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Abstract

The analysis of high-throughput data commonly used in modern applications poses many sta-
tistical challenges, one of which is the selection of a small subset of features that are likely to be
informative for a specific project. This issue is crucial for success of supervised classification in very
high-dimensional settings with sparsity patterns. In this paper, we derive an asymptotic framework
that represents a sparse and weak blocks model and suggest a technique for block-wise feature se-
lection by thresholding. Our procedure extends standard Higher Criticism (HC) thresholding to the
case where the dependence structure underlying the data can be taken into account and is shown
to be optimally adaptive, i.e. it performs well without knowledge of the sparsity and weakness pa-
rameters. We empirically investigate the detection boundary of our HC procedure and performance
properties of some estimators of sparsity parameters. The relevance and benefits of our approach for
high-dimensional classification is demonstrated using both simulation and real data.

Keywords: Higher criticism, detection boundary, high dimensionality, supervised classification, sep-
aration strength.
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Introduction

The last decades′ technical advancements have created an abundance of high-dimensional
data where the number of features, p, greatly exceeds the number of units, n, e.g. signal
detection, image processing and RNA sequencing. In this type of high-dimensional data
it has often been observed that out of the many features, in practice only a few are
informative for a current project. For example, in gene expression data, only some genes
demonstrate significant differences in the expression level between tumor and normal
tissue, i.e. such genes that can be informative for classification are very sparse; see
e.g. [19]. Further, the separation strength of those informative features turns out to
be relatively low. These types of settings, usually described by the sparse and weak
(SW) model, imply an especially challenging statistical problem in identification of the
informative features.

For the SW model, with the proportion of informative features (sparsity) and the
separation strength (weakness) heading towards zero with growing p, the possibility of
detection has been extensively studied for the case of Gaussian data with independent
features; see e.g. [11, 30, 4, 12]. In particular, it has been shown that the likelihood-ratio-
based procedure designed for detecting informative features behaves differently depending
on the sparsity and weakness parameters [11], exhibiting so-called detection boundary
phenomena. The main results discussed in e.g. [27, 13] deal with the detection boundary
for the likelihood ratio test (LRT) under different types of assumptions e.g. heterogeneous
and heteroscedastic Gaussian mixtures.

When the goal is to select a subset of highly discriminative features that will be used
in a classification model, a selection threshold can be identified. It is well known that, for
testing hypothesis such that the separation strength of a feature is non-zero, the LRT is
optimal in the sense of minimum error. Accordingly, a threshold based on the LRT pro-
cedure will be an ideal choice. However, the LRT requires knowledge of the parameters,
in our case sparsity and weakness parameters. A thresholding procedure which performs
asymptotically as well as the LRT but does not require parameter knowledge (i.e. opti-
mally adaptive) is based on Higher Criticism (HC) [4, 5, 6, 27]. The concept of HC was
originally introduced by [28] as an approach to multiple testing using p-value-based sec-
ond level test statistics. The HC approach has been considered in the literature (not only
for classification but also e.g. signal detection), however mostly under the assumption of
independent Gaussian distributed features; see e.g. [17, 15].

In this study we extend the consideration to the case where dependence is allowed
within groups of features (blocks) and suggest block-wise feature selection under properly
adjusted sparsity and weakness assumptions (SWB). Further, we derive detection bound-
aries for reliable feature identification and successful classification in a high-dimensional
asymptotic framework, which links p and n with sparsity and weakness parameters of
SWB model. We modify the HC technique by Donoho et al. [4, 5, 6] to a more general
case where the dependence structure underlying the data can be taken into account and
suggest block Higher Criticism (bHC) thresholding.

The remainder of the paper is structured as follows. First, we give a background
to linear classification allowing for block-wise dependence structure and introduce block-
separation strength and the distributional properties of the sample based separation score.
In Section 2, we consider the asymptotic sparse and weak block model (ASWB). In Section
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3, we suggest a bHC thresholding procedure. In Section 4, we empirically investigate
detection boundaries for ASWB. In Section 5, we evaluate performance accuracy of the
estimator of the sparsity parameter. In Section 6, we compare our bHC threshholds to
other commonly employed selection strategies. In Section 7, we evaluate the effect of
block selection on misclassification for synthetic and real data. Finally, we present some
concluding remarks in Section 8.

1 Supervised classification

In supervised classification outcome measurements, e.g. tumor tissue v.s. non-tumor
tissue, exist that we wish to predict based on a set of features. In the training data the
outcome (i.e. class variable) and the features have been observed for a set of objects.
Using the training data a model or algorithm can be built that enables prediction of the
outcome for new observations where only the features have been observed.

1.1 Notation and optimal classification with known parameters

Let an observation x represent a set of features (x1, . . . , xp), then n observations gives

x1,x2, . . . ,xn ∈ <p.
In a supervised classification problem with C classes, each observation from the training
data is known to belong to some class yj = c where j = 1, . . . , n, c ∈ {1, . . . , C} and the
training data is described by

T = {(x1, y1), (x2, y2), . . . , (xn, yn)} .
Assume that the outcome in each class is modeled by the Gaussian distribution, i.e.
xc ∼ N(µc,Σc), where µc is the class mean and Σc is the class-wise covariance matrix.
Let G be a decision rule with decision regions Ωc ∈ <p, Ωc = G−1(c), which assigns
an observation x to the class with the highest value of the linear function Dc(x), i.e.
G(x) = c∗ if c∗ = argmaxc=1,...,CDc(x), where

Dc(x) = x′Σ−1
c µc −

1

2
µ′cΣ

−1
c µc + log πc, (1.1)

where πc is the prior probability of class c and
C∑
c=1

πc = 1. This classifier is analogous to

the well-known Fisher linear discriminant function that is optimal in a sense of minimum

overall misclassification probability defined as ε =
C∑
c=1

πcP (G(x) 6= c|x ∈ Ωc).

We will focus on two-class classification problems with equal class-wise covariance
matrices (Σ). The two-class linear function can then be represented as

D(x) =

(
x− 1

2
(µ1 + µ2)

)′
Σ−1 (µ1 − µ2) (1.2)

and an observation x is assigned to class 1 if D(x) ≥ log π2

π1
, or, otherwise, to class 2. If

π1 = π2 = 1/2 the optimal misclassification probability can be expressed as

εopt = Φ

(
−1

2

E [D(x)|x ∈ Ω1]√
Var [D(x)|x ∈ Ω1]

)
= Φ

(
−1

2

√
δ2

)
(1.3)
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where Φ(·) is the Gaussian cumulative distribution function and δ2 =
∥∥Σ−1/2µ

∥∥2
is the

Mahalanobis shift vector norm, where µ = µ1 − µ2 is a shift vector and ‖·‖ denotes the
`2 norm.

1.2 Quantifying and estimating feature separation strength

A very important question when designing a procedure for selecting a subset of features
is how to measure the separation power of a feature or a set of features in a classification
framework. In this study we focus on δ2 as such a measure. The motivation for this
choice follows from (1.3) as εopt is a function of δ2, i.e. the distance between classes.

Since Φ is a monotone strictly decreasing function of
√
δ2, we can say that the separation

power of a feature or a set of features is its contribution to this distance. We will need
to bound the Mahalanobis shift vector norm in order to guarantee that the classifier
does not degenerate, and make the assumption that there exist such constants K that
0 < K1 ≤ δ2 ≤ K2 < ∞. Further we consider the separation strength under the SW
model where the following hold:

• Informative features are sparse: The non-zero elements in the shift vector µ are only
p̃ out of p where β = p̃

p
are close to zero.

• Informative features are weak : The non-zero elements in the shift vector µ have a
common amplitude of µ which is small.

1.2.1 Separation strength under independence

For the classification problem when p � n a very popular approach is to simply ignore
feature covariances and standardize the features to mean 0 and variance 1, i.e. let the
feature covariance matrix be the identity matrix (Ip); see e.g. [5]. Hence the separation
strength will be defined for each single feature as δ2

I = µ′Ipµ and we define the rescaled
estimate of the i features separation strength as

Zi =
µ̂1,i − µ̂2,i√

n
, (1.4)

where µ̂c,i is the sample class mean of the i feature for i = 1, . . . , p. These Zis can be
interpreted as Z-scores of the following two sided test H0,i : Cov(y,xi) = 0, where xi =
(x1, . . . , xn) is the ith feature vector and with the given assumptions Z ∼ N(θ, Ip) where
θ =
√
nµ and µ is the feature shift vector. According to [6] features with significantly non-

zero Zi have non-zero µi while other features will have Zi values which are consistent with
the null hypothesis µi = 0. Then, selecting features with Z-score above a threshold makes
sense, in Section 3 we will show how this threshold can be found in the SW model. Observe
that θ provides the same information as the square root of δ2 under the independence and
unit variance.

1.2.2 Separation strength under block-diagonal dependence structure

It is obvious that the assumption of independence, while essentially simplifying the esti-
mation problem, is not credible in real classification. Another approach to be considered
is to learn the covariance structure of the data; see e.g. [9, 14, 16, 21, 18], with such
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constraint that the number of features to be estimated is reduced e.g. by the assumption
that the true underlying covariance structure is sparse. In this context sparse means
that there are only a few features that are highly correlated with any given fixed feature.
Observe that this kind of sparsity has a natural biological explanation, e.g. some groups
of genes acting together in a way that are associated with the clinical outcome. This
type of pattern can either come from biological expertise or simply be suggested by the
underlying model.

In [9] the so called gLasso was introduced, a method to learn the sparsity patterns of

the empirical feature covariances matrix (Σ̂) using a regularization parameter λ. Then
in [18] the gLasso-based covariance structure learning technique was suggested. It is a
two-step procedure that combines gLasso with the Cuthill-McKee ordering ([3]). Its result
is a block-diagonal structure approximation. The corresponding estimator of the inverse
covariance matrix is given by

Σ̂−1
λ = diag

[
Σ̂−1
λ,1, . . . , Σ̂

−1
λ,b

]
, (1.5)

where b is the number of blocks. The existence of Σ̂−1
λ,i for each i (i = 1, . . . , b) is ensured

by the constraint in block size p0 < n− 2 imposed in [18].

Such a block diagonal segmentation of Σ−1 represents independence between corre-
sponding groups of features. This in turn means that both the class means µc and the
observed vector x can be partioned into b disjoint subsets µc,i = (µc,i1 , . . . , µc,ipi

) and
xi = (xi1 , . . . , xipi

), (xi ∈ <pi) i = 1, . . . , b, such that for any i 6= j, xi and xj are condi-
tionally independent given the class variable y. Then the two-class linear function (1.2)
will have an additive structure

D(x) =
b∑
i=1

(
xi −

1

2
(µ1,i + µ2,i)

)′
Σ−1
i

(
µ1,i − µ2,i

)
; (1.6)

µc,i is the class mean vector and Σ−1
i is the inverse covariance matrix of the ith block. In

this study we limit ourselves to equal block size, denoted p0. Now we can define the ith

block separation strength as δ2
i =

∥∥∥Σ
−1/2
i µi

∥∥∥2

, i.e. as its contribution towards the total

distance δ2 =
b∑
i=1

δ2
i . If δ2

i is known one can derive the feature selection or thresholding

procedure by introducing an indicator function into D(x)

D(x) =
b∑
i=1

1{ψ,∞}(δ
2
i )
(
xi −

1

2
(µ1,i + µ2,i)

)′
Σ−1
i

(
µ1,i − µ2,i

)
, (1.7)

where ψ is a threshold. The threshold ψ can be optimized by minimizing the misclassifi-
cation probability of the D(x). However the question remains of how to choose ψ.

Let the rescaled estimator of the ith block separation strength be defined as

S2
i = ηµ̂′iΣ̂

−1
i µ̂i, (1.8)

where η = n1n2

n
, µ̂i = µ̂1i− µ̂2i is the shift vector of the sample class means and Σ̂i is the

maximum likelihood estimate of the covariance matrix of the ith block. In order to select
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those blocks that are informative to classification, we need to specify the distribution of
S2
i and construct a test in a similar way as in section 1.2:

S2
i = ηµ̂′iΣ

−1
i µ̂i

µ̂′iΣ̂
−1
i µ̂i

µ̂′iΣ
−1
i µ̂i

. (1.9)

Since for the Gaussian class conditional distribution µ̂i ∼ N(µi, η
−1Σi), it follows that

ηµ̂′iΣ
−1
i µ̂i ∼ χ2 (p0, ηδ

2
i ), where χ2(p0, ηδ

2
i ) denotes the non-central χ2 distribution with

p0 degrees of freedom and non-centrality parameter ηδ2
i . Under the same assumptions it

holds that Σ̂i ∼ Wp0 (Σi, n− 2), where W denotes the Wishart distribution with scale
matrix Σi and n− 2 degrees of freedom. Hence for a given µ̂i

µ̂′iΣ
−1
i µ̂i

µ̂′iΣ̂
−1
i µ̂i

∼ χ2(n− p0 − 1), (1.10)

where χ2(n − p0 − 1) is the central χ2 distribution with n − p0 − 1 degrees of freedom.
Observe that the resulting distribution in (1.10) does not involve µ̂i which implies that
the ratio in (1.9) is distributed independently on µ̂i. Now observe that (1.10) can be
represented as the ratio of the non-central χ2 (p0, ηδ

2
i ) to an independent central χ2(n−p0−

1), from which it follows that by using a proper standardization for both χ2 distributions
we obtain

n− p0 − 1

n− 2

S2
i

p0

∼ F
(
p0, n− p0 − 1, ηδ2

i

)
(1.11)

.
Further, for a fixed p0, ω2

i = ηδ2
i and assuming that 0 < ω2

i <∞ (constrained in n)

p0F
(
p0, n− p0 − 1, ηδ2

i

)
→ χ2

(
p0, ω

2
)

as n→∞ (1.12)

by the asymptotic properties of the non-central F distribution. In this study we will focus
on the χ2 distribution due to the advantage of fewer parameters.

Now the S2
i can be interpreted as the separation strength of the following one sided

test H0,i : µ′iΣ
−1
i µi = 0 for i = 1, . . . , b with the given assumption S2

i ∼ χ2(p0, ω
2) where

ω2 = ηδ2. Then blocks with non-zero δ2
i typically have significantly non-zero S2

i , while
most other blocks will have S2

i values largely consistent with the null hypothesis δ2
i = 0.

In Section 3 we suggest how a threshold can be found for the SWB that enables us to
select blocks with significantly non-zero S2

i .

2 A model with sparse and weak features

In order to describe the sparse and weak classification model we adopt an asymptotic
framework where the number of features is the driving variable, whereas the sparsity and
weakness are parameterized as functions of p. First, we present the general case as can be
seen in e.g. [27, 6], then extend to the block model. Observe that the weakness condition
here will be related to the boundary condition of δ2. In a high-dimensional setting we
assume that number of objects n and number of features p will tend to infinity in a linked
fashion, where n will remain small in comparison to p.
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Asymptotic sparse and weak model (ASW)

A1: Asymptotics relating p to n. In the sequence of classification problems, both the
number of features p and the number of objects n diverges to ∞ [6].

A2: Rate of growth for the number of features. In the sequence n = O (log pκ) for some
constant κ > 0 where O denotes order, i.e. p� n.

A3: As sparsity increases, β tends to 0: β = p−γ, where γ ∈ (0, 1).

A4: The separation strength decreases. The feature separation strength is parameterized
as θ =

√
2r log p, where r ∈ (0, 1).

Asymptotic sparse and weak block model (ASWB)

In the asymptotic framework for SWB it is more convenient to set n1 = n2 and the
block-size pi = p0 for all i = 1, . . . , b, where the latter is based on a class of asymptotically
equivalent block-structure approximations where for each block i we assume that pi/n→ 0
as n → ∞. Then the asymptotic sparse and weak block model is represented by the
following set of assumptions:

B1: Asymptotics relating b to n. In the sequence of classification problems with fixed
p0, both b and n diverges to ∞ [18].

B2: Rate of growth for the number of blocks. In the sequence n = O (log bκ) for some
constant κ > 0, i.e. the number of blocks can grow faster than n [18].

B3: The sparsity increases. As p tends to∞ the fraction of informative blocks β behaves
as β = b−γ where γ ∈ (0, 1).

B4: The separation strength decreases. The block separation strength is parameterized
as ω2 = 2r log b, where r ∈ (0, 1).

In the asymptotic setting the models under consideration can commonly be expressed
as ASW(r, γ;κ). The driving parameters are r and γ, since they relate the rareness
and usefulness of the features/blocks in the observed vector, while parameter κ is of less
importance and can be seen as incidental. Therefore we will simply write ASW(r, γ) and
ASWB(r, γ) respectively. To illustrate how the sparse and weak setting differs from the
more traditional setting with substantial number of informative features (dense) that can
be highly discriminatively (strong), see Figure 1.
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Figure 1: Density of estimated separation strength for a mixture of informative and non-informative
features.

3 HC feature thresholding for sparse and weak classification
problem

The problem of selecting informative features can now, for a fixed parameter γ, be formu-
lated as follows: Given p independent features with the separation scores Z1, Z2, . . . , Zp,
we suppose that Zi has the probability β to be informative, i.e. having the shift parame-
ter θ > 0, where θ is calibrated as in A4. The feature selection is recast as a hypotheses
testing problem:

H0 : Zi ∼ N(0, 1) i.i.d 1 ≤ i ≤ p

versus p-dependent alternatives

H1 : Zi ∼ (1− β)N(0, 1) + βN(θ, 1) i.i.d 1 ≤ i ≤ p

(3.1)

where β = p−γ as defined in A3, and H0 means that no features are informative whereas

H
(p)
1 means that features are generated from a mixture of β informative and 1 − β non-

informative features.
To test the hypothesis we turn to the Higher Criticism (HC) approach which has

been developed for optimal detection of informative features within the sparse and weak
independent feature model by [4, 5, 6]. It is a three-step testing procedure:

I: The procedure starts with obtaining a p-value (π) for each observed separation score
by πi = PH0 {|Zi| ≥ |zi|} = 2(1 − Φ (|zi|)). Then the p-values are ranked in increasing
order: π(1) ≤ π(2) ≤ . . . ≤ π(b).

II: The HC objective function is defined as

HCi,π(i)
=
√
p

i/p− π(i)√
i/p(1− i/p)

, (3.2)
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where i = 1, . . . , p. For a fixed α0 ∈ (0, 1), the HC test statistic is

HC∗ = max
1≤i≤(α0×p)

HCi,π(i)
. (3.3)

In rare and weak situations HC seems insensitive to the selection of α0 and a common
choice is α0 = 0.1 see [6]. The HC objective function (HCi,π(i)

) and the absolute separation

scores |Z|(i) are ordered correspondingly to the p-values.
III: The last step is the thresholding. Let HC∗ be achieved at index i∗; the HC thresh-

olding (HCT) is then the value t∗HC = |Z|(i∗). Features with Z-scores exceeding t∗HC in
magnitude are then selected as informative.

We adopt this method for block selection and adjust for ASWB(r, γ). Now, again, for
a fixed parameter γ we formulate the problem of block-wise feature selecting as follows:
Given b independent blocks with observed block separation strength S2

1 ,S2
2 , . . . ,S2

b , we
suppose that the S2

i has the probability β to be informative, i.e. having the non-centrality
parameter ω2 > 0 where ω2 is calibrated as in B4. We recast the block threshold selection
into the hypotheses testing problem:

H0 : S2
i ∼ χ2

p0
(·; 0) i.i.d, 1 ≤ i ≤ b

versus b-dependent alternatives

H1: S2
i ∼ (1− β)χ2

p0
(·; 0) + βχ2

p0

(
·;ω2

)
i.i.d, 1 ≤ i ≤ b,

(3.4)

where β = b−γ as in B3. In words, the goal of testing the hypothesis problem is as follows:
we model non-informative blocks as samples from χ2

p0
(·; 0) and informative blocks as

samples from χ2
p0

(·;ω2). Then β can be interpreted as a proportion of informative blocks

with ω2 representing the block separation strength. Using this interpretation the problem
(3.4) can be equivalently stated as testing the hypothesis β = 0.

For b observed separation strength the p-value for each block is obtained as πi =
PH0 {S2

i ≥ s2
i } = χ̄2

p0
(s2
i ; 0), where χ̄2

p0
(·; 0) = 1 − χ2

p0
(·; 0) is the survival function of

χ2
p0

(·; 0). After the p-values have been ranked, the block higher criticism (bHC) objective
function is calculated as

bHCi,π(i)
=
√
b

i/b− π(i)√
i/b(1− i/b)

, (3.5)

where i = 1, . . . , b and for fixed α0 ∈ (0, 1) the bHC test statistic is

bHC∗ = max
1≤i≤(α0×b)

bHCi,π(i)
, (3.6)

In words, bHCi,π(i)
(3.5) resembles the standard discrepancy between the expected and

the observed behavior of a bulk of π(i) obtained from (3.4) and is used here for assessing
the significance of the whole bulk of p-values. When this discrepancy is large, we reject
H0 since the whole set of p-values is not consistent with the null hypothesis. Now we
consider the feature thresholding using the bHC testing. Given the collection of p-values
from the test problem (3.4) suppose that the bHC in (3.6) is achieved at index i∗. Then
the block higher criticism threshold, bHC threshold, is the value of τ ∗ = S2

i∗ and the
blocks whose separation strength S2

i exceeds τ ∗ in magnitude are selected as informative
for the classification. Figure 2 illustrates the thresholding technique. A and B present
a probability plot(PP plot) of the ordered separation scores and p-values plotted against

9



i
p
/ i
b

respectively, and C illustrates the threshold value that corresponds to i∗ yielding the

largest discrepancy in (3.5).
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Figure 2: Illustration of HC and bHC thresholding on the x-axes i/p for 1 and i/b for 2:4. A) The ordered
separation scores |Z| and S2. B) The corresponding ordered p-values. C) The HC objective function.
The solid blue vertical line shows true β and the dotted red line the HC threshold.

4 Detection boundaries

Even though it is clearly seen that HC thresholding is a very beneficial and easily im-
plemented procedure, it has certain boundaries. The problem of detecting informative
features for the ASW has been extensively studied within statistical literature; see e.g.
[11, 6, 30, 12]. Asymptotically successful identification of informative features are possible
for many choices of (γ, r) whereas for another large family of choices it is impossible. The
concept γ − r plane have been introduced to bring understanding to this fact where the
γ − r plane is the two-dimensional domain of γ < 1 and 0 < r. The domain is divided
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by boundaries into regions with different possibilities of detection. First, we introduce
the detection boundaries that have been presented for ASW and then we empirically
investigate the detection boundary for block-diagonal dependence structure.

4.1 Under independence

For the γ − r plane the focus is to characterize the so-called detection boundaries which
are curves that partition the plane into regions of different possibilities of separating the
informative features from non-informative features. When applying the likelihood ratio
test (LRT) for testing, (3.1), it has been shown that there is an abrupt change in the
behavior on the test depending on the choice of parameters γ − r, namely, the sum of
type I and type II error tends to 1 in one part of γ − r plane and 0 in another part [11].
These two areas can be described by ρ

If r > ρ∗(γ), H0 and H1 separate asymptotically.

If r < ρ∗(γ), H0 and H1 merge asymptotically.

The curve that partitions these two areas is known as the detection boundary function
[11].

ρ∗1 (γ) =

{
γ − 1/2 1/2 < γ ≤ 3/4(

1−
√

1− γ
)2

3/4 < γ ≤ 1
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Figure 3: Detection boundary for signal identification within γ − r plane for Gaussian case [15].

Further boundaries have been identified and the γ − r plane can be divided into four
different regions corresponding to the detection possibilities; see Figure 3 [15]. The second
curve, when 1/2 < γ ≤ 1, is the identification boundary ρ∗2(γ) = γ reported by [4]. Above
this boundary, information identification by thresholding is possible (estimable); directly
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below it is only possible to detect information but not to estimate. The third curve is the

recovery boundary ρ∗3(γ) =
(
1 +
√

1− γ
)2

reported by [30, 12], where in the region above
the curve almost all information can be completely identified.

4.1.1 Detection boundaries and HC

The LRT gives the detection boundaries assuming exact knowledge of sparsity and weak-
ness parameters and, since it requires the knowledge of parameter values, it is less practical
for real data where the parameters are often unknown. There are methods for estimating
the parameters (see e.g. [17]) though HC does not require knowledge of γ and r, which
simplifies the calculations. Also, it has been shown that HC allows the same performance
accuracy as the LRT. In fact HC replicates the behaviors of the LRT; in the so-called
detectable areas the informative features are reliable identified by HC thresholding. This
property of HC, as earlier stated, is known as optimal adaptivity; see [4, 27].

4.2 Under block-diagonal structure

The main goal of our paper is how to select a subset of features that will improve classifica-
tion accuracy, and we are interested in relating the ASWB to the classification task. Much
of the work with hypothesis testing (3.1) in ASW is tightly connected to signal identifi-
cation, i.e. detection of informative features as the main goal (see e.g. [27, 15]). Though
it is fairly easy to see the connection between hypothesis testing and the classification

task, this as ω2 is calibrated according to B4 and is related to ε (1.3) through δ2
i =

ω2
b (r;γ)

cn
.

Then, the combination of the sparsity and weakness parameters directly affects classifi-
cation possibilities. As a basic example we let δ2 = b−γb2r log(b) since (1− b−γ) b blocks
do not contribute with any information to the total distance. As a constraint we bind the
misclassification from below to a minimum of ε > 1e−5 and calculate (ε), see Figure 4.
The color corresponds to the misclassification probability and shows the area where it is
possible to discriminate between two classes. This area is coherent to the area of possible
detection of informative features.

As S2
i ∼ χ2

p0
(·, ω2) we are interested in detection boundaries for the χ2-distribution.

It has been shown that the optimal detection boundary for the χ2-distribution with two
degrees of freedom is asymptotically similar to the Gaussian case [13]. We empirically
study how the detection problem for the χ2-distribution behaves for growing numbers of
degrees of freedom within the r − γ plane. We use the LRT to identify the detection
boundaries since the detectable region can be defined as where the LRT has the sum of
type I and II error probabilities that tends to 0 as the number of features goes to infinity
[27]. Hence we plot the sum of types I and II error for the LRT with all parameters known
within the r − γ-plane.

We start by evaluating the possibility of detecting the presence of informative fea-
tures, considering the stated hypotheses (3.4) and using the likelihood ratio (LR) where

LRi =
fH1

(s2i )

fH0
(s2i )

where the likelihood corresponds to the density function of s2
i , the observed

separation strength for the ith block. Respectively the hypothesis gives

LRi =
(1− β)χ2

p0
(s2
i ; 0) + βχ2

p0
(s2
i ;ω

2)

χ2
p0

(s2
i ; 0)

. (4.1)
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Figure 4: The relation between r− γ and the misclassification probability (ε) for discriminating between
to classes.

For b blocks LRB = LRB (s2
1, s

2
2, . . . , s

2
b ; γ, r), then we consider the LRT which reject H0

if and only if
log(LRB) > 0. (4.2)

We consider two different scenarios to demonstrate the behavior of the detection regions
S2
i . The fact that blocks were identified by the covariance structure does not guarantee

that the features merged have the same separation strength. As stated before, blocks can
also be built on expert knowledge in the specific area, resulting in highly informative but
independent features constructing blocks. In order to represent a variety of situations for
the distribution of S2

i over the of blocks we regard these scenarios that represent the two
extremes:

Scenario I

Scenario I is the restrictive approach that regards a block as one unit minimizes separation
strength in relation to block structure. A whole block does not provide more information
than one single feature. The separation strength only depends on the weakness parameter
r and number of blocks; block size has no effect. In this setting we generate a separation
score from the χ2-distribution.

Scenario II

Scenario II is the liberal approach that regards the information of each feature within
the block and maximizes the separation strength in relation to block structure. For the
informative block the separation strength increases for each added feature and grows with
degrees of freedom. In this setting we generate the score g from the Gaussian distribution
and then calculate the separation score as si = g′p0Ip0gp0 where gp0 is a vector of Gaussian
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scores with the length of the block size and Ip0 is the identity matrix with the same size
as the block.

To evaluate where it is possible to detect the presence of informative features within
the γ−r plane, we start by conducting a Monte Carlo simulation for Scenario I, with 160
true null hypotheses as s0 ∼ χ2(p0, 0) under H0 (3.4) for b = 100000, γ = (0.5 : 1) with
step 0.01, r = (0 : 1) with step 0.02 and p0 = [5, 10, 20] and 160 true alternative hypotheses
as s1 ∼ (1 − β)χ2(p0, 0) + βχ2(p0, ω

2) under H1 (3.4) for b = 100000, γ = (0.5 : 1) with
step 0.01, and r = (0 : 1) with step 0.02 and p0 = [5, 10, 20]. For each hypothesis the LRB

is estimated, H0 is rejected if LRB > 0 and the errors are calculated. A 95% confidence
interval for the sum of errors over the 320 hypotheses is calculated and the upper bound
displayed as a contour plot for each degree of freedom in the r− γ plane; see the top row
of Figure 5.

Next, we conduct a Monte Carlo simulation for Scenario II, again with 160 true null
hypotheses but now with g0 ∼ N(0, 1) under H0 for p = p010000, γ = [0.5 : 1] with
step 0.01 and r = [0 : 1] with step 0.02 and (3.1) and 160 true alternative hypotheses as

g1 ∼ (1−p−γ)N(0, 1)+p−γN(
√

(2r log(p)), 1) under H1 (3.1) for p = p010000, γ = [0.5 : 1]
with step 0.01 and r = [0 : 1] with step 0.02. Then we calculate the separation strength
for the following different blocks size: p0 = [5, 10, 20]. For each hypothesis, the LRB is
estimated, H0 is rejected if LRB > 0 and the errors are calculated. A 95% confidence
interval for the sum of errors over the 320 hypotheses is calculated and the upper bound
displayed as contour plot for each degree of freedom in the r − γ plane; see bottom row
of Figure 5.

As can be seen in Figure 5, for the restrictive approach of Scenario I the detectable
area is smaller than for the Gaussian distribution, and it also decreases with a growing
number of degrees of freedom. This indicates that if blocks do not contribute with more
information than a separate single feature the set of informative features needs to be
less sparse and weak to be detectable. In the case of the liberal approach the detection
pattern is similar to that of the Gaussian distribution and, as expected, the detection
area is somewhat larger for larger blocks. This indicate that if the blocks are constructed
from informative features the detectable region is rather intact despite the change in
distributional properties.

The previous gives where it is possible to detect presence of informative features. The
next step is to evaluate where it is possible to identify the informative features, i.e. we
wish to test the hypotheses.

H0,i : Si ∼ χ2
p0

(·; 0) versus H1,i : Si ∼ χ2
p0

(·;ω2) (4.3)

This gives the following:

LRi =
χ2
p0

(s2
i ;ω

2)

χ2
p0

(s2
i ; 0)

. (4.4)

Ratios are then ranked in increasing order, LR1 < . . . < LRb. We use three different
approaches for rejecting the null hypothesis. For the first LRT we consider the empirical

distribution of the LR and the top β-quantile
(

ˆ̀
)

is used as the reference value for

rejecting H0. Since we know the true proportion of informative blocks and when the
two hypotheses are well-separated, the top β-quantile corresponds to a true alternative
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Figure 5: The boundaries for detecting the presence of informative features. The first row corresponds
to data from Scenario I and the second row to data from Scenario II.

hypothesis. For the second LRT we widen the cutoff by allowing a size α type I error
and consider α + β proportion highest values of LR from the empirical distribution. For
the third approach, we consider the LRT which rejects H0 if and only if log(LRi) > 0,
i.e. strictly favoring the alternative hypothesis when the probability density for the non-
central χ2 exceeds the probability density for the central χ2. An example of the difference
in cutoff between the three approaches can be seen in Figure 6.
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Figure 6: The empirical distribution for the likelihood ratio test, where the lines show the cutoff for
rejecting the null hypothesis.
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When the LR has been estimated for each block and the null hypothesis rejected
according to the approaches described above, we can evaluate performance accuracy.
Since the ultimate objective is to select a subset of features that will be useful for the
classification task we want to identify as many truly informative as possible while keeping
the noise (falsely informative features) to a minimum. Hence, we will estimate the errors
separately as follows and then standardize the sum to 1. We calculate the Attained
Significance Level (ASL) representing the type I error as

ASL1 (r, γ, LR) =
#of

{
LR > ˆ̀

β|H0 is true
}

(1− b−γ) b

ASL2 (r, γ, LR) =
#of

{
LR > ˆ̀

(α+β)|H0 is true
}

(1− b−γ) b

ASL3 (r, γ, logLR) =
#of {logLR > 0|H0 is true }

(1− b−γ) b
,

(4.5)

and the Empirical Power (EP), i.e. one minus the type II error, calculates as

EP 1 (r, γ, LR) =
#of

{
LR > ˆ̀

β|H1 is true
}

b−γb

EP 2 (r, γ, LR) =
#of

{
LR > ˆ̀

(α+β)|H1 is true
}

b−γb

EP 3 (r, γ, logLR) =
#of {logLR > 0|H1 is true }

b−γb
.

(4.6)

Now we want investigate when we can identify the informative features, so we conduct
a Monte Carlo simulation under the alternative hypothesis in (3.4) for Scenario I with
(1− b−γ) b s0 ∼ χ2(p0, 0) under H0 (4.3) and b−γb s1 ∼ χ2(p0, 2r log(b)) under H1 (4.3)
for b = 100000, γ = (0.5 : 1) with step 0.01, r = (0 : 1) with step 0.02 and p0 = [5, 10, 20].

The separation scores are then run through the procedure described as Algorithm 1
to acquire the type I and II errors. This is repeated 10 times and a 95% confidence
interval for the sum of errors is calculated. The upper bound of the confidence interval
is graphically displayed as a contour plot for each degree of freedom in the r − γ plane
for all types of cutoffs in Figure 7. The region of possible identification corresponds to
the green area, where the sum of errors is small. For the first type of cutoff (only top
β-quantile) the estimable area is very small as expected. We can see that the groups are
only well-separated for small block sizes (p0 ≤ 10) and large r and small γ. Widening the
rejection area and accounting for α as well really improved the results and the pattern for
the estimable area is now more coherent to the Gaussian case. Since we are in the domain
of high dimensional data and in the sparse regime one rejected true null hypothesis has
much less impact than a not rejecting a false null hypothesis, increasing the proportion of
rejected hypotheses lowers the total error. For the third cutoff, where we strictly favor the
alternative hypothesis and allow the widest rejection area, the estimable region is larger
than for the Gaussian case. In this case we must be aware that more noise will be in the
selected subset.

Next, we conduct a Monte Carlo simulation for Scenario II, with (1− p−γ) p g0 ∼
N(0, 1) under H0 (4.3) and p−γp g1 ∼ N(

√
(2r log(p)), 1) under H1 (4.3) for p = 900000,
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Algorithm 1 Types I and II errors calculated with Likelihood Ratio Test
Input: s2, a vector with observed separation strength for b blocks; I ∈ (0, 1), an indicator vector
with 1 for a truly informative block and 0 for a non-informative block; p0, the block size, ω2, the true
non-centrality parameter for informative blocks and the cutoff values α and β.
Output: Types I and II errors for the three cutoffs.

1: for i = 1 to b do
2: λi =

χ2
p0

(s2i ;ω
2)

χ2
p0

(s2i ;0)

3: end for
4: λ(b) ≥ . . . ≥ λ(1) order the Likelihood ratio in decreasing order
5: ˆ̀

β = λ(i)[βb] select a cutoff value that corresponds β
6: ˆ̀

α+β = λ(i)[(α+ β)b] select a cutoff value that corresponds to α and β
7: for i = 1 to b do
8: Rβi = 1 IF λ(i) ≥ ˆ̀

β ELSE Rβi = 0
9: Rαβi = 1 IF λ(i) ≥ ˆ̀

α+β ELSE Rαβi = 0
10: Rlog

i = 1 IF log λ(i) > 0 ELSE Rlog
i = 0

11: end for
12: for i = 1 to b do
13: ε

Iβ
i = 1 IF Rβi = 1|Ii = 0 and ε

IIβ
i = 1 IF Rβi = 0|Ii = 1

14: ε
Iαβ
i = 1 IF Rαβi = 1|Ii = 0 and ε

IIαβ
i = 1 IF Rαβi = 0|Ii = 1

15: ε
Ilog
i = 1 IF Rlog

i = 1|Ii = 0 and ε
IIlog
i = 1 IF Rlog

i = 0|Ii = 1
16: end for

17: type Iβ =

b∑
i=1

ε
Iβ
i

b−βb and type IIβ =

b∑
i=1

ε
IIβ
i

βb

18: type Iαβ =

b∑
i=1

ε
Iαβ
i

b−βb and type IIαβ =

b∑
i=1

ε
IIαβ
i

βb

19: type Ilog =

b∑
i=1

ε
Ilog
i

b−βb and type IIlog =

b∑
i=1

ε
IIlog
i

βb
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Figure 7: Empirical detection boundary in sparse setting for the χ2-distribution using the empirical
distribution of the likelihood ratio. Top row: the top β-quantile is used as the reference value for
rejecting H0. Mid row: the top α+ β-quantile is used as the reference value. Bottom row: the empirical
distribution of log likelihood ratio, strictly favoring the alternative hypothesis.

γ = [0.5 : 1] with step 0.01 and r = [0 : 1] with step 0.02. Then we calculate the separation
strength for the block sizes p0 = [5, 10, 20] and run through the procedure described as
Algorithm 1 to acquire the type I and II errors. This is repeated 10 times and the
confidence interval for the sum of errors is calculated. The upper bound for the confidence
interval is displayed in Figure 8. In this setting the the pattern is reversed and, as
expected, shows lower missed identification for larger blocks. Though in this scenario
we observe an abrupt change in identification, the informative blocks become too rare for
detection for lower values of γ since the number of informative features are too few. Given
the liberal approach, sets of informative features are easily identified as long as γ < 0.8.

18



Figure 8: Empirical detection boundary in a sparse setting for the χ2-distribution using the empirical
distribution of the likelihood ratio for the second simulation approach. Top row: the top β-quantile is
used as the reference value for rejecting H0. Mid row: the top α + β-quantile is used as the reference
value. Bottom row: the empirical distribution of log likelihood ratio when strictly favoring the alternative
hypotheses.

5 Estimating the proportion informative blocks

For classification, a relevant question is if there are any informative blocks within a data
set, and by estimating β we get a quick answer. Though β 6= 0 indicates the presence of
separation strength, it does not give the answer to which blocks are actually informative.
This intermediate step is important for feature selection in classification. We explore in
this section how estimation of β can affect further thresholding.

We start with the simple Bonferroni correction as a baseline and compare it with
two other methods. The analyses are based on the distribution of the p-values of the
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hypothesis tests, that if a null hypothesis is true πi ∼ U (0, 1), where U denotes the
uniform distribution. In this context our β denotes the proportion of false null hypotheses
and can be calculated as

β =

b∑
i=1

1 {ωi 6= 0}

b
. (5.1)

A lower bound for β̂ with the property P
(
β̂ ≤ β

)
≥ 1 − α can be constructed for a

specified confidence level 1−α. Then the proportion of false null hypotheses is at least β̂
and the global null hypothesis, there are no false null hypotheses (β = 0), can be tested
at level α by rejecting when β > 0.

A standard estimate for proportion of null values $0 = 1− β based on p-values starts
with ranking the p-values in increasing order π(1) ≤ π(2) ≤ . . . ≤ π(b); then

$̂0 (t) =

b∑
1=i

1
{
π(i) > t

}
(1− t) b

. (5.2)

The quantity β̂ = 1− $̂0 is then an estimate for a lower bound on the proportion of false
null hypotheses [23]. A disadvantage for this estimate is that it is based on the choicee of
t; see e.g. [20].

The third method for estimating the proportion of false null hypotheses for a given
t ∈ (0, 1) is suggested by [17]

β̂ = max
t∈(0,1)

Fb(t)− t− Bb,α∆(t)

1− t
(5.3)

where Fb(t) =

b∑
i=1

1{πi≤t}

b
is the empirical distribution of p-values, ∆(t) =

√
t(1− t) the

standard deviation-proportional bounding function and Bb,α the bounding sequence for
∆(t) at level α given by

Bb,α =
G−1(1− α) +mb

nb
(5.4)

where G is the Gumbel distribution, mb = 2 log2 b+
1
2

log3 b− 1
2

log 4π1 and nb =
√

2b log2 b.
To compare the three methods numerically we employ the two earlier described scenar-

ios. First we consider Scenario I and generate a Monte Carlo simulation with (1− b−γ) b
s0 ∼ χ2(p0, 0) underH0 and b−γb s1 ∼ χ2(p0, 2r log(b)) underH1 for b = 5000, γ = (0.5 : 1)
with step 0.01, r = (0 : 1) with step 0.02 and p0 = [5, 10, 20, 30]. Then the proportion false

null hypotheses is estimated, β̂, with respective method for significance level and thresh-
old value set as α = t = 0.05. For the method suggested by [17] we use the R package
howmany and the total number of estimated false null hypotheses for all b blocks. The

ratio between the estimate and the true proportion is calculated
(
β̂
β

)
. To standardize the

maximum ratio to one when the estimated proportion is larger than the true proportion,
the ratio calculation is reversed and calculated as β

β̂
. This is then repeated 10 times and

the average calculated and presented as a contour plot within the r−γ plane, where green

1log2 = log log and log3 = log log log
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indicates high concordance and red discrepancy; see Figure 9. As can easily be seen, all
three methods have severe difficulties with getting accurate estimates of β in SWB. Even
in the detectable area given by the LRT the methods fail at estimating the true proportion
of false null hypotheses. It is only the method suggested by [23] that comes somewhat
close to good estimates of β in the very top of the detectable area.

Figure 9: Contour plot of the ratio between the estimated proportion of false null hypotheses and the
true proportion (β) in the r− γ plane, a ratio of one indicating full concordance and the lower the value,
the higher the discrepancy between the estimated proportion and the true value. Top row: β̂ from the
Bonferroni correction. Mid row: β̂ from method by [23]. Bottom row: β̂ from method by [17].

To investigate how much separation strength is required to get reliable estimates of
the proportion false null hypotheses we conduct a second Monte Carlo simulation, still as
a mixture of (1− b−γ) b s0 ∼ χ2(p0, 0) and b−γb s1 ∼ χ2(p0, 2r log(b)) for b = 5000 but
now for a moderately sparse setting with γ fixed to 0.55 and increasing the separation
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strength, r = [0.1 : 2] with step 0.1. We estimate the ratio β̂
β

and repeat 100 times.

As can be seen in Figure 10, the Bonferroni correction is too restrictive and consistently
underestimates the proportion of false null hypotheses, the method suggested by Storey &
Tibshirani overestimates the proportion when the ratio > 1 and underestimates when the
ratio < 1, leading to the median of the ratios being close to one, whereas the Meinshausen
& Rice method is more in line with the restrictiveness of the Bonferroni correction but
comes closer to the true proportion, especially for more degrees of freedom. For all of the
methods the information strength needs to be substantial, e.g. r > 1, to come close to
the true proportion of false null hypotheses, and the higher the degrees of freedom, the
less well all of the methods perform.

Figure 10: The ratio between estimated proportion of false null hypotheses and the true proportion as a
function of information strength r for a given sparsity of (γ = 0.55), for different block sizes. Results are
shown for estimate from the Bonferroni correction (top row), the Storey & Tibshirani method (middle
row) and the Meinshausen & Rice method (bottom row).
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We instead consider Scenario II, where larger blocks indicate higher separation strength,
and repeat the Monte Carlo simulation starting with Gaussian distribution and then con-
structing blocks. All parameters are the same as in the first setup of the second scenario
except for number of features, which is changed to p = 60000. As for the first scenario, the
proportion of false null hypotheses is estimated with the above described methods and the

ratio
(
β̂
β

)
calculated. Also here this is repeated 10 times and the average calculated and

presented as contour plot within the r − γ plane where green indicates high concordance
and red discrepancy; see Figure 11. Now the area of high concordance corresponds to the
detectable area for β̂ estimated with both the Bonferroni correction and the Meinshausen
& Rice method, whereas the estimate with Storey & Tibshirani method fails.

Figure 11: Contour plot of the ratio between the estimated proportion of false null hypotheses and the
true proportion (β) in the r− γ plane, a ratio of one indicating full concordance and the lower value, the
higher the discrepancy between the estimated proportion and the true value. Top row: β̂ from Bonferroni
correction. Mid row: β̂ from method by [23]. Bottom row: β̂ from method by [17].
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We replicate the second Monte Carlo simulation from Scenario I now for Scenario II
with the same set of parameters except for keeping γ fixed at 0.55 and letting separation
strength increase, r = (0.1 : 2) with step 0.1. Using the same calculation as before and
repeated 100 times, the result is shown in Figure 12. Also here can we see a tendency to
correct estimate of the proportion of false null hypotheses for very low separation strength
in this setting using the Bonferroni correction or the Meinshausen & Rice method. Now
the tendency is overestimation of the proportion rather than underestimation, and the
basic the Bonferroni correction is the method that gives the best results. When β̂ is
calculated with Storey & Tibshirani′s method, even if the median corresponds to a ratio
of one, the estimates are too widely spread and do not give consistent results.

Figure 12: The ratio between estimated proportion of false null hypotheses and the true proportion as a
function of information strength r for a given sparsity of (γ = 0.55) for different block sizes. Results are
shown for estimates from the Bonferroni correction (top row), the Storey & Tibshirani method (middle
row) and the Meinshausen & Rice method (bottom row).
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Meinshausen & Rice (2006) showed, that for their method, the ratio between β̂ and
the true proportion tended to one for a growing number of features in all areas of the
SW model where LRT succeeds. This could not be seen in the restrictive approach for
the SWB model. We can conclude that in the liberal approach it is possible to get good
estimates of the proportion of false null hypotheses, but for the sparse and weak block
model we cannot take for granted strong S2

i . This strongly motivates us to turn to bHC
since the main advantage of HC is the optimal adaptivity to unknown parameters; see
e.g.[27].

6 Block Selection by Thresholding

Here we present some alternative commonly employed selection strategies, to which we
will compare the performance of our bHC.

6.1 False discovery rate

False Discovery Rate (Fdr) was introduced as a useful approach to simultaneous testing by
[2]. It is a tail-areas based procedure that aims to control the number of false discovery
rates, i.e. the expected ratio of the number of false informatives among all rejected
features. The Fdr is distribution-based and on the p-value scale it is defined as

Fdr(πi) = P (Non informative|Π ≤ πi) =
(1− β)πi
F (πi)

, (6.1)

where F (πi) is the mixed distribution of the p-values and 1−β is the proportion of non-
informative features. When estimating the tail-area based Fdr, the p-values are ranked
in increasing order( π(1) ≤ π(2) ≤ . . . ≤ π(p)) and the empirical estimate of Fdr is the rule
of Benjamini and Hochberg (1995):

F̂dr(π(i)) =
(1− β̂)π(i)

F̂ (π(i))
≤ p

i
π(i). (6.2)

There is also another false discovery rate criterion that is based on densities, the Local
False Discovery Rate (Lfdr), suggested by [8, 7]. This is an empirical Bayes version
of Benjamin and Hochberg′s (1995) rule and focus on densities rather than tail areas. It
starts with a simple Bayes model: assume that the p test score-values fall into two classes,
Informative or Non-informative, depending on whether or not the test score is generated
according to the null hypothesis. The two classes have the prior probabilities (1− β) and
β and the test score (we will use p-values) has density either fH0(πi) or fH1(πi) depending
on its class:

(1− β) = P {Non-informative} , fH0(πi) density if Non-informative (Null)

β = P {Informative} , fH1(πi) density if Informative (Non-null).
(6.3)

These are then combined to give the mixed density

f(πi) = (1− β)fH0(πi) + βfH1(πi). (6.4)
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Then the Lfdr is defined according to Bayes’ theorem as the a posteriori probability
of being in the Non-informative class given πi:

Lfdr(πi) = P {Non-informative|πi} =
(1− β)fH0(πi)

f(πi)
. (6.5)

The two Fdr methods are closely related but the key difference is that the Lfdr, being
density based, implicitly assumes that the number of hypotheses is large (p→∞). There
is a direct relationship between Fdr and Lfdr:

Fdr(Π) = E {Lfdr(π)|π ∈ Π} . (6.6)

Both the local and the tail-area based Fdrs are designed to work with p-values as input
test statistics, similar to HC. We will identify the thresholds for both false discovery rate
methods based on the p-values using the R package fdrtool [24]. This package uses a
modified Grenander approach for density estimation; for details see [25].

In simulations a fourth method is used, Oracle local false discovery rate (Ofdr), where
we use test score instead of the p-values and assume that the parameters for the density
are known. This method is also based on a multiple-testing procedure, though it will
not rely on p-values, as individual p-values are appropriate for testing single hypothesis
but they fail as building blocks in multiple testing according to [26]. Instead it is based

on the LR and defined as Ofdr(x) =
(1−β)fH0

(x)

fH1
(x)

. Since β is a global parameter the Ofdr

implies that the relative importance of the observations can be ranked according to the
LRs. The procedure to identify informative blocks consists of three steps: first, equipping
the general adaptive testing with consistent estimates (β, ω2) (in our oracle setting they
are known) and calculating the Ofdr for observed block separation strength as

Ofdr(s2
i ) =

(1− β)χ2
p0

(s2
i ; 0)

(1− β)χ2
p0

(s2
i ; 0) + βχ2

p0
(s2
i ;ω

2)
. (6.7)

The second step is then to rank the Ofdr in an increasing order: Ofdr(s2
i )(1) ≤ Ofdr(s2

i )(2) ≤
. . . ≤ Ofdr(s2

i )(b). The third step is to reject all H
(i)
0 , i = 1, . . . , k where

k = max
1≤i≤k

{
i;

1

i

i∑
j=1

Ofdr(j) ≤ α

}
. (6.8)

Synthetic multivariate block data

The main goal with selecting a subset of informative blocks/features is to then use them for
classification between objects. Here we will look at multivariate Gaussian data with two
classes and estimate the separation score. We generate data blockwise for a given block
dependence structure (Σp0) and sample from different distributions depending on class
and number of informative features. First, we fix the parameters (p, p0, β, ε,Σp0 , n1, n2),
and then the number of blocks b = p

p0
, number of informative features p̃ = βp /blocks

b̃ = βp
p0

and the sparsity measure γ = − log β
p/p0

. Since
b̃∑
i=1

δ2
i = −2Φ−1(ε), given that we

set µ1 = 0 for the first class, we get µ2 =

√
δ2i

1′p0
Σ−1

p0
1p0

for the second class. Now, for
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the null hypothesis class, we draw p/p0 samples from N(µ1,Σp0); for the alternative hy-
pothesis, we first draw p(1− β)/p0 samples from N(µ1,Σp0) and then draw p̃/p0 samples
from N(µ2,Σp0). Even though the separation score is now calculated from data that
originally comes from Gaussian distribution (as in Scenario II), this is more in line with
the restricted setup in Scenario I since the feature contrast decreases with the number of
degrees of freedom.

We start with comparing the performance of the thresholding methods for single fea-
tures versus blocks. The parameters are set as β = 0.01, ε = 0.03, p = 10000, and
n1 = n2 = 50. For the covariance the true block size is 10 and variance for each feature
is 1 and between features 0.6. For the block size (p0) we start with 1, i.e. a single feature,
and then continue with 5, 10 and 15 2. For the single feature we calculate the Students
t-test as an approximation of Z and for the blocks s2

i and the p-values were estimated from
the central t-distribution with n − 2 degrees of freedom and the central χ2-distribution
with degrees of freedom corresponding to the block size; see the first two rows of Figure
13. Then the four thresholding methods are implemented and the number of false null
hypotheses estimated and shown as vertical lines in Figure 13. As can be seen, all four
methods give good estimates in all of the settings. The bHC and the different fdr methods
work as well for the χ2-distributed score as for single features.

2For these settings the parameters correspond to γ = (0.5, 0.6, 0.67, 0.71) and r = (0.22, 0.29, 0.32, 0.33).
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Figure 13: Results for the test score, ordered p-values and the different thresholding methods for features
versus growing number of blocks. The solid blue line represents the true proportion of false null hypotheses
(β) and the dotted red line the estimated (β̂).
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7 Block selection and the effect on misclassification

Now we know it is possible to select informative features with different thresholding
methods and we can turn to the main goal, classification between subjects. Here we
evaluate how successful in detecting useful features the methods are by using the selected
subset in classification. We compare misclassification error regarding classes between
methods as well as the misclassification that is obtained if the full data set is used. We
assign the subjects in the test data to either class using the additive classifier and then
the misclassification error is calculated as

mc =
# {ŷj = 1|yj = 2}+ # {ŷj = 2|yj = 1}

n
, (7.1)

where ŷj is the predicted class and yj is the true class for the jth observation. Here we
use 10-fold cross-validation to divide the data into training and test data.

7.1 Synthetic data

To generate class data we use the synthetic multivariate block data described above and
employ Monte Carlo simulation with the parameters set as follows: β = [0.01, 0.02, 0.03],
ε = [0.05, 0.1, 0.15], n1 = n2 = 50, σ2 = 1 and ρ = 0.8 for p = 2500 with p0 = 5,
p = 5000 with p0 = 10 and p = 10000 with p0 = 20. For each of the nine data sets we
estimate thresholds to select a subset of informative blocks for the classification using the
four different thresholding methods. In order to make the classification run smoothly, a
condition is added to set the number of informative blocks to one if no suitable threshold
been identified.

As an illustrative example we start by estimating the misclassification for accumulation
of blocks, i.e. estimating mc using only the block with the highest separation score in the
classifier, then using the blocks with two the highest separation scores, and so on until
the mc estimate is based on using all blocks in the additive classifier. For each set of data
we selected a subset of blocks based on the threshold choice from the four thresholding
methods; the vertical lines in Figures 14 to 16 correspond to the number of blocks that
are included in the subset for each of the methods.

For the small block size (p0 = 5) and when the classes are well-separated, the numbers
of selected blocks are quite similar. Then as the classification difficulty increases, the bHC
thresholding tends to include more blocks in the subset than actually correspond to the
true number of informative blocks, but still gives lower misclassification.

When the block size is moderate (p0 = 10) this is even more noticeable as for all
nine settings bHC results in the highest number of chosen blocks but also the lowest
misclassification, whereas the number of blocks selected by the other methods are more
similar and in line with β.

For the final block size (p0 = 20) the subset chosen by Fdr and Lfdr includes few blocks
for all settings; for ε ≥ 0.1 it is likely that no threshold was identified. In the case of
well-separated classes bHC selects the largest number of blocks and receives the lowest
misclassification, whereas ε increase the Ofdr, in some cases, has better success.

Next we repeat the Monte Carlo simulation for the given parameters 100 times with
the true misclassification rate extended to ε = [0.005, 0.01, 0.05, 0.1, 0.15] for p = 5000
with p0 = 5, p = 10000 with p0 = 10 and p = 20000 with p0 = 20. We compare the four
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Figure 14: The misclassification rate for accumulation of blocks and the cutoffs for the four thresholding
methods (black line Ofdr, red line HC, blue line Fdr and green line Lfdr) for a block size of 5 to 500
blocks.

methods of misclassification as well as the estimate of number of informative blocks and
the proportion of falsely informative blocks defined as

fpr =
# {H0 rejected|H0 true}

(1− β)b
(7.2)

and the results are shown in Tables 1 to 3.
For the small block size (p0 = 5) when the classes are well-separated (ε < 0.05) all

methods come close to the true number of informative blocks and have low misclassi-
fication. bHC and the Ofdr have the best performance. Even though bHC somewhat
overestimates the number of informative blocks for the more difficult classification setting
resulting in the highest fpr, it still gives very low misclassification. Both Fdr and Lfdr
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Figure 15: The misclassification rate for accumulation of blocks and the cutoffs for the four thresholding
methods (black line Ofdr, red line HC, blue line Fdr and green line Lfdr) for a block size of 10 to 500
blocks.

tend more to underestimate the number of informative blocks, which results in very low
fpr and also generates more misclassification.

When the block doubles in size, p0 = 10, bHC still gives consistently low misclassifica-
tion even though the tendency is still to overestimate the number of informative blocks.
The Ofdr also still performs well even though it is not as good as bHC and more re-
strictive in the estimate of number of informative blocks. For well-separated classes the
Fdr generates low misclassification and comes close to the correct number of informative
blocks. When the classes come closer together the selected number of informative blocks
becomes too small for good classification. The tendency for the Lfdr is the same as for
Fdr but selects even fewer blocks.

For the last block size (p0 = 20), bHC shows a reversed pattern by overestimating
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Figure 16: The misclassification rate for accumulation of blocks and the cutoffs for the four thresholding
methods (black line Ofdr, red line HC, blue line Fdr and green line Lfdr) for a block size of 20 to 500
blocks.

the number of informative blocks for the well-separated classes and underestimating for
when the classes are closer together, but the misclassification rate is still surprisingly low
and accurate. Now the Ofdr performs notably less well in comparison to bHC; it comes
close only for the well-separated classes. Both the Fdr and Lfdr struggle with identifying
informative blocks, which results in low classification accuracy.
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7.2 Real cancer data

In this section we apply the three different thresholding methods bHC, Fdr and Lfdr to
real data. We consider classification of four real gene expression data sets from cancer
tumor samples.

Colon cancer data: The first set of data consists of filtered and processed gene expres-
sion information from colon cancer data of which p = 2000 genes were chosen with largest
minimal intensity over n = 62 tissue samples. As a class variable we use non-tumor vs.
tumor tissue with n0 = 22 and n1 = 40 observations, respectively. Additional information
about tissue samples and the preprocessing procedure can be found in [1].

Breast cancer data I : For the second set of data, the tumor samples were selected from
the population-based Stockholm-Gotland breast cancer registrary on the basis of several
criteria; for more details on the data see [19]. This data matrix monitors p = 6573 genes
in n = 159 breast tumor samples and as a class variable we use 5-year breast-cancer death
(true = death within 5 years).

Prostate cancer data: The third data is available through the Broad institute and
consists of gene expression patterns from 52 tumorous and 50 normal prostate specimens
for approximately 12,600 genes; for more details see [22].

Breast cancer data II : For the last data the tumor samples were selected from the Duke
Breast Cancer SPORE tissue bank on the basis of several criteria; for more details on the
data see [29]. This data matrix monitors p = 7129 genes in n = 49 breast tumor samples
and as class variable we use whether the tumors are positive or negative estrogen receptors.

The data was scaled and centered. Next the data was divided into blocks. We test eight
different block sizes (p0 = [2, 5, 10, 15, 20, 30, 40, 50]). Then we estimate the separation
strength and order the blocks according to strength from the highest to the lowest. Using
the thresholding methods we estimate number of informative blocks to include in the
additive classifier. We divide the data into training and test data using 10-fold cross
validation and calculate the misclassification according to the above; see Table 4. There
are great differences in the number of selected blocks between bHC and the two false-
discovery rate methods. The bHC consistently shows lower misclassification than both
Fdr and Lfdr as well as compared to including the full data in the classifier, as can be
seen in Table 4.

Next we choose features with the highest variance to be able to search for true block
structures within the data. We calculated the variance for all feature variables, then the
features were ranked according to the variance and we selected a subsample of the top 50%
for the two breast cancer data and the top 25% for the prostate cancer data. For colon
cancer the whole data set was included. Then we estimate the block-diagonal structure
of Σ̂ through gLasso with bootstrap and Cuthill-McKee ordering; for more information
see [18]. All data sets were then arranged according to the estimated block structure.
Then we followed the above procedure to estimate the number of informative blocks and
misclassification; see Table 5. This approach is beneficial for the Breast cancer data II,
where consistently low misclassification is showed over the different block sizes. For the
Prostate cancer data there were better results estimating the threshold from the full data
set, indicating that choosing the features with the highest variance was not optimal for
this data. The Breast cancer data II shows similiar results for the two approaches. It is
still bHC that performs with the lowest misclassification rates, but the two Fdr methods
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come closer in results; see Table 5.
It is clearly seen that misclassification varies between block sizes and in this study

we have limited ourselves to equal block sizes. Allowing for data-adjusted blocks could
improve the classification even further. In comparison to published results in [5, 15] our
bHC results in lower misclassification for some block sizes.

Block No.selected blocks Misclassification rate
size bHC Fdr Lfdr bHC Fdr Lfdr All

Breast cancer data I
1 657 999 583 0.24 0.23 0.24 -
2 328 1461 804 0.23 0.23 0.22 0.28
5 131 1219 929 0.22 0.27 0.25 0.26

10 65 657 601 0.20 0.26 0.25 0.28
15 43 438 393 0.21 0.28 0.26 0.28
20 32 328 308 0.19 0.28 0.28 0.26
30 21 219 209 0.14 0.26 0.25 0.30
40 16 164 156 0.17 0.26 0.25 0.26
50 13 131 121 0.15 0.25 0.26 0.25

Prostate cancer data
1 126 808 442 0.10 0.20 0.13 -
2 630 5547 4082 0.14 0.38 0.35 0.36
5 252 2520 2427 0.09 0.26 0.28 0.25

10 126 1260 1254 0.08 0.19 0.19 0.17
15 84 840 838 0.07 0.14 0.13 0.15
20 63 630 620 0.06 0.13 0.12 0.13
30 42 420 411 0.05 0.11 0.13 0.10
40 31 315 309 0.05 0.11 0.09 0.12
50 25 252 247 0.04 0.12 0.09 0.13

Breast cancer data II
1 712 165 61 0.02 0.08 0.04 -
2 712 1254 696 0.06 0.06 0.04 0.10
5 285 1313 759 0.04 0.08 0.06 0.14

10 142 712 705 0.04 0.12 0.10 0.08
15 95 475 443 0.06 0.10 0.14 0.16
20 71 356 351 0.02 0.16 0.10 0.10
30 1 237 235 0.10 0.08 0.08 0.10
40 1 178 176
50

Table 4: Number of blocks selected as informative and misclassification using whole data sets.
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Block No.inf.blocks Misclassification rate
size bHC Fdr Lfdr bHC Fdr Lfdr All

Colon cancer data
1 200 388 240 0.13 0.13 0.13 -
2 198 994 664 0.15 0.26 0.26 0.27
5 79 89 87 0.08 0.19 0.18 0.15

10 39 198 196 0.13 0.11 0.16 0.18
15 26 132 130 0.15 0.16 0.18 0.19
20 19 99 1 0.11 0.13 0.21 0.11
30 13 66 64 0.11 0.18 0.15 0.18
40 9 49 1 0.10 0.18 0.19 0.18
50 1 39 37 0.32 0.27 0.19 0.18

Breast cancer data I
1 328 550 315 0.22 0.21 0.23 -
2 164 614 342 0.22 0.22 0.21 0.28
5 65 565 384 0.21 0.26 0.23 0.26

10 32 328 286 0.21 0.30 0.28 0.27
15 21 219 188 0.20 0.27 0.28 0.26
20 16 164 152 0.16 0.28 0.27 0.28
30 10 109 105 0.18 0.24 0.28 0.26
40 8 82 77 0.18 0.25 0.27 0.26
50 6 65 60 0.20 0.27 0.24 0.26

Prostate cancer data
1 315 89 43 0.36 0.34 0.28 -
2 157 150 54 0.27 0.30 0.23 0.38
5 63 260 99 0.16 0.25 0.20 0.31

10 31 218 101 0.09 0.19 0.14 0.25
15 21 188 127 0.06 0.21 0.16 0.23
20 15 155 134 0.11 0.18 0.16 0.19
30 10 105 97 0.11 0.14 0.10 0.15
40 7 78 72 0.09 0.10 0.12 0.13
50 6 63 60 0.15 0.14 0.14 0.16

Breast cancer data II
1 356 230 133 0.22 0.20 0.22 -
2 307 217 97 0.02 0.02 0.02 0.27
5 142 461 289 0.02 0.06 0.02 0.14

10 71 356 271 0.02 0.12 0.06 0.14
15 47 237 225 0.04 0.12 0.16 0.12
20 35 178 174 0.02 0.12 0.12 0.18
30 1 118 115 0.12 0.10 0.08 0.10
40 1 89 87 0.18 0.16 0.12 0.16
50

Table 5: Number of selected blocks and misclassification using a subset of the real data where true block
structure has been identified.
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8 Concluding remarks

The results obtained in this paper constitute a part of study on high-dimensional classi-
fication, where sparsity patterns in feature relevance are combined with feature weakness
motivating the suggested SWB model. Further, the model was validated using both sim-
ulated and real datasets. We could see that that the detectable region for SWB decreases
with growing degrees of freedom, hence, in the case of weak separation strength, the block
size should be kept moderate.

The empirical analysis of the suggested feature selection procedure shows that bHC
thresholding has near optimal behavior for a variety of block sizes. This behavior was
studied using the ideal threshold interpretation, meaning that with knowledge of n, p, β
and ω the LR-based procedure choose the very best threshold within the detectable area.
Since the bHC procedure ”mimics” behavior of LR while not requiring knowledge of pa-
rameters, we conclude that bHC is optimally adaptive to unknown sparsity and separation
strength. These results are in line with e.g. [27] and [4], where optimal adaptivity of the
HC procedure was considered in the context of signal detection.

The bHC principle has also been motivated by our results of estimation of the propor-
tion of informative blocks, i.e proportion of non nulls in [17]. We embed the technique
by [23, 17] into high-dimensional sparse classification and show that the problem of es-
timation becomes more subtle, in particular due to problems with reliable estimates of
β̂.

HC was previously applied for feature selection in high-dimensional classification; see
[5, 10]. However, a crucial difference is in selecting blocks of features (not individual
features) at the learning stage; our procedure selects blocks when designing a sample-
based linear classifier and the actual allocation decision is made by the classifier when
presented with a new observed feature vector.

An essential part of the current work is applications, especially using bHC in classi-
fication of cancer data. A number of studies in the problem report promise asymptotic
results, with a warning that it could be difficult to demonstrate the observed phenomena
in the finite sample case; see e.g. [10] Applications of HC to realistic data are even more
restrictive due to the assumptions of independence. We have investigated our bHC thresh-
olding in classification of tumor samples for four real data sets with varying sparsity and
amplitude of separation strength, and showed that for a number of cases our techniques
outperform existing feature selection procedures, giving lower misclassification rates. It
is also important to note that our bHC technique requires an extra stage of structure
learning. That the bHC classifier matches or outperforms HC based on the independence
assumption clearly indicates the relevance of the SWB model and the benefits of prop-
erly taking into account the dependence structure underlying the data. In this study we
limited ourselves to equal block sizes, but it can easily be extended to allow for different
block sizes, which can further improve the results.
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