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Optimal design problems for
the bivariate Emax model

Bergrún Tinna Magnúsdóttir

Abstract

Finding a suitable dose is among the most difficult tasks during clinical de-
velopment of a new drug. In early phases dose finding studies usually focus on
finding a safe dose. Safety variables are thus of main interest. In later phases the
focus is shifted towards efficacy. Typically a primary efficacy variable is defined
and modeled. Various dose-response models have been suggested. For continuous
responses among the most successful ones is the Emax model. Here both efficacy
and safety are considered simultaneously and the Emax model is extended to a
model with a bivariate response, one response being a primary efficacy variable
and one being a primary safety variable. This model is referred to as the bivariate
Emax model. The focus is on locally c-optimal designs for the bivariate Emax
model and a simplified version of it. More specifically the locally c-optimal designs
minimize the asymptotic variance for the estimate of the dose that maximizes the
patient’s utility. The utility is a function of the efficacy and safety variables and
referred to as the Clinical Utility Index (CUI).

1 Introduction
This paper explores optimal design problems for non-linear, multivariate response mod-
els when the aim of the experiment is to estimate a function of the model parameters. In
the optimal design literature such designs are referred to as c-optimal designs. The focus
is on designs for dose finding studies when the aim is to estimate the most desirable dose
of the drug under investigation. Effective drugs result in both effects and side-effects
and hence the most desirable dose is the one that gives the best possible combination
of these. The bivariate Emax model explains how a primary efficacy variable and a
primary safety variable depend on the dose of the drug. This model is introduced in
the next section. In Section 3 a tool for estimating the most desirable dose, The Clinical
Utility Index (CUI), is introduced. The c-optimal design methodology is illustrated in
Section 4 and the relevant General Equivalence Theorem for a non-linear, multivariate
response model is stated. Section 5 provides the main results; theorems and tables for
constructing the locally c-optimal designs. In Section 6 simulation is used to investi-
gate how sensitive the designs are to misspecification of the correlation between the two
profiles of the bivariate Emax model. Finally a discussion of results and future work is
provided in Section 7.
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2 The bivariate Emax model
Understanding of the dose-response relationship is among the most important and chal-
lenging problems in drug development. In dose finding studies a primary response vari-
able is usually defined and modeled. Various dose-response models have been suggested.
Among the most successful models for modeling a continuous response variable is the
Emax model. The model is of the form

Response(dose) = E0 + Emax
dose

dose + ED50

+ ε (1)

where ε ∼ N (0, σ2). For a detailed discussion of this model and its mechanistic prop-
erties see, e.g., Holford and Sheiner (1981) and Goutelle et al. (2008). A common
modification is to assume E0 = 0. This can be done if the placebo effect is known to
be zero or if the response variable is placebo adjusted. The model used in this paper is
the Emax model including only the two parameters ED50 and Emax. The problem of
deriving optimal designs for the two parameter Emax model has been investigated by
several authors see, for example, López-Fidalgo and Wong (2002).

In early phases of the drug development (Phase I) the focus is on safety and the
primary response variable is a safety variable. In later phases (Phase II and III) the
focus is shifted towards efficacy and the primary response variable is an efficacy variable.
In spite of this traditional division into safety and efficacy studies, it is often useful to
study efficacy and safety simultaneously. Examples are found in, e.g., Thall and Russell
(1998) and Ouellet et al. (2009). Several authors have discussed the construction of
optimal designs when simultaneously considering binary efficacy and safety variables
see, for example, Li et al. (1995) and Dragalin and Fedorov (2006). Here the focus
is on continuous efficacy and safety variables. Dragalin et al. (2008) also discuss
the construction of optimal designs when both the efficacy and safety variables are
continuous, but both the model and the aim of the study is different from what is
assumed here.

The idea in this paper is to consider both efficacy and safety simultaneously and
extend the Emax model to two dimensions, one for a primary efficacy variable, Z1,
and one for a primary safety variable, Z2. High values of Z1 are here assumed to
indicate desirable effect while high values of Z2 indicate undesirable effect. An example
of a primary efficacy variable is the decrease (from baseline) in systolic blood pressure,
measured in millimeters of mercury (mmHg). An example of a primary safety variable
is increased sleep latency from baseline, measured in minutes. The bivariate Emax
model is hereby defined as follows

Z1 = Emax
x

x+ ED50

+ ε1, Z2 = Smax
x

x+ SD50

+ ε2 (2)

where (ε1, ε2) ∼ N2(0,Σ(σ1, σ2, ρ)). Further let θ = (ED50, Emax, SD50, Smax) and
Ω = (σ1, σ2, ρ). In this paper Σ is assumed to be known while θ needs to be estimated.
Note that x represents the dose of a drug, so naturally it is assumed that x ∈ χ = [0,∞[.
Emax represents the maximal achievable effect from the drug and Smax the maximal
realizable side-effect. ED50 and SD50 represent the doses that give half of the maximal
effect and side-effect, respectively. Hence ED50, SD50 > 0. For explicitness it is also
assumed here that Emax, Smax > 0. In this paper a simplified version of the bivariate
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Emax model, referred to as the simple bivariate model, is also explored. There it is
assumed that the maximal effect and side-effect equal one so that Z1 = x

x+ED50
+ ε1,

Z2 = x
x+SD50

+ ε2 where (ε1, ε2) ∼ N2(0,Σ), θ = (ED50, SD50), and ED50, SD50 > 0 as
before.

3 The Clinical Utility Index (CUI)
The bivariate Emax model defined in the previous section models how a primary efficacy
variable and a primary safety variable depend on the dose of the drug. The ultimate goal
of a dose finding study is to estimate the dose that gives the best possible combination
of effects and side-effects. If it were not for side-effects the best dose would be the
maximal possible dose because the effect of a drug usually increases monotonically with
dose. In practice all drugs have side-effects which also increase with dose. The dose
administered to patients needs to be strong enough to give significant effect and mild
enough so side-effects will not be severe. In what follows the Clinical Utility Index
(CUI) which is a tool for assessing the patient’s net benefit from receiving a particular
dose of a drug is introduced.

The term and the use of the CUI in dose finding studies is relatively new, but the CUI
is an increasingly popular tool for multiattribute decision making in drug development.
For a good historical overview of the CUI see, e.g., Carrothers et al. (2011). The CUI
combines different aspects regarding the quality of the new drug. After receiving the
drug, the patient might experience several different effects and side-effects. These are
measured in different scales and are of different importance to the patient. The CUI
combines these multidimensional aspects into a single metric. Each possible scenario
is given a CUI value for ranking; the higher the CUI the better. A patient taking an
anti-diabetic drug might prefer his normal dose to a new, higher, dose that would lead
to an 0.5% extra reduction in HbA1c, but with an increased risk for hypoglycemia.
The normal dose would then be assigned to a higher CUI value than the new dose. In
this paper we only consider one primary efficacy variable, Z1, and one primary safety
variable, Z2, but it is straightforward to generalize and include more efficacy, safety and
possible other variables of importance such as increased cost for a higher dose.

The form and derivation of the CUI should be considered separately for each drug
under investigation. The most common approach is however to use a linear combination
of the different response variables. This is the approach discussed by Carrothers et al.
(2011) and the one that is covered here. For the dose-response models in this paper the
CUI is defined as

CUI(x) = k1Z1 − k2Z2. (3)

A negative sign is here assigned to the side-effect because high values of Z2 indicate
a negative effect. It should not be forgotten that the response variables are usually
measured on different scales. To cope with this Carrothers et al. (2011) explain how all
response variables can first be transformed into the same scale, which they call utility,
with range from 0 to 1. Then weights, here k1 and k2, are assigned to the response
variables depending on their relative importance. For a detailed example of how a
linear CUI has been used in practice see Ouellet et al. (2009). They use the Sigmoid
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Emax model to model how several different efficacy and safety variables depend on
dose of drugs for the treatment of insomnia. Then they construct a CUI for decision
making. Experts in insomnia disorders defined clinically meaningful differences, ci, for
each response in order to normalize the variables to a common scale. Then a conjoint
analysis was used to rank the relative importance of the efficacy and safety variables
so weights, vi could be assigned to the different attributes. The constants in (3) thus
represent the weights divided by the clinical meaningful differences, ki = vi

ci
. The CUI

then has the form

CUI(x) =
∑

All efficacy
variables

vi
ci
Zi −

∑
All safety
variables

vi
ci
Zi. (4)

Regardless of whether the constants k1 and k2 represent weights or weights divided
by the clinically meaningful difference, the most desirable dose for a population of
patients is the one that maximizes E[CUI]. It is straightforward to show that if such a
positive dose exists then, for the bivariate Emax model, it is

g(θ) := arg max
x>0

E[CUI(x)]

=

√
k1ED50Emaxk2SD50Smax(ED50 − SD50)− ED50SD50(k1Emax − k2Smax)

k1ED50Emax − k2SD50Smax
.

(5)

For the simple bivariate model this simplifies to

g(θ) := arg max
x>0

E[CUI(x)] =

√
k1ED50k2SD50(ED50 − SD50)− ED50SD50(k1 − k2)

k1ED50 − k2SD50

.

(6)

The designs derived in this paper are optimal for estimating these functions i.e.
they are optimal for estimating the most desirable dose of a drug for a population of
patients, provided that the models and the CUI are reasonable assumptions.

4 Locally c-optimal designs
Optimal design theory deals with designing studies when the response is believed to be
related to the explanatory variables through a statistical model. In the case of dose
finding studies one needs to decide the number of participants, the study duration,
dosing schedules, and so on. Optimal design theory helps in answering the question
how big dose each participant in the study should get. A design, ξ, is formally defined
as a set of pairs denoted by ξ = {x1, x2, . . . , xn;w1, w2, . . . , wn}. The xi’s are called
design points. For dose finding studies they represent the doses i.e. the amount of
the drug (in mg) and wi denotes the proportion of the participants that receive dose
xi. Here n is the number of different study groups and N denotes the number of
participants. Finally χ denotes the design space, the set of possible values for the
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design points. By constructing a design we mean deciding how many different groups,
n, should be included in the study and deciding what the xi’s and the wi’s should
be. The design that allocates all observations to one design point, x, is denoted by
ξx. Designs are said to be optimal if they result in estimates of interest with minimum
variance for a given experimental effort, which in the case of dose finding studies is
the number of participants, N , in the study. Which design is optimal depends on the
statistical model, the design space and the objective of the study. In this paper, the
focus is on c-optimal designs which are appropriate when the objective of the study
is to estimate some function, g(θ), of the parameters in the model. Let θ̂ denote the
maximum likelihood estimator of the parameters in a non-linear, multivariate response
model such as the bivariate Emax model (2). For a linear function g(θ) = cT θ, where
c is a vector of constants, a design is c-optimal if it minimizes the asymptotic variance
of
√
N(g(θ̂)− g(θ)) which equals Ψ = cTM−1(ξ)c. Similarly, for a non-linear function,

g(θ), a design is c-optimal if it minimizes

Ψ = ∇g(θ)TM(ξ)−1∇g(θ). (7)

Ψ is referred to as the criterion function and M(ξ) is the standardized information
matrix, M(ξ) = N−1I(ξ). M(ξ) is a symmetric matrix and can be written as

M(ξ) =
n∑
i=1

wiM(ξxi).

For the bivariate Emax model

M(ξx) =
1

(1− ρ2)


1
σ2
1

E2
maxx

2

(x+ED50)4
1
σ2
1

−Emaxx2

(x+ED50)3
ρ

σ1σ2
−EmaxSmaxx2

(x+ED50)2(x+SD50)2
ρ

σ1σ2
Emaxx2

(x+ED50)2(x+SD50)

· 1
σ2
1

x2

(x+ED50)2
ρ

σ1σ2
Smaxx2

(x+ED50)(x+SD50)2
ρ

σ1σ2
−x2

(x+ED50)(x+SD50)

· · 1
σ2
2

S2
maxx

2

(x+SD50)4
1
σ2
2

−Smaxx2

(x+SD50)3

· · · 1
σ2
2

x2

(x+SD50)2


and for the simple bivariate model it is

M(ξx) =
1

(1− ρ2)

(
1
σ2
1

x2

(x+ED50)4
ρ

σ1σ2
−x2

(x+ED50)2(x+SD50)2

· 1
σ2
2

x2

(x+SD50)4

)
.

In all that follows it is assumed that M is an invertible matrix.
A general problem with optimal designs for non-linear models is that they depend

on the true value of the unknown parameters, θ. The optimal designs constructed in
this paper assume prior values for θ. Such designs are called locally optimal designs.
For dose finding studies the prior is based on data from preclinical and early clinical
trials as well as data from competitor drugs.

The most important tool for verifying that a design is optimal is the General Equiv-
alence Theorem (GET). GET is a synonym for several equivalence theorems used to
demonstrate that designs are optimal. Their form depends on the model, the design
space and the criterion function. The first GET was discovered for D-optimality by
Kiefer & Wolfowitz (1960). The relevant GET for a non-linear, multivariate response
model when the interest is on c-optimality is as follows:
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Theorem 1. (GET). Suppose ξ is a design such that M(ξ)−1 exists. Then ξ is locally
c-optimal with respect to a non-linear function of the model parameters, g(θ), if and
only if,

∇gTM(ξ)−1M(ξx)M(ξ)−1∇g ≤ ∇gTM(ξ)−1∇g, ∀ x ∈ χ. (8)

Further, the equal sign holds for x ∈ {x1, ..., xn}.

The proof for Theorem 1 is given in the Appendix. Note that Ψ in (7) is a special
case of the linear criterion, Ψ = tr{AM−1}. Fedorov (1972) sets up the framework for
optimal designs that minimize the linear criterion in multi-response setting.

5 Designs for estimating the most desirable dose of a
drug

The designs derived in this section are optimal for estimating the most desirable dose
of a drug, provided that such a positive dose exists and that the models and the CUI,
introduced in sections 2 and 3, are reasonable assumptions. More specifically, the
designs are locally c-optimal with respect to the functions in (5) and (6) and depend
on the parameter vector (θ,Ω, k1, k2).

5.1 The simple bivariate model

The following theorem is useful for deriving c-optimal designs for the simple bivariate
model.

Theorem 2. Assume that ξ = {x1, . . . , xn;w1, . . . , wn} is locally c-optimal for the sim-
ple bivariate model with parameters θ = (ED50, SD50), k = (k1, k2) and Ω = (σ1, σ2, ρ)
i.e. ξ minimizes Ψ = ∇gTM−1∇g. If a, b, c ∈ R\{0} then

1. ξ is locally c-optimal for the same model, but with one or more of the following
changes for the parameters

(i) k = (ak1, ak2)

(ii) Ω = (bσ1, bσ2, ρ)

2. ξ∗ = {cx1, . . . , cxn;w1, . . . , wn} is locally c-optimal for the same model, but with

(iii) θ = (cED50, cSD50).

Proof. (i) ∇g(θ, ak1, ak2) = ∇g(θ, k1, k2) andM does not depend on k. Hence Ψ(ξ, θ, ak1, ak2) =
Ψ(ξ, θ, k1, k2).

(ii) M(ξ, bσ1, bσ2) = 1
b2
M(ξ, σ1, σ2) and∇g does not depend on Ω. Hence Ψ(ξ, θ, bσ1, bσ2) =

∇gTM(ξ, bσ1, bσ2)−1∇g = b2∇gTM(ξ, σ1, σ2)−1∇g = b2Ψ(ξ, θ, σ1, σ2).

(iii) ∇g(cED50, cSD50) = ∇g(ED50, SD50) andM(ξ∗, cED50, cSD50) = 1
c2
M(ξ, ED50, SD50).

Hence Ψ(ξ∗, cED50, cSD50) = c2Ψ(ξ, ED50, SD50).
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Theorem 2 implies that without loss of generality 3 out of 7 parameters for the
simple bivariate model can be set equal to one. If ξ is for example known to be locally
c-optimal for the model when k = (1, k2/k1) then Theorem 2 (i) implies that ξ is also
locally c-optimal for the model when k = (k1, k2). Below is a corollary that can be used
to derive locally c-optimal designs for the simple bivariate model when ρ = 0, k1 = k2,
σ2

1 = σ2
2 and the proportion SD50/ED50 is close to one. The proof is provided in the

Appendix. Note that if k1 = k2 then the restriction SD50 > ED50 is necessary, else the
side-effects would always outweigh the effects.

Corollary 1. Let σ2
1 = σ2

2, k1 = k2 and ρ = 0 then, for the simple bivariate model,

(i) ξ = {
√
ED50SD50; 1} is locally c-optimal when SD50

ED50
∈
]
1, 5+

√
21

2

]
.

(ii) ξ = {ED50, SD50; 0.5, 0.5} is locally c-optimal when SD50

ED50
→∞.

Some more locally c-optimal designs for the simple bivariate model are provided in
Table 1 where both the correlation, ρ, and the proportion SD50/ED50 are allowed to
vary. Corollary 1 and Table 1 indicate that when SD50/ED50 is close to one, then the
one point design ξ = {

√
ED50SD50; 1} is locally c-optimal. Else two design points,

x1 and x2 are needed. These two points have equal weights and on logarithmic scale
they are symmetrically located around

√
ED50SD50. Table 1 further indicates that

x1x2 = ED50SD50 and Corollary 1 states that as SD50/ED50 → ∞ these points tend
to ED50 and SD50. Table 1 also shows that ρ influences how close to one SD50/ED50

needs to be in order to have a one point locally c-optimal design. Finally note that each
design point is associated with two responses, one for efficacy and one for safety. Since
the simple bivariate model only has two model parameters this means that M(ξ)−1

exists for all designs, ξ.

Table 1: Locally c-optimal designs ξ = {x1, x2;w1, 1 − w1} for the simple bivariate
model with respect to g(θ) in (6). Here χ = [0,∞], ED50 = 1, k1 = k2 and σ2

1 = σ2
2. If

the design point x2 is not specified then x1 is the only design point.
SD50 ρ

-0.9 -0.5 -0.1 0 0.1 0.5 0.9
6 x1

√
6
√

6
√

6
√

6
√

6 0.9863 0.6214
w1 1 1 1 1 1 0.5 0.5
x2 6.0832 9.6552

7 x1

√
7
√

7
√

7 2.1308 1.6109 0.9349 0.6412
w1 1 1 1 0.5 0.5 0.5 0.5
x2 3.2851 4.3455 7.4876 10.9169

8 x1

√
8
√

8 1.9212 1.5879 1.3763 0.9093 0.6594
w1 1 1 0.5 0.5 0.5 0.5 0.5
x2 4.1640 5.0382 5.8126 8.7978 12.1318

9 x1

√
9
√

9 1.5933 1.4071 1.2641 0.8958 0.6760
w1 1 1 0.5 0.5 0.5 0.5 0.5
x2 5.6488 6.3960 7.1199 10.0473 13.3137

10 x1

√
10
√

10 1.4420 1.3077 1.1972 0.8885 0.6910
w1 1 1 0.5 0.5 0.5 0.5 0.5
x2 6.9346 7.6467 8.3530 11.2543 14.4707
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5.2 The bivariate Emax model

The following theorem is useful for deriving c-optimal designs for the bivariate Emax
model.

Theorem 3. Assume that ξ = {x1, . . . , xn;w1, . . . , wn} is locally c-optimal for the bi-
variate Emax model with parameters θ = (ED50, Emax, SD50, Smax) , k = (k1, k2) and
Ω = (σ1, σ2, ρ) i.e. ξ minimizes Ψ = ∇gTM−1∇g. If a, b, c, d ∈ R\{0} then

1. ξ is locally c-optimal for the same model, but with one or more of the following
changes for the parameters

(i) k = (ak1, ak2)

(ii) Ω = (bσ1, bσ2, ρ)

(iii) θ = (ED50, cEmax, SD50, cSmax)

2. ξ∗ = {dx1, . . . , dxn;w1, . . . , wn} is locally c-optimal for the same model, but with

(iv) θ = (dED50, Emax, dSD50, Smax).

The proof of (i) and (ii) is identical to the proof of Theorem 2 (i) and (ii). The proof
of (iii) and (iv) is provided in the Appendix. Theorem 3 implies that without loss of
generality 4 out of 9 parameters for the bivariate Emax model can be set equal to one.
If ξ is for example known to be locally c-optimal for the model with parameters θ =
(ED50, 1, SD50, Smax/Emax) then Theorem 3 (iii) gives that ξ is also locally c-optimal
for the model with parameters θ = (ED50, Emax, SD50, Smax). For the bivariate Emax
model the design space, χ, needs to be restricted or some design weight is assigned to
an infinitely high dose. Some locally c-optimal designs for the design space χ = [0, 500]
are provided in Tables 2 and 3. These designs are derived by informative guessing and
numerical minimization of Ψ in (7). It is easy to use Theorem 1 to verify that the
designs in Table 2 and 3 are indeed locally c-optimal.

Table 2: Locally c-optimal designs ξ = {x1, 500;w1, 1 − w1} for the bivariate Emax
model with respect to g(θ) in (5). Here χ = [0, 500], ED50 = 1, SD50 = 2, σ2

1 = σ2
2 and

ρ = 0.
Smax

Emax
(k2
k1

= 1) 1 0.9 0.8 0.7 0.6
x1 1.1078 0.7436 0.8234 0.9701 1.1030
w1 0.3944 0.4074 0.4713 0.5285 0.5720

k2
k1

( Smax

Emax
= 1) 1 0.9 0.8 0.7 0.6

x1 1.1078 0.7374 0.7871 0.8719 0.9423
w1 0.3944 0.4157 0.4845 0.5387 0.5774

8



Table 3: Locally c-optimal designs ξ = {x1, x2, 500;w1, w2, 1−w1−w2} for the bivariate
Emax model with respect to g(θ) in (5). Here χ = [0, 500], ED50 = 1, k1 = k2 and
Emax = Smax. If the design point x2 is not specified then x1 and 500 are the only design
points.

SD50 ρ (σ
2
2

σ2
1

= 1) σ2
2

σ2
1
(ρ = 0)

-0.9 -0.5 0 0.5 0.9 0.5 1.5 3
2 x1 1.0188 1.0793 1.1078 1.0972 0.4985 0.8437 1.3875 2.1699

w1 0.1381 0.2800 0.3944 0.5118 0.4883 0.3702 0.4160 0.4670
x2 4.9811
w2 0.3639

3 x1 1.2978 1.2704 1.2833 0.8407 0.4626 0.9356 1.6057 1.7091
w1 0.1987 0.3723 0.4903 0.4736 0.5111 0.4555 0.5197 0.3929
x2 6.0010 5.6854 6.3070
w2 0.2220 0.4213 0.2684

4 x1 1.5396 1.4553 1.1358 0.7026 0.4815 1.0312 1.1128 1.0766
w1 0.2327 0.4188 0.4582 0.4704 0.5197 0.4956 0.4124 0.3433
x2 6.5538 7.6651 6.3468 7.2480 8.9210
w2 0.1282 0.3411 0.4305 0.2700 0.5557

5 x1 1.4473 1.3371 0.9347 0.6662 0.5040 0.9375 0.9327 0.9287
w1 0.2211 0.3933 0.4353 0.4767 0.5232 0.4831 0.4016 0.3420
x2 6.9420 7.2388 8.7514 8.6498 7.0101 8.5842 8.8849 9.1612
w2 0.0538 0.0889 0.2548 0.3853 0.4343 0.0786 0.3833 0.6213

Table 3 indicates that two design points are sufficient as long as 1 < SD50/ED50 < c,
where c is some constant. Else, if SD50/ED50 > c then an additional design point is
needed. Table 3 also indicates how the variance-covariance parameters influence the
designs. The larger ρ and σ2

2/σ
2
1 become the smaller is c for which the statement

above holds. A study where the two responses are negatively correlated (for a fixed
dose) needs, in this setting, equal or fewer design points than if the two responses
are positively correlated. Moreover a study where the variance for the primary safety
variable is large compared to the variance for the primary efficacy variable needs, in this
setting, equal or more design points than if this were the other way around. Finally note
that the designs provided in Table 3 have at least two design points. Each design point
is associated with two responses and thus the designs in Table 3 result in nonsingular
M(ξ).

6 Covariance structure
In the previous section we saw how ρ influences the locally c-optimal designs. In this
section simulation is used to investigate how sensitive the designs are to misspecification
of the parameter ρ. The simulation is carried out as follows. Assume that there are
N = 10000 patients participating in a study for a new investigational drug. Assume
further that the bivariate Emax model with parameters θ = (ED50, Emax, SD50, Smax) =
(1, 1, 3, 1), σ1 = σ2 = 0.1 and ρ = 0 is appropriate. Data is simulated from this model
by using the locally c-optimal design provided in Table 3 that allocates 4930 patients
to 1.2833 ml of the drug and the rest to the maximal dose, 500 ml. Figure 1 depicts the
simulated data for the first 20 patients in each group. The Gauss-Newton algorithm
is then used to fit the simulated data to the model with undefined parameters. Note
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that the efficacy and safety profiles are estimated independent of each other. The
result is used to estimate the most desirable dose, g(θ) defined in (5). By repeating
this procedure 1000 times a simulated estimate for the standard deviation of ˆg(θ) is
obtained. The result can be seen in Table 4. The table also gives estimates derived
analogously by using the design explained above when the true ρ differs and estimates
derived by using the correct c-optimal designs from Table 3 for several different values
of ρ. A graphical representation can be seen in Figure 2. The impact from using the
locally c-optimal design based on the prior ρ = 0 rather than the correct ρ can be seen
by comparing the confidence intervals. As expected using the correct locally c-optimal
design results in more exact estimates than when using designs based on misspecified
priors for ρ. The sizes of the confidence intervals are on the other hand not very
different so in practical applications it might be reasonable to ignore the correlation
when constructing the locally c-optimal designs.

Figure 1: The mean response curves for the bivariate Emax model with parameters
θ = (ED50, Emax, SD50, Smax) = (1, 1, 3, 1), σ1 = σ2 = 0.1 and ρ = 0 and the relevant
CUI curve with k1 = k2 = 1. The locally c-optimal design for this model was used
to simulate observations for 40 patients (each having response both for efficacy and
safety). The figure to the left shows observations for group 1 while the figure to the
right shows observations for group 2.
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Table 4: Simulated estimate of the most desirable dose, g(θ), in (5) and it’s confidence
interval. Here it is assumed that σ1 = σ2 = 0.1 and the true model parameters are
assumed to be θ = (ED50, Emax, SD50, Smax) = (1, 1, 3, 1) and hence gtrue(θ) = 1.7321.
The parameter ρ is varied and the impact of using the locally c-optimal design based
on the prior ρ = 0 rather than the correct one is investigated. The designs used for the
simulation are the locally c-optimal designs from Table 3.

True ρ Design used for simulation ˆg(θ) CI( ˆg(θ))
-0.9 c-opt when ρ = −0.9 (2 point) 1.7319 [1.7142, 1.7495]
-0.9 c-opt when ρ = 0 (2 point) 1.7325 [1.7115, 1.7535]
-0.5 c-opt when ρ = −0.5 (2 point) 1.7316 [1.7108, 1.7523]
-0.5 c-opt when ρ = 0 (2 point) 1.7321 [1.7102, 1.7540]
0 c-opt when ρ = 0 (2 point) 1.7322 [1.7106, 1.7538]
0.5 c-opt when ρ = 0.5 (3 point) 1.7322 [1.7145, 1.7498]
0.5 c-opt when ρ = 0 (2 point) 1.7320 [1.7092, 1.7548]
0.9 c-opt when ρ = 0.9 (3 point) 1.7328 [1.7151, 1.7505]
0.9 c-opt when ρ = 0 (2 point) 1.7322 [1.7085, 1.7559]
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Figure 2: The simulated estimates of the best dose, g(θ) and their confidence intervals
from Table 4.

7 Discussion
The present paper explores the construction of locally c-optimal designs for nonlinear,
bivariate models. The relevant GET is provided with a proof. Particular interest is on
the bivariate Emax model and the simple bivariate model and the search for the most
desirable dose of a drug. Numerical minimization and the GET are used to derive some
locally c-optimal designs for these models. When the correlation ρ and the proportions
σ2

2/σ
2
1, SD50/ED50 are sufficiently small one/two point designs are locally c-optimal

for the simple bivariate/bivariate Emax model model. Else an extra design point is
needed. The simulation carried out in Section 6 indicates on the other hand that the
locally c-optimal designs need not be sensitive to misspecification of ρ. Note that in this
paper the variance-covariance parameters are assumed to be known. It is of interest to
analyze further the impact of these parameters and the uncertainty that arises when
they are unknown.
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Appendix
Lemma 1. Let φ(x, ξ) stand for the derivative of Ψ in the direction ξx and let Ψ be a
general criterion function to be minimized. A design, ξ, is locally optimal with respect
to Ψ if and only if φ(x, ξ) ≥ 0 ∀x ∈ χ. This further implies that φ(x, ξ) = 0 for
x ∈ {x1, ..., xn}.

Proof. See for example, Pázman (1986).

Theorem 1. (GET).

Proof. A design is locally c-optimal with respect to a non-linear function, g(θ), if it
minimizes Ψ as defined in (7). First note that the directional derivative can be written
of the form φ(x, ξ) = tr

(
∂Ψ

∂M(ξ)(M(ξx)−M(ξ))
)
(see Pázman 1986). Now

∂Ψ

∂M(ξ)
=

∂

∂M(ξ)
(∇g(θ)TM(ξ)−1∇g(θ))

= −(M(ξ)T )−1∇g(θ)∇g(θ)T (M(ξ)T )−1

= −M(ξ)−1∇g(θ)∇g(θ)TM(ξ)−1.

From the above we get

φ(x, ξ) = tr(−M(ξ)−1∇g(θ)∇g(θ)TM(ξ)−1(M(ξx)−M(ξ)))

= tr(M(ξ)−1∇g(θ)∇g(θ)T )− tr(M(ξ)−1∇g(θ)∇g(θ)TM(ξ)−1M(ξx))

= tr(∇g(θ)TM(ξ)−1∇g(θ))− tr(∇g(θ)TM(ξ)−1M(ξx)M(ξ)−1∇g(θ))

= ∇g(θ)TM(ξ)−1∇g(θ)−∇g(θ)TM(ξ)−1M(ξx)M(ξ)−1∇g(θ).

Now
φ(x, ξ) ≥ 0 ⇔ ∇g(θ)TM(ξ)−1M(ξx)M(ξ)−1∇g(θ) ≤ ∇g(θ)TM(ξ)−1∇g(θ).

Corollary 1.

Proof. (i) Let s := SD50

ED50
> 1, θs = (1, s) and ξs = {

√
s; 1}. By working out both sides

of (8) Theorem 1 gives that ξ2 is locally c-optimal if and only if f(x) := x2
(

1
s(x+1)4

+

s
(x+s)4

)
≤ 2

(
√
s+1)4

∀x ∈ χ. The equal sign holds when x =
√
s and one can show that this

point is a local maximum given that s ∈
]
1, 7+3

√
5

2

[
. (f ′(

√
s) = 0 ∀s ∈ χ and f ′′(

√
s) <

0 ⇔ s ∈
]

7−3
√

5
2 , 7+3

√
5

2

[
). Now f ′(x) = 2x(x −

√
s)(x +

√
s)g(x)/((x + s)5(x + 1)5)

where g(x) is a polynomial of degree 4. If s ∈
]
1, 5+

√
21

2

]
then all coefficients of g(x)

are negative and hence x =
√
s is a global maximum. This gives that ξs is locally

c-optimal for this interval and thus ξ = {ED50

√
s; 1} = {

√
ED50SD50; 1} is locally

c-optimal for the model with θ = ED50θs=(ED50, SD50) given that SD50

ED50
∈
]
1, 5+

√
21

2

]
.

(ii) Let s := SD50

ED50
, θs = (1, s) and ξs = {1, s; 0.5, 0.5}. By working out both sides of (8)

Theorem 1 gives that ξ2 is locally c-optimal if and only if( 32(s+ 1)4

16s2 + (s+ 1)4

)2 sx2

4

( 1

(x+ 1)4
+

s2

(x+ s)4

)
≤ 16s(s+ 1)4

16s2 + (s+ 1)4
∀ x ∈ χ,
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which is equivalent to
16(s+ 1)4

16s2 + (s+ 1)4
x2
( 1

(x+ 1)4
+

s2

(x+ s)4

)
≤ 1 ∀ x ∈ χ. (9)

The left hand side of (9) goes to 16x2 1
(x+1)4

as s → ∞. Finally 16x2 1
(x+1)4

≤ 1∀x ∈
χ. This gives that ξs is locally c-optimal and thus ξ = {ED50, ED50s; 0.5, 0.5} =
{ED50, SD50; 0.5, 0.5} is locally c-optimal for the model with θ = (ED50, ED50s) =(ED50, SD50)

as SD50

ED50
→∞.

Theorem 3.

Proof. We start by introducing a shorter notation for the standardized information
matrix for the bivariate Emax model provided in Section 4. Let

M(ξ) =


b11 b12 b13 b14

. b22 b23 b24

. . b33 b34

. . . b44

 .

(iii) First note that ∇g(ED50, cEmax, SD50, cSmax)
T = (g1,

1
c
g2, g3,

1
c
g4) and hence

Ψ(ξ, ED50, cEmax, SD50, cSmax) =
(
g1

1
c
g2 g3

1
c
g4
)

c2b11 cb12 c2b13 cb14
. b22 cb23 b24
. . c2b33 cb34
. . . b44


−1

g1
1
c
g2
g3
1
c
g4



=
(
g1

1
c
g2 g3

1
c
g4
)(

c 0 0 0
0 1 0 0
0 0 c 0
0 0 0 1



b11 b12 b13 b14
. b22 b23 b24
. . b33 b34
. . . b44



c 0 0 0
0 1 0 0
0 0 c 0
0 0 0 1


)−1


g1
1
c
g2
g3
1
c
g4



=
(
g1

1
c
g2 g3

1
c
g4
)

1/c 0 0 0
0 1 0 0
0 0 1/c 0
0 0 0 1



b11 b12 b13 b14
. b22 b23 b24
. . b33 b34
. . . b44


−1

1/c 0 0 0
0 1 0 0
0 0 1/c 0
0 0 0 1



g1
1
c
g2
g3
1
c
g4


=

1

c2
Ψ(ξ, ED50, Emax, SD50, Smax).

(iv) First note that ∇g(ED50, cEmax, SD50, cSmax)
T = (g1, dg2, g3, dg4) and hence

Ψ(ξ∗, dED50, Emax, dSD50, Smax) =
(
g1 dg2 g3 dg4

)
b11/d2 b12/d b13/d2 b14/d
. b22 b23/d b24
. . b33/d2 b34/d
. . . b44


−1

g1
dg2
g3
dg4



=
(
g1 dg2 g3 dg4

)(
1/d 0 0 0
0 1 0 0
0 0 1/d 0
0 0 0 1



b11 b12 b13 b14
. b22 b23 b24
. . b33 b34
. . . b44




1/d 0 0 0
0 1 0 0
0 0 1/d 0
0 0 0 1


)−1


g1
dg2
g3
dg4



=
(
g1 dg2 g3 dg4

)
d 0 0 0
0 1 0 0
0 0 d 0
0 0 0 1



b11 b12 b13 b14
. b22 b23 b24
. . b33 b34
. . . b44


−1

d 0 0 0
0 1 0 0
0 0 d 0
0 0 0 1



g1
dg2
g3
dg4


= d2Ψ(ξ, ED50, Emax, SD50, Smax).
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