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Abstract 

Many customary outlier treatment methods, such as for example winsorization, will decrease the mean squared 

error of a point estimator at the price of a negative bias and lower coverage rates for the corresponding 

confidence intervals. We propose an alternative, model-based, value modification method that aims at 

achieving the same decrease in MSE without sacrificing as much in terms of unbiasedness and coverage. The 

idea is to use a Pareto distribution to model the largest values of the population, as a way to account for extreme 

values both in and outside the sample. A small simulation study performed on lognormal data shows promising 

results.   

Keywords: Outliers, model-based approach, design-based approach, value modification, 

winsorization, simple random sampling.   

 

1. Introduction 

We address the important problem of estimating the total of a highly skewed finite population variable 

when the design is simple random sampling without replacement. Design-based methods tend to give 

reliable results for large samples, as long as the population is fairly symmetric. For highly skewed 

distributions, model-based procedures are attractive alternatives, at least in theory; empirical results 

have, however, shown that fully model-based estimators often suffer from too much bias to be 

practically useful in the finite population context (see for example discussions in Fuller, 1991, and 

Beaumont and Rivest, 2009). As a way to address this trade-off we propose a class of estimators that 

combines design- and model-based features to gain the strengths of both approaches.  

Lee (1995) gives an introduction to the topic of estimation for skewed finite populations with focus 

on simple random sampling. (See also Beaumont and Rivest, 2009, for a more general overview.) An 

important feature of finite population outliers in general is that they are often, in the terminology of 

Chambers (1986), representative. This representativeness is usually interpreted in terms of outliers 



detected in the sample representing other equally large values in the population. However, for skewed 

populations we can also think in terms of representativety of non-sampled units; even when the sample 

does not contain any extreme values, there may well exist such values in the population. Most outlier 

treatment methods only account for the first of these two properties. Thus, when faced with large outliers 

in the sample these are adjusted for using e.g. weight adjustments or winsorization, but potential outliers 

in the non-sampled part of the population (i.e. non-sampled units that would be qualified as outliers if 

sampled) are seldom addressed. Two exceptions are the estimators proposed by Fuller (1993) and Balog 

and Thorburn (2007), which both rely on parametric models for the right tail of the distribution to 

account for both sampled and non-sampled outliers, and hence for the underlying skewness of the 

population. Fully model-based approaches (such as for example the one used by Karlberg, 2000) also 

have this property. In this paper we extend, in particular, the approach of Balog and Thorburn (2007), 

which means that we will use a Pareto model for the right tail of the distribution but a design based 

estimator for its bulk.  

The Pareto distribution is one of the most commonly used parametric distributions for modeling 

phenomenon such as income, wealth or turnover; variables which are often highly skewed to the right 

(see for example Kleiber and Kotz, 2003, for an overview of so called size distributions). In particular, it 

has often been used to model right tail behavior of income distributions, owing to empirical evidence of 

its appropriateness for this aim; Lydall (1968, page 15) writes: “Experience has shown that in very many 

cases the upper tail of distributions of total income of individuals or families conforms fairly closely to 

Pareto’s function.” Together with its simplicity, this makes us believe that the Pareto distribution is a 

good candidate for right tail modeling of skewed finite populations in general.  

While outlier treatment methods used for sample surveys usually focus at achieving better point 

estimates, less effort has been given to interval estimation. Chambers and Kokic (1993), in a general 

overview, even stated that “outlier robust statistical inference about finite population quantities (as 

opposed to point estimation of these quantities) remains an unsolved problem”. In this paper we have a 

dual focus, attempting to achieve both a small mean squared error for the point estimator and acceptable 

coverage rates for the corresponding estimated confidence intervals. Our simulation results indicate that 

although more research is certainly needed on the topic of confidence interval estimation for skewed 

populations, the approach gives a significant improvement as compared to a specific winsorization 

strategy.  

We confine our account to simple random sampling. However, if outlier domains coincide with 

strata, the estimators can also be applied directly to stratified simple random sampling designs. Note that 

even if there is auxiliary data available that allows for stratification, outliers with respect to the study 



variable are still a ubiquitous problem within strata. Winsorization is probably the most commonly used 

method in this situation, and the estimators proposed in this paper thus constitute practical alternatives.  

In the next section we introduce notations and some preliminaries, and in Section 3 customary 

weight- and value-modification methods are reviewed. Section 4 introduces the partly model-based 

estimators using the Pareto distribution and Section 5 reports from the simulation study.  

2. Preliminaries 

Following standard convention, we use 𝑦1, . . . , 𝑦𝑁 to denote the finite population values, and 𝑦1, . . . , 𝑦𝑛 

for the sample values, where 𝑁 is the population size and 𝑛 the size of the sample. Also, 𝑦[1] ≤. . . ≤

𝑦[𝑛]  denote the sample order statistics. The sampling design is simple random sampling without 

replacement, and no auxiliary data is assumed to be available.  

We will use 𝐾 to denote the number of large values, or outliers, in the population, and 𝑘 for the 

corresponding quantity in the sample. Also, 𝜏 denotes a threshold value separating ordinary and large 

values, so that 𝐾 = ∑ 𝐼[𝑦𝑖>𝜏]
𝑁
𝑖=1  and 𝑘 = ∑ 𝐼[𝑦𝑖>𝜏]

𝑛
𝑖=1  where 𝐼[𝑦𝑖>𝜏] is an indicator variable for whether 

the value of unit 𝑖 exceeds 𝜏 or not. Further, we distinguish between absolute and relative outliers; 

when 𝜏 is fixed and 𝑘 random we refer to the 𝑘 largest sample values as absolute outliers, and when 𝑘 

is fixed and 𝜏 random we refer to them as relative outliers. (Note that in the latter case the outlying 

values are large as compared to the sample at hand, but not necessarily large compared to the finite 

population as a whole.)  

Our aim is to estimate the population total 𝑇 = ∑ 𝑦𝑖
𝑁
𝑖=1 . A design-unbiased point estimator is given 

by  

 �̂�𝐻𝑇 =
𝑁

𝑛
⋅∑𝑦𝑖

𝑛

𝑖=1

 (2.1) 

and a corresponding approximate 95% design-based confidence interval (c.f. Särndal et al., 1992, page 

528) can be computed as  

𝐶𝐼 = �̂�𝐻𝑇 ± 1.96 ⋅ √�̂�𝐻𝑇 

 

where  �̂�𝐻𝑇 = (1 −
𝑛

𝑁
)
𝑠2

𝑛
 (2.2) 

and 𝑠2 is the sample variance. The variance estimator in (2.2) is unbiased for the variance of (2.1). (We 



use the notation HT for the unbiased point and interval estimators because they are special cases of the 

Horvitz-Thompson estimators for 𝑇 and 𝑉(�̂�𝐻𝑇), c.f. Särndal et al., 1992, pages 43-45.)  

When the population is skewed to the right, both (2.1) and (2.2) will be highly variable. 

Consequently, the mean squared error can easily be decreased by abandoning the requirement of 

unbiasedness. The next section describes common methods of this kind.  

3. Weight and value modification methods 

For a given non-zero number of sample outliers, 𝑘 > 0, a reweighted estimator (e.g. Lee, 1995, page 

511) is given by  

�̂�𝑅𝑊 =∑𝑦𝑖

𝑛

𝑖=1

+ (𝑁 − 𝑛) [(1 − 𝜔) ⋅
∑ 𝑦[𝑖]𝑖≤(𝑛−𝑘)

𝑛 − 𝑘
+ 𝜔 ⋅

∑ 𝑦[𝑖]𝑖>(𝑛−𝑘)

𝑘
] 

 
(3.1) 

where 𝜔 ∈ [0,1] is a weight applied to the sample outliers. Reweighting is usually applied to absolute 

outliers. (But see Ernst, 1980, for a counter-example). If 𝐾 was known, a post-stratification weight 

given by 𝜔 =
𝐾−𝑘

𝑁−𝑛
 could be computed, and the unbiased post-stratified estimator would be obtained as a 

special case of (3.1). Further, if population means and variances below and above 𝜏 were known, it 

would be possible to derive the optimal value of 𝜔 with respect to the mean squared error of �̂�𝑅𝑊 (see 

Hidiroglou and Srinath, 1981). Without strong auxiliary information, however, more ad-hoc types of 

approaches, where 𝜔 is chosen using e.g. expert judgment, are often used. The weight is then usually 

restricted to lie within the range [0;
𝑘

𝑛
], so that the upper limit recovers the unbiased HT estimator and 

the lower limit corresponds to implicitly assuming all sample outliers to be unique in the population. 

(The last estimator is referred to by Gross et al., 1986, as the “surprise estimator”, and was first discussed 

by Kish, 1965.)  

Another common technique for outlier adjustment is winsorization. A one-sided winsorized 

estimator appropriate for finite population estimation (Gross et al., 1986; Kokic and Bell, 1994) is given 

by:  

 �̂�𝑊 =∑𝑦𝑖

𝑛

𝑖=1

+ (
𝑁 − 𝑛

𝑛
) [ ∑ 𝑦[𝑖]
𝑖≤(𝑛−𝑘)

+ 𝑘 ⋅ 𝜏] (3.2) 

 



and amounts to replacing the 𝑘  sample outliers by 𝜏 in the “prediction part” of the estimator. A 

winsorized estimator can be applied to both absolute and relative outliers. When absolute outliers are 

winsorized, Lee (1995) refers to it as a censored estimator, and when relative outliers are adjusted Rivest 

(1993) termed the method non-parametric winsorization.  

In the context of infinite populations, Searls (1966) derived an expression for the optimal value of 𝜏 

for the censored estimator. This value naturally depends on properties of the population (more 

specifically on the expected values above and below 𝜏, as well as on the tail probability), and can thus 

only be estimated when strong auxiliary data is available. For non-parametric winsorization, a 

sample-based replacement value, or “estimate”, for 𝜏 is needed for (3.2) to be computable. The most 

common choice is to use the (𝑛 − 𝑘)th sample order statistic, i.e. �̂� = 𝑦[𝑛−𝑘]. This amounts to a so 

called k-times winsorized estimator. For infinite populations, Rivest (1994) showed that for a wide range 

of right skewed distributions, 𝑘 = 1  gives a smaller mean squared error than 𝑘 = 2 , for the 

non-parametric winsorized estimator employing �̂� = 𝑦[𝑛−𝑘]. (Larger values of 𝑘 where not treated by 

Rivest, but are well known to be less efficient for most populations. See for example Fuller, 1991.) An 

alternative choice of �̂� to use in the non-parametric winsorized estimator is:  

 �̂� =
𝑦[𝑛−𝑘] + 𝑦[𝑛−𝑘+1]

2
 (3.3) 

This estimator is intuitively appealing in our case, because we are interpreting 𝜏  as a threshold 

separating outlying and non-outlying units. This special form of winsorized estimator will be evaluated 

in the simulation study of Section 5, as a special case of the partly model-based estimators developed 

next.  

4. Design-based estimators which are model-based in the tail 

From now on we focus entirely on relative outliers, as a simple way to ensure that the modifications we 

propose are applied to every sample irrespective of whether it includes extreme values or not. We will 

start by introducing the general forms of the proposed combined point and variance estimators, and then 

derive four pairs of estimators using properties of the Pareto distribution.  

4.1. General forms 

A point estimator for 𝑇 that modifies 𝑘 relative sample outliers, i.e. the 𝑘 largest values of the sample,  

 



is given by  

 �̂�𝑚𝑜𝑑 =∑𝑦𝑖

𝑛

𝑖=1

+ (
𝑁 − 𝑛

𝑛
) ∑ 𝑦[𝑖]
𝑖≤(𝑛−𝑘)

+ (
𝑁 − 𝑛

𝑛
) ∑ �̃�𝑖
𝑖>(𝑛−𝑘)

 (4.1) 

where �̃�𝑖 denotes a value replacing the 𝑖:th sample order statistic in the estimator. For example, the 

non-parametric winsorized estimator is obtained by letting �̃�𝑖 = �̂� for all 𝑖. The reweighted estimator in 

(3.1) can also be written on the form of (4.1) by using the following replacement values: 

 �̃�𝑖 = (
𝑛

𝑘
) [𝜔 ⋅ (

∑ 𝑦[𝑖]𝑖>(𝑛−𝑘)

𝑘
) + (1 − 𝜔) ⋅ (

∑ 𝑦[𝑖]𝑖≤(𝑛−𝑘)

𝑛 − 𝑘
)] −

∑ 𝑦[𝑖]𝑖≤(𝑛−𝑘)

𝑘
 (4.2) 

This implies that the unbiased HT estimator can be recovered from the modified estimator either by 

setting �̃�𝑖 = 𝑦[𝑖]  in (4.1), or 𝜔 = 0 in (4.2). Further, because the modified point estimator can be 

re-expressed as  

�̂�𝑚𝑜𝑑 =
𝑁

𝑛
∑𝑦𝑖,𝑚𝑜𝑑

𝑛

𝑖=1

 

where  

𝑦𝑖,𝑚𝑜𝑑 = {
𝑦[𝑖]  ,  for 𝑖 ≤ (𝑛 − 𝑘)
𝑛

𝑁
⋅ 𝑦[𝑖] + (1 −

𝑛

𝑁
) ⋅ �̃�𝑖  ,  for 𝑖 > (𝑛 − 𝑘)

 

 

a (naive) type of variance estimator is given by  

 �̂�𝑚𝑜𝑑 = (1 −
𝑛

𝑁
)
�̃�2

𝑛
 (4.3) 

where �̃�2 is the sample variance computed based on the modified values:  

�̃�2 =
∑ (𝑦𝑖,𝑚𝑜𝑑 − �̄�𝑚𝑜𝑑)

2𝑛
𝑖=1

(𝑛 − 1)
 

Just as (4.1) is a modified version of (2.1), we can think of (4.3) as a modification of (2.2). Hence, 



the aim of any value modification procedure will be to produce modified samples that, somewhat loosely 

speaking, “mimic” the finite population more closely; an adjustment method successful in this respect 

should result in more efficient estimation of both population total and estimator variance. We will 

propose one such procedure. First, however, we review properties of the Pareto distribution which will 

be useful later on.  

4.2. Auxiliary truncated Pareto distribution 

The probability density function of a type I Pareto distributed random variable is given by (e.g. Forbes et 

al., 2011):  

 𝑓𝑦(𝑦) =
𝛼𝑦𝑚𝑖𝑛

𝛼

𝑦(𝛼+1)
  ,  for 𝑦 ≥ 𝑦𝑚𝑖𝑛 (4.4) 

where 𝛼 > 0 and 𝑦𝑚𝑖𝑛 > 0 are shape and location parameters. A property of the Pareto distribution is 

truncation invariance. This property implies that the conditional density function for 𝑦 given 𝑦 > 𝑡, for 

a fixed 𝑡, is given by:  

 𝑓𝑦|𝑦>𝑡(𝑦) =
𝛼𝑡𝛼

𝑦(𝛼+1)
  ,  for 𝑦 > 𝑡 (4.5) 

From (4.5) one can easily derive the corresponding cumulative distribution function  

 𝐹𝑦|𝑦>𝑡(𝑦) = 1 − (
𝑡

𝑦
)
𝛼

 (4.6) 

and, by solving the equation 𝐹𝑦|𝑦>𝑡(𝑞) = 𝑝 for 𝑞, the conditional quantile function:  

 𝑞(𝑝) =
𝑡

(1 − 𝑝)1/𝛼
 (4.7) 

This truncated Pareto distribution will later be used as a prediction model for values in the right tail of 

the population.  

Assuming an i.i.d. sample from the unconditional distribution in (4.4), Sveinsson et al. (2002) 

derived the Maximum Likelihood estimators for 𝛼 and 𝑦𝑚𝑖𝑛 based on only the 𝑟 ≥ 2 largest sample 

order statistics. For 𝛼 this MLE is given by:  

 �̂� =
𝑟

∑ [𝑙𝑛(𝑦[𝑖]) − 𝑙𝑛(𝑦[𝑛−𝑟+1])]
𝑛
𝑖=𝑛−𝑟+2

 (4.8) 



By setting 𝑟 = 𝑛 in this expression, we obtain the ordinary Maximum Likelihood estimator for 𝛼, 

which supposes an i.i.d. sample of size 𝑛 from (4.4) and unknown location parameter. In our case, 

however, knowing that the true population distribution is not perfectly Pareto makes it reasonable to use 

only the largest sample values to estimate 𝛼. In the simulation study we will use 𝑟 = 𝑘, but in general 

𝑟 could be any value between 2 and 𝑛. (Some further comments on the choice of 𝑟 are made in the end 

of Section 5.)  

4.3. Four pairs of modified estimators employing the auxiliary model 

In this section we will treat the estimated threshold value, �̂�, as fixed, and use the corresponding 

truncated Pareto distribution to derive different sets of tail predictions. (Note that although �̂� will have 

an important role in the prediction formulas, it does not enter into the estimator for �̂�. Hence, a different 

choice of �̂� could be used throughout.) The predictions obtained in this way will then be used as 

replacement values, �̃�𝑖, in the modified estimators given by (4.1) and (4.3).  

The first set of tail predictions to be considered is obtained as 𝑘 times the expected value of the 

truncated distribution. For 𝛼 > 1 and 𝑡 = �̂� , the expectation of 𝑦  under model (4.5) is given by 

�̂� ⋅
𝛼

𝛼−1
. By estimating 𝛼 by (4.8), we obtain the corresponding replacement values �̃�𝑖 = �̂� ⋅

�̂�

�̂�−1
, and the 

explicit form of the modified point estimator for �̂� > 1 is therefore given by:  

 �̂�𝑃𝐸 =∑𝑦𝑖

𝑛

𝑖=1

+ (
𝑁 − 𝑛

𝑛
) [ ∑ 𝑦[𝑖]
𝑖≤(𝑛−𝑘)

+ 𝑘 ⋅ �̂� ⋅ (
�̂�

�̂� − 1
)] (4.9) 

Because the expectation under the truncated model is infinite whenever 𝛼 ≤ 1, using (4.9), however, 

involves the risk of obtaining arbitrarily large point and variance estimates. A more robust alternative is 

obtained from the median of the fitted distribution; by letting 𝑞 =
1

2
 in equation (4.7), and then replacing 

𝛼 by its estimate, we obtain in this case �̃�𝑖 = �̂� ⋅ 2
1

�̂�. The corresponding point estimator thus has the 

form:  

 �̂�𝑃𝑀 =∑𝑦𝑖

𝑛

𝑖=1

+ (
𝑁 − 𝑛

𝑛
) [ ∑ 𝑦[𝑖]
𝑖≤(𝑛−𝑘)

+ 𝑘 ⋅ �̂� ⋅ 2
1
�̂�] (4.10) 

Note that, unlike �̂�𝑃𝐸, �̂�𝑃𝑀 produces finite predictions even when �̂� is smaller than or equal to one.  

Modified variance estimators associated with (4.9) and (4.10) can be obtained via the “naive 



formula” in (4.3). (Note that if the true tail distribution is approximately Pareto with large 𝛼, the 

variance under the truncated distribution could also be used to derive a variance estimator; however, this 

model-variance is finite only for 𝛼 > 2 and hence it will not be a practicable approach for type of the 

highly skewed distributions we are interested in.) Unless the sample values are extremely spread out, the 

modified sample variance, �̃�2, obtained by using the replacement values of (4.9) or (4.10), is, however, 

likely to be too small; that is, it will underestimate the true population variance. As a way to achieve 

better estimates of the variance, we will consider two alternative sets of replacement values with greater 

within-variability. Inducing additional variability into the modified values is one of four approaches 

suggested by Little and Rubin (2002, page 75) for obtaining better estimates of the true estimator 

uncertainty when imputations have been used in the place of true observations. This idea was also used, 

somewhat implicitly, by both Fuller (1993) and Balog and Thorburn (2007); Fuller used model-based 

estimates of the largest sample order statistics in one of his estimators, and Balog and Thorburn replaced 

the largest sample values by quantiles of a fitted Pareto distribution before estimating the finite 

population parameters. We will consider two approaches that are similar to those employed by Fuller, 

and Balog and Thorburn, respectively; the first one relies on predictions for the sample order statistics 

and the other one uses the estimated quantile function.  

In the following, we let 𝜇[1:𝑘], . . . , 𝜇[𝑘:𝑘] denote the expected values of 𝑦[𝑛−𝑘+1], . . . , 𝑦[𝑛] under the 

truncated model in (4.5), with 𝑡 = �̂�. By plugging in (4.5) and (4.6) into the general formula for the 

density of an order statistic (e.g. Casella and Berger, 2002, page 229), and deriving the corresponding 

expectation (making use of a variable transformation), 𝜇[𝑗:𝑘], for 𝑗 = 1, . . . , 𝑘, can be readily shown to 

equal 𝜇[𝑗:𝑘] = �̂� ⋅
Γ(𝑘+1)⋅Γ(𝑘−𝑗+1−

1

𝛼
)

Γ(𝑘+1−
1

𝛼
)⋅Γ(𝑘−𝑗+1)

 as long as 𝛼 >
1

𝑘−𝑗+1
. Explicit replacement values can thus be 

obtained from this expression by estimating 𝛼 in the same way as above and making an appropriate 

change of indices; this will give �̃�𝑖 = �̂� ⋅
Γ(𝑘+1)⋅Γ(𝑛+1−𝑖−

1

�̂�
)

Γ(𝑘+1−
1

�̂�
)⋅Γ(𝑛+1−𝑖)

. The corresponding modified point estimator 

is, for �̂� > 1, given by:  

    �̂�𝑃𝑂𝑟 =∑𝑦𝑖

𝑛

𝑖=1

+ (
𝑁 − 𝑛

𝑛
) ⋅ [ ∑ 𝑦[𝑖]

𝑖≤(𝑛−𝑘)

+ ∑ �̂�

𝑖>(𝑛−𝑘)

⋅
Γ(𝑘 + 1)Γ (𝑛 + 1 − 𝑖 −

1
�̂�
)

Γ (𝑘 + 1 −
1
�̂�
) Γ(𝑛 + 1 − 𝑖)

] (4.11) 

 

A nice property of (4.11) is that, as compared to (4.9), it affects only the variance estimate; the value 

of �̂�𝑃𝑂𝑟  will be equal to that of �̂�𝑃𝐸  but the corresponding variance estimates will be different. 



However, this also implies that we again risk to obtain arbitrarily large estimates when �̂� is small. 

Because of this risk, the next approach seems more appropriate for the Pareto case.  

To derive the explicit form of the replacement values for “the quantile approach”, we start from 

(4.7) with 𝑝 =
𝑗

𝑘+1
, for 𝑗 = 1, . . . , 𝑘. As a motivation for this choice of 𝑝, note that it corresponds to 

plugging in the expected values of the order statistics of 𝑘 independent observations from a uniform 

distribution on the [0,1]  interval. Hence, if the quantile function was known, the corresponding 

replacement values could be viewed as large sample approximations for 𝜇[1:𝑘], . . . , 𝜇[𝑘:𝑘]; c.f. David and 

Nagaraja (2003, Chapter 4). These “approximations”, unlike the direct estimates, however, have the 

advantage of being finite for all possible values of 𝛼. By estimating 𝛼 in the same way as before, and 

again making a change of indices, we obtain replacement values given by �̃�𝑖 = �̂� ⋅ (
𝑘+1

𝑛+1−𝑖
)

1

�̂�
 and the 

explicit form of the corresponding modified point estimator is therefore:   

�̂�𝑃𝑄 =∑𝑦𝑖

𝑛

𝑖=1

+ (
𝑁 − 𝑛

𝑛
) ⋅ [ ∑ 𝑦[𝑖]

𝑖≤(𝑛−𝑘)

+ ∑ �̂� ⋅

𝑖>(𝑛−𝑘)

(
𝑘 + 1

𝑛 + 1 − 𝑖
)

1
�̂�
] 

   (4.12) 

Finally, we note that �̂�𝑃𝑀 and �̂�𝑃𝑄 should be more robust than �̂�𝑃𝐸 and �̂�𝑃𝑂𝑟 with respect to the 

tail-model assumption, i.e. they should produce less extreme point and variance estimates. �̂�𝑃𝑀  is 

further likely to be even more robust than �̂�𝑃𝑄; in particular, for odd 𝑘 the replacement values implied 

by (4.10) are all equal to the median of those implied by (4.12). However, although model dependence is 

often a disadvantage when it comes to estimation of finite population parameters, the whole aim of the 

present modification procedures is to acknowledge the true skewness of the population and some 

amount of “dependence” is therefore clearly desirable. Thus, it is not evident which estimator will be 

best in a practical situation. This trade-off between distributional robustness and efficiency will be 

explored in the simulation study of the next section. We also note that if 𝛼 would be assumed to 

approach infinity, all four sets of estimators proposed in this section reduce to the non-parametric 

winsorized estimator employing (3.3). (This would correspond to a degenerate truncated Pareto 

distribution with all probability mass located at the point �̂�, and variance equal to zero.) In a sense, all 

estimators proposed in this paper can therefore be seen as extensions of a non-parametric winsorization 

approach.  

 



5. Simulation study   

A simulation study on lognormal data was performed to evaluate the performance of the partly 

model-based estimators for different values of 𝑘. The mean of the logarithmed values was set to 0 and 

their standard deviation, denoted 𝜎, to either 1 or 2. Population size was 10,000. (These values were 

selected to resemble somewhat realistic situations.) 𝑈 = 500 populations were generated from each 

parameter specification, and 𝑆 = 10,000  simple random samples of sizes 𝑛 = 50 , 𝑛 = 100  and 

𝑛 = 500, respectively, drawn from each population. (This should be enough to guarantee precision at 

least for 𝑘 ≤ 20 for the estimated bias and mean squared errors reported in Tables 5.2 and 5.3.) To 

assess the performance of the point estimators, the percent relative root mean square error (RRMSE) and 

percent relative bias (RB), averaged over the 500 populations, were computed;  

𝑅𝑅𝑀𝑆𝐸 = (
100

𝑈
)∑

(

 
1

𝑇𝑢
⋅ √
1

𝑆
∑(�̂�𝑢𝑠 − 𝑇𝑢)

2
𝑆

𝑠=1
)

 

𝑈

𝑢=1

 

𝑅𝐵 = (
100

𝑈
)∑(

1

𝑇𝑢
⋅ [
1

𝑆
∑�̂�𝑢𝑠

𝑆

𝑠=1

− 𝑇𝑢])

𝑈

𝑢=1

 

Here, 𝑇𝑢 denotes the finite population total of the 𝑢:th population, and �̂�𝑢𝑠 its estimate based on the 

𝑠:th sample. (Similarily, �̂�𝑢𝑠 will later be used to denote the variance estimate obtained from the 𝑠:th 

sample of the 𝑢:th population.)  

For all models considered in the simulation study, �̂�𝑃𝐸 and �̂�𝑃𝑂𝑟 could not be computed for a large 

proportion of the samples; Table 5.1 includes the average proportions for selected values of 𝑘. In the 

following, performance measures will be reported only when the estimator could be computed for all 

samples.  

Mean squared error results for selected values of 𝑘 are given in Table 5.2. For the non-parametric 

winsorized estimator (W), which in light of equation (3.3) can be thought of as winsorizing (𝑘 − 0.5) 

units, the best result is obtained for 𝑘 = 2. (This is consistent with simulation results reported in Rivest 

and Hurtubise, 1995; they showed that an optimal winsorization strategy for lognormal populations with 

𝜎 equal to 1 or 2 will result in winsorization of between one and two units.) The PM and PQ 

estimators perform better than the unbiased estimator for a wide range of 𝑘 values, and for the smallest 

𝑘 values they also outperform the winsorized estimator with 𝑘 = 2; cases where the MSE is at least as 

low as for the best winsorized estimator are in bold in Table 5.2. For large sample sizes the modified 



estimators perform well also for larger values of 𝑘, which is to be expected considering that the number 

of population values estimated in a model-based way is then smaller given the same value of 𝑘. 

Comparing the results obtained for different values of 𝜎, we note that the effect of modifying the largest 

sample values is larger the more skew the distribution. It is also interesting to note that the PQ estimator 

is very stable with respect to the value of 𝑘; the PM estimator is in this particular sense less robust than 

the PQ estimator. The reason is that the PM estimator dampens large estimates more heavily than the PQ 

estimator, but does not compensate for this by inflating the smaller estimates. Figures 5.1 and 5.2 

compare the adjustments made by the PM and PQ estimators by plotting a selection of modified point 

estimates against the corresponding estimates obtained by the unmodified HT estimator. In Figure 5.1 

we have 𝜎 = 1, whereas Figure 5.2 describes the pattern for 𝜎 = 2. For all values of 𝑘, large estimates 

are more heavily down-adjusted by the PM estimator than by the PQ estimator. For 𝑘 as large as 20, the 

PQ estimator achieves the desired effect of inflating the smallest estimates. However, for this large value 

of 𝑘 some of the largest estimates are also up-adjusted, which probably explains why the mean square 

error for the PQ estimator is still larger for 𝑘 = 20 than for 𝑘 = 5. The smallest mean square error for 

the PQ estimator was in most cases obtained for 𝑘 values in the range [2; 5].  

Next, results on the relative bias of the point estimators are reported (Table 5.3). Bold digits again 

indicate that the corresponding MSE is at least as small as for the best winsorized estimator. We note that 

the PQ estimator has a smaller bias for most 𝑘 specifications achieving this low MSE level. In 

particular, the best PQ estimator (in the sense of achieving the most gains in MSE as compared to the 

unbiased estimator) always has a smaller bias than the best winsorized estimator (based on 𝑘 = 2). The 

PM estimator shows a pattern similar to that of PQ, but with a larger bias. As expected, the difference in 

bias is largest for the more skew distributions. Finally, we note that the average design-bias of the PE and 



POr estimators is quite small, indicating that their main problem is that of excessive variance.  

 

Lastly, we consider the interval estimators. Table 5.4 includes average coverage proportions for the 

estimated confidence intervals obtained by combining (4.1) with (4.3). (Bold digits have the same 

interpretation as before.) The PQ estimator achieves the highest coverage proportion among the 

modified estimators, and in particular it outperforms the best winsorized estimator in all cases where the 

MSE is at an equal level. However, the coverage of the PQ estimator is still lower than for the unbiased 

estimator. This is because the modified intervals are much shorter than the corresponding unmodified 

intervals. (This also explains the better coverage properties shown by the POr estimator, where the 

inherent variation is larger.) Figure 5.3 depicts the average behavior of the PQ and HT intervals. We note 



that the best PQ intervals (i.e. those with 𝑘 in the range 2 to 5) are much shorter than the interval based 

on the unmodified estimator.  

 

Finally, we will comment shortly on the choice of 𝑟. Balog and Thorburn (2007) suggested using 

𝑟 > 𝑘 for estimating 𝛼 as a way to decrease the variance of the final estimator. For the populations 

considered in this paper, however, the decreased variability of �̂� resulting from using larger values of 𝑟 

did not translate into a smaller variance for the modified estimators. (Note that increasing 𝑟 generally 

implies decreasing the value of �̂�, which has a counteracting variance increasing effect on �̂�𝑃𝑀 and 

�̂�𝑃𝑄.)  

In summary, the simulation results indicate that the modified estimator based on using quantiles 



from an auxiliary truncated Pareto model as modified values can achieve both smaller bias and higher 

coverage, as compared to a non-parametric winsorization strategy with the same level of MSE. 

However, it should also be noted that while better in an average sense, the maximum error resulting from 

the partly model-based estimator is likely to be larger than that of winsorization and hence other criteria 

than MSE and bias should be evaluated in future studies.  
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Table 5.2: RRMSE of the modified point estimators, relative to RRMSE of the HT estimator.

k 1 2 3 4 5 10 15 20 25 30 40

Lognormal shape parameter 𝝈 = 𝟏, sample size 𝐧 = 𝟓𝟎:
W 0.94 0.93 0.97 1.04 1.12 1.58 2.04 2.47 2.88 3.28 4.06
PM - 0.92 0.92 0.93 0.94 1.09 1.30 1.54 1.80 2.07 2.70
PQ - 0.92 0.92 0.92 0.92 0.93 0.95 0.96 1.01 1.19 3.14

Lognormal shape parameter 𝝈 = 𝟏, sample size 𝐧 = 𝟏𝟎𝟎:
W 0.96 0.95 0.98 1.03 1.09 1.44 1.82 2.19 2.53 2.87 3.49
PM - 0.95 0.94 0.95 0.96 1.05 1.19 1.35 1.53 1.71 2.08
PQ - 0.95 0.94 0.94 0.94 0.95 0.96 0.96 0.97 0.98 1.05

Lognormal shape parameter 𝝈 = 𝟏, sample size 𝐧 = 𝟓𝟎𝟎:
W 0.99 0.98 0.99 1.01 1.04 1.21 1.42 1.64 1.87 2.09 2.51
PM - 0.98 0.98 0.98 0.98 1.01 1.07 1.13 1.21 1.29 1.47
PQ - 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.99 0.99

PE/POr - - - - - - 1.04 1.05 1.07 1.09 1.14

Lognormal shape parameter 𝝈 = 𝟐, sample size 𝐧 = 𝟓𝟎:
W 0.70 0.55 0.58 0.63 0.68 0.84 0.94 1.01 1.06 1.09 1.14
PM - 0.54 0.53 0.54 0.56 0.68 0.77 0.84 0.91 0.96 1.05
PQ - 0.55 0.53 0.54 0.54 0.56 0.58 0.66 0.91 1.58 10.53

Lognormal shape parameter 𝝈 = 𝟐, sample size 𝐧 = 𝟏𝟎𝟎:
W 0.74 0.62 0.66 0.71 0.76 0.96 1.09 1.19 1.27 1.33 1.43
PM - 0.62 0.60 0.61 0.63 0.75 0.85 0.94 1.01 1.08 1.19
PQ - 0.62 0.61 0.61 0.61 0.62 0.63 0.65 0.67 0.74 1.07

Lognormal shape parameter 𝝈 = 𝟐, sample size 𝐧 = 𝟓𝟎𝟎:
W 0.85 0.78 0.81 0.86 0.91 1.16 1.35 1.51 1.65 1.76 1.95
PM - 0.78 0.76 0.77 0.78 0.88 0.99 1.09 1.19 1.27 1.42
PQ - 0.78 0.77 0.77 0.77 0.78 0.78 0.78 0.78 0.79 0.79



Table 5.3: Percent relative bias (RB) of point estimators.

k 1 2 3 4 5 10 15 20 25 30 40

Lognormal shape parameter 𝝈 = 𝟏, sample size 𝐧 = 𝟓𝟎:
W -2.4 -6.5 -9.8 -12.7 -15.4 -26.8 -36.3 -44.8 -52.7 -60.2 -74.8
PM - -4.3 -5.9 -7.4 -8.8 -15.0 -20.7 -26.2 -31.6 -37.1 -49.3
PQ - -4.0 -5.0 -5.6 -6.1 -7.3 -7.0 -5.5 -2.4 3.6 38.8

Lognormal shape parameter 𝝈 = 𝟏, sample size 𝐧 = 𝟏𝟎𝟎:
W -1.4 -3.8 -5.8 -7.6 -9.2 -16.1 -22.0 -27.3 -32.1 -36.6 -45.0
PM - -2.5 -3.4 -4.3 -5.1 -8.6 -11.8 -14.8 -17.7 -20.5 -25.9
PQ - -2.3 -2.9 -3.2 -3.5 -4.3 -4.4 -4.1 -3.5 -2.5 0.6

Lognormal shape parameter 𝝈 = 𝟏, sample size 𝐧 = 𝟓𝟎𝟎:
W -0.4 -1.0 -1.6 -2.1 -2.6 -4.7 -6.4 -8.1 -9.6 -11.0 -13.6
PM - -0.7 -0.9 -1.1 -1.4 -2.3 -3.2 -4.0 -4.8 -5.5 -6.9
PQ - -0.6 -0.8 -0.9 -0.9 -1.1 -1.2 -1.2 -1.2 -1.2 -1.0
PE/POr - - - - - - 0.3 0.6 0.8 1.1 1.7

Lognormal shape parameter 𝝈 = 𝟐, sample size 𝐧 = 𝟓𝟎:
W -13.5 -32.8 -42.5 -49.3 -54.5 -70.6 -79.7 -85.6 -89.8 -93.0 -97.0
PM - -25.3 -31.9 -36.9 -41.0 -55.1 -64.2 -71.1 -76.6 -81.2 -88.8
PQ - -23.7 -27.7 -29.9 -31.2 -31.6 -26.3 -15.0 6.4 48.8 460.7

Lognormal shape parameter 𝝈 = 𝟐, sample size 𝐧 = 𝟏𝟎𝟎:
W -9.8 -24.1 -31.9 -37.4 -41.9 -56.3 -65.0 -71.3 -76.1 -79.9 -85.6
PM - -18.2 -23.2 -27.0 -30.2 -41.5 -49.2 -55.1 -60.0 -64.1 -70.9
PQ - -17.0 -20.0 -21.7 -22.7 -23.9 -22.2 -18.5 -13.2 -5.8 17.7

Lognormal shape parameter 𝝈 = 𝟐, sample size 𝐧 = 𝟓𝟎𝟎:
W -4.1 -10.5 -14.4 -17.4 -19.8 -28.5 -34.4 -39.0 -42.7 -45.9 -51.2
PM - -7.6 -9.8 -11.6 -13.2 -19.0 -23.2 -26.7 -29.6 -32.1 -36.5
PQ - -7.1 -8.4 -9.2 -9.7 -10.7 -10.7 -10.2 -9.5 -8.6 -6.4



Table 5.4: Coverage proportion of interval estimators (in percent).

k 1 2 3 4 5 10 15 20 25 30 40

Lognormal shape parameter 𝝈 = 𝟏, sample size 𝐧 = 𝟓𝟎:
HT 89.3 89.3 89.3 89.3 89.3 89.3 89.3 89.3 89.3 89.3 89.3
W 86.7 79.3 71.3 62.7 53.9 16.8 2.4 0.1 0.0 0.0 0.0
PM - 83.9 81.0 77.8 74.5 54.9 33.5 15.6 5.0 0.9 0.0
PQ - 84.5 82.9 81.8 81.0 79.4 80.8 84.2 88.9 93.7 99.4

Lognormal shape parameter 𝝈 = 𝟏, sample size 𝐧 = 𝟏𝟎𝟎:
HT 91.4 91.4 91.4 91.4 91.4 91.4 91.4 91.4 91.4 91.4 91.4
W 89.6 84.8 79.7 74.2 68.3 37.4 14.4 3.8 0.7 0.1 0.0
PM - 87.8 86.0 84.1 82.1 70.6 56.8 42.1 28.3 16.9 4.0
PQ - 88.2 87.2 86.5 86.0 84.8 85.0 86.0 87.5 89.5 93.7

Lognormal shape parameter 𝝈 = 𝟏, sample size 𝐧 = 𝟓𝟎𝟎:

HT 93.9 93.9 93.9 93.9 93.9 93.9 93.9 93.9 93.9 93.9 93.9
W 93.2 91.5 89.7 87.9 85.9 74.0 59.6 44.7 31.2 20.2 6.7
PM - 92.5 91.9 91.3 90.7 87.2 83.2 78.5 73.2 67.5 55.2
PE - - - - - - 92.2 91.7 91.2 90.6 89.1
PQ - 92.6 92.3 92.1 91.9 91.5 91.3 91.4 91.5 91.7 92.3
POr - - - - - - 94.3 94.8 95.2 95.6 96.3



Table 5.4 Continued

k 1 2 3 4 5 10 15 20 25 30 40

Lognormal shape parameter 𝝈 = 𝟐, sample size 𝐧 = 𝟓𝟎:

HT 68.8 68.8 68.8 68.8 68.8 68.8 68.8 68.8 68.8 68.8 68.8
W 62.0 41.7 26.6 16.1 9.2 0.3 0.0 0.0 0.0 0.0 0.0
PM - 52.3 43.6 35.7 28.6 6.8 0.9 0.1 0.0 0.0 0.0
PQ - 56.6 60.6 62.6 62.4 54.6 47.1 43.5 42.6 42.5 42.5

Lognormal shape parameter 𝝈 = 𝟐, sample size 𝐧 = 𝟏𝟎𝟎:

HT 73.9 73.9 73.9 73.9 73.9 73.9 73.9 73.9 73.9 73.9 73.9
W 68.1 50.9 36.9 25.9 17.6 1.6 0.1 0.0 0.0 0.0 0.0
PM - 60.4 53.3 46.6 40.3 16.6 5.1 1.2 0.2 0.0 0.0
PQ - 63.9 67.3 68.8 68.1 57.5 45.2 35.0 28.2 24.4 22.3

Lognormal shape parameter 𝝈 = 𝟐, sample size 𝐧 = 𝟓𝟎𝟎:

HT 82.9 82.9 82.9 82.9 82.9 82.9 82.9 82.9 82.9 82.9 82.9
W 79.3 68.9 59.5 50.8 42.8 15.4 4.4 1.1 0.2 0.1 0.0
PM 75.0 71.0 67.0 63.2 45.2 30.2 18.9 11.1 6.2 1.7
PQ 76.9 79.0 79.3 78.2 69.7 61.5 53.8 46.5 39.5 27.0
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