).

3. Application

3.1. Data and model. We model the probability of bankruptcy conditional on a set of

covariates using a data set of 534, 717 Swedish �rms for the time period 1991-2008. We

have in total n = 4, 748, 089 �rm-year observations. The variables included are: earnings

before interest and taxes, total liabilities, cash and liquid assets, tangible assets, logarithm

of de�ated total sales and logarithm of �rm age in years. We also include the macroeconomic

variables GDP-growth rate (yearly) and the interest rate set by the Swedish central bank.

See Giordani et al. (2014) for a detailed description of the data set.

We consider the logistic regression model

p(yk|xk, β) =

(
1

1 + exp(xTk β)

)yk ( 1

1 + exp(−xTk β)

)1−yk
,

where xk includes the variables above plus an intercept term. We set p(β) ∼ N(0, 10I) for

simplicity.

3.2. Performance evaluation. The Ine�ciency Factor (IF), or the integrated autocorre-

lation time, is de�ned as

IF = 1 + 2
∞∑
l=1

ρl,(3.1)

where ρl is the autocorrelation at the lth lag of the chain. We estimate IF using the CODA

package in R (Plummer et al., 2006). IF measures the number of draws required to obtain

the equivalent of a single independent draw.



SPEEDING UP MCMC 11

We evaluate the performance using the E�ective Draws (ED)

ED =
N

IF × t
,(3.2)

where N is the number of MCMC iterations and t is the computing time. The measure of

interest is the e�ective draws of delayed acceptance (DMCMC) relative to that of standard

MCMC, i.e.

RED =
EDDMCMC

EDMCMC
.(3.3)

Our method and also Payne and Mallick (2014) require some additional computations com-

pared with the standard M-H algorithm (e.g. draw a subsample, construct the approxima-

tions used by the di�erence estimator). These computations should ideally be implemented

in a low-level language such as C, as opposed to our current implementation in Python. We

therefore also provide a measure that is independent of the implementation, where t in (3.2)

is replaced by the average number of density evaluations. This measure provides an estimate

of the potential speedup gain in an ideal programming environment.

3.3. Implementation details. The model is estimated with the delayed MCMC algorithm

using the di�erence estimator and the estimator in Payne and Mallick (2014). Both methods

are compared to the standard M-H algorithm.

In correspondence with the authors we found that an alternative implementation of the al-

gorithm in Section 2.1 is used in Payne and Mallick (2014), where the denominator p̂(y|θc, v)

in (2.1) is replaced by p(y|θc). The detailed balance is still satis�ed with this implementa-

tion. Furthermore, Payne and Mallick (2014) generate a new v in each iteration to estimate

the numerator in (2.1). When both numerator and denominator are estimated as in our

implementation of their method, it is important that the estimates (in a given iteration) use

the same subset of observations (i.e. same v) as the variance of the ratio becomes much

smaller in this case. We �nd that our implementation of the algorithm in Payne and Mallick

(2014) is more e�cient for our application (not reported here). We will therefore use this

implementation for comparison.



SPEEDING UP MCMC 12

Since the bankruptcy observations (yk = 1) are sparse in the data we follow Payne and

Mallick (2014) and estimate the likelihood only for the yk = 0 observations. That is, we

decompose

l(β) =
∑

{k;yk=1}

lk(β) +
∑

{k;yk=0}

lk(β),

and evaluate the �rst term whereas a random sample is only taken to estimate the second

term.

We consider a Random walk M-H proposal for β. The proposal covariance is obtained

as follows. We optimize on a subsample of nsub = 10, 000 observations and compute the

inverse Hessian at the optimum β∗. Our experience is that if the o�-diagonal elements of the

covariance of the posterior based on the subset is not in agreement to that of the full data

posterior then the proposal distribution can be very poor. Therefore we set the o�-diagonal

elements to zero and the diagonal elements are scaled with nsub/n so that the proposal has

the same scale as the full data posterior. Finally, the proposal covariance is multiplied with

2.38/
√
d (Roberts et al., 1997) where d is the number of parameters. All algorithms use the

same proposal distribution and starting value β∗.

Two main implementations of the di�erence estimator are considered. The �rst computes

wk with the second order term evaluated at β, which we call dynamic. The second, which

we call static, �xes the second order term at the optimum β∗. The dynamic approach clearly

provides a better approximation but is more expensive to compute. For both the dynamic and

static approaches we compare four di�erent sparse representations of the data for computing

w in (2.8), each with a di�erent number of clusters. The clusters are obtained using Algorithm

1 in Quiroz et al. (2015b) on the observations for which y = 0 (4, 706, 523 observations). We

note that, as more clusters are used to represent the data, the approximation of the likelihood

is more accurate but also more expensive to compute.

For all algorithms we sample N = 205, 000 draws from the posterior and discard 5, 000

as burn-in. The delayed acceptance algorithms are implemented with an update of v every

100th iteration.
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Table 1. Delayed acceptance MCMC with the di�erence estimator. The table
shows some quantities for the static and dynamic implementation with di�er-
ent sparse representations of the data represented by K, which is the number
of clusters (expressed as % of n). For each approximation di�erent sample sizes
(0.1, 1, 5 in % of n) are considered. The quantities are the mean RED1 and
RED2 in (3.3) measured with respect to computing time and average density
evaluations, respectively. Furthermore, σ̄ is the mean (over MCMC iterations)
standard deviation of log(Rm) (see σ2

1 in part (i) of Lemma 1). Finally, α1

and α2 are the acceptance probabilities in (2.1) and (2.3) (expressed in %),
where the latter is computed conditional on acceptance in the �rst stage. The
results of the most e�cient algorithms with respect to RED1 (black boldface)
and RED2 (red italic) are highlighted. The standard M-H algorithm has an
acceptance rate of 14%.

Static Dynamic

RED1 RED2 σ̄ α1 α2 RED1 RED2 σ̄ α1 α2

K = 0.03

0.1 0.79 0.80 6.63 28 12 1.81 2.25 2.81 18 36

1 2.26 2.90 2.14 17 46 1.34 4.77 0.90 14 73

5 1.54 3.80 0.96 14 73 0.37 4.56 0.40 14 88

K = 0.21

0.1 1.60 1.69 3.75 21 26 2.80 4.45 1.14 15 67

1 3.01 4.08 1.20 15 66 1.55 5.80 0.37 14 89

5 1.74 4.39 0.54 14 84 0.39 5.01 0.16 14 95

K = 0.71

0.1 2.25 2.67 2.35 17 44 2.25 5.43 0.57 14 83

1 3.24 4.78 0.74 14 78 1.27 5.92 0.18 14 95

5 1.77 4.64 0.33 14 90 0.38 5.01 0.08 14 98

K = 3.68

0.1 2.15 4.01 1.02 14 70 0.73 5.33 0.18 14 95

1 2.28 4.79 0.33 14 90 0.59 5.23 0.06 14 98

5 1.39 4.26 0.15 14 95 0.28 4.47 0.03 14 99

3.4. Results. Table 1 and 2 summarize the results, respectively, for the di�erence estimator

and the estimator in Payne and Mallick (2014). It is evident that the di�erence estimator

has a larger second stage acceptance probability α2 (for a given sample size), which is a

consequence of Theorem 1 because it has a lower σ2 = V [log(Rm)].We also note from Table 2

that for some sample sizes Payne and Mallick (2014) performs more poorly than the standard

Metropolis-Hastings algorithm. One possible explanation is that the applications in Payne
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and Mallick (2014) have a small number of continuous covariates (one in the �rst application

and three in the second) and the rest are binary. It is clear that the continuous covariate

case results in more variation among the log-likelihood contributions which is detrimental for

SI. In this application we have eight continuous covariates which explains why SI performs

poorly for small sampling fractions.

Table 2. Delayed acceptance MCMC with the Payne and Mallick (2014)
estimator. The table shows some quantities for di�erent sample sizes
(0.1, 1, 5, 50, 80, in % of n) to approximate the likelihood. The quantities
RED1 and RED2 in (3.3) measured with respect to computing time and aver-
age density evaluations, respectively. Furthermore, σ̄ is the mean (over MCMC
iterations) standard deviation of log(Rm) (see σ2

2 in part (ii) of Lemma 1). Fi-
nally, α1 and α2 are the acceptance probabilities in (2.1) and (2.3) (expressed
in %), where the latter is computed conditional on acceptance in the �rst stage.
The results of the most e�cient algorithm with respect to RED1 and RED2

are marked in boldface (they coincide). The standard M-H algorithm has an
acceptance rate of 14%.

RED1 RED2 σ̄ α1 α2

0.1 0.18 0.18 24.82 42 3

1 0.65 0.66 7.91 30 10

5 1.61 1.64 3.52 20 30

50 1.10 1.34 1.12 14 77

80 0.88 1.07 0.89 14 89

To facilitate comparison between the methods, Figure 1 shows the fraction of relative

e�ective draws between the di�erence estimator (with a particular approximation; see the

caption) and the estimator in Payne and Mallick (2014). In terms of the average number of

density evaluations our method is superior for all cases. If execution time is considered in-

stead, for relatively large sample sizes the improvement is not so pronounced which is mostly

attributed to the implementation in a high-level language (Python). However, accurate pos-

terior estimators are achieved with small sample sizes for the di�erence estimator (see the

next paragraph), and for these cases our method is superior with respect to execution time

as well.

Figure 2 shows the kernel density estimates of the marginal posterior distributions for four

parameters (to save space). The posteriors are estimated using di�erent sample sizes for the
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Figure 1. Comparing relative e�ective draws. The �gure shows the fraction
REDDE/REDP−M for sample sizesm = 0.1, 1, 5 (in % of n), where DE and P-
M denotes the di�erence estimator and the estimator in and Payne and Mallick
(2014), respectively. The fraction is computed with respect to the measures
time (red bars) and Average Density Evaluations (ADE, yellow bars). The
left panel shows the result for the static di�erence estimator, whereas the
right panel shows the corresponding for the dynamic case. Both di�erence
estimators use an approximation with K = 0.71 (% of n) number of clusters.

following cases: (i) The di�erence estimator implemented with the dynamic and static second

order approximation using K = 0.71 (see Table 1). (ii) The algorithm in Payne and Mallick

(2014). All the panels include the standard M-H algorithm for comparison. Recall that

the delayed acceptance is exact regardless of the sample size for estimating the likelihood.

However, the sample size clearly a�ects the e�ective draws (see Tables 1 and 2) and this is

also evident in the �gure, in particular for the estimator in Payne and Mallick (2014) with

small sample sizes.

4. Conclusions

We explore the use of the e�cient and robust di�erence estimator in a delayed acceptance

MCMC setting. The estimator incorporates auxiliary information about the contribution to
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0.1%
1%
5%

Static + Dynamic + P−M

50%
80%

P−M                   

Figure 2. Kernel density estimations of marginal posteriors. The �gure
shows the marginal posteriors of four parameters obtained with di�erent al-
gorithms for some subsample sizes expressed as % of n (dashed colored lines)
and the standard M-H (solid black line). The upper-left and upper-right pan-
els show, respectively, the di�erence estimator with static and dynamic second
order term in the approximation. The approximations are based on K = 0.71
(expressed as % of n) number of clusters. The lower-left panel shows the
algorithm in Payne and Mallick (2014) (P-M).

the log-likelihood function while keeping the computational complexity low by operating on

a sparse set of the data.

In an application to modeling of �rm-bankruptcy, we �nd that the proposed delayed ac-

ceptance algorithm is more e�cient than both the algorithm proposed by Payne and Mallick

(2014) and the standard M-H algorithm. Moreover, we prove that our method is asymptot-

ically better, as measured by the probability of accepting the second stage conditional that

the �rst stage was accepted.

The inevitable step of scanning the complete data when deciding upon �nal acceptance

makes any delayed MCMC algorithm infeasible when facing data sets to large to �t in RAM.

As an alternative to the solution of combining with the consensus Monte Carlo proposed
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by Payne and Mallick (2014), we propose delayed acceptance PMCMC which utilizes an

estimated likelihood based on a subsample of size m̃ in the �nal acceptance step. We make

the connection to previous literature transparent and it follows that the delayed PMCMC

converges to the true posterior as m̃ increases. Moreover, the upper bound of the error can

be addressed directly by results in previous work. This is an attractive feature that the

consensus Monte Carlo approach currently lacks.
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Appendix A. Proof of Theorem 1

Let lk(θc, θp) = lk(θc)− lk(θp) be the di�erence in log-likelihood contribution of observation

k at the current and proposed θ. Denote by

l̂(j)m (θc, θp), j = 1, 2,

the estimates of l(θc, θp) based on a sample of size m (see De�nition 1 below). Denote the

ratios corresponding to (2.3) by

(A.1) R(j)
m = exp

(
l̂(j)m (θc, θp)− l(θc, θp)

)
, j = 1, 2.

De�nition 1. Consider simple random sampling with replacement and de�ne the following

estimators of l(θc, θp) based on a sample of size m:

i. The di�erence estimator :

l̂(1)m (θc, θp) = w(θc, θp) +
1

m

m∑
i=1

ζi, with w(θc, θp) =
n∑
k=1

wk(θc, θp),

where wk(θc, θp) = wk(θc) − wk(θp) (wk(·) is an approximation of lk(·)) and the ζi's

are iid. with

Pr (ζi = n (lk(θc, θp)− wk(θc, θp))) = 1/n, for i = 1, . . .m.

ii. The estimator in Payne and Mallick (2014):

l̂(2)m (θc, θp) =
1

m

m∑
i=1

ηi,

where the ηi's are iid. with

Pr (ηi = nlk(θc, θp)) = 1/n, for i = 1, . . .m.

Lemma 1. The following results hold for the estimators in De�nition 1:
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i.

E[l̂(1)m (θc, θp)] = l(θc, θp) and σ2
1 = V [l̂(1)m (θc, θp)] =

σ2
ζ

m
,

where

σ2
ζ = n

∑
k∈F

(
Dk(θc, θp)− D̄F (θc, θp)

)2
with Dk = lk(θc, θp)− wk(θc, θp)

and D̄F denotes the mean over the population.

ii.

E[l̂(2)m (θc, θp)] = l(θc, θp) and σ2
2 = V [l̂(2)m (θc, θp)] =

σ2
η

m
,

where

σ2
η = n

∑
k∈F

(
lk(θc, θp)− l̄F (θc, θp)

)2
.

Proof. The proofs are straightforward and are therefore omitted. �

Lemma 2. The ratios in (A.1) have the following asymptotic (in terms of m) distributions:

i.

R(1)
m ∼ logN

(
0, σ2

1

)
,

ii.

R(2)
m ∼ logN

(
0, σ2

2

)
.

Proof. Proof of (i): De�ne

Am = l̂(1)m (θc, θp)− l(θc, θp),

with (part (i) of Lemma 1)

E[Am] = 0 and V [Am] =
σ2
ζ

m
.

By the central limit theorem (the ζi's are iid.)

√
mAm → N

(
0, σ2

η

)
.
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By the continuity of the exponential function it follows that

exp
(√

mAm
)
→ logN

(
0, σ2

η

)
.

Thus, since the power of a lognormal is lognormal, it follows that

R(1)
m = exp(Am) ∼ logN

(
0, σ2

1 =
σ2
η

m

)
,

which concludes (i). The proof of part (ii) is identical. �

Remark. Before proving the theorem, we note that σ2
1 < σ2

2 does not always hold. For

example, if wk(·) is a bad approximation of lk(·), we can even have the opposite σ2
1 > σ2

2.

However, it is not di�cult to realize that if the approximations are good (i.e. lk(·)−wk(·) is

small) then σ2
ζ < σ2

η and consequently σ2
1 < σ2

2. Theorem 1 is stated under this assumption.

Proof of Theorem 1. From Lemma 2 it follows that each estimator has a ratio that is asymp-

totically lognormal and depends only on the variance of the log-ratio (σ2
1 or σ2

2 in Lemma

1).

Consider the r.v. X ∼ logN (0, σ2) with

f(x) =
1

x

1√
2πσ2

exp

(
− 1

2σ2
log(x)2

)
.

The expectation of the acceptance probability α2(θc, θp) in (2.3) under X is

E[min(1, X)] =

ˆ 1

0

xf(x)dx+

ˆ ∞
1

f(x)dx.

Since median(X) = 1 we obtain
´∞
1
f(x)dx = 0.5. Now,

ˆ 1

0

xf(x)dx =

ˆ 1

0

1√
2πσ2

exp

(
− 1

2σ2
log(x)2

)
dx

= exp
(
σ2/2

) ˆ 0

−∞

1√
2πσ2

exp

(
− 1

2σ2
(y − σ2)2

)
dy,

with y = log(x). The integrand is the pdf of Y ∼ N (σ2, σ2) and thus

E[min(1, X)] = exp
(
σ2/2

)
(1− Φ(σ)) + 0.5.
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We now show that E[min(1, X)] is decreasing in σ. We have that

d

dσ
E[min(1, X)] = exp

(
σ2/2

)(
σ − σΦ(σ)− 1√

2π

)
,

and we can (numerically) compute the maximum of the right-most expression within brackets

which is ≈ −0.23. Now, exp (σ2/2) > 0 so it follows that d
dσ
E[min(1, X)] < 0 and, since

σ2
1 < σ2

2, we conclude that

E[α
(1)
2 (θc, θp)] > E[α

(2)
2 (θc, θp)].

�
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