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Statistical Analysis of Multigraphs

Termeh Shafie

Abstract

This article analyzes multigraphs by performing statistical tests of multigraph mod-
els obtained by random stub matching (RSM) and by independent edge assignments
(IEA). The tests are performed using goodness-of-fit measures between the multiplicity
sequence of an observed multigraph and the expected multiplicity sequence according
to a simple or composite IEA hypothesis. Test statistics of Pearson type and of infor-
mation divergence type are used. The expected values of the Pearson goodness-of-fit
statistic under different multigraph models are derived, and some approximations of the
test statistics with adjusted χ2-distributions are considered. Illustrations of test perfor-
mances are presented for all models, and the results indicate that even for very small
number of edges, the null distributions of both statistics are well approximated by their
asymptotic χ2-distribution. This holds true for testing simple as well as composite hy-
potheses with different asymptotic distributions. The non-null distributions of the test
statistics can be well approximated by adjusted χ2-distributions which can be used for
power approximations. The influence of RSM on both test statistics is substantial for
small number of edges and implies a shift of their distributions towards smaller values
compared to what holds true for the null distributions under IEA.

Keywords: multigraph, multiplicity, goodness-of-fit, information divergence.

1 Introduction

A random multigraph model is given by a probability distribution over some class of multi-
graphs. In this article multigraphs are analyzed by performing statistical tests of some
multigraph models presented in Frank and Shafie (2012) and Shafie (2012). Two main
multigraph models are considered. The first is obtained by random stub matching with
fixed degrees (RSM) so that edge assignments to sites are dependent, and the second is
obtained by independent edge assignments (IEA) according to a common probability distri-
bution. Further, we present two different methods for obtaining an approximate IEA model
from an RSM model. This is done by assuming that the stubs are randomly generated
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and independently assigned to vertices (ISA) and can be viewed as a Bayesian model for
the stub frequencies under RSM. Another way of obtaining an approximate IEA model is
to ignore the dependency between edges in the RSM model and assume independent edge
assignments of stubs (IEAS). The tests are performed using goodness-of-fit measures be-
tween the multiplicity sequence of an observed multigraph and the expected multiplicity
sequence according to a simple or composite IEA hypothesis. The exact distributions of the
test statistics are investigated and compared to different approximations given by adjusted
χ2-distributions.

In the next section, multigraph data structures are described and exemplified. It is shown
how they can be obtained by different kinds of vertex and edge aggregations. These kinds of
aggregations are powerful methods to analyze structures in very large graphs. In Section 3,
some basic notations are introduced, and the different multigraph models mentioned above
are defined.

Statistical tests of simple hypotheses are considered in Section 4 where the hypotheses
are fully specified IEA models. For an IEAS model, the edge probability parameters are
functions of a specified degree sequence d, and for an ISA model these parameters are
functions of a specified stub selection probability sequence p. The Pearson goodness-of-fit
statistic S and the divergence statistic T for these tests are defined. The expected value of S
is derived under different multigraph models, and in particular it is shown that for the null
distribution under RSM, this expected value only depends on the numbers of vertices and
edges. Test illustrations for IEAS, ISA and RSM models are presented where the moments
and cumulative distribution functions of the test statistics are used to compare and evaluate
their performances. The convergence of the null distributions of S and T to their asymptotic
χ2-distributions is rapid and even for small number of edges m, a good fit is seen between
the null distributions and the asymptotic χ2-distribution. For cases when flat d or p is
tested against skew d or p (or vice versa), both statistics have good powers of rejecting a
simple hypothesis about a false model. The non-null distributions of S and T needed for
determining power are approximated by adjusted χ2-distributions. The influence of RSM
on the distributions of S and T is substantial for small m and implies a shift towards smaller
values of the statistics compared to what holds true for the null distributions under IEA.

In Section 5, statistical tests of composite multigraph hypotheses are illustrated for
IEAS, ISA and RSM models. Moments and cumulative distribution functions of the test
statistics are used for comparisons and evaluations of their performances. The composite
multigraph hypotheses might be unspecified IEAS or ISA where the parameters have to be
estimated from data. For composite IEAS or ISA hypotheses including the correct model,
the following results are noted. The null distributions of S and T converge faster to their
asymptotic χ2-distributions for flat d or p than for skew d or p, but even for rather small
m, there is a good fit between these distributions and their asymptotic χ2-distributions.
Further, both statistics have very poor powers of detecting differences between IEAS and
ISA hypotheses for small as well as for large m.
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2 Data Structures and Possible Applications

A multigraph is defined as a graph where multiple edges and edge-loops are permitted.
Such data structures are common in contexts when several edges can be mapped on the
same vertex pair, but they are also obtained by different types of aggregation. Several
simple graphs representing different binary relations can be aggregated to a multigraph, or
an initial very large graph can be transformed to a multigraph by aggregating vertices into
special subsets. Such possibilities are illustrated by some examples.

Consider a social network of friendships between 15 school children consisting of 12
pairs of mutual friendships. The children are categorized by two attributes, gender with
categories labeled G (girl) and B (boy), and living area with categories labeled N (north)
and S (south). Thus, there are four vertex categories BN, BS, GN and GS which are
displayed together with mutual friendships in Figure 1. By aggregating vertices in the same
category, we obtain a multigraph on 4 new vertices corresponding to the categories, and it
has the same number of edges as the initial graph. This is shown in Figure 2. By performing
this kind of transformation, we reduce the number of vertices but increase the number of
multiple edges and edge loops. Generally, social networks of contacts between individuals
can be transformed to multigraphs on vertices corresponding to combined categories of
individual attributes, and edge multiplicities represent frequencies of contacts within and
between these categories.

SB NG NG NG

NB SB NB NG SG

NB NG NG SG SG NG

Figure 1: Initial graph of friendships between 15 children in a school and 12 pairs of mutually
good friends. The children are categorized by gender, girl (G) or boy (B), and living area,
north (N) or south (S).

NG NB

SG SB

Figure 2: Final multigraph of the friendships in Figure 1 categorized by gender and living
area. The edges represent pairwise friendships within and between categories.
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As another illustration of vertex aggregation, consider network of co-operations between
business companies which are categorized by branch. Figure 3 shows 20 co-operation pairs
between 25 companies belonging to branch A, B or C. The multigraph on the three branches
is given in Figure 4 and has edge multiplicities that represent co-operations within and
between the branches. It is conveniently presented in table format.

B

A C

B C A

C B B B

A C A C C

B C A B

C A C

B B

A

Figure 3: Initial graph of 20 co-operations between 25 companies. The companies are
categorized by three different branches labeled A, B and C.

A B

C

Figure 4: Final multigraph of the co-operations in Figure 3 categorized by branch. The
edges represent pairwise co-operations within and between the three branches.
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Vertex aggregation is a powerful method to analyze structure in very large graphs.
Another type of aggregation that is often useful is edge aggregation, which is illustrated by
the following example of a time series. Assume that we are studying a graph with a fixed
number of vertices and different categories of pairwise contacts. Further, assume that we
study this graph over a period of time, i.e. how the different contacts vary over a time period.
For example, let the initial graph have 5 vertices representing 5 different departments in
a company and we study the variation of 3 different edge categories representing pairwise
contact types between and within the departments. These contact types are phone call,
video call or meeting. The connections between the five departments have been observed
every day for a total time period of three days. This is illustrated in Figure 5 where the
edge attributes are labeled with the colors blue, red and green.

1 2 1 2 1 2

3 3 3

4 5 4 5 4 5

Day 1 Day 2 Day 3

Figure 5: Initial daily graphs on 5 different departments of a company showing three con-
nection types labeled blue (phone call), red (video call) and green (meeting).

The transformation with respect to edge attributes of the graphs in Figure 5 can be
done in different ways. If we aggregate over time periods, we obtain for each edge category
a multigraph for the total time period of three days, which is shown in Figure 6.

1 2 1 2 1 2

3 3 3

4 5 4 5 4 5

Phone call Video call Meeting

Figure 6: Multigraphs obtained by aggregating each of the edge categories in Figure 5 over
all three days.
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Another way of transforming the initial graphs in Figure 5 to multigraphs is by aggre-
gating over contact types (ignoring edge colors), to get one multigraph for each time period.
If we also aggregate over the three time periods we obtain a multigraph with 5 vertices and
a total of 25 edges, shown in Figure 7.

1 2

3 5

4

Figure 7: Final multigraph of the total number of connections during 3 days within and
between the five departments in Figure 5.

3 Some Random Multigraph Models

In order to analyze multigraphs, we perform statistical tests of some random multigraph
models considered in Frank and Shafie (2012) and Shafie (2012). First we introduce some
basic notations. A finite graph g with n labeled vertices and m labeled edges associates with
each edge an ordered or unordered vertex pair. Let V = {1, . . . , n} and E = {1, . . . ,m} be
the sets of vertices and edges labeled by integers, and let R denote the set of available sites
for the edges. For directed graphs the site space is R = V 2 and the number of sites is given
by r = n2. For undirected graphs we use the site space R = {(i, j) ∈ V 2 : i ≤ j} where we
consider (i, j) with i ≤ j as a canonical representation for the unordered vertex pair. The
number of sites for undirected graphs is given by r =

(

n+1
2

)

. The graph is thus an injective
map g : E → R ⊆ V 2.

A random multigraph is given by a probability distribution over some class of multi-
graphs. A multigraph with labeled vertices and undistinguished edges is represented by the
edge multiplicity sequence m = (mij : (i, j) ∈ R) where the edge multiplicity mij denotes
the number of multiple edges at site (i, j) ∈ R. For undirected multigraphs, the edge sites
are listed in the canonical order

(1, 1) < (1, 2) < · · · < (1, n) < (2, 2) < (2, 3) < · · · < (n, n) ,
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so that mii is the number of loops at vertex i, and mij for i < j is the number of edges
between vertices i and j. In this case it is convenient to define mij = 0 for i > j. The edge
multiplicity sequence m has total

m·· =
∑∑

i≤j

mij = m and mi· +m·i =
n
∑

j=1

mij +
n
∑

j=1

mji = di

is the degree of vertex i, which can also be interpreted as the number of edge-stubs or
half-edges at vertex i for i = 1, . . . , n. The stub multiplicity sequence d = (d1, . . . , dn) has
total

∑n
i=1 di = 2m.

Consider a random undirected multigraph model where the edges are independently as-
signed to sites according to a common probability model. Let Qij denote the probability of
assigning an edge to site (i, j) ∈ R so that

∑∑

i≤j Qij = 1. This independent edge assign-
ment (IEA) model has edge multiplicity sequence m(IEA) that is multinomially distributed
with parameters m and Q = (Qij : (i, j) ∈ R) so that edge sequences m have probabilities

P (m(IEA) = m) =

(

m

m

)

Qm =
m!

∏

i≤j mij !

∏

i≤j

Q
mij

ij .

Another random multigraph model is obtained by assuming that the edges are formed
by random matching of pairs of edge-stubs in a given sequence of edge-stubs. This random
stub matching (RSM) model has fixed stub multiplicity sequence d = (d1, . . . , dn). Under
RSM, the edge assignments to sites are dependent. The probability that an edge is assigned
to site (i, j) ∈ R is given by

Qij =







(

di
2

)

/
(

2m
2

)

for i = j

didj/
(

2m
2

)

for i < j ,

so that the edge probability sequence Q = Q(d) is a function of the stub multiplicity
sequence d. The probability of edge multiplicity sequence m under RSM is shown in Shafie
(2012) to be given by

P (m(RSM) = m) =
2m2

(

m
m

)

(

2m
d

) =
2m2m!

∏n
i=1 di!

(2m)!
∏

i≤j mij !
,

where m2 =
∑∑

i<j mij .
A Bayesian version of the RSM model is obtained by assuming that the stubs are in-

dependently assigned to vertices according to a probability distribution p = (p1, ..., pn).
The stub multiplicity sequence under independent stub assignments (ISA) is multinomially
distributed with parameters 2m and p. This multinomial distribution can be viewed as a
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Bayesian model for the stub multiplicities and leads to independent edge assignments. Thus
by the Bayesian assumption the RSM model is turned into a special IEA model with edge
probability sequence Q defined as a function of p according to

Qij =

{

p2i for i = j

2pipj for i < j .

Another way to get an approximate IEA model from an RSM model is to ignore the de-
pendency between the edge assignments in the RSM model. The edge probability sequence
Q = Q(d) of the RSM model is used to define a model with independent edge assignment
of stubs (IEAS). Note that the IEAS model, like other IEA models, has

(

m+r−1
m

)

different
outcomes of m, while the RSM models are restricted to outcomes that are consistent with
stub multiplicity sequence d only.

The following notations will be used for the models presented in this section. Inde-
pendent edge assignment is denoted IEA(Q), random stub matching is denoted RSM(d),
independent stub assignments is denoted ISA(p), and independent edge assignments of
stubs is denoted IEAS(d).

4 Statisticial Tests of a Simple Multigraph Hypothesis

4.1 Test Statistics

A simple multigraph hypothesis H0 is defined as a fully specified IEA(Q0) which can be an
ISA(p0) or an IEAS(d0) with Q0 specified as a function of d0 or p0. The tests are per-
formed using goodness-of-fit measures between the multiplicity sequence m of an observed
multigraph and the expected multiplicity sequence according to H0.

Asymptotic theory for likelihood ratios and goodness-of-fit statistics is given for instance
by Anderson (1980) and Cox and Hinkley (1974). The Pearson goodness-of-fit statistic is
given by

S0 =
∑∑

i≤j

(mij −mQ0ij)
2

mQ0ij
=
∑∑

i≤j

m2
ij

mQ0ij
−m ,

which is asymptotically χ2-distributed with df = r−1 degrees of freedom if the multiplicity
sequence is obtained according to IEA(Q) and the correct model Q0 = Q is tested. We
denote a random variable with this distribution χ2

r−1. The divergence statistic is given by

D0 =
∑∑

i≤j

mij

m
log

mij

mQ0ij
,

and an asymptotic χ2
r−1-statistic can be obtained as

T0 =
2m

log e
D0 .
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Divergence statistics are used as goodness-of-fit statistics for instance by Kullback (1959)
and Frank (2011). For good asymptotics it is normally assumed that m is large and mQij

is not too small (for instance mQij ≥ 5 and m ≥ 5r). By approximation of the logarithm
function it can be shown that S0 ≈ T0 for large m. The critical region for the tests is taken
as values of S0 and T0 above a critical value cv given by

cv = df + 2
√

2df = r − 1 +
√

8(r − 1) ,

which has a significance level approximately equal to 5% given by

α = P (χ2
r−1 > cv) .

The power functions

P (S0 > cv) = 1− βS0
(Q) and P (T0 > cv) = 1− βT0

(Q)

are calculated using the distributions of S0 and T0 when m is multinomially distributed with
parameters m and Q, for Q = Q0 and for Q 6= Q0. Specifically, S0 and T0 are compared to
χ2
r−1 via moments and cumulative distribution functions. For instance, the expected value

of S0 reveals how far from E(χ2
r−1) = r − 1 the distribution of S0 is. This expected value

is given by

E(S0) =
∑∑

i≤j

E(m2
ij)

mQ0ij
−m =

∑∑

i≤j

Qij + (m− 1)Q2
ij

Q0ij
−m ,

where mij is binomially distributed with parameters m and Qij so that

E(m2
ij) = Var(mij) + [E(mij)]

2 = mQij(1−Qij) +m2Q2
ij = mQij +m(m− 1)Q2

ij .

In particular, if Q = Q0 so that Qij = Q0ij for i ≤ j, the null distribution of S0 has
expected value

E(S0) =
∑∑

i≤j

[1 + (m− 1)Qij ]−m = r − 1 .

Under the ISA(p) model and ISA(p0) hypothesis, the expected value of S0 is given as

E(S0) =
n
∑

i=1

L2
i

[

1 + (m− 1)p2i
]

+
∑∑

i 6=j

LiLj

2
[1 + (m− 1)2pipj ]−m

=
n
∑

i=1

L2
i + (m− 1)

n
∑

i=1

(Lipi)
2 +

n
∑

i=1

n
∑

j=1

LiLj

2

+ (m− 1)
n
∑

i=1

n
∑

j=1

LiLjpipj −
n
∑

i=1

L2
i

2
− (m− 1)

n
∑

i=1

(Lipi)
2 −m

=

∑n
i=1 L

2
i + (

∑n
i=1 Li)

2

2
−m+ (m− 1)

(

n
∑

i=1

Lipi

)2

,
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where Li = pi/p0i is the likelihood ratio for stub assignments. As seen, the variation of
E(S0) depends on

∑n
i=1 Li,

∑n
i=1 L

2
i and

∑n
i=1 Lipi. In particular, for a uniform ISA(p0)

hypothesis where poi = 1/n,

E(S0) =
n2
∑n

i=1 p
2
i + n2

2
−m+ (m− 1)n2

(

n
∑

i=1

p2i

)2

,

which by letting s2 =
∑n

i=1 p
2
i can be simplified to

E(S0) = m(n2s22 − 1) +
n2

2
(1 + s2 − 2s22) .

From this we see that E(S0) grows linearly with m having coefficients depending on n and
s2. By using

E(S0) = s22n
2(m− 1) + s2

n2

2
+

n2

2
−m

and 1/n ≤ s2 ≤ 1, it follows that

r − 1 ≤ E(S0) ≤ m(n2 − 1) .

We also note that if p = p0 so that pi = p0i, the null distibution has

E(S0) =
n+ n2

2
−m+ (m− 1) =

(

n+ 1

2

)

− 1 = r − 1

which is consistent with the result shown previously for Q = Q0.
The expected value of S0 can also be considered for the RSM(d) model when H0 is

RSM(d0) or IEAS(d0) since Q0 of IEAS and RSM are identical. Shafie (2012) gives the
moments of mij under RSM as

E(mij) = mQij for i ≤ j ,

and
Var(mij) = σ2

ij +∆ij for i ≤ j ,

where σ2
ij = mQij(1−Qij) is the variance under IEA, and ∆ij is the difference between the

variances of mij under RSM and IEA:

∆ij = m(m− 1)(Qijij −Q2
ij) ,

where

Qijij =















Qii

(

(di−2)(di−3)
(2m−2)(2m−3)

)

for i = j

Qij

(

2(di−1)(dj−1)
(2m−2)(2m−3)

)

for i < j .

10



A general expression for the expected value of S0 under RSM is here obtained as

E(S0) =
∑∑

i≤j

E(m2
ij)

mQ0ij
−m

=
∑∑

i≤j

σ2
ij +∆ij +m2Q2

ij

mQ0ij
−m

=
∑∑

i≤j

mQij(1−Qij) + ∆ij +m2Q2
ij

mQ0ij
−m .

For Q = Q0 so that Qij = Q0ij for i ≤ j, this simplifies to

E(S0) = r − 1 +
∑∑

i≤j

∆ij

mQij

r − 1 +
∑∑

i≤j

m(m− 1)(Qijij −Q2
ij)

mQij

= r − 1 + (m− 1)





∑∑

i≤j

Qijij

Qij

−
∑∑

i≤j

Qij





= r −m+ (m− 1)





∑∑

i≤j

Qijij

Qij





= r −m+ (m− 1)





∑∑

i<j

2(di − 1)(dj − 1)

(2m− 2)(2m− 3)
+

n
∑

i=1

(di − 2)(di − 3)

(2m− 2)(2m− 3)





= r −m+
1

2(2m− 3)





∑∑

i 6=j

(di − 1)(dj − 1) +
n
∑

i=1

(di − 2)(di − 3)





= r −m+
1

2(2m− 3)

[

4m2 + 4mn+ n2 − 6m+ 5n
]

=
(m− 1)n(n− 1)

2m− 3
,

which implies that the expected value of the null distribution only depends on the number
of vertices and edges. Using this expression we can now show for which values of m and n
the expected value of S0 under RSM is smaller than r − 1, i.e.

E(S0) =
(m− 1)n(n− 1)

2m− 3
< (r − 1) =

n(n+ 1)

2
− 1 .
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Solving the inequality for m gives the following results:

E(S0) < r − 1 for m >
n+ 6

4
,

E(S0) = r − 1 if m =
n+ 6

4
is integer ,

and

E(S0) > r − 1 for m <
n+ 6

4
.

Note that the restriction 2m ≥ n imposed by no isolated vertices implies that E(S0) > r−1
only for some degenerate cases (n = 2, m = 1) and the extreme cases n = 3 or 4, and m = 2.
Therefore, under RSM the null distribution of the test statistic S0 has for all other cases
an expected value below r − 1, and its cumulative distribution function will tend to lie on
or above that of χ2

r−1 for all practical useful cases. Exceptional cases with m < (n + 6)/4
have so few stubs to be matched that they are unlikely to be useful in practice. Compare
the requirement of large m needed for good χ2 asymptotics. Note however that the test
statistics may not have asymptotic χ2-distributions under RSM due to dependency between
edges.

Any test statistic S, like S0 or T0, can be approximated by an adjusted χ2-distribution
given by

S∗ =
µ

k
χ2
k ,

where µ = E(S). For any positive integer k the approximation S∗ has the same mean as S
and a variance given by

V ar(S∗) =
2µ2

k
.

Two particular approximations S
′

and S
′′

are given by S∗ for k chosen as the integer part
of µ and for k = r − 1, respectively. Their variances are

V ar(S
′

) =
2µ2

⌊µ⌋
and V ar(S

′′

) =
2µ2

r − 1
,

and the preferred approximation is the one with variance closest to V ar(S) = σ2. Equiva-
lently, the preferred adjusted χ2-distribution is the one with degrees of freedom closest to
2µ2/σ2. A good approximation is useful for power calculations.

4.2 Test Illustrations for IEAS Models

We consider multigraphs with 4 vertices and 10 edges and test IEAS(d0) hypotheses against
IEAS(d) models. The degree sequences are chosen to include both skew and flat (uniform
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and close to uniform) cases. The number of edge sites is here given by r = 10 and the test
statistics S0 and T0 are thus asymptotically χ2

9-distributed when the correct model with
d0 = d is being tested. The critical value is cv = 17.49 and α = P (χ2

9 > cv) = 0.04.
The powers of these tests according to S0 and T0 are given in Table 1, where the diagonal
representing d0 = d is shaded. Note that there is one case where the order between the
components in d0 is switched. For this special case, the large deviations between the
degree values in models and hypotheses result in powers being close or equal to one for both
statistics. When d0 = d, αT0

= 1−βT0
< α ≤ 1−βS0

= αS0
. For flat d0 = d, both statistics

have significance levels equal or close to α, but for skew d0 = d, the significance level of T0

is much below α and that of S0 is much above α. For the majority of cases with not too
skew d0 6= d, both statistics have fairly good powers, but the inequalities between them
persist indicating that their cumulative distribution functions can approach an asymptotic
distribution from either below or above. To illustrate the fit of the distributions of the
statistics S0 and T0 to χ2

9, their cumulative distribution functions are shown in Figure 8.
For flat d0 = d, the null distribution of S0 almost coincides with that of χ2

9. For skew
d0 = d, the null distributions of both statistics give poor fit to χ2

9-distribution. This poor
fit is also noted for both flat and skew d0 6= d. Both S0 and T0 seem to have distributions
that would be better approximated by χ2 with degrees of freedom chosen to be higher than
r − 1 in cases with d0 6= d.

The speed of the convergence of the cumulative distribution functions of S0 and T0 is
illustrated in Figures 9 and 10 where both flat and skew d0 = d are considered. The number
of edges m increases as multiples of the chosen degree sequences. We see that even for small
m, the null distributions of both statistics are fairly well approximated by their asymptotic
χ2-distribution. A similar investigation of the non-null distributions of S0 and T0 is shown
in Figure 11 for flat d0 6= d and in Figure 12 for skew d0 6= d, where d0 is kept fixed and
d is varied. For both flat and skew d0, the deviations between the non-null distributions
of S0 and T0 and their asymptotic null distribution increase with the number of edges, and
even for m = 12 this deviation is clearly notable. Thus even for the rather small m = 12,
it is easy to detect simple hypotheses about false models.

Two cases in Table 2 illustrate how test statistics can be approximated by adjusted
χ2-distributions. The approximated goodness-of-fit statistics are S

′

0 and S
′′

0 , and the ap-
proximated divergence statistics are T

′

0 and T
′′

0 . These approximations are evaluated by
comparing their variances to V ar(S0) and V ar(T0). The expected values and variances of
all versions of the test statistics are presented in Table 2 where the versions that are not
preferred are shaded so that it is easier to compare preferences in different cases. For the
first case, S

′′

0 is preferred to S
′

0 while T
′

0 is preferred to T
′′

0 . Equivalently, the preferred
adjusted χ2-distribution for S0 has df = r − 1 = 9 since it is closer than df = ⌊µ⌋ = 13 to
2E(S0)/V ar(S0) = 7.31, and the adjusted χ2-distribution for T0 has df = ⌊µ⌋ = 13 since
it is closer than df = r − 1 = 9 to 2E(T0)/V ar(T0) = 18.19. For the second case, S

′

0 is
preferred to S

′′

0 , while T
′′

0 is preferred to T
′

0.
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Table 1: Power according to S0 (upper value) and T0 (value below) when model is IEAS(d)
and hypothesis is IEAS(d0) for n = 4 and m = 10. α = 0.04.

d

(14, 2, 2, 2) (12, 3, 3, 2) (9, 7, 2, 2) (8, 8, 2, 2) (6, 6, 6, 2) (6, 5, 5, 4) (5, 5, 5, 5)
d0

(14, 2, 2, 2) 0.19 0.42 0.87 0.94 0.98 0.97 0.99
0.01 0.06 0.52 0.70 0.87 0.82 0.92

(2, 2, 14, 2) 1.00 1.00 1.00 1.00 0.98 0.99 0.99
1.00 1.00 1.00 1.00 0.87 0.92 0.92

(12, 3, 3, 2) 0.06 0.10 0.50 0.66 0.75 0.77 0.89
0.01 0.01 0.24 0.40 0.52 0.50 0.69

(9, 7, 2, 2) 0.34 0.31 0.13 0.14 0.74 0.78 0.87
0.25 0.14 0.01 0.02 0.40 0.44 0.60

(8, 8, 2, 2) 0.58 0.44 0.13 0.13 0.73 0.78 0.87
0.47 0.26 0.02 0.01 0.38 0.44 0.58

(6, 6, 6, 2) 0.85 0.54 0.24 0.21 0.08 0.36 0.53
0.74 0.39 0.19 0.18 0.02 0.14 0.27

(6, 5, 5, 4) 0.78 0.46 0.26 0.28 0.07 0.05 0.07
0.69 0.36 0.22 0.23 0.06 0.03 0.05

(5, 5, 5, 5) 0.91 0.70 0.48 0.46 0.13 0.05 0.04
0.63 0.63 0.43 0.41 0.12 0.04 0.03

Table 2: Moments of S0, S
′

0, S
′′

0 , T0, T
′

0 and T
′′

0 for some IEAS(d) models and IEAS(d0)
hypotheses with n = 4 and m = 10. The unshaded columns correspond to the best approx-
imations to the test statistics.

Case 1: d0 = (6, 6, 6, 2), d = (8, 8, 2, 2)

S0 S
′

0 S
′′

0 T0 T
′

0 T
′′

0

Expected value 13.62 13.62 13.62 13.40 13.40 13.40
Variance 50.74 28.52 41.20 19.74 27.64 39.93

Case 2: d0 = (12, 3, 3, 2), d = (14, 2, 2, 2)

S0 S
′

0 S
′′

0 T0 T
′

0 T
′′

0

Expected value 7.51 7.51 7.51 7.82 7.82 7.82
Variance 31.79 16.14 12.55 10.61 17.47 13.59
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Figure 8: Distributions of S0, T0, and χ2
9 for some IEAS(d) models and IEAS(d0) hypotheses

with n = 4 and m = 10.
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Figure 9: Null distributions of S0 and T0 for some IEAS(d) models and IEAS(d0) hypotheses
with flat d0 = d when m increases.
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Figure 10: Null distributions of S0 and T0 for some IEAS(d) models and IEAS(d0) hy-
potheses with skew d0 = d when m increases.
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Figure 11: Non-null distributions of S0 and T0 for some IEAS(d) models and IEAS(d0)
hypotheses with flat d0 and different d when m increases.
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Figure 12: Non-null distributions of S0 and T0 for some IEAS(d) models and IEAS(d0)
hypotheses with skew d0 and different d when m increases.
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4.3 Test Illustrations for ISA Models

We now turn our attention to ISA(p0) hypotheses tested against ISA(p) models and consider
tests of different multigraphs of the same size. The stub selection probability sequences are
chosen to illustrate both skew and flat cases. Note that there is one case where the order
between the components in p0 is switched. The powers of these tests according to S0 and
T0 are given in Table 3. We see that most results are consistent with those seen in Table 1
for IEAS models. For p0 = p, αS0

and αT0
are on opposite sides of α = 0.04 but they are

both close to α except for very skew cases. For the majority of cases with p0 6= p, both
test statistics have reasonable powers unless p0 and p are too close. In Figure 13, the fit of
the distributions of the statistics S0 and T0 to that of χ2

9 are illustrated for some selected
cases. Overall, we see that even for these examples with small m, we have fairly good fit
for all illustrated cases with both flat and skew p0 = p, and p0 6= p.

The impact on the null and non-null distributions of S0 and T0 for skew and flat p0 when
m increases is illustrated in Figures 14 to 17 where similar results as those for IEAS models
are noted. The convergence to the asymptotic distribution is rapid for null distributions of
both statistics, and the deviations between the non-null distributions of both statistics and
their asymptotic null distribution increase with m. The latter result implies that adjusted
χ2-distributions should be used to approximate the non-null distributions.

Two cases from Table 3 are chosen to illustrate the performance of the approximate
test statistics. By comparing variances we obtain the results presented in Table 4, where
non-preferred statistics are shaded.
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Table 3: Power according to S0 (upper value) and T0 (value below) when model is ISA(p)
and hypothesis is ISA(p0) for n = 4 and m = 10. α = 0.04.

p

(

7

10
, 1

10
, 1

10
, 1

10

) (

3

5
, 1

5
, 1

10
, 1

10

) (

1

2
, 1

6
, 1

6
, 1

6

) (

4

9
, 1

3
, 1

9
, 1

9

) (

3

8
, 3

8
, 1

8
, 1

8

) (

1

4
, 1

4
, 1

4
, 1

4

)

p0

(

7

10
, 1

10
, 1

10
, 1

10

)

0.10 0.33 0.57 0.80 0.92 0.99
0.01 0.07 0.19 0.47 0.67 0.88

(

1

10
, 1

10
, 7

10
, 1

10

)

1.00 1.00 1.00 1.00 1.00 0.99
1.00 1.00 0.99 1.00 1.00 0.88

(

3

5
, 1

5
, 1

10
, 1

10

)

0.06 0.08 0.36 0.32 0.50 0.92
0.01 0.01 0.11 0.11 0.24 0.72

(

1

2
, 1

6
, 1

6
, 1

6

)

0.04 0.04 0.06 0.27 0.42 0.53
0.05 0.03 0.02 0.14 0.25 0.35

(

4

9
, 1

3
, 1

9
, 1

9

)

0.27 0.09 0.29 0.06 0.11 0.74
0.24 0.05 0.14 0.02 0.04 0.49

(

3

8
, 3

8
, 1

8
, 1

8

)

0.54 0.19 0.29 0.04 0.05 0.58
0.47 0.14 0.19 0.02 0.02 0.38

(

1

4
, 1

4
, 1

4
, 1

4

)

0.88 0.66 0.32 0.35 0.25 0.03
0.86 0.63 0.28 0.33 0.23 0.03

Table 4: Moments of S0, S
′

0, S
′′

0 , T0, T
′

0 and T
′′

0 for some ISA(p) models and ISA(p0)
hypotheses with n = 4 and m = 10. The unshaded columns correspond to the best approx-
imations to the test statistics.

Case 1: p0 =
(

1
4 ,

1
4 ,

1
4 ,

1
4

)

, p =
(

3
8 ,

3
8 ,

1
8 ,

1
8

)

S0 S
′

0 S
′′

0 T0 T
′

0 T
′′

0

Expected value 14.56 14.56 14.56 14.43 14.43 14.43
Variance 50.98 30.30 47.13 22.05 29.74 46.27

Case 2: p0 =
(

3
5 ,

1
5 ,

1
10 ,

1
10

)

, p =
(

1
2 ,

1
6 ,

1
6 ,

1
6

)

S0 S
′

0 S
′′

0 T0 T
′

0 T
′′

0

Expected value 17.08 17.08 17.08 11.20 11.20 11.20
Variance 167.82 34.33 64.85 25.83 22.82 27.89
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Figure 13: Distributions of S0, T0 and χ2
9 for some ISA(p) models and ISA(p0) hypotheses

with n = 4 and m = 10.
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Figure 14: Null distributions of S0 and T0 for some ISA(p) models and ISA(p0) hypotheses
with flat p0 = p when m increases.
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Figure 15: Null distributions of S0 and T0 for some ISA(p) models and ISA(p0) hypotheses
with skew p0 = p when m increases.
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Figure 16: Non-null distributions of S0 and T0 for some ISA(p) models and ISA(p0) hy-
potheses with flat p0 and different p when m increases.
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Figure 17: Non-null distributions of S0 and T0 for some ISA(p) models and ISA(p0) hy-
potheses with skew p0 and different p when m increases.
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4.4 Test Illustrations for RSM Models

When performing tests of IEA models, multigraphs are known to have multiplicity sequences
that are multinomially distributed, which implies that the distributions of the test statis-
tics S0 and T0 are asymptotically χ2-distributed when the correct model is being tested.
However, for RSM models, there is dependence between edges, and the distributions of S0

and T0 are unknown. In this section, we illustrate some of the consequences of using the
previously described tests of simple hypotheses against a false IEA model when the true
model is RSM. Here, both IEAS(d0) and ISA(p0) hypotheses are tested for flat and skew
d0 and p0. The true model is RSM(d) so that only non-null distributions of S0 and T0 are
considered.

We start by testing multigraphs with 4 vertices and 12 edges. The powers of these tests
according to S0 and T0 are presented in Table 5. For IEAS(d0) hypotheses, the diagonal
representing d0 = d is shaded, and for ISA(p0) hypotheses, the diagonal representing
p0 = d/2m is shaded. For these shaded cases, both αS0

and αT0
are much below α = 0.04,

except for the very skew d0 = d = (18, 2, 2, 2) where αS0
is much above α. For the

majority of cases with d0 6= d or p0 6= d/2m both test statistics have good or reasonable
powers, unless d is too close to d0 or 2mp0. To illustrate the fit of the distributions of the
statistics S0 and T0 to that of χ2

9, their cumulative distribution functions for some selected
cases are shown in Figure 18. We see similar trends as those for IEAS models in Figure 8
and ISA models in Figure 13 which generally makes it hard to detect differences between
how the models RSM, IEAS and ISA effect the test statistics.

Four cases are chosen to illustrate adjusted χ2-approximations to the distributions of
the test statistics. Table 6 shows the expected values and variances for test statistics and
approximations, and the approximations that are not preferred are shaded. Thus we see
that the preferences can vary in all different ways.

Let us now increase the number of edges and consider multigraphs with 3 vertices and
45 edges. The powers of these tests according to S0 and T0 are presented in Table 7 where
the following is noted. For IEAS and ISA hypotheses with d0 = d and p0 = d/2m, the
significance levels of both S0 and T0 are much smaller than α and also equal or almost equal.
There are some cases of powers below α implying that it is difficult to detect hypotheses
about wrong models. For IEAS hypotheses where d0 6= d, and ISA hypotheses where
p0 6= d/2m, the powers are equal or close to one another in the majority of cases. This
is a consequence of similarities between IEAS and ISA models for large m. Other results
concerning the powers in Table 7 are similar to those seen in Table 5. Figure 19 illustrates
the fit of the distributions of S0 and T0 to that of χ2

5 for some different cases with m = 45
and should be compared to Figure 18 which illustrates m = 12. We see strong deviations
from χ2

5 for both S0 and T0, and for flat d0, the distributions are either to the left of the
χ2
5-distribution or close to it. This is further illustrated in Figures 20-23 and is in contrast

to the finding for IEAS models in Figure 9-12 and for ISA models in Figures 14-17.

23



In Figures 20 to 23, the non-null distribution of S0 and T0 for some RSM(d) models
are illustrated where m increases as multiples of different specified d. Figures 20 and 21
illustrate IEAS hypotheses with flat and skew d0, and Figures 22 and 23 illustrate ISA
hypotheses with flat and skew p0. When d0 = d or p0 = d/2m, the non-null distributions
of both S0 and T0 lie above the asymptotic null distributions. This is consistent with
results shown in Section 5.1. Further for these cases we see that as m increases, these
distributions still lie above the asymptotic null distribution, and a χ2-distribution with
lower degrees of freedom seem to better approximate these distributions. For cases with
d0 6= d or p0 6= d/2m, the non-null distributions of both statistics move further away
from the asymptotic null distribution as m increases, implying a need to use adjusted χ2-
distributions for better fit.

Three cases to illustrate the approximations by adjusted χ2-distributions are given in
Table 8. For all three cases, S

′

0 and T
′

0 are preferred. For the second and third case
with d0 = d, the variances of S0 and T0 are roughly twice their expected values which
are approximately equal to 3. Thus, the adjusted χ2-distribution for both test statistics
seem to be closer to r − n rather than r − 1 degrees of freedom under RSM. This is also
supported by the expected value of S0 which according to the result in Section 4.1 is
(m− 1)n(n− 1)/(2m− 3) which is about r − n = n(n− 1)/2.

So far in this section we have considered the consequences of replacing IEA models
with RSM models, but have only tested IEA hypotheses. We conclude this section with a
comment about testing RSM hypotheses. A simple RSM(d0) hypothesis has the same Q0 as
the IEAS(d0) hypothesis, and S0 and T0 can not distinguish between these two hypotheses.
Should the model be RSM(d), there is a dependency between edges when they are assigned
to sites, which could be used to distinguish between the two hypotheses. This requires a
test not using S0 or T0, but a test using the full potential of m having as its critical region
the set M(d0) consisting of all outcomes m that are not compatible with d0. This test
has zero probability of false rejection of RSM(d0), and its power can be determined as the
sum of the probabilities according to RSM(d) of the outcomes in the critical region. Shafie
(2012) gives the RSM(d) probabilities and specifies outcomes of m compatible with a fixed
degree sequence. We will not pursue details of this test further here.
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Table 5: Power according to S0 (upper value) and T0 (value below) when model is RSM(d)
and hypothesis is IEAS(d0) or ISA(p0) for n = 4 and m = 12. α = 0.04.

d

(18, 2, 2, 2) (16, 3, 3, 2) (13, 5, 4, 2) (8, 8, 4, 4) (7, 7, 7, 3) (7, 6, 6, 5) (6, 6, 6, 6)
d0

(18, 2, 2, 2) 0.14 0.33 0.74 1.00 1.00 1.00 1.00
0.00 0.00 0.08 1.00 1.00 1.00 1.00

(16, 3, 3, 2) 0.05 0.05 0.15 1.00 1.00 1.00 1.00
0.00 0.00 0.01 0.79 0.96 0.95 1.00

(13, 5, 4, 2) 0.05 0.04 0.05 0.47 0.49 0.79 0.99
0.02 0.00 0.00 0.10 0.14 0.28 0.70

(8, 8, 4, 4) 1.00 0.57 0.07 0.01 0.07 0.09 0.15
1.00 0.36 0.03 0.01 0.03 0.03 0.04

(7, 7, 7, 3) 1.00 1.00 0.15 0.02 0.00 0.05 0.12
1.00 1.00 0.07 0.02 0.01 0.02 0.04

(7, 6, 6, 5) 1.00 1.00 0.15 0.01 0.01 0.00 0.01
1.00 1.00 0.14 0.02 0.01 0.01 0.01

(6, 6, 6, 6) 1.00 1.00 0.52 0.02 0.02 0.01 0.01
1.00 1.00 0.37 0.02 0.02 0.01 0.01

p0

(

3

4
, 1

12
, 1

12
, 1

12

)

0.02 0.00 0.79 1.00 1.00 1.00 1.00
0.00 0.00 0.04 1.00 1.00 1.00 1.00

(

2

3
, 1

8
, 1

8
, 1

12

)

0.01 0.01 0.15 0.98 1.00 1.00 1.00
0.00 0.00 0.00 0.77 0.92 0.95 0.99

(

13

24
, 5

24
, 1

6
, 1

12

)

0.02 0.02 0.01 0.42 0.43 0.78 0.99
0.02 0.02 0.00 0.09 0.07 0.27 0.76

(

1

3
, 1

3
, 1

6
, 1

6

)

1.00 1.00 0.02 0.00 0.03 0.04 0.08
1.00 1.00 0.03 0.00 0.02 0.03 0.04

(

7

24
, 7

24
, 7

24
, 1

8

)

1.00 0.83 0.11 0.02 0.00 0.05 0.12
1.00 1.00 0.06 0.02 0.01 0.02 0.04

(

7

24
, 1

4
, 1

4
, 5

24

)

1.00 0.83 0.11 0.01 0.01 0.00 0.01
1.00 0.84 0.08 0.02 0.01 0.00 0.01

(

1

4
, 1

4
, 1

4
, 1

4

)

1.00 1.00 0.52 0.02 0.01 0.00 0.00
1.00 1.00 0.34 0.02 0.02 0.01 0.01

25



Table 6: Moments of S0, S
′

0, S
′′

0 , T0, T
′

0 and T
′′

0 for some RSM(d) models and IEAS(d0) or
ISA(d0/2m) hypotheses with n = 4 and m = 12. The unshaded columns correspond to the
best approximations to the test statistics.

Case 1: ISA d0 = d = (7, 6, 6, 5)

S0 S
′

0 S
′′

0 T0 T
′

0 T
′′

0

Expected value 6.18 6.18 6.18 7.90 7.90 7.90
Variance 8.70 12.71 8.47 11.32 17.83 13.87

Case 2: IEAS d0 = d = (16, 3, 3, 2)

S0 S
′

0 S
′′

0 T0 T
′

0 T
′′

0

Expected value 6.29 6.29 6.29 5.08 5.08 5.08
Variance 32.41 13.17 8.78 7.25 10.32 5.73

Case 3: ISA d0 = (13, 5, 4, 2), d = (8, 8, 4, 4)

S0 S
′

0 S
′′

0 T0 T
′

0 T
′′

0

Expected value 16.98 16.98 16.98 12.71 12.71 12.71
Variance 39.45 36.02 64.04 10.84 26.93 35.91

Case 4: IEAS d0 = (7, 7, 7, 3), d = (6, 6, 6, 6)

S0 S
′

0 S
′′

0 T0 T
′

0 T
′′

0

Expected value 13.28 13.28 13.28 10.85 10.85 10.85
Variance 47.97 27.12 39.17 11.73 23.53 26.14
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Table 7: Power according to S0 (upper value) and T0 (value below) when model is RSM(d)
and hypothesis is IEAS(d0) or ISA(p0) for n = 3 and m = 45. α = 0.05.

d

(70, 10, 10) (65, 15, 10) (50, 20, 20) (45, 35, 10) (40, 30, 20) (35, 30, 25) (30, 30, 30)
d0

(70, 10, 10) 0.01 0.13 1.00 1.00 1.00 1.00 1.00
0.01 0.03 1.00 1.00 1.00 1.00 1.00

(65, 15, 10) 0.01 0.01 1.00 1.00 1.00 1.00 1.00
0.01 0.01 1.00 1.00 1.00 1.00 1.00

(50, 20, 20) 1.00 0.85 0.01 1.00 0.37 0.97 1.00
1.00 1.00 0.02 1.00 0.23 0.90 1.00

(45, 35, 10) 1.00 1.00 1.00 0.01 1.00 1.00 1.00
1.00 1.00 1.00 0.01 0.56 1.00 1.00

(40, 30, 20) 1.00 1.00 0.12 0.13 0.01 0.04 0.42
1.00 1.00 0.24 0.32 0.01 0.03 0.28

(35, 30, 25) 1.00 1.00 0.92 1.00 0.02 0.01 0.03
1.00 1.00 0.90 1.00 0.03 0.01 0.03

(30, 30, 30) 1.00 1.00 1.00 1.00 0.23 0.02 0.01
1.00 1.00 1.00 1.00 0.25 0.03 0.01

p0

(

7

9
, 1

9
, 1

9

)

0.01 0.12 1.00 1.00 1.00 1.00 1.00
0.01 0.03 1.00 1.00 1.00 1.00 1.00

(

13

18
, 1

6
, 1

9

)

0.01 0.01 1.00 1.00 1.00 1.00 1.00
0.01 0.01 1.00 1.00 1.00 1.00 1.00

(

5

9
, 2

9
, 2

9

)

1.00 0.85 0.01 1.00 0.34 0.91 1.00
1.00 1.00 0.02 1.00 0.21 0.84 1.00

(

1

2
, 7

18
, 1

9

)

1.00 1.00 1.00 0.01 1.00 1.00 1.00
1.00 1.00 1.00 0.01 0.54 1.00 1.00

(

4

9
, 1

3
, 2

9

)

1.00 1.00 0.11 0.13 0.01 0.04 0.39
1.00 1.00 0.24 0.32 0.01 0.03 0.28

(

7

18
, 1

3
, 5

18

)

1.00 1.00 0.90 1.00 0.02 0.01 0.03
1.00 1.00 0.90 1.00 0.03 0.01 0.02

(

1

3
, 1

3
, 1

3

)

1.00 1.00 1.00 1.00 0.19 0.02 0.01
1.00 1.00 1.00 1.00 0.24 0.03 0.01
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Table 8: Moments of S0, S
′

0, S
′′

0 , T0, T
′

0 and T
′′

0 for some RSM(d) models and IEAS(d0) or
ISA(d0/2m) hypotheses with n = 3 and m = 45. The unshaded columns correspond to the
best approximations to the test statistics.

Case 1: IEAS d0 = (70, 10, 10),d = (65, 15, 10)

S0 S
′

0 S
′′

0 T0 T
′

0 T
′′

0

Expected value 7.43 7.43 7.43 6.05 6.05 6.05
Variance 15.96 15.77 22.07 5.28 12.19 14.63

Case 2: ISA d0 = d = (50, 20, 20)

S0 S
′

0 S
′′

0 T0 T
′

0 T
′′

0

Expected value 3.01 3.01 3.01 3.32 3.32 3.32
Variance 5.50 6.05 3.63 7.45 7.35 4.41

Case 3: IEAS d0 = d = (30, 30, 30)

S0 S
′

0 S
′′

0 T0 T
′

0 T
′′

0

Expected value 3.03 3.03 3.03 3.14 3.14 3.14
Variance 5.83 6.14 3.68 6.66 6.57 3.94
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Figure 18: Distributions of S0, T0 and χ2
9 for some RSM(d) models and IEAS(d0) or

ISA(d0/2m) hypotheses with n = 4 and m = 12.
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Figure 19: Distributions of S0, T0 and χ2
5 for some RSM(d) models and IEAS(d0) or

ISA(d0/2m) hypotheses with n = 3 and m = 45.
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m = 16,d0 = (8, 8, 8, 8)

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

t
 

 

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

s
 

 

m = 8,d0 = (4, 4, 4, 4)
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Figure 20: Non-null distributions of S0 and T0 for some RSM(d) models and IEAS(d0)
hypotheses with flat d0 and different d when m increases.
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m = 8,d0 = (8, 3, 3, 2)
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Figure 21: Non-null distributions of S0 and T0 for some RSM(d) models and IEAS(d0)
hypotheses with skew d0 and different d when m increases.
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Figure 22: Non-null distributions of S0 and T0 for some RSM(d) models and ISA(p0)
hypotheses with flat p0 and different d when m increases.
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Figure 23: Non-null distributions of S0 and T0 for some RSM(d) models and ISA(p0)
hypotheses with skew p0 and different d when m increases.
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5 Statisticial Tests of a Composite Multigraph Hypothesis

5.1 Test Statistics

The composite multigraph hypothesis might be ISA for unknown p or IEAS for unknown d.
The parameters have to be estimated from data m. These estimates are denoted p̂ = p̂(m)
and d̂ = d̂(m), and they are related according to

p̂ =
d̂

2m
,

where

d̂i =
n
∑

j=1

(mij +mji) = mi· +m·i for i = 1, . . . , n ,

and mij = 0 for i > j. Thus, we have estimated sequences Q̂ = (Q̂ij : (i, j) ∈ R) in the two
cases with composite ISA and IEAS hypotheses. Note that for ISA

Q̂ij =

{

p̂2i for i = j

2p̂ip̂j for i < j ,

and for IEAS

Q̂ij =

{

(

d̂i
2

)

/
(

2m
2

)

for i = j

d̂id̂j/
(

2m
2

)

for i < j .

The Pearson goodness-of-fit and divergence statistics are here given as

Ŝ =
∑∑

i≤j

(mij −mQ̂ij)
2

mQ̂ij

=
∑∑

i≤j

m2
ij

mQ̂ij

−m ,

and
D̂ =

∑∑

i≤j

mij

m
log

mij

mQ̂ij

.

Here, Ŝ and

T̂ =
2m

log e
D̂

are asymptotically χ2
(n
2
)
-distributed when the correct model is tested. Note that the number

of degrees of freedom here is given as the difference in numbers of estimated free parameters
without and with the hypothesis, i.e. df = (r − 1) − (n − 1) = r − n =

(

n
2

)

. The critical
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regions for these tests are given by values of Ŝ and T̂ above a critical value cv which can be
chosen as

cv = df + 2
√

2df =

(

n

2

)

+

√

8

(

n

2

)

to get a significance level close to 5% given by

α = P (χ2
(n
2
) > cv) .

The power functions P (Ŝ > cv) and P (T̂ > cv) are functions of p or d depending on whether
an ISA(p) or IEAS(d) model is considered. The error probabilities of false rejection and
false acceptance are denoted by α and β indexed by Ŝ and T̂ .

Similar to the test statistic approximations described in Section 4.1, S
′

and S
′′

are
here given by S∗ for k chosen as the integer part of µ and r − n, respectively. These
approximations can be used as alternative test statistics provided the expected values of Ŝ
and T̂ are known. Formal expressions for the expected values are complicated to obtain due
to that m is involved also via Q̂ that depends on d̂ which is determined by m. However, for
our theoretical investigation we use complete enumerations of all outcomes of m and find
the expected values and variances numerically. Under an RSM(d) model the estimated d̂

is always (for any data m) equal to the d specified in the model which implies that

E(Ŝ) = E(S0) =
(m− 1)n(n− 1)

2m− 3
,

as shown in Section 4.1. The preferences between approximations to the test statistics under
IEA models are determined by comparing variances, as mentioned in Section 4.1.

5.2 Test Illustrations for IEAS Models

Consider composite IEAS hypotheses against IEAS(d) models for multigraphs with 4 ver-
tices and 10 edges. Here, the composite hypotheses include the correct model and the
probabilities of false rejection according to Ŝ and T̂ are given in Table 9. For flat d, both
α
Ŝ
and α

T̂
are close or equal to α = 0.04 and for skew d, α

Ŝ
remains close or equal to α

while α
T̂
is below. If the composite ISA hypothesis is instead tested against the IEAS(d)

model, the powers of Ŝ and T̂ are almost equal to the values of α
Ŝ
and α

T̂
in Table 9. Thus,

both statistics have very poor powers of detecting differences between composite ISA and
IEAS hypotheses. Figure 24 illustrates the fit of the distributions of Ŝ and T̂ to that of χ2

6.
For skew d there are larger deviations from χ2

6 for both Ŝ and T̂ than there are for flat d.
Figures 25 and 26 shows the null and non-null distributions of Ŝ and T̂ for some IEAS(d)

models with flat and skew d when m increases as multiples of the specified d. The null
distributions correspond to composite IEAS hypotheses while non-null distributions corre-
spond to composite ISA hypotheses. The convergence of the null distributions for flat d is
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rapid towards the asymptotic distribution, especially for Ŝ. However, the convergence of the
null distributions for skew d is slower for both statistics. The non-null distributions of both
statistics also seem to converge to the asymptotic null distributions. Thus, for small and
large m, it is difficult to detect differences between composite ISA and IEAS hypotheses.

The expected values and variances of Ŝ and T̂ , and of their approximations Ŝ
′

, Ŝ
′′

, T̂
′

and T̂
′′

are presented in Table 10, where the versions that are not preferred are shaded. For
flat d, the variances of Ŝ are roughly twice their expected values, which are approximately
equal to 6. This indicates a good fit to the χ2

6-distribution in terms of the first two moments.
This is also noted by Ŝ

′′

being preferred to Ŝ
′

. Further, for flat d, Ŝ
′′

and T̂
′

are preferred,
while for the majority of cases with skew d, T̂

′′

and Ŝ
′

are preferred. Two particular cases
are d =(6, 6, 6, 2) and d =(6, 5, 5, 4) where the variances of the approximations are equal
so that any one of them can be preferred.

Table 9: Probabilities of false rejection according to Ŝ and T̂ when model is IEAS(d) and
a composite IEAS hypothesis is tested for n = 4 and m = 10. α = 0.04.

d (14, 2, 2, 2) (12, 3, 3, 2) (9, 7, 2, 2) (8, 8, 2, 2) (6, 6, 6, 2) (6, 5, 5, 4) (5, 5, 5, 5)

Ŝ 0.04 0.04 0.03 0.03 0.02 0.03 0.03

T̂ 0.00 0.01 0.01 0.01 0.03 0.04 0.04

Table 10: Moments of Ŝ, Ŝ
′

, Ŝ
′′

, T̂ , T̂
′

and T̂
′′

when model is IEAS(d) and a composite
IEAS hypothesis is tested for n = 4 and m = 10. The unshaded rows correspond to the
best approximation to the test statistics.

d (14, 2, 2, 2) (12, 3, 3, 2) (9, 7, 2, 2) (8, 8, 2, 2) (6, 6, 6, 2) (6, 5, 5, 4) (5, 5, 5, 5)

Ŝ
Mean 3.69 4.59 4.56 4.57 5.31 5.88 5.94

Variance 18.50 16.12 12.79 12.71 10.57 11.32 11.08

Ŝ
′ Mean 3.69 4.59 4.56 4.57 5.31 5.88 5.94

Variance 9.09 10.52 10.39 10.42 11.29 13.85 14.11

Ŝ
′′ Mean 3.69 4.59 4.56 4.57 5.31 5.88 5.94

Variance 4.54 7.02 6.92 6.95 9.41 11.54 11.76

T̂
Mean 3.30 4.57 5.04 5.07 6.23 6.96 7.07

Variance 6.71 7.43 8.29 8.43 8.97 9.20 9.22

T̂
′ Mean 3.30 4.57 5.04 5.07 6.23 6.96 7.07

Variance 7.26 10.45 10.15 10.29 12.95 16.16 14.28

T̂
′′ Mean 3.30 4.57 5.04 5.07 6.23 6.96 7.07

Variance 3.63 6.96 8.46 8.57 12.95 16.16 16.66
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Figure 24: Distributions of Ŝ, T̂ and χ2
6 for some IEAS(d) models and composite IEAS

hypothesis with n = 4 and m = 10.
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Figure 25: Null and non-null distributions of Ŝ and T̂ for some IEAS(d) models with flat
d and composite IEAS and ISA hypotheses when m increases.
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Figure 26: Null and non-null distributions of Ŝ and T̂ for some IEAS(d) models with skew
d and composite IEAS and ISA hypotheses when m increases.
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5.3 Test Illustrations for ISA Models

We now turn to composite ISA hypotheses against ISA(p) models, and consider tests of
multigraphs with 4 vertices and 10 edges. The probabilities of false rejection according to
Ŝ and T̂ are given in Table 11 where similar results are seen as for IEAS models in Table
9. For skew p, α

T̂
is much below α = 0.04, while α

Ŝ
is always close to α. If a composite

hypothesis IEAS instead of composite ISA is tested against the ISA(p) model, the powers
of Ŝ and T̂ are approximately equal to α

Ŝ
and α

T̂
given in Table 11. As noted before, these

poor powers are due to the resemblances between ISA and IEAS models.
Some selected cases from Table 11 are illustrated in Figure 27 where the cumulative

distribution functions of Ŝ and T̂ are given. We see that we have fairly good fit between
the distributions of both statistics and that of χ2

6, except for the very skew p =(7/10, 1/10,
1/10, 1/10).

In Figures 28 and 29 we illustrate the effect of increasing m on the null and non-null
distributions of Ŝ and T̂ for some ISA(p) models with flat and skew p. Here, the resemblance
between IEAS and ISA models gives similar results as those for composite hypotheses against
IEAS models shown in Section 5.2. The convergence of the null distributions is faster for
flat p than for skew p, and the detection of a composite hypothesis not including the correct
model is more difficult as m is increased.

The expected values and variances of all the versions of the test statistics are presented in
Table 12 where the unshaded rows correspond to the best approximations. For the majority
of cases Ŝ

′′

and T̂
′′

are preferred, except for very skew p where Ŝ
′

and T̂
′

are preferred.

Table 11: Probabilities of false rejection according to Ŝ and T̂ when model is ISA(p) and a
composite ISA hypothesis is tested for n = 4 and m = 10. α = 0.04.

p
(

7

10
, 1

10
, 1

10
, 1

10

) (

3

5
, 1

5
, 1

10
, 1

10

) (

1

2
, 1

6
, 1

6
, 1

6

) (

4

9
, 1

3
, 1

9
, 1

9

) (

3

8
, 3

8
, 1

8
, 1

8

) (

1

4
, 1

4
, 1

4
, 1

4

)

Ŝ 0.03 0.03 0.03 0.03 0.03 0.03

T̂ 0.01 0.01 0.02 0.02 0.02 0.05
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Table 12: Moments of Ŝ, Ŝ
′

, Ŝ
′′

, T̂ , T̂
′

and T̂
′′

when model is ISA(p) and a composite ISA
hypothesis is tested for n = 4 and m = 10. The unshaded rows correspond to the best
approximation to the test statistics.

p
(

7

10
, 1

10
, 1

10
, 1

10

) (

3

5
, 1

5
, 1

10
, 1

10

) (

1

2
, 1

6
, 1

6
, 1

6

) (

4

9
, 1

3
, 1

9
, 1

9

) (

3

8
, 3

8
, 1

8
, 1

8

) (

1

4
, 1

4
, 1

4
, 1

4

)

Ŝ
Mean 4.00 4.59 5.42 4.99 5.22 5.96

Variance 15.50 11.92 9.81 10.19 9.28 8.41

Ŝ
′ Mean 4.00 4.59 5.42 4.99 5.22 5.96

Variance 8.01 10.52 11.73 12.43 10.91 14.23

Ŝ
′′ Mean 4.00 4.59 5.42 4.99 5.22 5.96

Variance 5.34 7.01 9.78 8.29 9.09 11.86

T̂
Mean 3.70 4.73 6.01 5.56 5.93 7.24

Variance 7.17 7.48 8.15 8.72 9.00 9.21

T̂
′ Mean 3.70 4.73 6.01 5.56 5.93 7.24

Variance 9.14 11.18 12.05 12.38 14.06 14.99

T̂
′′ Mean 3.70 4.73 6.01 5.56 5.93 7.24

Variance 4.57 7.45 12.05 10.32 11.72 17.49
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Figure 27: Distributions of Ŝ, T̂ and χ2
6 for some ISA(p) models and composite ISA hy-

pothesis with n = 4 and m = 10.
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Figure 28: Null and non-null distributions of Ŝ and T̂ for some ISA(p) models with flat
p =(1/4, 1/4, 1/4, 1/4) and composite ISA and IEAS hypotheses when m increases.
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Figure 29: Null and non-null distributions of Ŝ and T̂ for some ISA(p) models with skew
p =(5/8, 1/8, 1/8, 1/8) and composite ISA and IEAS hypotheses when m increases.
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5.4 Test Illustrations for RSM Models

In this section we illustrate some of the consequences of using previously described tests
of composite hypotheses against a false IEA model when the true model is RSM. Here,
both IEAS and ISA hypotheses are tested against RSM(d) models. We start by considering
multigraphs with 4 vertices and 12 edges. The poor powers according to Ŝ and T̂ of
rejecting IEAS and ISA when RSM is true are presented in Table 13. To illustrate the fit
of the distributions of the statistics Ŝ and T̂ to that of χ2

6, their cumulative distribution
functions for some selected cases are shown in Figure 30. For all cases, there is reasonably
good fit to χ2

6 for this rather small m.
The expected values and variances of all the versions of the test statistics are presented

in Table 14. For the majority of cases, the variances of Ŝ are roughly twice their expected
values which are equal to 6. This indicates a good fit to the χ2

6-distribution in terms of the
first two moments. Note that E(Ŝ) under IEAS hypotheses are not dependent on the values
in the degree sequence, as mentioned in Section 5.1. For very skew d, T̂

′′

is preferred for
almost all cases and for the rest of the skew cases and for flat cases, T̂

′

is preferred.
The poor powers of rejecting IEAS and ISA when RSM is true for multigraphs with

3 vertices and 45 edges are shown in Table 15. We see that α
Ŝ
is close to α = 0.04 for

all cases shown, while T̂ is equal, less or greater than α for both skew and flat d. The fit
of the non-null distributions of Ŝ and T̂ to that of χ2

3 for some selected cases are shown
in Figure 31 where we for all cases illustrated see a good fit. The expected values and
variances of all the versions of the test statistics are presented in Table 16. For all cases
with IEAS hypotheses, and almost all cases with ISA hypotheses, we note a good fit to the
χ2
3-distribution since the variances of both test statistics are roughly twice their expected

values which are equal to 3. This indicates that the approximations are mostly unnecessary
for large m.

In Figures 32 and 33 the effects of increasing m on the non-null distributions of Ŝ and
T̂ for some RSM(d) models with flat and skew d are illustrated. For all cases illustrated we
see that these distributions are very close to the asymptotic null distribution. Further, the
effect from increasing m on the non-null distributions is small. Thus it can be concluded
that no matter the size of m, it is difficult to detect a false composite hypothesis under an
RSM model, just as it is difficult to detect a false composite hypothesis under IEA models
as demonstrated in Figures 25-26 for IEAS models, and in Figures 28-29 for ISA models.
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Table 13: Power according to Ŝ and T̂ when model is RSM(d) and a composite IEAS or
ISA hypothesis is tested for n = 4 and m = 12. α = 0.04.

d (18, 2, 2, 2) (16, 3, 3, 2) (13, 5, 4, 2) (8, 8, 4, 4) (7, 7, 7, 3) (7, 6, 6, 5) (6, 6, 6, 6)

IEAS
Ŝ 0.14 0.09 0.06 0.03 0.04 0.04 0.03

T̂ 0.02 0.02 0.03 0.05 0.06 0.08 0.07

ISA
Ŝ 0.04 0.08 0.06 0.03 0.03 0.03 0.02

T̂ 0.02 0.01 0.02 0.06 0.06 0.09 0.06

Table 14: Moments of Ŝ, Ŝ
′

, Ŝ
′′

, T̂ , T̂
′

and T̂
′′

when model is RSM(d) and a composite
IEAS or ISA hypothesis is tested for n = 4 and m = 12. The unshaded rows correspond to
the best approximations to the test statistics.

Composite IEAS hypothesis
d (18, 2, 2, 2) (16, 3, 3, 2) (13, 5, 4, 2) (8, 8, 4, 4) (7, 7, 7, 3) (7, 6, 6, 5) (6, 6, 6, 6)

Ŝ
Mean 6.29 6.29 6.29 6.29 6.29 6.29 6.29

Variance 66.26 32.41 26.50 10.18 11.83 9.64 9.63

Ŝ
′ Mean 6.29 6.29 6.29 6.29 6.29 6.29 6.29

Variance 13.18 13.17 13.17 13.17 13.17 13.17 13.17

Ŝ
′′ Mean 6.29 6.29 6.29 6.29 6.29 6.29 6.29

Variance 13.18 13.17 13.17 13.17 13.17 13.17 13.17

T̂
Mean 3.80 5.08 6.26 7.34 7.39 7.83 7.90

Variance 9.06 7.25 7.57 11.43 11.77 11.54 11.56

T̂
′ Mean 3.80 5.08 6.26 7.34 7.39 7.83 7.90

Variance 9.63 10.32 13.04 15.40 15.62 17.51 17.82

T̂
′′ Mean 3.80 5.08 6.26 7.34 7.39 7.83 7.90

Variance 4.81 8.60 13.04 17.97 18.23 20.43 20.80

Composite ISA hypothesis
d (18, 2, 2, 2) (16, 3, 3, 2) (13, 5, 4, 2) (8, 8, 4, 4) (7, 7, 7, 3) (7, 6, 6, 5) (6, 6, 6, 6)

Ŝ
Mean 5.12 5.52 5.76 6.09 6.07 6.18 6.19

Variance 23.58 13.19 10.87 8.41 9.07 8.70 8.78

Ŝ
′ Mean 5.12 5.52 5.76 6.09 6.07 6.18 6.19

Variance 10.50 12.17 13.26 12.36 12.29 12.71 12.76

Ŝ
′′ Mean 5.12 5.52 5.76 6.09 6.07 6.18 6.19

Variance 8.75 10.14 11.05 12.36 12.29 12.71 12.76

T̂
Mean 3.86 5.16 6.33 7.42 7.46 7.90 7.98

Variance 6.78 5.36 6.40 10.83 11.44 11.33 11.37

T̂
′ Mean 3.86 5.16 6.33 7.42 7.46 7.90 7.98

Variance 9.92 10.66 13.34 15.73 15.91 17.82 18.18

T̂
′′ Mean 3.86 5.16 6.33 7.42 7.46 7.90 7.98

Variance 4.96 8.88 13.34 18.35 18.56 20.79 21.21
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Table 15: Power according to Ŝ and T̂ when model is RSM(d) and a composite IEAS or
ISA hypothesis is tested for n = 3 and m = 45. α = 0.04.

d (70, 10, 10) (65, 15, 10) (50, 20, 20) (45, 35, 10) (40, 30, 20) (35, 30, 25) (30, 30, 30)

IEAS
Ŝ 0.04 0.04 0.04 0.04 0.05 0.05 0.05

T̂ 0.02 0.04 0.07 0.05 0.06 0.06 0.07

ISA
Ŝ 0.03 0.04 0.04 0.04 0.04 0.05 0.05

T̂ 0.02 0.04 0.06 0.05 0.06 0.06 0.06

Table 16: Moments of Ŝ, Ŝ
′

, Ŝ
′′

, T̂ , T̂
′

and T̂
′′

when model is RSM(d) and a composite
IEAS or ISA hypothesis is tested for n = 3 and m = 45. The unshaded rows correspond to
the best approximations to the test statistics.

Composite IEAS hypothesis
d (70, 10, 10) (65, 15, 10) (50, 20, 20) (45, 35, 10) (40, 30, 20) (35, 30, 25) (30, 30, 30)

Ŝ
Mean 3.03 3.03 3.03 3.03 3.03 3.03 3.03

Variance 6.62 6.12 5.71 6.11 5.78 5.81 5.83

Ŝ
′ Mean 3.03 3.03 3.03 3.03 3.03 3.03 3.03

Variance 6.14 6.14 6.14 6.14 6.14 6.14 6.14

Ŝ
′′ Mean 3.03 3.03 3.03 3.03 3.03 3.03 3.03

Variance 6.14 6.14 6.14 6.14 6.14 6.14 6.14

T̂
Mean 3.43 3.48 3.31 3.22 3.21 3.15 3.14

Variance 3.66 5.28 7.35 5.48 6.94 6.77 6.66

T̂
′ Mean 3.43 3.48 3.31 3.22 3.21 3.15 3.14

Variance 7.82 8.09 7.30 6.92 6.88 6.63 6.57

T̂
′′ Mean 3.43 3.48 3.31 3.22 3.21 3.15 3.14

Variance 7.82 8.09 7.30 6.92 6.88 6.63 6.57

Composite ISA hypothesis
d (70, 10, 10) (65, 15, 10) (50, 20, 20) (45, 35, 10) (40, 30, 20) (35, 30, 25) (30, 30, 30)

Ŝ
Mean 2.91 2.95 3.01 2.98 3.03 3.03 3.03

Variance 5.55 5.36 5.50 5.60 5.66 5.75 5.78

Ŝ
′ Mean 2.91 2.95 3.01 2.98 3.03 3.03 3.03

Variance 8.49 8.69 6.05 8.88 6.10 6.13 6.14

Ŝ
′′ Mean 2.91 2.95 3.01 2.98 3.03 3.03 3.03

Variance 5.66 5.79 6.05 5.92 6.10 6.13 6.14

T̂
Mean 3.45 3.50 3.32 3.23 3.23 3.17 3.15

Variance 3.47 5.23 7.45 5.42 7.02 6.82 6.73

T̂
′ Mean 3.45 3.50 3.32 3.23 3.23 3.17 3.15

Variance 7.92 8.16 7.35 6.98 6.95 6.71 6.60

T̂
′′ Mean 3.45 3.50 3.32 3.23 3.23 3.17 3.15

Variance 7.92 8.16 7.35 6.98 6.95 6.71 6.60
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P (Ŝ < s)
P (χ2

6 < s)
P (T̂ < t)
P (χ2

6 < t)

0 5 10 15
0

0.2

0.4

0.6

0.8

1

s
 

 
ISA, d = (13, 5, 4, 2)

0 5 10 15
0

0.2

0.4

0.6

0.8

1

t
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Figure 30: Distributions of Ŝ, T̂ and χ2
6 for some RSM(d) models and composite IEAS or

ISA hypotheses with n = 4 and m = 12.
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Figure 31: Distributions of Ŝ, T̂ and χ2
6 for some RSM(d) models and composite IEAS or

ISA hypotheses with n = 3 and m = 45.
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P (Ŝ < s)

P (χ2
6 < t)

P (T̂ < t)

P (χ2
6 < s)
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Figure 32: Non-null distributions of Ŝ and T̂ for some RSM(d) models with flat d and
composite IEAS and ISA hypotheses when m increases.
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Figure 33: Non-null distributions of Ŝ and T̂ for some RSM(d) models with skew d and
composite IEAS and ISA hypotheses when m increases.

47



References

Andersen, E.B. (1980), Discrete Statistical Models with Social Science Applications, Amsterdam: North-
Holland.

Cox, D.R. and Hinkley, D.V. (1974), Theoretical Statistics, London: Chapman & Hall.

Frank, O. (2011), Statistical Information Tools for Multivariate Discrete Data, in Modern Mathematical

Tools and Techniques in Capturing Complexity, eds. L. Pardo, N. Balakrishnan and M. Ángeles Gil, Berlin:
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