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                   Abstract 

Direct and indirect seasonal adjustments can be viewed as opposite  

formulations of an error minimization problem that occurs when seasonally 

adjusting a system of time series. In this study, a loss function is formulated that is 

a weighted combination of the errors of the input time series and the aggregate 

error. Holt-Winters’ exponential smoothing methods on squared error loss 

functions or robust Huber loss functions are applied to quarterly Swedish GDP and 

monthly foreign trade data. All input series are seasonally adjusted jointly but still 

univariately and trade-off point between direct and indirect seasonal adjustments 

are estimated. The quadratic loss function is found to cause larger differences 

between direct and indirect seasonal adjustments than the Huber loss function does. 

Results indicate that pure indirect seasonal adjustment should be avoided for GDP 

and pure direct seasonal adjustment should be avoided for foreign trade. 

Adjustments in between with a combined loss function seem to work well for all 

purposes. 
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1   Introduction 

     Seasonal adjustment of time series often raises the issue of direct or indirect methods. This 

occurs when systems of time series are considered, for instance time series of gross domestic 

product – total and for all industries, unemployment – overall and by gender and age, or 

foreign trade – balance of trade and exports and imports. By direct estimation, it is meant that 

the aggregate time series is seasonally adjusted independent of the seasonal adjustments of the 

individual series, while indirect estimation implies that all time series constituting the 

aggregate are seasonally adjusted separately so that the aggregate seasonal adjustment is 

obtained implicitly from their combination. 

 

      In this paper, the problem of seasonal adjustment order is attacked by applying a target 

function in estimations. A trade-off frontier between adjustments is stated for the time series 

system such that a loss function reaching from indirect to direct estimation is formulated. A 

Holt-Winters method is used and the loss function is expressed as the method’s ability to 

predict future observations. 

 

     The note is organized as follows. In the next section, a brief review of related work is 

given. Section 3 introduces a basic exponential smoothing method and its state space 

formulation. A discussion on how to assess the aggregation order is found in Section 4. The 

data and the procedure are presented in Section 5. Some further findings and conclusions are 

discussed in Sections 6 and 7. 

 

2   Earlier work 

     Among the earliest studies, Geweke (1978) considered the order of aggregation and 

estimation in terms of a multivariate (optimal) model, to which he compared direct and 

indirect univariate estimation. Using frequency domain arguments, he found that multivariate 

estimation prior to aggregation was to prefer. As critique of this, Maravall (2005) pointed out 

that these results were “of limited interest” in practice since the proposed kind of estimation 

method did not exist in practice and referred e.g. to a study by Ghysels (1997) which 

indicated contrasting results. Maravall (2005, 2006) advocated direct seasonal adjustment in 

most cases because of several reasons, among which that less irregularities remain in 

aggregate series. Planas & Campolongo (2000) stressed that only when series had similar 

spectral densities, direct estimation was preferable while for series with differing spectral 

densities, indirect estimation was superior. They also pointed out the advantages of 

multivariate estimation. Birrell et al. (2008) and Thorburn & Tongur (2013) discussed the 

issue in terms of state space models. They found that the solution depends on the covariance 

structures of the involved series. Both studies favored a multivariate, i.e. optimal, approach. 

However, although multivariate estimation is theoretically possible and desirable, it 

practically leaves out much of the technical sophistication available in standard seasonal 

adjustment packages. 



 2 

3   A simple seasonal adjustment method 

3.1   Univariate representation of the algorithm 

     Assume that a time series 
tY  with period P (i.e. P=4 for quarterly data) can be written as a 

sum of three components: a trend 
tT , a seasonal 

tS  and an irregular effect 
tE ;  

tttt ESTY . These components, which are unobserved, are assumed to consist of an 

expected level 
1t
 with a growth 

1tm , and a seasonal component )(,1 tpts  for the coming 

period  p(t) (1,2,..P). Assuming that all these terms were known, the prediction/innovation 

error would be given by 

 

)( )(,111 tpttttt smY .   (3.1a) 

 

Let )(L  = 
T

t

tL
1

)(  be a loss function measuring how big the loss will be when the 

innovation errors t   are observed. The components t , 1t , 1tm  and )(,1 tpts  can be 

estimated by minimizing the total loss under some constraints. The exact procedure will be 

described in more detail in Sections 4 and 5. The following updating procedure is used, 

inspired by the Holt-Winters technique and uses exponential decay parameters *a , *b  and *c : 

 

 tttt am *

11 ,    (3.1b) 

 

 ttt bmm *

1 .    (3.1c) 

 

Following Roberts (1982), the seasonal updating mechanism gives the seasonal effect 

 

 ttpttpt cwss *

)(,1)(, ,       (3.1d) 

 

when )(tp  is the concurrent season at time point t, whereas the non-concurrent seasons 

)(tpp  are updated with a zero summation constraint 

 

tjtjt Pcwss ))1/(( *

,1, ,   (3.1e) 

 

with ]1,0(w . This seasonal damping (or persistence) parameter is set to unity, i.e. 1w , 

implying that seasonality is assumed non-stationary. Since the model is used only for 

estimation through one-step predictions, this choice is natural. The seasonally adjusted time 

series SA( tY ) can be obtained by )(, tptt sY , the seasonally adjusted and smoothed series (the 

trend) will be t   and the irregular component is by definition )(, tpttt sY .  This way, 

components are estimated on all available observations at each time point t, i.e. the seasonal 

adjustment can be made to the last observed time point. 



 3 

3.2   Univariate representation of a state space counterpart 

     This estimation algorithm may also be expressed by a presumably underlying state space 

form. Let 
tθ  be the state vector which comprises the components },...,,,{ ,2,1, Pttttt sssm  and 

let F )101( 1P0   be a vector projecting these on 
tY : 

 

 tttY 1GθF ,    (3.2) 

 

where G  is the )2()2( PP  state transition matrix for seasonal effects, identical to the 

one found in West & Harrison (1989, Chapter 8) for Dynamic Linear Models (DLM). Let g  

be the innovation partitioning vector from (3.1a-e). Updating of the state vector is 

 

ttt gGθθ 1 ,    (3.3) 

 

with 

 

                     tθ
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This representation is an extension of the one used by Roberts & Harrison (1984), who 

proposed a common seasonal matrix between the Holt-Winters method and DLM.  This 

seasonality structure implies estimating a rotating seasonal component, with focus on the 

concurrent season at each time, as can be realized from the general seasonal updating 

mechanism. The pitfall of this approach is that noise is equally distributed among non-

concurrent seasons, which may cause instability in some cases when seasons are of markedly 

different magnitude. However, as should be clear, this exponential smoothing formulation 

does not require any distribution theory, whereas the DLM, which is a Kalman filter, uses 

normality (or Student-t) of innovation errors. 

 

3.3   Multivariate representation 

     It is possible to express the previous formulation in a multivariate form. This is called 

Vector Exponential Smoothing (see e.g. Athanasopoulos & de Silva, 2010) of n series; 

 

 tPtttt εsmτY 11  ,   (3.4a) 

 

 tttt εamττ
*

11 ,    (3.4b) 

 

 ttt εbmm
*

1 ,    (3.4c) 
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 ttpttpt εcwss
*

)1(,1)(, ,    (3.4d) 

 

 tjtjt P εcwss ))1/(( *

1,, .   (3.4e) 

 

The innovation of (3.4) is )( )1(,111 tpttttt smτYε  and ** ,ba and *
c  are now vectors, 

so the method in (3.4) is a vector-stacked form of the univariate approach in (3.1a-e), with 

dimension (
tY ) = 1n . The multivariate state space representation follows (c.f. 3.2, 3.3): 

 

ttt εGΘFY 1 ,    (3.5) 

 

ttt gεGΘΘ 1 ,    (3.6) 

 

with G as before, a diagonal innovation matrix tε = ),...,,( 21 ndiag  of dimension nn  and 
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g . 

 

with 1)1(P  and the state matrix 1tΘ  containing each individual state vector )(

1

j

tθ  for 

any one of the j  n series. This representation can be found for in e.g. West & Harrison 

(1989, Chapter 15). The diagonal innovation matrix implies a non-assumption of seemingly 

unrelated time series equations (SUTSE): the series in the system are independently but 

jointly estimated with uncorrelated errors. This is a justified assumption since standard 

methods for seasonal adjustment are univariate. 

 

3.4   Admissible parameters 

     Since ttt YY ˆ , where 1
ˆ

ttY GθF , the model can be rewritten as  

 

 )( 111 tttttt Y GθFgGθgGθθ .   (3.7) 

 

Back-solving (Hyndman et al., 2008, Chapter 3) until the initial value renders 

 

 jt

j
t

j

t

t YgGFgGθGFgGθ )()(
1

0

0 ,  (3.8) 

 

which is a function of the initial state and the data. If )( GFgG has all eigenvalues inside 

the unit circle, the model will be stable in the sense that the importance of past observations 
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decays exponentially at the rate chosen by the modeler. Hence, the parameter spaces for *a , 
*b  and *c  (c.f. 3.1b-e) are conventionally restricted to 

 

 10 *a ,          ,** ab         ** 10 ac . 

 

Should the eigenvalues lie on the unit circle, the model would not be stable but would still 

render stable forecasts, i.e. the projection of  
tY   h periods ahead, htŶ , will not be dependent 

of distant past observations while the projection of the state matrix may be. This forecasting 

stability, or forecastability, allows for wider parameter regions, often bounded at 2 for this 

model specification; see Hyndman et al. (2008a, Chapter 10) and Hyndman et al. (2008b) for 

necessary regularity conditions and possible parameter regions. For seasonal adjustment, the 

mere interest is in one-step ahead predictions, hence forecastability suffices. 

 

 

4   Assessment of the aggregation order 

4.1   An introductory observation 

     Consider an aggregate of n = 2 series: ttt ZXY . Summing the seasonal adjustments of 

the individual series tX  and tZ  gives the indirect seasonal adjustment of tY , while seasonally 

adjusting tY  provides a direct seasonal adjustment for this formulation. However, a 

reformulation by tt YW  and tt XV  gives the aggregate ttt ZWV . Now, direct 

seasonal adjustment calls for adjusting tX  first (Thorburn & Tongur, 2013). The adjustment 

order is thus in some sense depending on the context and cannot be said to be uniquely 

determined. Given a specific aggregate formulation, the question may be addressed in terms 

of minimizing the total innovation of the formulation. This requires a loss function related to 

both the individual series and the aggregate. 

 

4.2   Robust loss functions 

     Since our algorithm is not based on a stochastic model, other loss functions than some 

multiple   of the squared error loss L( , ) = 
T

t

t

1

2  may be used, e.g. L( , ) =  
T

t

t

4 ,   

])||exp(1[
T

t

d

t   or 
T

t

t

1

|| , as mentioned by Kalman (1960). Another loss function 

from robust statistics is the Huber loss criterion (Huber, 1964), which has square penalization 

until a specific distance  from the prediction and thereafter an absolute penalization: 

 

                              
elsewhere.         )2/||(

,  || if                   ,2/||
),(

2

2

tt

ttt
L    (4.1) 

   

The distance j  is commonly chosen as a percentile (e.g. the 95
th

 percentile) of the 

innovation error distribution for each series. 
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     Since the aggregation problem only occurs when there is an aggregate of n 2 series, there 

will be n+1 single loss functions to minimize simultaneously. A total loss function ),(D  is 

defined as the sum of d-normed loses for some weights  and : 

 

      d

Aggtt

d

ntt

d

tt

d

tt
nnn

D ||||...||||),( ,,2,1, ,       (4.2) 

 

where jt ,  (j=1,2,..n) is the error for each j series, and the aggregate error of the n series 

summarized at every time point is 
n

j

JtAggt

1

,, . For the Huber loss, the total loss function 

),(D  is the sum of the individual series’ losses and the aggregate loss:  

        

                                       ),(),(),(
1

AggAgg

n

j

jj LLD . 

 

A quadratic loss (d=2) implies high sensitivity to outliers/irregular observations and results in 

a non-robust model fit (Rousseeuw, 1991, and Hastie et al., 2009), so an absolute loss (d=1) 

may then be more appropriate. The Huber loss function is a mixture of these two cases. 

 

4.3   A continuum of adjustments between direct and indirect approaches 

     The weights  and , 1,0 , reflect the preferential trade-off between the errors of 

the individual series and the aggregate error, and without loss of generality, 1 .   

A minimization of the total loss at =1 over all series and time points implies that the 

aggregate series does not matter and that mere focus is on finding the best possible estimate 

of each series. The aggregate series is then indirectly seasonally adjusted. Minimizing the 

loss function at =0 over all series and time point implies that the aggregate sum of errors is 

minimized at each time point, which puts emphasis on the aggregate formulation, i.e. best 

possible estimate of direct seasonal adjustment. A weight between these extremes can be 

viewed as the trade-off frontier in assessing the importance of the two approaches, as 

visualized in Figure 1.  This continuum of adjustments, from =1 to =0, can be studied by 

normalizing the loss function through 

 

))0()1()1(/()( DDDC  

 

in order to eliminate the impact of the linear increase in . 



 7 

 

 
   Figure 1. Trade-off frontier between indirect estimation ( 1) with n individual losses jL  

   and direct estimation ( 0 ) with aggregate loss .AggL  

 

 

     The aggregate error is obtained indirectly in our formulation, so explicit estimation of the 

aggregate series 
n

t

jtAggt YY
1

,,  is considered ancillary with respect to the estimation of the 

loss function since the aggregate decomposition should be the sum of the individual series’ 

decompositions, e.g. the aggregate trend based on two series is by definition 

Aggttt ,2,1, . This reflects the fundamental motive for this paper: direct estimation of the 

aggregate series regardless of the subseries is rarely an isolated question since the subseries 

still require seasonal adjustment, independent of the aggregate series. Birrell et al. (2008) 

assess the estimation problem in another fashion: by making a data transformation, they 

achieve a state space representation of n series in which the aggregate is the n:th series, a 

necessary mathematical maneuver since it is a linear combination of the others. 

 

4.4   Finding a setting that works both as direct and indirect seasonal 

adjustment 

     Each estimate g  of the parameter vectors ** ,ba and *
c  is the point estimate that 

minimizes the total loss conditional on the trade-off weight . Dual to this, one may instead 

study the influence on the total loss function from choosing another  conditional on the 

best estimate g . Such a variability function, henceforth VF, implies evaluating the total loss 

function at different weights , now denoted * , conditional on the weight  for which the 

best setting g  was estimated: ),|( *
gVF . 

 

     The VF is interpreted as the incurring total loss from a non-optimal estimation of the time 

series system given another desirable trade-off. It can be expressed for direct ( )1  and 

indirect ( 0 ) seasonal adjustment in normalized form as 

 

10*

*

)0|0(

)1|0(
VF

VF

VF
  and   01*

*

)1|1(

)0|1(
VF

VF

VF
.                 (4.3a, b)  

 

The ratio 10VF  in (4.3a) is the error from using direct seasonal adjustment given that we 

know the best possible estimate at indirect seasonal adjustment, normalized at the best direct 

seasonal adjustment estimate. 01VF  (4.3b) is the error of applying indirect seasonal 

adjustment given that we have the best possible estimate at direct seasonal adjustment, 

  1 0  

T

t

n

j
jtAgg

L

1 1
,

min  

n

j

T

t
jtj

L

1

)

1
,

(min  
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normalized at indirect seasonal adjustment. The margins of the variability function, with base 

value at either direct or indirect seasonal adjustments, are denoted )0|( *VF / )0( *D  

and )1|( *VF / )1( *D , respectively, and they represent the relative total loss in the 

continuum of best possible seasonal adjustments (c.f. 4.3a-b). 

 

 

5   Estimation and data 

5.1   Estimation 

     The approach of Section 3 requires that the initial state vector 0θ = }',...,,,{ ,02,01,000 Psssm  

and the exponential decay parameters *a , *b  and *c  are determined simultaneously for each 

series at each weight  in the loss function. This can be an intractable optimization problem 

since the state vector variances can be quite large. The problem may be reduced stepwise 

through the following. 

 

     Initial states are first seeded according to the following heuristic scheme proposed by 

Hyndman et al. (2002). 

 

 A P+1 moving average tSMA  is computed through the first 4P observations from 

t=P/2+ j,  j>0. Then taking tt SMAy  from t=P/2+1 to t= 7P/2 gives a detrended 

series. The average value over each season is then used as initial seasonal component 

after being normalized to zero-summation over all seasons during this initial period. 

 

 The level component is estimated by seasonally adjusting the series through the 

preceding step and then fitting a linear regression of the first 10 observations on a time 

indicator t=1,2,..,10. The intercept from this regression will be the initial level and the 

slope will be the initial level growth component. 

 

This seeding is done independently for each series and used for finding 
*

ja , 
*

jb  and 
*

jc  by 

minimizing the (single) loss function for each series. This is carried out through a Newton-

Raphson procedure included in the SAS ® software. 

 

     Estimating the 3n parameters 
*

ja , 
*

jb  and 
*

jc  simultaneously can be difficult for large n.  

These elements in the parameter vectors ** ,ba and *
c  can be written as joj aaa*

, joj bbb*
 

and jj ccc 0

*
, respectively. Then, 0a , 0b  and 0c  are the common factors of all input series’ 

parameters. These common factors can be found by first processing the n series independently 

by the Newton-Raphson procedure with the obtained seed states. By taking logarithms of the 

obtained parameter estimates, e.g. )log()log()log( 00 jj aaaa  and subtracting the mean 

logarithmic estimate over all series, the variable parts ja , jb  and jc  are obtained after the 

necessary anti-logging. Finally, the variable parts are kept fixed and the three common factors 

0a , 0b  and 0c  are estimated by  applying the Newton-Raphson procedure to minimize the 

total loss function for desired weights  in the uniform interval [0,1], inclusively. Now 
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having a complete set of 3n parameters and seed states, a full Newton-Raphson optimization 

of the total loss function can be done based on these precise start values. 

 

     The exponential decay parameters *a , *b  and *c are allowed to exceed one but are 

constrained to two. The break-point j  in the Huber loss function is set to the 95
th

 percentile 

of innovation errors for each series. The total loss function is estimated by starting at =0 

and moving in 199 steps, 
199

199
,...,

199

1
,

199

0
,  to =1,  making 200 estimates, i.e. 200 

different seasonal adjustments of each series. 

 

5.2   Data 

     Two different time series systems are used here. The first data set is monthly Swedish 

foreign trade in goods, exports and imports, spanning from January 1975 to December 2012 

in current prices, seen in Figure 5. The aggregate in this case is the balance of trade, i.e. 

exports minus imports. These are high quality data with generally high precision and are 

collected by Statistics Sweden and the Swedish Customs Office monthly as a cut-off census 

with very low undercoverage. 

 

     The second data set is quarterly Swedish Gross Domestic Product (GDP) in fixed prices 

with reference year 2011, computed by Statistics Sweden. The GDP series span from the first 

quarter 1993 to the third quarter 2012 and consists of combinations of series according to SNI 

(NACE) 2007 classification. GDP is studied both as an aggregate of 9 series of similar size, 

denoted GDP-9, (Figure 6)  and in more detailed form of 30 series of varying sizes, denoted 

GDP-30. An extract of some series is given in Figure 7. 

 

     These two time series systems exemplify the reformulation principle of Section 4: the 

foreign trade aggregate, i.e. the balance of trade, is the sum of series with different signs 

(exports minus imports), and aggregate GDP is a grand total of series with positive signs. 

 

6   Results 

     Seasonal adjustments of the foreign trade and the GDP-9 systems and some of the series in 

the GDP-30 system are given in Figures 5, 6 and 7. The foreign trade series, which cover 

almost 40 years, are split into two time periods since their levels are steadily increasing over 

time. 

 

     Relative losses at endpoints are given in Table 1. For the foreign trade, the relative loss 

incurring from indirect estimation given a direct specification ( 01VF ) is markedly greater than 

the opposite case of direct estimation given an indirect specification ( 10VF ): 1.42 against 1.13 

with Huber loss, and 1.50 against 1.14 with quadratic loss. For the GDP-9 system, the relative 

differences are quite small; 1.03 for 01VF   against 1.02 for 10VF  with the Huber loss and 

somewhat larger with squared loss. For the larger GDP-30 system, the overall relative 

discrepancies increase (as was pointed out by Maravall, 2005) and the relative differences 

between approaches grow. The GDP-9 system seems to be the most homogenous system with 

respect to specification, i.e. insensitive to direct or indirect seasonal adjustment, whereas the 
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foreign trade is the most heterogeneous system, most sensitive to the choice of estimation 

order. 

 

 

Measure\Series Foreign Trade GDP-9 GDP-30 

Huber 
10VF  1.13 1.02 1.10 

Huber 
01VF  1.42 1.03 1.15 

Quadratic 
10VF  1.14 1.05 1.16 

Quadratic 
01VF  1.50 1.11 1.21 

          Table 1. Relative measures (expression 4.3) of differences between direct and  

           indirect estimation. 

 
 

     Figures 2a-c show that total losses are not linear in . The skewed areas indicate regions 

where the total loss decays more slowly and are thus indicative of what trade-off weights not 

to choose. For foreign trade, it is seen that the largest loss appears when  is low, implying 

that estimations tending at direct seasonal adjustment will be least favorable with respect to 

total system discrepancies. This is an expected result since the balance of trade is a volatile 

series that may be negative. 

 

     For GDP, the opposite situation occurs: the heavier loss regions appear with larger , 

indicating that estimations tending at indirect seasonal adjustment will be most undesirable 

with respect to total loss in the system, although also depending on the choice of loss 

function, which was seen from Table 1. The Huber losses are, by construction, smaller than 

squared losses, and for the GDP systems they also tend to be more skewed towards indirect 

adjustments. 
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Figure 2a-c. Normalized loss functions for  in the unit interval: a) foreign trade, b) GDP-9, and  

c) GDP-30. The larger (outer) functions are the quadratic loss and the smaller (inner) functions are the 

Huber loss. 

 

 

    The variability function margins for the GDP-30 system with Huber loss are given in 

Figures 3a-b.  The first graph shows the relative increase in loss from applying seasonal 

adjustment for any tradeoff other when parameters are estimated =0. The second graph 

shows the opposite case of =1. These pictures confirm the interpretation of Figure 2c: the 

largest relative changes in total loss occur in the neighborhood of indirect seasonal 

adjustment, =1. The losses are flat until close to indirect estimation. For the foreign trade 

system (Figures 4a-b), it is seen that the incurred losses change continuously when moved 

away from the original estimate, and their shapes confirm the endpoint losses in Table 1.
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Figure 3a-b. Variability function margins relative to base value for GDP-30 with Huber loss. 

a) Direct estimation with base value 0* . b) Indirect estimation with base value 1*
.  

Horizontal axes show  and vertical axes show relative loss. 
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Figure 4a-b. Variability function margins relative to base value for foreign trade with Huber loss. 

a) Direct estimation with base value 0* . b) Indirect estimation with base value 1*
.  

Horizontal axes show  and vertical axes show relative loss at base point. 
 

     Some illustrations of the variability function are given in Figures 8-10. It is clearly seen 

from Figures 8 and 9 that the largest loss for the GDP-30 system incurs from applying direct 

seasonal adjustment ( * =0) when parameters are estimated for indirect seasonal adjustment 

( =1). Figure 10 shows the opposite case for the foreign trade: the largest loss is incurred 

when estimations are direct =0 and applied at indirect adjustment ( * =1). These results 

mirror the endpoint losses given in Table 1.  

 

     The complete continuum of seasonal adjustments of the aggregate series )( AggYSA   or any 

other series can be illustrated through the following relative measure. By taking each of the 

estimated 200 seasonal adjustments of the series at each time point and then subtracting the 

mean of these (200) adjustments renders a value that is demeaned across the seasonal 

adjustments. This value is then put in relation to the range of the 200 adjustments, i.e. 

maximum seasonally adjusted value minus minimum seasonally adjusted value of the 200 

adjustments: 

           
)(min )( max

200/)()(

,,
i

,,

200

1

,,,,

tiAggtiAgg
i

tiAggtiAgg

YSAYSA

YSAYSA

      for i=1,2,...,200, t.
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In Figure 11, the continuum of seasonal adjustments of total production, i.e. the aggregate 

series, is obtained by applying the Huber loss to GDP-30. It is clearly seen that for a large 

region from zero to almost unity of , there are small differences between adjustments, while 

close to unity, i.e. when close to indirect seasonal adjustment, the seasonal adjustments tend 

to differ markedly from the rest of the -interval. 
 

 

7   Concluding remarks 

     The notion of this study has been to consider whether direct and indirect seasonal 

adjustments can be traded off for some mixture in between. We have seen that either approach 

may be undesirable, whereas an estimation targeting both may be the least harmful with 

respect to total error remaining in the time series system. 

 

     A conclusion drawn from these results is that the choice of loss function impacts the 

choice of aggregation order. Since standard estimators are Minimum Mean Squared Errors 

(MMSE) estimators due to normal theory, they will always penalize large errors more than 

e.g. the Huber loss, and therefore increase the rift between direct and indirect seasonal 

adjustments more than appears to be necessary. 

 

     The seasonal adjustment problem formulation used here requires all series be available 

contemporaneously. Should this not be the case, the proposed weighing approach is still 

applicable on a complete data set at the latest available time point. Once parameters are 

estimated for the formulation, they may be used in forthcoming seasonal adjustments of the 

individual series, rendering their desired aggregate. 

 

     A simple Holt-Winters algorithmic approach has been used here, but the methods remain 

to be considered for use in other modeling approaches such as ARIMA or Kalman filtering. 
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Figure 5. Monthly Swedish Exports and Imports & Balance of Trade during 1975-2012 and seasonal 

adjustments estimated at 5.0  with Huber loss. Years 1975-1993 in the first column and 1994– 

2012 in the second column. 
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Figure 6. Quarterly Swedish GDP series during 1993-2012 and seasonal adjustments estimated at 

=0.5 with Huber loss. 9 aggregate groupings of NACE 2007 and total GDP. 

 
Codes given in Figure 6 follow: A) Agriculture, forestry, fishing. B) Mineral extract.  

C) Manufacturing industry. D,E) Electricity, gas, steam and air conditioning, water supply, waste.  

F) Construction. G) Wholesale and retail trade. H) Transport and storage. I) Hotels and restaurants. 

 J) Information and communication. K) Financial services and insurance. L) Real estate activities. 

M,N) Professional, scientific, technical and administrative activities. P,Q) Education, health and social 

work activities. R) Personal and art services. S,T) Other service activities and activities of households 

as employers. 
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Figure 7. Selected series from GDP-30 indicated by their NACE code and seasonal adjustments 

estimated at =0.5 with Huber loss. 
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Figure 8. Variability function for GDP-30 with Huber loss. Non-normalized. The left front axis is  

and the right front axis is
*

. Nearest point of view is ( =0,
*

=0). 
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Figure 9. Variability function for GDP-30, Huber loss. Leveled down by subtraction of minimum 

values of loss at ( ,
*

) = (0,0) and (1,1) and thereafter scaled to unity in height (vertical axis 

labeled Cstar). The left front axis is  and the right front axis is 
*

, intersecting at nearest point of 

view (0,0).  
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Figure 10. Variability function for foreign trade, Huber loss. Leveled down by subtraction of 

minimum values of ( ,
*

) at (0,0) and (1,1). Height axis scaled to unity. The left front axis is  

and the right front axis is 
*

, intersecting at nearest point of view (1,1). 
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Figure 11. Seasonal adjustment of total production obtained from GDP-30, Huber loss. Relative 

differences between seasonal adjustments in a continuum from =1 to =0. Computation explained 

in Section 6. The left front axis is  with =1 in nearest view and the right front axis is the time 

span, with 1993 in nearest view. 
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Figure 12. Estimated quarterly seasonal components for real estate activities, SNI (NACE) L68. 

 

 
Figure 13.Estimated quarterly seasonal component for manufacturing of textiles, clothing and leather 

products  SNI (NACE) C13-C15. 

 

 
Figure 14. Estimated quarterly seasonal component for total GDP of industrial production. 
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