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DYNAMIC MIXTURE-OF-EXPERTS MODELS FOR LONGITUDINAL

AND DISCRETE-TIME SURVIVAL DATA

MATIAS QUIROZ AND MATTIAS VILLANI

Abstract. We propose a general class of �exible models for longitudinal data with special

emphasis on discrete-time survival data. The model is a �nite mixture model where the

subjects are allowed to move between components through time. The time-varying proba-

bilities of component memberships are modeled as a function of subject-speci�c time-varying

covariates. This allows for interesting within-subject dynamics and manageable computa-

tions even with a large number of subjects. Each parameter in the component densities

and in the mixing function is connected to its own set of covariates through a link func-

tion. The models are estimated using a Bayesian approach via a highly e�cient Markov

Chain Monte Carlo (MCMC) algorithm with tailored proposals and variable selection in

all sets of covariates. The focus of the paper is on models for discrete-time survival data

with an application to bankruptcy prediction for Swedish �rms, using both exponential and

Weibull mixture components. The dynamic mixture-of-experts models are shown to have an

interesting interpretation and to dramatically improve the out-of-sample predictive density

forecasts compared to models with time-invariant mixture probabilities.

Keywords: Bayesian inference, Markov Chain Monte Carlo, Bayesian variable selection,

Survival Analysis, Mixture-of-experts.

1. Introduction

We propose a �nite mixture model for �exible modeling of longitudinal data. Our model

belongs to the mixture-of-expert type of models �rst proposed by Jacobs et al. (1991) and

Jordan and Jacobs (1994). In particular, we extend the class of Generalized Smooth Mixture

(GSM) models presented in Villani et al. (2009) and Villani et al. (2012) to a longitudinal
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data setting. Villani et al. (2012) generalizes the Smoothly Mixing Regression (SMR) model

in Geweke and Keane (2007). The key features of our approach are: i) subjects are allowed to

move between mixture components over time, ii) the within-subject dynamics is modeled by

letting the component membership probabilities be functions of subject-speci�c time-varying

covariates, and iii) an e�cient Bayesian inference methodology using MCMC with variable

selection.

Finite mixtures are useful for modeling unobserved heterogeneity in many �elds, see

Frühwirth-Schnatter (2006) for a general introduction to �nite mixture models. Given the

longitudinal dimension of our data this paper is closely related to clustering panel data in

form of relatively short time series, see Frühwirth-Schnatter (2011) for a recent survey. A

main di�erence between this literature and our approach is that we allow for the possibility

of subjects to change clusters over time.

Our main focus in this paper is on using dynamic mixture-of-experts models for analyzing

survival data, see Miller et al. (1981) and Ibrahim et al. (2005) for general introductions to

survival analysis. The most widely used model for survival data is the Proportional Hazards,

or Cox regression model introduced in Cox (1972). The restrictiveness of the proportionality

assumption and the inability to capture unobserved heterogeneity has lead researches to

develop more �exible models. A popular model extension is to multiply the hazard with a

subject-speci�c random e�ect, often called a frailty; Mosler (2003) surveys the theory and

applications of these models in econometrics. The frailty can be continuous from a parametric

distribution (Lancaster, 1979 and Vaupel et al., 1979) or be modelled by a �nite mixture

(Huynh and Voia, 2009) to capture a wide variety of functional shapes. Alternatively, �nite

mixture models o�ers a rich model class where some of the restrictive assumptions in the

traditional survival models can be relaxed. McLachlan et al. (1994) provides a survey on

the role of �nite mixture models in survival analysis. Finite mixture of survival models

are closely related to frailty models which is most easily seen when the distribution of the

frailty is discrete and �nite. The intuitive interpretation of �nite mixtures combined with
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the capability of modeling frailties makes it an interesting framework for analyzing complex

data structures in survival analysis.

In most economics and social sciences applications, time is measured discretely (Allison,

1982). Examples include labor economics when studying the duration of individual unem-

ployment measured e.g. in weeks (Carling et al., 1996), or educational research where the

data is often recorded in school years (Singer and Willett, 1993). In our application we

model time to bankruptcy (in years) for nascent �rms. Heterogeneity has not been explored

as much in the discrete-time framework. Notable exceptions are the continuous frailties in

Xue and Brookmeyer (1997) and the �nite mixture approach in Muthén and Masyn (2005).

Our article extends Muthén and Masyn (2005) in the following directions. First, we

allow subjects to be classi�ed to potentially di�erent mixture components at each time

period (dynamic mixture) while Muthén and Masyn (2005) restrict each subject to belong

to one and only one mixture component during its exposure time (static mixture). Second,

we use the Bayesian paradigm and Markov Chain Monte Carlo (MCMC) to estimate the

model. This allows us to use Bayesian variable selection to obtain model parsimony and give

insights on importance of covariates in di�erent parts of the model. Our approach can also

be straightforwardly extended to include the general latent variable (factor analysis) part in

Muthén and Masyn (2005).

This paper is organized as follows. Section 2 presents the longitudinal mixture-of-experts

models in a general setting. Section 3 applies the framework in Section 2 to discrete-time

survival models and introduces the mixture component models. Section 4 presents the in-

ference methodology and the general MCMC algorithm with variable selection. Section 5

illustrates the methodology by modeling the bankruptcy risk for nascent Swedish �rms. Sec-

tion 6 discusses future research and concludes. In Appendix A we state and prove a theorem

on the �exibility of the proposed model.
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2. Mixture-of-experts models for Longitudinal data

In the standard cross-sectional framework a smooth �nite mixture density with K com-

ponents can be formulated as

p(yi|xi, β, γ) =
K∑
k=1

wk(zi|γk)pk(yi|xi, βk), i = 1, ..., n,(2.1)

where wk(zi|γk) denotes the ith observation's mixing probability and can be interpreted as

its prior probability of belonging to the kth component density pk(yi|xi, βk). We often set

z = x, but they can di�er. To simplify inference with the Gibbs sampler, augmented data

s1, s2, . . . sn is introduced so that si = k means that the ith observation belongs to the kth

component. The model in Equation (2.1) can then be formulated as

yi|(si = k, xi, βk) ∼ pk(yi|xi, βk)

P (si = k|zi, γk) = wk(zi|γk).

To extend to a longitudinal mixture the following notation is introduced. Assume subject

i has been observed over ni time periods. Let y1:ni = (yi1, . . . , yini)
T ∈ Rni×1, x1:ni =

(xi1, . . . , xini)
T ∈ Rni×px and z1:ni = (zi1, . . . , zini)

T ∈ Rni×pz . Let vi ∈ Rpv×1 denote the

time-invariant predictors and s1:ni ∈ {1, . . . , K}ni where sij = k if the ith subject belongs to

component k at time period j. The longitudinal dimension allows for two main speci�cations

of s: sij = k for all j or sij = kj where kj ∈ {1, 2 . . . K}. We refer to the former as a static

mixture and the latter as a dynamic mixture. We say that a model is a p-lag longitudinal

model if the joint distribution factorizes as

p(y1:ni |x1:ni , β) =

ni∏
j=1

p(yij|yj−p:j−1, xij, β),(2.2)

under the common assumption that p pre-sample observations yi0, yi,−1, ..., yi,−(p−1) are avail-

able when p lags of the response is used in the model.

Static mixture. Let vi be a vector with time invariant covariates. The static mixture model

is a �nite mixture for the joint distribution of the p-lag model in Equation (2.2), i.e.
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p(y1:ni |x1:ni) =
K∑
k=1

wk(vi)pk(y1:ni |x1:ni)

=
K∑
k=1

wk(vi)

(
ni∏
j=1

pk(yij|yj−p:j−1, xij, β)

)
(2.3)

where the dependence on parameters is suppressed. Note that the covariates xij and vi

can enter in the component models, while the mixing function is only a function of time-

invariant predictors vi. This is because the static mixture has by de�nition the same mixture

probabilities wk for all observations in the sequence y1:ni , and therefore it is not possible to

have time-varying covariates in the mixing function as the subject would then for example

be allocated to a component at time j = 1 based on future information (j = 2, 3, . . . ) not

available at that time. To avoid notational clutter, we often suppress the dependence on vi

in the overall mixture and in the components. The mixing probabilities are modeled with

the multinomial logit

wk(vi) =
exp(vTi γk)∑K
l=1 exp(vTi γl)

(2.4)

where γk ∈ Rpv×1 with γ1 = 0 for identi�cation.

The latent variable formulation of the model in Equation (2.3) is

y1:ni |si = k, x1:ni ∼
ni∏
j=1

pk(yij|yj−p:j−1, xij, β)

P (si = k|vi) =
exp(vTi γk)∑K
l=1 exp(vTi γl)

.(2.5)

The model in Equation (2.3) expresses the joint distribution of the �nite mixture. It is

straightforward to show that the density at period t conditional on previous values is given

by

p(yij|yi(j−p:j−1), xij) =
K∑
k=1

w̃kij · pk(yij|yj−p:j−1, xij),(2.6)
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where

(2.7) w̃kij = wk ·
∏j−1

j′=1 pk(yij′|yi(j′−p):i(j′−1), xij′ , β)∑K
l=1wl

(∏j−1
j′=1 pl(yij′ |yi(j′−p):i(j′−1), xij′ , β)

) .
Note that the conditional distribution of the static model actually has time-varying mixture

weights, but in a highly restrictive form where the weight for component k at time j is a

function of the probability of the observed data up to time j − 1 given that component.

This means that component k cannot obtain a large weight w̃kij at time j unless it assigns a

high joint probability to the complete history y1:j−1. Since wk is constant through time and

therefore determined from all observation jointly, the �exibility from the static mixture is

very limited.

Dynamic mixture. Restricting a subject to a single component over time may not be realistic

in some situations because individual behavior may not be homogeneous over time. To

exemplify, consider the modeling of �rm bankruptcy. If the components can be interpreted

as high versus low risk for bankruptcy, the assumption of being constantly a risky or a safe

�rm is unrealistic. The economic surrounding and individual �nancial variables do change

over time which is likely to make the �rm more or less risky.

The obvious approach to a dynamic mixture is to let s1:ni follow a (hidden) Markov model,

see Baum and Petrie (1966) and Kim and Nelson (2003). The posterior sampling of s1:ni is

then performed sequentially from the conditional distribution at each time point using e.g.

forward �ltering-backward sampling algorithm for Gaussian models (Carter and Kohn, 1994

and Frühwirth-Schnatter, 1994) or Sequential Monte Carlo (SMC) for non-Gaussian models

(Doucet et al., 2000). Such an approach is computationally infeasible in many longitudinal

applications since the SMC would have to be performed for each of the subjects, which is

clearly not an option in data sets with a large number of subjects, such as the one in our

application to �rm bankruptcy. An alternative approach is to sample directly from the joint

distribution for each s1:ni sequence (Franzén, 2008), but the sample space of s1:ni grows
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dramatically with K and the number of time periods ni so P (s1:ni |y1:ni , x1:ni , z1:ni) quickly

becomes computationally intractable.

To overcome these problems we suggest the following approach. Let s1:ni be an independent

sequence conditional on the path of time-varying covariates z1:ni , i.e.

P (s1:ni = k1:ni |z1:ni) =

ni∏
j=1

P (sij = kj|zij),(2.8)

with k1:ni = (k1, . . . , kni) and 1 ≤ kj ≤ K for j = 1, . . . , ni. The temporal dependence of

the time series s1:ni is thus induced by the path of the time series for the covariates in z1:ni ;

note that lagged values of the response may be included in z. The strength of this approach

is that given the time path of the covariates (and other model parameters) the component

allocations can be sampled independently for all subjects and time periods in the Gibbs

sampler, see Section 4.2.

The dynamic mixture of the p-lag model in Equation (2.2) is a �nite mixture on each

conditional distribution, i.e.

(2.9) p(yij|yj−p:j−1, xij) =
K∑
k=1

wkij(zij)pk(yij|yj−p:j−1, xij), j = 1, ..., ni

where

wkij(zij) =
exp(zTijγk)∑K
l=1 exp(zTijγl)

, with zij = (xij, yj−p:j−1)
T(2.10)

and γk ∈ Rpz×1 with γ1 = 0 for identi�cation. The joint distribution for the ith subject

becomes

p(y1:ni|x1:ni) =

ni∏
j=1

(
K∑
k=1

wkijpk(yij|yj−p:j−1, xij)

)
.(2.11)

Time invariant predictors vi may also be included in zi. Rather than modeling the x-process

directly, persistence in component allocations over time can be achieved by de�ning zij as
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an exponential moving average of the time dependent covariates xij

zij = αxij + (1− α)zi(j−1),

and zi1 = xi1 (may be a moving average of data before the start of the analyzed sample),

where 0 ≤ α ≤ 1, and α = 1 corresponds to no smoothing. Persistence prevents a sudden

change in the explanatory variables to trigger an immediate reallocation of the subject; a

sudden decrease in a �rm's pro�ts may not immediately make it a high risk �rm, but several

consecutive years of losses might. Lagged values of y may be included directly in z, but may

also be transformed by exponential moving averages.

Jiang and Tanner (1999) prove that standard (non-longitudinal) mixture-of-experts, with

su�ciently many exponential family regression models with generalized linear mean func-

tions, can approximate any density in the exponential family with an essentially arbitrarily

non-linear predictor. In Appendix A we build on that result and show that the proposed

dynamic mixture model approximates a longitudinal generalization of the target class in

Jiang and Tanner (1999) arbitrarily well as the number of components increase.

The latent variable formulation of Equation (2.9) is

yij|sij = k, xij ∼ pk(yij|yj−p:j−1, xij)

P (sij = k|zij) =
exp(zTijγk)∑K
l=1 exp(zTijγl)

.(2.12)

The dynamic mixture has the interpretation that the conditional density at a given time

period is a mixture of densities with weights that are directly modeled as function of the

covariates z. This is in sharp contrast to the static mixture where the mixture weights

in the conditional distributions are history dependent without a natural interpretation, see

Equation (2.7) and the ensuing discussion. Note that one can easily add lags of the x's in the

component models. Another route to generate temporal dynamics is to add random e�ects,

which would be straightforward to include as an additional updating step in our MCMC

scheme.
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3. Mixture-of-experts model for survival data

This section presents the survival models that will be used as the components in the �nite

mixture.

3.1. Discrete-time survival data. Let the random variable T c denote the time to some

unrepeatable event. Survival data are often observed in discrete time, for example monthly

or yearly, see e.g. Allison (1982) and Singer and Willett (1993). Assume that a study is

observed over J periods which can be divided as (0, t1], (t1, t2], . . . (tJ−1, tJ ]. Let T ∈ {1, 2, ...}

be the discrete random variable recording the time period where the event occurs, i.e. T = j

if T c ∈ (tj−1, tj]. It is convenient to express the joint likelihood of the data in terms of

the hazard, which in discrete time is the conditional probability hj = P (T = j|T ≥ j).

Let the ith subjects' hazard probability at period j be denoted hij = h(xij). Assuming n

independent subjects, the likelihood is expressed as

L =
n∏
i=1

ni∏
j=1

h(xij)
yij(1− h(xij))

1−yij ,(3.1)

where

yij =

 0 if subject i does not experience the event at period j ,

1 if subject i does experience the event at period j .

Singer and Willett (1993) and Shumway (2001) note that this likelihood has the same form

as regression for binary data with h−1 as the link function.

In this paper two di�erent models are considered. The �rst, the exponential model, is

derived by assuming that T c ∼ Exp(λ) and using a log-link g(λ) = log(λ). Then the

discrete-time hazard is easily shown to be

h(xij) = 1− exp(− exp(α + xTijβ)(tij − ti(j−1))).

The second, the Weibull model, is derived by assuming the Weibull distribution for T c,

parametrized by f(t|λ, ρ) = ρλtρ−1 exp(−λtρ), which implies

h(λij, ρij) = 1− exp(−λij(t
ρij
ij − t

ρij
i(j−1))).
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Because both λ and ρ are positive the dependence on the covariates are modeled through

log(λij) = αλ + xTλijβλ

log(ρij) = αρ + xTρijβρ.

Both these models can easily be extended with a �exible baseline hazard, see our application

in Section 5.

Discrete-time survival data is recorded as the binary vector y1:ni = (0, 0, . . . , ci) where

ci ∈ {0, 1} is the censor indicator such that ci = 0 means that the ith subject did not

experience the event in the study period. The joint distribution is

p(y1:ni |x1:ni) =

(
ni−1∏
j=1

p(yij = 0|yi(j−1) = 0, xij)

)
p(yini = ci|yi(ni−1) = 0, xini),

so discrete-time survival models are 1-lag longitudinal using the terminology in Section 2.

3.2. Smooth mixtures of survival models. We characterize the distribution by the haz-

ard probability. The hazard probability will depend on a set of model parameters φ1, . . . , φL.

As in Villani et al. (2012) each parameter depends on a set of predictors through link func-

tions gl(φl) = xTl βl. For example, in the Weibull model we have φ1 = λ, φ2 = ρ and both

links are logs. The likelihood for a given mixture component is

L(β1, ..., βL) =
n∏
i=1

ni∏
j=1

h(xij|φ1, . . . φL)yij(1− h(xij|φ1, . . . φL))1−yij(3.2)

where φl = g−1l (xTl βl).

Static mixture. The general expression for this model is given in Equation (2.3). This is the

latent class model considered in Muthén and Masyn (2005), but without the general latent

variable part and not restricted to the logit hazard model. The interpretation is that the

mixture is on the joint distribution of yi, i.e.

(3.3) p(y1:ni |x1:ni) =
K∑
k=1

wkpk(y1:ni |x1:ni) =
K∑
k=1

wk

(
ni−ci∏
j=1

(1− hkij)

)
(hkini)

ci
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and the dependence on covariates and parameters is suppressed everywhere to save space.

In the component model hkij = hk(xij, vi) while the mixing function is wk = wk(vi). The

mixing probabilities are modeled with the multinomial logit as in Equation (2.4).

The hazard probability at period t is the equivalent of the conditional density in Equation

(2.6), i.e.

p(yit = 1|yi(t−1) = 0) =
K∑
k=1

w̃kit · hkit,

where

w̃kit = wk ·
∏t−1

j=1(1− hkij)∑K
l=1wl

(∏t−1
j=1(1− hlij)

) .
As discussed in Section 2, although the mixture weights w̃kit are time-varying in the hazard

for the static mixture, it is important to remember that the static mixture is a mixture for

the joint distribution with time invariant weights. The form of the conditional weights w̃kit is

very hard to interpret and do not allow for �exible time-varying hazards. This is in contrast

with the dynamic mixture where the hazard probabilities are by construction a �exible and

highly interpretable mixture of component hazards.

The latent variable formulation of the model in Equation (3.3) is

y1:ni |si = k, x1:ni ∼

(
ni−ci∏
j=1

(1− hkij(xij))

)
(hkini(xij))

ci

P (si = k|vi) =
exp(vTi γk)∑K
l=1 exp(vTi γl)

.(3.4)

Dynamic mixture. The general dynamic mixture model in Equation (2.9) can be formulated

in terms of hazards as

p(y1:ni |x1:ni) =

(
ni−1∏
j=1

(
K∑
k=1

wkij(1− hkij)

))(
K∑
k=1

wkini(h
k
ini

)ci(1− hkini)
1−ci

)
(3.5)

where hkij = hk(xij, vi) and w
k
ij follows the multinomial model in Equation (2.10). Note that

the hazard of the dynamic mixture at any given time period is a smooth mixture of hazards,

i.e. a mixture-of-experts model.
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We prove in Appendix A that the dynamic mixture of longitudinal experts is arbitrarily

�exible as K increases. The proof builds on a result in Jiang and Tanner (1999) (for non-

longitudinal mixtures) that applies when the components (and also the target class, see

Appendix A and Jiang and Tanner (1999, p. 992)) belong to a one parameter exponential

family, i.e.

p(y|x; g(·)) = exp (a(g(x))y + b(g(x)) + c(y)) .(3.6)

Note that our components can be written in the form of a Bernoulli model, i.e.

pk(yt = y|yt−1 = 0) = θyk(1− θk)
1−y

with y ∈ {0, 1} and θk = g(x) = h(xt) is a smooth function of the covariates. For the

exponential model it can easily be veri�ed that it is of the form in Equation (3.6). The

Weibull model has two parameters, and is therefore outside the Jiang-Tanner target class,

but it includes the exponential model as a special case (ρ = 1), and therefore it is more

�exible for a given number of mixture components. This extra �exibility is shown to be

empirically important in our application in Section 5.

The marginal e�ect of covariate xt, on the hazard when zt = αxt + (1−α)zt−1, is given by

d

dxt
ht(xt) =

K∑
k=1

α
d

dzt
(wk(zt))h

k
t (xt) + wk(zt)

d

dxt
hkt (xt),

where the derivative of the multinomial logit is

d

dzt
(wk(zt)) = wk(zt)

[
γk −

K∑
l=1

wk(zt)γl

]
.

The latent variable formulation of Equation (3.5) is

yij|sij = k, xij ∼

 1− hkij(xij), yij = 0

hkij(xij), yij = 1

P (sij = k|zij) =
exp(zTijγk)∑K
l=1 exp(zTijγl)

.(3.7)
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4. Inference

We adopt a Bayesian approach to inference and use a Metropolis-within-Gibbs sampler

with variable selection to sample from the posterior distribution. The sampler utilizes the

gradient and Hessian of the full conditional posterior to construct tailored proposals.

This section is organized as follows. First, prior distributions are introduced in all parts

of the model. These priors are simple and the user only needs to specify prior beliefs about

scalar parameters. Then the general MCMC scheme is illustrated, followed by a section

describing the algorithm that construct tailored proposals for e�cient inference. Finally, the

method for choosing the number of components is explained.

4.1. Prior Elicitation.

4.1.1. Components. We use the prior construction initially developed in Ntzoufras et al.

(2003) for the Generalized Linear Model (GLM) and subsequently re�ned and extended

in Villani et al. (2012) to GSM models. Assume a component model with a single model

parameter λ and a link function g such that g(λ) = αλ + xTβλ. We �rst discuss the prior

on the intercept. Start by standardizing the covariates to have mean zero and unit standard

deviation. The intercept αλ is then g(λ) at the mean of the original covariates. Assume

that αλ ∼ N(mλ, s
2
λ) and the task is to �nd mλ and s2λ by eliciting a suitable prior on

the model parameter λ with mean and variance speci�ed by the user, say E(λ) = m∗λ and

V (λ) = s∗2λ . In the simplest example, with the identity link, λ ∼ N(m∗λ, s
∗2
λ ) transforms

directly to αλ ∼ N(mλ, s
2
λ) with mλ = m∗λ and s

2
λ = s∗2λ . In the case with a log-link used in

this paper, a suitable prior on λ is the log-normal density with mean m∗λ and variance s∗2λ

which transforms to αλ ∼ N(mλ, s
2
λ) with s

2
λ = log

[( s∗λ
m∗λ

)2
+ 1
]
and mλ = log(m∗λ)− s2λ/2.

The regression coe�cients in βλ are assumed to be a priori independent of αλ with βλ ∼

N(0, cλΣλ). Here Σλ = (W T D̂λW )−1, where W is the matrix of covariates excluding the

intercept and D̂λ is the conditional Fisher information for λ evaluated at the prior modes of

αλ and βλ, which is the vector β̂λ = (mλ,0
T )T . Thus D̂λ depends only on the constant mλ.
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The conditional Fisher information for λ = (λ1, . . . λn)T is a diagonal matrix with elements

−E
[
∂2 log p(yi|λi)

∂λ2i

]
g′λ(λi)

−2.

Setting cλ = n gives a unit information prior, i.e. a prior that carries the information equiv-

alent to a single subject from the model. For the models in our framework D̂λ can not be

obtained analytically but is easily computed by simulation. It is straightforward to extend

the argument to elicit priors for more than one model parameter. For details and examples

see Villani et al. (2012).

We allow for variable selection in all covariate sets in the model. For a given component

let the indicator variable I = {I1, . . . Ipx} be de�ned such that Ij = 0 means that the jth

element in β is zero and the corresponding covariate drops out. Let βI be the vector of

non-zero coe�cients, and for any I let Ic denote its complement. We make the assumption

that the intercept is always in the model. Let β ∼ N(0, cΣ) as discussed above for the

regression coe�cients. Conditioning on the variables that are in the model we obtain

βI |I ∼ N
[
0, c(ΣI,I − ΣI,IcΣ

−1
Ic,IcΣ

T
Ic,I)

]
and βIc|I is identically zero.

4.1.2. Mixing function. For the vector γ = (γT2 , . . . γ
T
K)T (recall that γ1 = 0) we assume

γ ∼ N(0, cγI). It is also possible to use a prior with non-diagonal structure as above but

this is not pursued here. Variable selection is done similarly as above by introducing the

indicator IZ for γ.

4.1.3. Variable selection indicators. For both the component and the mixing parts of the

model the indicators are assumed to be a priori independent and Bernoulli distributed, i.e

P (Ii = 1) = π, 0 ≤ π ≤ 1 and π is allowed to be di�erent for each model parameter. It is

straightforward to let π be unknown and estimate it in a separate updating step as in Kohn

et al. (2001).
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4.2. General MCMC scheme. Villani et al. (2009) experimented with di�erent algorithms

for �nite mixture models in a related setting. Their preferred algorithm is the one used in

this paper. The algorithm is a Metropolis-within-Gibbs sampler that draws the regression

parameters and variable selection indicators jointly. Assume a component density with L

di�erent model parameters and K components. The following three blocks are sampled

(1) s

(2) γ, IZ

(3) {(β1, I1), . . . , (βL, IL)}Kk=1.

How to sample s depends if it is a static or dynamic mixture. For the static mixture

P (si = k|xi, vi, yi) ∝

(
ni−ci∏
j=1

(1− hk(xij))

)
(hk(xini))

ci
exp(vTi γk)∑K
l=1 exp(vTi γl)

(4.1)

independently for i = 1, . . . , N . For the dynamic mixture, the full conditional of sij is

independent of all other sij, i = 1, ..., n and j = 1, ..., ni, and is of the form

P (sij = k|xi, zi, yi) ∝


hkij

exp(zTijγk)∑K
l=1 exp(z

T
ijγl)

if ci = 1 and j = ni

(1− hkij)
exp(zTijγk)∑K
l=1 exp(z

T
ijγl)

otherwise.
(4.2)

Note that this allows us to sample sij independently for all i and j so this updating step is

very fast in comparison with Markov models of sij.

Conditional on s, Step 2 is a multinomial logistic regression with variable selection. It is

possible to apply a generalization of the algorithm described in the next section to handle

this updating step e�ciently, see Villani et al. (2009) for details.

4.3. Variable-dimension �nite step Newton proposals. This section presents how to

construct the tailored proposals for dynamic mixtures based on the algorithm in Villani et al.

(2009) and Villani et al. (2012), which generalizes earlier algorithms in Gamerman (1997), Qi

and Minka (2002) and Nott and Leonte (2004). For clarity, the algorithm is �rst presented

in the case with no variable selection and then extended. The only requirement is that the
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likelihood part of the posterior can be factorized as

p(β|y) =
N∏
i=1

p(yi|φi)p(β)(4.3)

where φi = g−1(xTi β). Note that there can be more than one model parameter and then

p(β|y) is a full conditional posterior distribution and the algorithm can be used as a Metropolis-

within-Gibbs step. After a proper relabeling of the product in the likelihood in Equation

(3.2) it has the same form as the likelihood part in Equation (4.3). The proposal distribution

is tailored using an approximate posterior mode and the curvature around that mode. The

approximate mode is found by taking a few steps with Newton's algorithm. To implement

the algorithm we need the following results from Lemma 1 in Villani et al. (2012)

∂ log p(y|β)

∂β
= XT g̃(4.4)

where X is the covariate matrix, g̃ = (g̃1, . . . , g̃n)T ,

g̃i =
∂ log p(y|φi)

∂φi
g′(φi)

−1.

The outer-product approximation of the Hessian is

∂2 log p(β|y)

∂β∂βT
≈ XTDX,(4.5)

where D = diag(g̃2i ). Villani et al. (2012) also derives expression for the exact Hessian but we

have found the outer-product approximation to be more numerically stable for our problem.

Note that the lemma only requires derivatives for the scalar parameters of the log-likelihood.

Newton's algorithm is

βr+1 = βr − A−1r sr, r = 0, . . . , R(4.6)
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where sr and Ar is the gradient and Hessian of the log posterior, respectively. Using the

results above we have

sr = XT g̃ +
∂ log p(β)

∂β

Ar = XTDX +
∂2 log p(β)

∂β∂βT
.

Start with β0 = βc and let β̂ be the vector obtained after R Newton steps. This is not

necessarily the mode but is often close because the previously accepted draw is used as

initial value. Setting R = 1, 2 or 3 is usually su�cient. Let βc ∈ Rpx×1 denote the current

and βp ∈ Rpx×1 the proposed posterior draw. The proposal distribution is a multivariate

t-distribution with ν ≥ 2 degrees of freedom, i.e

βp|βc ∼ tν

[
β̂,−

(
∂2 log p(β|y)

∂β∂βT

) ∣∣∣∣
β=β̂

]
.

To extend the algorithm to variable selection the pair (β, I) is proposed jointly conditional

on the previously accepted parameter and indicator. This proposal can be factorized as

J(βp, Ip|βc, Ic) = J1(βp|Ip, βc)J2(Ip|βc, Ic)(4.7)

J1 is a generalization of the proposal for βp above and J2 is the proposal for the indicators.

Consider �rst the β proposal. Since βc and βp may be of di�erent dimensions we use the

following generalized Newton algorithm from Villani et al. (2012)

βr+1 = A−1r (Brβr − sr), r = 0, . . . , R(4.8)

with

sr = XT
r+1g̃ +

∂ log p(β)

∂β

Ar = XT
r+1DXr+1 +

∂2 log p(β)

∂β∂βT

Br = XT
r+1DXr +

∂2 log p(β)

∂β∂βT
,
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where Xr is the matrix with columns corresponding to the non-zero coe�cients in βr, and

the likelihood part of the expressions are evaluated at β = βr. The prior parts are evaluated

at the entire vector β (including the zero parameters) and then the sub-vector conformable

with βr+1 is extracted from the result. Note that after the �rst step the parameter no

longer changes dimension and the generalized Newton algorithm reduces to the usual Newton

algorithm.

Following Villani et al. (2009) and Villani et al. (2012) we choose a simple proposal of I

where a subset of the indicators is randomly selected and a change of the selected indicators

is proposed, one variable at a time.

With these proposals the acceptance probability in the Metropolis Hastings algorithm is

α[(βc, Ic)→ (βp, Ip)] = min

(
1,
p(y|βp, Ip)p(βp|Ip)p(Ip)/J1(βp|Ip, βc)J2(Ip|βc, Ic)
p(y|βc, Ic)p(βc|Ic)p(Ic)/J1(βc|Ic, βp)J2(Ic|βp, Ip)

)
.

The proposal density for β at the proposed point J1(βp|Ip, βc) is the multivariate t-density

with mode β̂ and covariance matrix evaluated at β̂, where β̂ is obtained by iterating Equa-

tion (4.8) with β0 = βc. The proposal density at the current point J1(βc|Ic, βp) is also a

multivariate t density but with mode β̃ and covariance matrix evaluated at β̃, obtained from

the same iteration scheme but this time from initial value β0 = βp. The proposal density for

I at the current and proposed is the same for this simple proposal.

It is well-known that �nite mixtures have identi�cation problems because the likelihood

is invariant with respect to permutations of the components. This is referred to as the label

switching problem, see Frühwirth-Schnatter (2006) and Jasra et al. (2005). When estimating

the predictive density this is not a problem (Geweke, 2007) but if the model is used for model

based clustering one needs to proceed with caution. Plotting the MCMC samples may reveal

if there was a problem with switching labels. Order conditions on the parameter space may

be imposed to avoid the identi�cation problem, see Jasra et al. (2005).

Mixture models with �exible components can have many minor local modes. It is therefore

important to use a rapidly mixing MCMC scheme that avoids getting stuck in local modes.

As documented in Villani et al. (2009, Section 3.3), algorithms based on variable-dimension
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�nite step Newton proposals are rapidly mixing, do not get stuck in local modes, and are

extremely quick to localize areas of high posterior density. We have veri�ed that our results

and model evaluation (log predictive scores) do not depend on the choice of intial values in

the MCMC.

4.4. Selecting number of components. The key quantity for selecting models in the

Bayesian framework is the marginal likelihood which allows to compute Bayes factors and

determine the plausibility of one model against another. However, the marginal likelihood

may be sensitive to the choice of prior distribution, especially when the prior information

is vague. For a general discussion see Kass (1993) and Richardson and Green (2002) in the

context of mixture models.

Following Geweke and Keane (2007) and Villani et al. (2009) we therefore choose models

based on the log predictive score (LPS). The LPS removes most of the dependence on the

prior by sacri�cing a subset of the data to train the prior to get a posterior based on the

training data. If ytest denotes the test data and ytrain the training data then the LPS is

p(ytest|ytrain) =

ˆ
p(ytest|θ)p(θ|ytrain)dθ

if the test and training data are independent conditional on θ, which is the case in our

longitudinal setting since the entire time series for a single subject belongs to either the

test or training set. To deal with the arbitrary division into training and test data, a cross

validated version of the LPS is used

LPS =
1

B

B∑
b=1

log p(ỹb|ỹ−b, x),

where ỹb is the test data in the bth test sample and ỹ−b denotes the training data. Since

subjects are independent conditional on the parameters

p(ỹb|ỹ−b, x) =

ˆ ∏
i∈τb

p(yi|θ, xi)p(θ|ỹ−b)dθ,
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where τb contains the index set of the observations in the test data for the bth sample.

p(ỹb|ỹ−b, x) is easily computed by averaging
∏

i∈τb p(yi|θ) over the posterior draws p(θ|ỹ−b).

This requires sampling from B posterior distributions based on di�erent training data but

can be done independently for each data set so computer parallelism may be exploited.

5. Application: modeling Firm Bankruptcy risk

5.1. Data. Our data set contains yearly observations for Swedish �rms in the time period

1991-2008 on bankruptcy status, �rm-speci�c variables and two macro variables. This data

set has been analyzed in Jacobson et al. (2011) and Giordani et al. (2013). Jacobson et al.

(2011) uses a similar approach as Shumway (2001) with a multi-period logit model extended

with macro economic variables. Giordani et al. (2013) extend by modeling the log odds of

the �rm failure probability as a non-linear function of covariates by introducing spline func-

tions. They show substantial improvements in predictive power as a result of accounting for

nonlinearities. The present paper considers the same predictors as in Giordani et al. (2013).

These are three �nancial ratios, two �rm-speci�c control variables and two macroeconomic

variables. The �nancial ratios are: EBIT/TA - earnings before interest and taxes over total

assets (earnings ratio); TL/TA - total liabilities over total assets (leverage ratio) and CH/TL

- cash and liquid assets over total liabilities (cash ratio). The control variables are: logTS

- logarithm of de�ated total sales and logAge - logarithm of �rm age in years since �rst

registered as a corporate. Finally the macroeconomic variables included are: GDPG - yearly

GDP-growth rate and Repo - the interest rate set by Sveriges Riksbank (the Central bank

of Sweden). For a thorough description of the data set, de�nition of bankruptcy, and other

details see Giordani et al. (2013).

5.2. Models. Although the spline model accounts for nonlinearities in a �exible way it

has some drawbacks. First, the model assumes additivity, i.e. it rules out interactions

between the covariates, and the extension to spline surface models with interactions is not

computationally realistic for a data set of our size. Second, it can be hard to interpret spline

models as the nonlinearities are not themselves explained by other covariates. Third, it
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cannot account for heterogeneity coming from missing explanatory variables. Fourth, it can

be computationally demanding for moderate to large data sets when doing Bayesian inference

via MCMC. This is because the dimension of the covariate space can increase dramatically

after expanding in basis functions. Variable selection can be used to keep the number of

e�ective parameters at a minimum, but increases the computational burden.

We propose to analyze bankruptcy data for Swedish �rms with a �nite mixture of survival

models. Such models can not only account for heterogeneity and nonlinearities, but also gives

an interpretation of these features in terms of covariates. A mixture model can also be used

for model based clustering which gives insights about �rm dynamics. The use of covariates

in the mixing function is extremely useful for understanding the role of the di�erent mixture

components. Many models in the bankruptcy literature are special cases of our model. For

example the models in Shumway (2001) and Jacobson et al. (2011) are obtained with K = 1

and h(xij) =
expxTijβ

1+expxTijβ
. Likewise, the model in Giordani et al. (2013) has the same structure

but in addition x is expanded using spline functions. It is even possible to have K > 1 and

use splines simultaneously as in Villani et al. (2009) for the case of heteroscedastic Gaussian

regression. This paper omits splines to stress the fact that the �nite mixture itself can

capture the non-monotonic relationships. Adding spline terms in the mixture components

would also increase the computing time dramatically.

We want each �rm to have a sample space t = {1, 2, . . . }. This requires covariates for

each observed time period, so we are restricted to consider �rms with start-up year 1991

at the earliest. The analysis can be broaden to other type of �rms but then one has to

consider missing data issues so this is not pursued here. Thus the population studied in

the present paper consist of Swedish �rms that enter the sample in the period 1991-2008.

The dataset is huge with a total of 228, 589 �rms with 1, 670, 781 �rm-year observations,

on average 7.3 time-periods per �rm. To speed up computing times, we shall here analyze

a randomly selected subset of 11, 317 �rms with 82, 831 �rm-year observations, on average

7.3 time-period per �rm. We are currently working on an extension of the MCMC methods
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with the potential of handling essentially arbitrarily large data sets, but this will be reported

elsewhere.

We estimate and compare both static and dynamic mixtures and also a one-component

model with �exible baseline hazards. Two di�erent distributions for the survival time are

considered: exponential and Weibull as described in Section 3. The Weibull models are used

with and without covariates in the shape parameter ρ. Weibull models with covariates in ρ

seem to be novel in the literature.

In all dynamic mixtures, exponential moving average covariates have been used to achieve

persistence in component allocations over time, as described in Section 2. The choice α = 0.3

was justi�ed by computing for a range of values for α and then choose the one with highest

in-sample LPS score. The choice of α does not a�ect the relative comparison between the

dynamic and static models. It is also possible to estimate α in a separate Gibbs step, but

this is not pursued here.

5.3. Priors. The prior for λ is log-Normal with E (λ) = 0.01405 (the empirical hazard for

another subset of the data) and V (λ) = 0.052 for both the exponential and Weibull model.

The additional parameter ρ in the Weibull model is also assigned a log-Normal prior with

E (ρ) = 1 and V (ρ) = 52. Note that ρ = 1 gives the exponential model. Both priors are

rather non-informative considering the scale and the log-link. The prior utilizing the Fisher

information described in Section 4.1.1 is not needed in this particular example because of

the enormous amounts of data, and we therefore assume prior independence between the

regression coe�cients for simplicity. For the mixing function the shrinkage factor cγ = 10

gives a non-informative prior. The prior inclusion probability was set to 0.5 for each variable

and in all parts of the model.

5.4. Algorithmic considerations. We use the Metropolis-within-Gibbs algorithm with

tailored proposals and variable selection to sample from the posterior. The number of steps

in the variable dimension Newton algorithm R is set to 1 for the component model in all

parameters and 3 for the mixing function. The degrees of freedom in the multivariate t

proposal is set to 10, for both the component and the mixing part of the model. Each
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variable selection indicator is proposed to change with probability 0.2 in each iteration of

the algorithm.

For all combinations of models in Section 5.2, 20, 000 iterations with the MCMC algorithm

where performed and 5, 000 of them discarded as burn-in period, leaving 15, 000 draws from

the posterior distribution. The e�ciency of the sampler is measured by the ine�ciency

factor, which is de�ned as

IF = 1 + 2
L∑
l=1

ρl,

where ρl is the autocorrelation at the lth lag in the MCMC chain and L is an upper limit

such that ρl ≈ 0 when l > L. IF-values near 1 suggests a very e�cient algorithm. We

monitor convergence and measure performance using the cumulative means and IFs for the

predictive mean E(y|x) over a grid of x-values. The LPS was computed using B = 4 folds

of the data.

5.5. Results. As a �rst attempt to investigate the �t of the models, Figure 5.1 compares the

models' implied hazard function ht(xt) as function of time to the empirical hazard rate. The

models' hazard probabilities are computed for each of the �rms in the panel and then averaged

across all �rms. The posterior uncertainty regarding the hazard is illustrated with a box plot

computed from the MCMC draws. In the case of the exponential model (left column), it

is clear that the one-component model gives a very poor �t to the empirical hazard, but

then quickly improves as more components are added to the model. A two-component

exponential model gives a similar estimated hazard as a one-component model with �exible

baseline hazards (top right). The one-component Weibull model without covariates in the

shape parameter ρ produces a similar hazard as the one-component exponential model, but

by adding covariates in ρ the Weibull model can capture the non-monotonic relationship of

the empirical hazard fairly well.

The assessment of model �t in Figure 5.1 is visually appealing, but is very much a rather

limited marginal view of the data. Table 1 reports the LPS for static and dynamic mixtures,

using either exponential or Weibull components, with and without covariates in the Weibull
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Figure 5.1. Hazard as a function of time for some models (box-plots) plotted
against the empirical hazard (red vertical lines).

Table 1. Log Predictive Score (LPS) for the static and dynamic mixtures
computed using 4-fold cross-validation. The best model for a given number of
components are in bold typeface.

Static mixtures Comp 1 Comp 2 Comp 3

Exponential -1784.83 -1712.16 -1687.54
Weibull -1785.17 -1725.08 -1683.60
Weibull covariates in ρ -1696.96 -1652.78 -1648.73

Dynamic mixtures Comp 1 Comp 2 Comp 3

Exponential -1784.83 -1618.51 -1570.20
Weibull -1785.17 -1605.00 -1561.97
Weibull covariates in ρ -1696.96 -1585.07 -1553.43

Exponential Flex Baseline -1686.41
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shape parameter. The most striking result in Table 1 is the dramatically better out-of-sample

predictive performance of the dynamic mixtures compared to their static counterparts. As an

example, the three-components dynamic mixture of exponentials is 117.34 LPS units better

than the three-components static mixture of exponentials. Table 1 also reports the LPS of

the one-component exponential model with a free baseline hazard parameter estimated for

each year. Using a �exible baseline hazard clearly improves the LPS, but also this model is

clearly outperformed by the dynamic mixtures with K > 1. This suggests that these data

are truly heterogeneous even after controlling for age and size e�ects and di�erent baseline

hazards.

Another interesting observation from Table 1 is that the LPS for the Weibull model im-

proves considerably when allowing for covariates in both model parameters. This is true for

models with multiple components as well. Covariates in the shape parameter of the Weibull

is rare or perhaps even non-existent in practical work, but this is clearly an extension that

should be considered.

In all models, the LPS improves for each added component but the rate of improvement

decreases. It is worthwhile to mention that variable selection implies that adding components

does not necessarily give a more complex model. See the Lidar example in Li et al. (2011)

for a clear demonstration of how variable selection in mixture-of-experts models can be a

very e�ective guard against over�tting.

To illustrate some of the interpretations of our models, Tables 2-4 presents parameter

estimates for some selected one- and two-component models. Data have been standardized

to have zero mean and unit variance for all covariates, hence all parameter estimates are on

the same scale. The posterior mean and standard deviation are computed conditional on the

covariate belonging to the model.

Starting with the results for the one component exponential model in Table 2, we see

that the most signi�cant variables are cash, age, earnings, and leverage, all with a posterior

inclusion probability of unity. The variable selection e�ectively removes size, GDPG, and to
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Table 2. Estimation results for exponential model with one component. IF:
min = 0.55, median = 1, max = 1.70.

Component 1

Intercept Earnings Leverage Cash Size Age GDPG Repo
Post Mean -4.397 -0.258 0.25 -1.174 -0.02 0.399 0.057 0.1
Post Std 0.045 0.019 0.018 0.11 0.023 0.033 0.033 0.029
Post Incl Prob - 1 1 1 0.012 1 0.051 0.837

Mean Acc Prob 0.404

Table 3. Estimation results for Weibull model with one component and co-
variates in both parameters. IF: min = 0.92, median = 7.01, max = 14.5.

Parameter λ

Intercept Earnings Leverage Cash Size Age GDPG Repo
Post Mean -4.985 -0.265 0.213 0.81 -0.04 1.971 -0.02 0.057
Post Std 0.244 0.022 0.02 0.073 0.026 0.118 0.026 0.028
Post Incl Prob - 1 1 1 0.029 1 0.014 0.063

Mean Acc Prob 0.712

Parameter ρ

Intercept Earnings Leverage Cash Size Age GDPG Repo
Post Mean 0.231 0.021 -0.013 -1.07 -0.008 -0.782 -0.003 0.015
Post Std 0.093 0.015 0.014 0.071 0.008 0.04 0.009 0.009
Post Incl Prob - 0.007 0.01 1 0.002 1 0.004 0.016

Mean Acc Prob 0.788

some extent Repo. In this model, a positive sign corresponds to increased hazard probability

as a variable increases, and vice versa.

Moving to the dynamic mixture of two exponential components in Table 4 it is evident

that the most signi�cant covariates in the mixing function are age and cash. There is also a

posterior inclusion probability of 1 for GDPG and Repo, but the magnitude of their e�ects

are smaller. This means that the separation of the data into the two di�erent classes is

mostly determined by age and cash. Our parametrization is such that when age increases it

is more likely to belong to the �rst component and the same holds for cash. To illustrate the

interpretation of the mixture models, let us consider a newly founded �rm. Since a newly

founded �rm is by de�nition of low age, such a �rm tends to belongs to the second component
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Figure 5.2. Fraction allocated to respective component over time for the
dynamic exponential mixture.

with a large probability, everything else equal. Since age has a large positive coe�cient in

the second component, this young �rm will initially experience a rapidly increasing hazard

as it grows older. If the �rm manages to survive the early years, it will eventually move

over to the �rst mixture component where age is no longer a signi�cant determinant of the

hazard. The �rm has managed to survive the �rst risky years and can now grow older without

accelerating risk on account of its age. Figure 5.2 shows the posterior allocation of �rms over

time: �rms that have survived for a long time are classi�ed to component 1 in their later

time periods, while �rms in early time periods are classi�ed to the second component.

Cash has a similar interpretation as age: with a large probability, a �rm with low cash

belongs to the second component where the coe�cient on cash is strongly negative. This

means that a low cash �rm can drastically reduce the bankruptcy probability by increasing

its holdings of cash. As the �rm continues to improve its liquidity, it will eventually reach

a point where it switches over to the �rst component. In this component, cash remains a

positive factor for decreasing bankruptcy risk, but its e�ect is much smaller. Note however

that this interpretation is only valid if holding of cash is exogenous.

To further explore the di�erence between the static and dynamic mixtures we plot the

overall predictive hazard ht(xt) in Figure 5.3 over the �rst four years for a �rm that is born

in the beginning of the sample period, i.e. 1991. Each subgraph shows the predictive hazard
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Table 4. Estimation results for a dynamic exponential model with two com-
ponents. Covariates in the mixing function are exponentially moving averages.
Parameters in the mixing function corresponds to P (st = 2|zt). IF: min = 0.84,
median = 1.23, max = 110.84.

Component 1

Intercept Earnings Leverage Cash Size Age GDPG Repo
Post Mean -4.311 -0.251 0.339 -0.559 0.033 0.096 -0.024 0.039
Post Std 0.058 0.026 0.023 0.108 0.035 0.086 0.05 0.067
Post Incl Prob - 1 1 1 0.016 0.055 0.016 0.026
Mean Acc Prob 0.751

Component 2

Post Mean -2.522 -0.367 0.042 -2.873 -0.004 4.544 -0.066 0.044
Post Std 0.238 0.036 0.053 0.501 0.052 0.237 0.045 0.043
Post Incl Prob - 1 0.027 1 0.013 1 0.04 0.019
Mean Acc Prob 0.782

Mixing

Post Mean -4.777 -0.113 0.031 -1.698 0.039 -8.296 0.788 0.735
Post Std 0.496 0.088 0.094 0.39 0.089 0.815 0.184 0.196
Post Incl Prob - 0.092 0.067 1 0.066 1 1 1
Mean Acc Prob 0.835

ht(xt) as a function of the covariate cash for a given year. The analysis in Figure 5.3 is

conditioned on �xed paths for the other covariates. We have chosen to set the covariate

paths for Repo, GDPG and age as the realized values at each time point but with a one year

lag for repo and GDPG; when predicting bankruptcy at period t, macro variables from t− 1

are used. For the �nancial ratios and the size variable, the average covariate value in the

sample for each respective year is used as conditioning paths. The covariate paths together

with their moving averages are presented in Figure 5.4. This example clearly illustrates

the main di�erence in these models; the dynamically evolving proportions in the dynamic

mixture (left panel) gives a much more �exible hazard than the static mixture (right panel)

where the mixture weights have a much more restrictive form, thus not allowing the same

�exibility.
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Figure 5.3. Posterior distribution of the hazard probability of the represen-
tative �rm as a function of cash for a dynamic (left panel) and a static (right
panel) exponential mixture with two components for t = 1, . . . , 4. The dark
shaded area corresponds to 68% Highest Posterior Density (HPD) regions and
lighter shaded area are the 95% HPD regions. The red solid line is the posterior
mode.

6. Conclusions

We propose �exible smooth mixture models for longitudinal data, with special emphasis

on models for survival data in discrete time. We discuss how the longitudinal dimension

opens up for two di�erent types of mixture models, the static and dynamic mixture. In

the static mixture, subjects have to remain in the same component in all time periods,
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Figure 5.4. Covariate paths for a representative �rm. The dashed blue line
corresponds to realized covariates and the solid red line are the exponentially
moving averages with α = 0.3.

whereas in the dynamic mixture they can move between mixture components over time. We

argue that the obvious Markov transition model would be prohibitively time-consuming for

datasets with a large number of subjects, and we propose an alternative approach where the

within-subject dynamics is determined by subject-speci�c time-varying covariates. We prove

that the proposed longitudinal dynamic mixture model with su�ciently many components

can approximate a large class of models.

We compare the static and dynamic mixtures in bankruptcy modeling for a large panel

of Swedish �rms over the time period 1991-2008. The main result is that the dynamic

mixture formulation dramatically outperforms the static mixture, a result that holds both

when exponential or Weibull mixture components are used. We also show that the MCMC

algorithm with variable selection in Villani et al. (2012) can be straightforwardly extended
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to the longitudinal case and we document a high MCMC e�ciency in our application to �rm

bankruptcy.

It is also shown that the �rm bankruptcy data are heterogeneous even after the standard

�rm speci�c variables in the literature are included in the model and when a �exible baseline

hazard is used. This result suggests that there are di�erent classes of �rms and the e�ect

of the covariates on the hazard probability is di�erent in each class. Furthermore, it is also

shown that model with multiple classes is able to generate a non-monotonic hazard function

which agrees with the empirical hazard and also with models that uses a �exible baseline

hazard with a separate parameter for each time period.

Although our way of modeling within-subject dynamics by mixture-of-experts with time-

varying mixing covariates is computationally attractive in comparison to other standard ap-

proaches, data sets with several millions of observations remain a challenge. We are currently

working on extensions of the MCMC algorithm presented here that may reduce computing

times substantially for large data sets, see Quiroz et al. (2015). In terms of model exten-

sions it would be interesting to explore the role of a continuous frailty in the components.

The hierarchical structure of such a model requires two extra steps in the MCMC scheme;

sampling the frailty and the parameters in its distribution. This is in principle straightfor-

ward, but will add to the computing time, which again requires innovations in the MCMC

methodology.
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Appendix A. On the flexibility of the dynamic mixture

De�nition 1. A model for the time sequence y1:n = (y1, . . . , yn) is called a longitudinal p-lag

GLM if its joint distribution is of the form

p(y1:n|x1:n, θ) =
n∏
j=1

p(yj|yj−p:j−1, xj, θ)

where

p(yj|yj−p:j−1, xj, θ) = exp [a(hj)yj + b(hj) + c(yj)]

for known analytic functions a(·), b(·) and c(·) with non-zero derivatives on R. Furthermore,

hj = hj(xj, yj−p:j−1) = α + βTxj + ηTyj−p:j−1 and θ = (α,β,η). The conditional mean is

E[yj|yj−p:j−1, xj, θ] = Ψ−1(hj) for some smooth invertible link function Ψ(·). We use the

shorthand notation y1:n|x1:n ∼ LGLM(a, b, c, h1:n,Ψ, θ, p).

The proposed dynamic mixture approximates the class of target distributions

y1:n|x1:n ∼ LGLM(a, b, c, h̃1:n,Ψ, θ, p)

where h̃j is more �exible than hj = α + βTxj + ηTyj−p:j−1. h̃j is essentially any non-linear

function with continuous second derivatives. From a technical point of view, this choice of h̃j

gives that the conditional mean in the target class belongs to a Sobolev space transformed

by the inverse link function, see Jiang and Tanner (1999, p. 992) for details. We denote this
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class by SLGLM(a, b, c, h1:n,Ψ, θ, p) where S stands for smooth and the tilde notation on h

is suppressed. We now introduce the approximating class.

De�nition 2. Let gK be an approximation of f ∈ SLGLM(a, b, c, h1:n,Ψ, θ, p). The ap-

proximator gK is a dynamic mixture of K LGLM(a, b, c, h1:n,Ψ, θl, p) experts with joint

distribution

gK(y1:n|x1:n) =
n∏
j=1

(
K∑
l=1

wl(zj, γl)p(yj|yj−p:j−1, xj, θl)

)

where zj = (xj, yj−p:j−1)
T and

wl(zj, γl) =
exp

(
zTj γl

)∑K
m=1 exp

(
zTj γm

) with γ1 = 0

for identi�cation.

We will prove that gK approximates any f ∈ SLGLM(a, b, c, h1:n,Ψ, θ, p) arbitrarily close

in the Kullback-Leibler distance as the number of components increase. We need the follow-

ing lemma.

Lemma 3. Let f = f(y1:n) and g = g(y1:n) be two joint distributions. The Kullback-Leibler

(KL) distance between f and g can be expressed as

KL(f, g) = KL(f1, g1) + E1KL(f2|1, g2|1) + · · ·+ E1:n−1KL(fn|1:n−1, gn|1:n−1)

where

KL(fj|1:j−1, gj|1:j−1) =

ˆ
R
fj|1:j−1 log

(
fj|1:j−1
gj|1:j−1

)
dyj,

with hn|1:n−1 = h(yn|y1:n−1) and E1:j denotes the expectation with respect to h(y1:j).

Proof. Theorem 2.5.3 in Cover and Thomas (2012) proves the lemma for p = 2. Repeated

application gives the general result for n variables. �
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Theorem 4. Let f be the joint distribution of the target model

y1:n|x1:n ∼ SLGLM(a, b, c, h1:n,Ψ, θ, p).

Let gK be the joint distribution of the approximating dynamic mixture with K components

as de�ned in De�nition 2, with the parameters estimated by maximum likelihood. Then

KL(f, gK) =
c

K4/s

for any f in the SLGLM class, where c is a constant independent of K.

Proof. From Lemma 3 and the p-lag structure it follows that

KL(f, gk) = KL(f1, g
K
1 ) + E1KL(f2|1, g

K
2|1) + · · ·+ En−p:n−1KL(fn|n−p:n−1, g

K
n|n−p:n−1).

Now, for any j, fj|j−p:j−1 is a (non-longitudinal) GLM with a Sobolev smooth mean function

and therefore belongs to the target class in Jiang and Tanner (1999). Furthermore gKj|j−p:j−1

is a (non-longitudinal) approximator for fj|j−p:j−1 of the form

gKj|j−p:j−1 =
K∑
l=1

wl(zj, γl)p(yj|zj, θl)

with zj = (xj, yj−p:j−1)
T ∈ s× 1. Hence gKj|j−p:j−1 has the form as in Equation (2.4) in Jiang

and Tanner (1999, p. 992). By Theorem 2 in Jiang and Tanner (1999) it follows that

KL(f, gK) =
c1
K4/s

+
E1[c2]

K4/s
+ · · ·+ En−p:n−1[cn]

K4/s
=

c

K4/s

where s is the number of covariates (including the lags of y), cj is a constant independent of

K and c = c1 + E1[c2] + ... + En−p:n−1[cn]. Under the assumption that Ej−p:j−1[cj] <∞ for

j = 2, . . . , n the proof is completed. �

Remark. When y is continuous one can prove an alternative version of Theorem (4) using the

approximation results in Norets (2010) instead of Jiang and Tanner (1999). Norets (2010)
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result is derived under more general conditions and holds for a general class of (continuous)

target densities.
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