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Block Circular Symmetry in Multilevel Models

Yuli Liang, Tatjana von Rosen and Dietrich von Rosen

Abstract

Models that describe symmetries present in the error structure of observations have
been widely used in different applications, with early examples from psychometric and
medical research. The aim of this article is to study a multilevel model with a covari-
ance structure that is block circular symmetric. Useful results are obtained for the
spectra of these structured matrices.

Keywords: Covariance matrix, Circular block symmetry, Multilevel model,
Symmetry model, Spectrum

1. Introduction

Real populations which are of interests in various research areas such as medicine,
biology, social population studies, often exhibit hierarchical structures. For instance,
in educational research, students are grouped within classes and classes are grouped
within schools; in medical studies, patients are nested within doctors and doctors
are nested within hospitals; in breeding studies, offsprings are grouped by sire and
sires are grouped within some spatial factors (region); in political studies, voters are
grouped within districts and districts are grouped within cities; in demographic studies,
children are grouped within families and families are grouped within a macro-context
such as neighborhoods or ethnic communities. It has been recognized that such group-
ing induces dependence between population units and, hence statistical models based
upon independence assumption become invalid. Multilevel models (MM) is a widely
accepted tool for analyzing data when observations are in a hierarchical form (for ref-
erences see Hox and Kreft, 1994; Raudenbush, 1988; Goldstein, 2010).

In this article, we shall use the convention of calling single observations cases or
subjects, and units will refer to clusters of observations. Thus, cases are observed
within a unit in the same way as students may be observed within a class. When we
would like to study the variations of the response variable, which arise at different
levels, the following MM could be of use (e.g., see Goldstein, 2010):

Y = Xβ +E, (1)

E = Zsγs + . . .+Z2γ2 +Z1γ1,
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where Y : n× 1 is a response vector, X: n× p is a known design matrix, β : p× 1 is
a vector of fixed effects, γk : nk × 1 is a random error at level k and Zk : n× nk is a
known incidence matrix of random error, k = 1, . . . , s. We assume that γk ∼ N(0,Σk)
and γk is independent of γl, k 6= l. Thus, Y is normally distributed with expectation
Xβ and covariance matrix Σ =

∑s
k=1ZkΣkZ

′
k.

Model (1) is also referred to as a hierarchical linear model (HLM) since it accounts
for Y variation which comes from different γk’s, reflecting the underlying hierarchical
structure of the data. It may be noticed that any MM can be formulated as a linear
mixed model (LMM), given by

Y = Xβ +Zγ + ε, (2)

where Y , X and β have the same meaning as in (1), γ= (γ ′s, . . . ,γ
′
2)
′ is a vector of

random-effects with a known incidence matrix Z= (Zs
... . . .

...Z2), and ε = Z1γ1 is an
unknown random error vector whose elements are not required to be independent and
homogeneous.

Though MM is commonly used to investigate multiple sources of variation in the con-
text of an existence of an hierarchical structure, it can be adapted into the framework
of LMM. For instance, in a medical study, patient 1 of doctor 1 is physically different
from patient 1 of doctor 2 or on any other doctors. The same is true for any of the
patients of any of the doctors. Similarly, doctor 1 in hospital 1 is different from doctor
1 in hospital 2, and so on. Therefore, understanding the input variables which are
affected by the variation among those doctors, as well as understanding the variation
across each doctor in a hospital, is important in statistical modelling. Furthermore, in
the analysis, the factors which are located at the lower hierarchies (doctor and patient)
are often treated as random, i.e., the levels of such factors have been randomly selected
from a large population of levels, and the factor at the higher hierarchy is considered
as fixed (hospital), i.e., the levels of this factor are the only ones of interest.

Let us now consider a balanced nested model, i.e., hierarchies have equal number
of cases in all sub-hierarchies. Let γ1 : n2 × 1 and γ2 : n2n1 × 1 be two random
nested effects and ε : n2n1 × 1 be the vector of random error. γi ∼ N(0,Σi) and
ε ∼ N(0, σ2I) are assumed, i = 1, 2. Thus, the model in (1) reduces to:

Y = (1n2 ⊗ 1n1)µ+ (In2 ⊗ 1n1)γ1 + (In2 ⊗ In1)γ2 + (In2 ⊗ In1)ε, (3)

where the scalar µ is the general mean, 1ni is a column vector of size ni with all
elements equal to 1, the symbol ⊗ denotes the Kronecker product and Ini is the
identity matrix of order ni. Thus,

Y ∼ N(µ1,Σ), where Σ = Z1Σ1Z
′
1 + Σ2 + σ2I, Z1 = In2 ⊗ 1n1 .
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As mentioned above, the presence of a hierarchical structure generally implies depen-
dence within groups of observations. The dependence structure which is described
via the covariance matrices can exhibit special patterns, for example an intraclass
correlation pattern. Nowadays, the interest of studying various patterned covariance
structures is increasing, e.g. see, Srivastava et al. (2008), Klein and Zezula (2009),
Leiva and Roy (2010). The reason is that unstructured covariance matrices may not
be suitable to model the error structure, in general. The number of unknown parame-
ters in a p×p unstructured covariance matrix is p(p+1)/2. A parsimonious version of a
covariance matrix may be both useful and meaningful when modelling data, especially
for small sample sizes. E.g. in a p × p symmetric circular Toeplitz matrix, there are
only [p/2] + 1 unknown parameters, the [•] stands for the integer part. Furthermore,
in longitudinal studies, the number of covariance parameters to be estimated grows
rapidly with the number of measured occasions and may approach or even become
larger than the number of subjects enrolled in the study (Fitzmaurice et al., 2004).
In such situations it is common to impose some structures on the covariance matrix,
e.g., autoregressive or banded structures. If we have a tenable prior knowledge about
the true covariance structures of the random variables in the model, incorporation of
this knowledge may increase the reliability of the estimation procedure. For exam-
ple, Ohlson and von Rosen (2010) studied linearly structured covariance matrices in
a classical growth curve model. Since the variance of the estimator of the mean pa-
rameter µ usually is a function of the covariance matrix, it is crucial to have a correct
assumption about the covariance. Furthermore, an appropriate covariance structure
also plays an important role in statistical diagnostics, such as outlier detection and
influential observation identification, see Pan and Fang (2002), for example.

In this work we will study model (3) with a covariance structure that is block cir-
cular symmetric. Models that describe symmetries present in the error structure of
observations have been widely used in different applications, with early examples from
psychometric and medical research, such as Wilks (1946) and Votaw (1948).

The presence of symmetry in the data at one or several levels yields a patterned de-
pendence structure within or between the corresponding levels in the model (Dawid,
1988). Symmetry here means, for example, that the units within given group are
exchangeable (Draper et al., 1993), i.e., dependence between neighboring units re-
mains the same (invariant) after re-arrangement of units. Perlman (1987) discussed
and summarized results related to group symmetry models. These are linear models
for which the covariance structure of Y is assumed to satisfy certain symmetry re-
strictions, namely D(Y ) = D(QY ) = QD(Y )Q′ for some orthogonal matrices, where
D(•) stands for the covariance matrix. Properties of some patterned covariance matri-
ces arising under different symmetry restrictions in balanced mixed models have been
studied in Nahtman (2006), Nahtman and von Rosen (2008) and von Rosen (2011).

Circular symmetric model was considered by Olkin and Press (1969). They provided
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MLEs for the parameters in such models. They also constructed different likelihood
ratio tests (LRT) for testing different types of symmetry in the covariance matrix and
tests concerning the mean structure. Olkin (1973) extended the circular symmetric
model to the case where circular symmetry appeared in blocks, and blocks were un-
structured. For this model, the covariance structure was studied and various LRTs
were obtained.

The aim of this article is to extend models that are circular symmetric in blocks
(Olkin, 1973), so-called dihedral block symmetry models. We prove that in case when
both circular symmetry and exchangeability are present, these models have patterned
blocks. We will follow up and combine in a certain sense the results obtained in Naht-
man (2006), and Nahtman and von Rosen (2008) concerning the covariance structures
in MM when a hierarchical data structure exists. We shall obtain expressions for the
spectra of block circular symmetric covariance matrices which take into account the
block structure.

The organization of the article is as follows. At the end of this section we give some
examples concerning circular symmetry models. Section 2 states the preliminaries
and presents some definitions and spectral properties of symmetric circular Toeplitz
matrices; in Section 3 symmetry restrictions that yield the block circular symmetric
covariance structure are obtained; in Section 4 the spectra of block circular symmetric
matrices are considered; in Section 5 concluding remarks are presented.

1.1. Some examples of circular symmetry models

Circular (block) symmetry models have been utilized in situations when there is a
spatial circular layout on one factor and another factor satisfies the property of ex-
changeability.

Example 1: In a signal processing problem, Olkin and Press (1969) and Khattree
and Naik (1994) studied a point source of a regular polygon of n sides from which a
signal received from a satellite is transmitted. The n identical signal receivers with
identical noise characteristics are placed at the n vertices. Assuming that the signal
strength is the same in all directions along the vertices of the polygon, one would ex-
pect a circular symmetric structure for the covariances between the messages received
by the receivers placed at these vertices. Additionally, it might be possible to have
a more general data structure, which contains another symmetric (with exchangeable
categories) space factor (e.g., region), so that the data has the circulant property in
the receiver (vertices) dimension and a symmetric pattern in the spatial dimension.

Example 2: In some public health studies (see Hartley and Naik, 2001), the disease
incidence rates of (relatively homogeneous) city sectors placed around the city center
may be circularly correlated. Additionally, if there are n2 sectors within n1 cities in
the data, and Yij denotes disease incidence rate in the i-th sector of the j-th city,
then the covariance matrix of Yij exhibits circular block symmetry when cities are
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exchangeable. Similarly, during an outbreak of a disease, the disease incidence rate
in any sector around the initial ethological agent may be correlated with those adja-
cent sectors. With the existence of exchangeability of cities, this pattern of covariance
structure is appropriate.

Example 3: Gotway and Cressie (1990) described a data set concerning soil-water-
infiltration and it can be incorporated in our context by some modifications. As the
location varies across the field, the ability of water to infiltrate soil will vary spatially
so that locations nearby are more alike with regard to infiltration, than those far
apart. Soil-water-infiltration measurements Yij (uniresponse) or Yijk (multiresponse)
were made at n2 locations contained by n1 towns, which may be assumed to be ex-
changeable by our prior knowledge.

Example 4: Extending the studies of the standard “parent-sib” terminology (see
Khattree and Naik, 1994; Hartley and Naik, 2001), we assume that there are n2 sib-
lings per parent (equal numbers of siblings in n1 parents). It is reasonable to assume
the between siblings covariance matrix has a circular structure, see Khattree and Naik
(1994), and the dependence between families are equicorrelated. Let Yij represent
the score of the i-th child in the j-th family and we can formulate the model with a
parsimonious covariance structure.

Example 5: Alternatively, in Example 2, if the factor “sector” is exchangeable but
the factor “city” can be assumed to be circularly correlated, this “artificial” case will
exhibit another combined shift and non-shift covariance structure of the disease inci-
dence rate, which is different from the second example.

It can be found that the pattern of the covariance matrix in Example 1-4 is different
from Example 5 since the circular correlation and the exchangeability are placed at
different hierarchies of the model. For Example 1-4, the circular property occur at
the lowest level while the exchangeability is at the highest level; in Example 5, the
opposite was supposed.

2. Preliminaries

In this section, we will give some important definitions and provide useful results
concerning certain patterned matrices which will be used in the subsequent. The
concept of invariance is important throughout this work.

Definition 2.1. The covariance matrix D(ξ) of a random factor ξ is called invariant
with respect to the transformation Q if D(ξ) = D(Qξ) which is the same as D(ξ) =
QD(ξ)Q′, and Q is an orthogonal matrix.

Next we will introduce specific matrices which are essential here and discuss their
properties.
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Definition 2.2. A permutation matrix (P-matrix) is an orthogonal matrix whose
columns can be obtained by permuting the columns of the identity matrix, e.g.

P =

 0 1 0
1 0 0
0 0 1

 .

Definition 2.3. An orthogonal matrix P = (pij) : n×n is a shift permutation matrix
(SP-matrix) if

pij =

{
1, if j = i+ 1− n1(i>n−1),

0, otherwise,

where 1(.) is the indicator function. For example, when n = 3 and n = 4, the SP-
matrices are  0 1 0

0 0 1
1 0 0

 and


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 .

Definition 2.4. A matrix T : n× n of the form

T =


t0 t1 t2 · · · t1
t1 t0 t1 · · · t2

t2 t1 t0
. . .

...
...

...
...

. . .
. . .

t1 t2 · · · t1 t0

 = Toep(t0, t1, t2, . . . , t1) (4)

is called a symmetric circular Toeplitz matrix (SC-Toeplitz matrix). The matrix T =
(tij) depends on [n/2] + 1 parameters, where [.] stands for the integer part, and for
i, j = 1, . . . , n,

tij =

{
t|j−i|, if |j − i| ≤ [n/2],

tn−|j−i|, otherwise.

An alternative way to define SC-Toeplitz matrix T , see Olkin (1973), is given by

T=


t1 t2 t3 · · · tn
tn t1 t2 · · · tn−1
tn−1 tn t1 · · · tn−2
· · · · · · · · · · · ·
t2 t3 t4 · · · t1

 , where tj = tn−j+2, j=2, . . . , n. (5)

Definition 2.5. A symmetric circular matrix SC(n, k) is defined in the following way:

SC(n, k) = Toep(

n︷ ︸︸ ︷
0, . . . , 0︸ ︷︷ ︸

k

, 1, 0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
k−1

)
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or equivalently

(SC(n, k))ij =

{
1, if |i− j| = k or |i− j| = n− k,
0, otherwise,

where k ∈ {1, . . . , [n/2]}.
For notational convenience denote SC(n, 0) = In.

For example, when n = 4,

SC(4, 1) =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 , SC(4, 2) =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 .

It is easy to see that

Toep(t0, t1, t2, . . . , t1) =

[n/2]∑
k=0

tkSC(n, k). (6)

This way of representing SC-Toeplitz matrix can be useful when deriving MLEs for
the model (3), see Olkin and Press (1969) and Olkin (1973).

The spectral properties of SC-Toeplitz matrices can, for example, be found in Basilevsky
(1983). Nahtman and von Rosen (2008) gave some additional results concerning mul-
tiplicities of the eigenvalues of such matrices.

Lemma 2.1. Let T : n × n be a SC-Toeplitz matrix and let λh, h = 1, . . . , n, be an
eigenvalue of T .
(i) If n is odd, then

λh = t0 + 2

[n/2]∑
j=1

tjcos(2πhj/n). (7)

It follows that, λh = λn−h, h = 1, . . . , n − 1, there is only one eigenvalue, λn, which
has multiplicity 1, and all other eigenvalues are of multiplicity 2.
If n is even, then

λh = t0 + 2

n/2−1∑
j=1

tjcos(2πhj/n) + tn/2cos(πh). (8)

It follows that, for h 6= n, n/2 : λh = λn−h, there are only two eigenvalues, λn and
λn/2, which have multiplicity 1, and all other eigenvalues are of multiplicity 2.
(ii) The number of distinct eigenvalues for SC-Toeplitz matrix is

[
n
2

]
+ 1.
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(iii) A set of eigenvectors (v1, . . . ,vn) corresponding to the eigenvalues λ1, . . . , λn, is
defined by

vhi =
1√
n

(cos(2πih/n) + sin(2πih/n)) , i, h = 1, . . . , n. (9)

Furthermore, Lemma 2.1 provides immediately eigenvalues and eigenvectors for the
matrix SC(n, k) given in Definition 2.5. An important observation is that, the eigen-
vectors of a SC-Toeplitz matrix T in (9) do not depend on the elements of T . A
consequence of this result is the following.

Theorem 2.2. Any pair of two SC-Toeplitz matrices of the same size commute.

Another important result, given by Nahtman (2006), is presented in the next lemma.
It will be used in Section 4. Let 1n denote a column vector of size n with all elements
equal to 1, and let Jn = 1n1′n.

Lemma 2.3. The matrix Σ = (a−b)In+bJn has two distinct eigenvalues, λ0 = a−b
and λ1 = a+ (n− 1)b of multiplicities n− 1 and 1, respectively.

See Nahtman (2006) for a proof.

3. Block circular symmetric covariance matrices

As mentioned above, the presence of symmetry in the data at one or several levels
yields a patterned dependence structure within or between the corresponding levels
(Dawid, 1988). In this section we shall obtain symmetry restrictions that keep the
block circular symmetric covariance structures.

Let us consider model (3). We are specifically interested in the covariance matrices
of the observation vector Y = (Yij) and random factors in this model under circular
symmetry.

A crucial assumption will be that if we permute or rotate the levels of one factor
(i.e. permute or rotate the ith- or the jth-index in Yij), the others will not be affected.
This leads to the concept of marginal invariance, see Nahtman (2006), i.e., each level
within a factor can be permuted or shifted without any changes in the covariance
structure of the model.

A symmetry model belongs to a family of models where the covariance matrix Σ
remains invariant under a finite group G of orthogonal transformations (see Perlman,
1987). In the subsequent, we say that Σ is G-invariant. More formally,

Definition 3.1. A symmetry model determined by the group G is a family of models
with covariance matrices

SG = {Σ|GΣG′ = Σ for all G ∈ G}. (10)
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The intraclass correlation model and the circular symmetry model are examples of
symmetry models.

Let us define the following (finite) groups of orthogonal transformations:

G0 = {P (1) ⊗ P (1)|P (1) is a shift (rotation) matrix}, (11)

G1 = {P (2) ⊗ P (2)|P (2) is a permutation matrix}, (12)

G2 = {P 12|P 12 = P (1) ⊗ P (2)}, (13)

G3 = {P 21|P 21 = P (2) ⊗ P (1)}. (14)

Thus, the following symmetry models can be considered.
(i) Symmetry model with complete block symmetry covariance matrices

SG1 = {Σ|GΣG′ = Σ for all G ∈ G1} (15)

implies that the covariance matrix Σ remains invariant under all permutations of the
corresponding factor levels. Here, all the covariance matrices are of the form

A B · · · B

B A
. . .

...
...

. . .
. . . B

B · · · B A

 . (16)

(ii) Symmetry model with circular (dihedral) block symmetry covariance matrices

SG0 = {Σ|GΣG′ = Σ for all G ∈ G0}. (17)

Here, the covariance structure remains invariant under all rotations (and reflections)
of the corresponding factor levels. All the covariance matrices are of the form, e.g.,

A B C B
B A B C
C B A B
B C B A

 . (18)

These models have been studied intensively during the last decades (see for example,
Olkin and Press, 1969; Olkin, 1973; Marin and Dhorne, 2002, 2003).

The novelty of our work is the study of symmetry models determined by groups G2
and G3, i.e., models having the following covariance matrices,

SG2 = {Σ|GΣG′ = Σ for all G ∈ G2}, (19)

SG3 = {Σ|GΣG′ = Σ for all G ∈ G3}. (20)

We shall show that a symmetry model determined by groups G2 and G3 is a special
case of (i) or (ii) with an additional feature that blocks in the covariance matrix Σ are
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patterned. We also show how the symmetry models determined by groups G2 and G3
are related to each other.

The following should be especially noted: it is important to distinguish between full in-
variance and partial invariance. Full invariance concerns the covariance matrix D(Y )
of observation vector Y implying invariance for all factors in a model. Partial invari-
ance concerns the covariance matrices of some (not all) factors in the model.

Nahtman (2006) and Nahtman and von Rosen (2008) gave the two following results,
regarding the invariance of the main effect γ1 in model (3). Let P (1) be a SP-matrix
and P (2) be a P-matrix.

Theorem 3.1. Nahtman (2006) The covariance matrix Σ1 : n1 × n1 of the factor γ1

is invariant with respect to all permutations P (2), if and only if it has the following
structure:

Σ1 =
1∑

v1=0

cv1J
v1
n1
, (21)

where c0 and c1 are constants, v1 ∈ {0, 1} and the matrices Jv1
n1

are defined as follows:

Jvi
ni

=

{
Ini , if vi = 0,

Jni , if vi = 1.

Theorem 3.2. Nahtman and von Rosen (2008) The covariance matrix Σ1 : n1 × n1
of the factor γ1 is shift invariant with respect to all shift permutations P (1), if and
only if it has the following structure:

Σ1 = Toep(τ0, τ1, τ2, . . . , τ1) =

[n1/2]∑
k=0

τkSC(n1, k), (22)

where the matrices SC(n1, k), k = 0, . . . , [n1/2], are given by Definition 2.5, and
τk, k = 0, . . . , [n1/2], are constants.

The results below reveal the structure of the covariance matrix of the factor repre-
senting the 2nd-order interaction effects γ2, which is invariant with respect to (19) or
(20).

Theorem 3.3. The matrix D(γ2) = Σ21 : n2n1×n2n1 in model (3) is invariant with
respect to G3, given in (14), if and only if it has the following structure:

Σ21 = In2 ⊗
[n1/2]∑
k1=0

τk1SC(n1, k1)

+ (Jn2 − In2)⊗
[n1/2]∑
k1=0

τk1+[n1/2]+1SC(n1, k1), (23)

10



where τk1 and τk1+[n1/2]+1 are constants, and matrices SC(n1, k1) are defined in Defi-
nition (2.5), k1 = 0, . . . , [n1/2].

Proof. Let N = n2n1 and P 21 ∈ G3, given by (14). The matrix Σ21 can be written
as

Σ21 =
N∑
k=1

N∑
l=1

σkl(ek ⊗ e′l),

where ek, el are the k-th and the l-th columns of the identity matrix IN , respectively.
We can define the element σkl of Σ in a more informative way. Observe and one can
write ek = e2,i2 ⊗ e1,i1 and e′l = e′2,j2 ⊗ e

′
1,j1

, where eh,ih is the ih-th column of the
identity matrix Inh

, h = 1, 2, and σkl = σ(i2,i1)(j2,j1) = Cov(γ2(i2,i1), γ2(j2,j1)), where
k = (i2 − 1)n1 + i1 and l = (j2 − 1)n1 + j1.

Hence, we can express Σ21, using the following property of the Kronecker product,

(A⊗B)(C ⊗D) = AC ⊗BD,

in the following way:

Σ21 =

n2∑
i2,j2=1

n1∑
i1,j1=1

σ(i2,i1)(j2,j1)(e2,i2 ⊗ e1,i1)(e′2,j2 ⊗ e
′
1,j1)

=

n2∑
i2,j2=1

n1∑
i1,j1=1

σ(i2,i1)(j2,j1)(e2,i2e
′
2,j2)⊗ (e1,i1e

′
1,j1).

The G3-invariance implies P 21Σ21P
′
21 = Σ21, for all P 21 ∈ G3. Therefore,

P 21Σ21P
′
21

=

n2∑
i2,j2=1

n1∑
i1,j1=1

σ(i2,i1)(j2,j1)(P
(2)e2,i2e

′
2,j2P

(2)′)⊗ (P (1)e1,i1e
′
1,j1P

(1)′)

=
∑
i2=j2

n1∑
i1,j1=1

σ(i2,i1)(i2,j1)(P
(2)e2,i2e

′
2,i2P

(2)′)⊗ (P (1)e1,i1e
′
1,j1P

(1)′)

+
∑
i2 6=j2

n1∑
i1,j1=1

σ(i2,i1)(j2,j1)(P
(2)e2,i2e

′
2,j2P

(2)′)⊗(P (1)e1,i1e
′
1,j1P

(1)′).

(24)

Since P (2) is a P-matrix, it acts on the components of γ2 = (γ2)ij via index i, which
are associated with the corresponding factor levels of γ1, i = 1, . . . , n2, j = 1, . . . , n1.
For the term P (2)e2,i2e

′
2,j2
P (2)′ , the invariance of Σ21 implies that in (24) we may

define constants

σ1(i1)(j1) = σ(i2,i1)(i2,j1), ∀i2 = j2;∀i1, j1,
σ2(i1)(j1) = σ(i2,i1)(j2,j1), ∀i2 6= j2;∀i1, j1,

11



where i1, j1 = 1, . . . , n1, i2, j2 = 1, . . . , n2. Thus, (24) becomes

Σ21 =

n1∑
i1,j1

σ1(i1)(j1)In2 ⊗ (P (1)e1,i1e
′
1,j1P

(1)′)

+

n1∑
i1,j1

σ2(i1)(j1)(Jn2 − In2)⊗ (P (1)e1,i1e
′
1,j1P

(1)′). (25)

The SP-matrix P (1) acts on the components of γ2 = (γ2)ij via index j, which are
nested within γ1 by assumption. We can express (25) in the following way:

Σ21 =
∑
i1=j1

σ1(i1)(i1)In2 ⊗ (P (1)e1,i1e
′
1,i1P

(1)′)

+

[n1/2]∑
k1=1

∑
i1,j1

|i1−j1|=k1,
n1−k1

σ1(i1)(j1)In2 ⊗ (P (1)e1,i1e
′
1,j1P

(1)′)

+
∑
i1=j1

σ2(i1)(i1)(Jn2 − In2)⊗ (P (1)e1,i1e
′
1,i1P

(1)′)

+

[n1/2]∑
k1=1

∑
i1,j1

|i1−j1|=k1,
n1−k1

σ2(i1)(j1)(Jn2 − In2)⊗ (P (1)e1,i1e
′
1,j1P

(1)′).

By the invariance of Σ21 with respect to the term P (1)e1,i1e
′
1,j1
P (1)′ , we may define

constants

τ0 = σ1(i1)(i1),∀i1, τk1 = σ1(i1)(j1), ∀ |i1 − j1| = k1, n1 − k1,
τ[n1/2]+1 = σ2(i1)(i1),∀i1, τk1+[n1/2]+1 = σ2(i1)(j1),∀ |i1 − j1| = k1, n1 − k1.

Hence, we have the following structure for Σ21 :

Σ21 = In2 ⊗ τ0In1 + In2 ⊗
[n1/2]∑
k1=1

τk1SC(n1, k1)

+ (Jn2 − In2)⊗τ[n1/2]+1In1 + (Jn2 − In2)⊗
[n1/2]∑
k1=1

τk1+[n1/2]+1SC(n1, k1)

= In2⊗
[n1/2]∑
k1=0

τk1SC(n1, k1) + (Jn2 − In2)⊗
[n1/2]∑
k1=0

τk1+[n1/2]+1SC(n1, k1).

12



The structure in (23) is obtained, which implies that the “only if” part of the theorem
is true. The “if” part is shown due to the structure of Σ21, since

P 21Σ21P
′
21 = (P (2) ⊗ P (1))

In2 ⊗
[n1/2]∑
k1=0

τk1SC(n1, k1)

 (P (2)′ ⊗ P (1)′)

+ (P (2)⊗P (1))

(Jn2 − In2)⊗
[n1/2]∑
k1=0

τk1+[n1/2]+1SC(n1, k1)

(P (2)′⊗P (1)′)

= In2 ⊗ P (1)

[n1/2]∑
k1=0

τk1SC(n1, k1)P
(1)′

+ (Jn2 − In2)⊗ P (1)

[n1/2]∑
k1=0

τk1+[n1/2]+1SC(n1, k1)P
(1)′ ,

followed by Theorem 3.2,

P (1)

[n1/2]∑
k1=0

τk1SC(n1, k1)P
(1)′ =

[n1/2]∑
k1=0

τk1SC(n1, k1)

and

P (1)

[n1/2]∑
k1=0

τk1+[n1/2]+1SC(n1, k1)P
(1)′ =

[n1/2]∑
k1=0

τk1+[n1/2]+1SC(n1, k1).

Hence, the proof is completed. �

In order to emphasize the block-symmetric structure of Σ21 given in (23), the following
result can be established.

Corollary 3.4. The G3-invariant matrix Σ21 given in (23) has the following block
structure:

Σ21 =


Σ(1) Σ(2) Σ(2) · · · Σ(2)

Σ(2) Σ(1) Σ(2) · · · Σ(2)

Σ(2) Σ(2) Σ(1) · · · Σ(2)

...
...

...
. . .

...

Σ(2) Σ(2) Σ(2) · · · Σ(1)

 (26)

= In2 ⊗Σ(1) + (Jn2 − In2)⊗Σ(2),

where Σ(1) =
∑[n1/2]

k1=0 τk1SC(n1, k1), Σ(2) =
∑[n1/2]

k1=0 τk1+[n1/2]+1SC(n1, k1). The num-
ber of distinct elements given in (26) is 2([n1/2] + 1).

13



The next example illustrates a G3-invariant covariance matrices when n2 = 4 and
n1 = 4.

Example 3.1. If n2 = 4, n1 = 4, then

Σ21=



τ0 τ1 τ2 τ1 τ3 τ4 τ5 τ4 τ3 τ4 τ5 τ4 τ3 τ4 τ5 τ4
τ1 τ0 τ1 τ2 τ4 τ3 τ4 τ5 τ4 τ3 τ4 τ5 τ4 τ3 τ4 τ5
τ2 τ1 τ0 τ1 τ5 τ4 τ3 τ4 τ5 τ4 τ3 τ4 τ5 τ4 τ3 τ4
τ1 τ2 τ1 τ0 τ4 τ5 τ4 τ3 τ4 τ5 τ4 τ3 τ4 τ5 τ4 τ3
τ3 τ4 τ5 τ4 τ0 τ1 τ2 τ1 τ3 τ4 τ5 τ4 τ3 τ4 τ5 τ4
τ4 τ3 τ4 τ5 τ1 τ0 τ1 τ2 τ4 τ3 τ4 τ5 τ4 τ3 τ4 τ5
τ5 τ4 τ3 τ4 τ2 τ1 τ0 τ1 τ5 τ4 τ3 τ4 τ5 τ4 τ3 τ4
τ4 τ5 τ4 τ3 τ1 τ2 τ1 τ0 τ4 τ5 τ4 τ3 τ4 τ5 τ4 τ3
τ3 τ4 τ5 τ4 τ3 τ4 τ5 τ4 τ0 τ1 τ2 τ1 τ3 τ4 τ5 τ4
τ4 τ3 τ4 τ5 τ4 τ3 τ4 τ5 τ1 τ0 τ1 τ2 τ4 τ3 τ4 τ5
τ5 τ4 τ3 τ4 τ5 τ4 τ3 τ4 τ2 τ1 τ0 τ1 τ5 τ4 τ3 τ4
τ4 τ5 τ4 τ3 τ4 τ5 τ4 τ3 τ1 τ2 τ1 τ0 τ4 τ5 τ4 τ3
τ3 τ4 τ5 τ4 τ3 τ4 τ5 τ4 τ3 τ4 τ5 τ4 τ0 τ1 τ2 τ1
τ4 τ3 τ4 τ5 τ4 τ3 τ4 τ5 τ4 τ3 τ4 τ5 τ1 τ0 τ1 τ2
τ5 τ4 τ3 τ4 τ5 τ4 τ3 τ4 τ5 τ4 τ3 τ4 τ2 τ1 τ0 τ1
τ4 τ5 τ4 τ3 τ4 τ5 τ4 τ3 τ4 τ5 τ4 τ3 τ1 τ2 τ1 τ0



. (27)

The next step is to derive the structure of the covariance matrix which is G2-invariant.

Theorem 3.5. The matrix D(γ2) = Σ12 : n2n1 × n2n1 is G2-invariant if and only if
it has the following structure:

Σ12 =

[n2/2]∑
k2=0

[
SC(n2, k2)⊗Σ(k2)

]
, (28)

where Σ(k2) = τk2In1 + τk2+[n2/2]+1(Jn1 − In1), τk2 and τk2+[n2/2]+1 are constants.
SC(n2, k2) is a SC-matrix, given in Definition 2.5.

Proof. We use the same technique as in Theorem 3.3. Under the condition P 12Σ12P
′
12 =

Σ12, for all P 12 ∈ G2, after the same presentation of Σ21 as used in Theorem 3.3 for
Σ12, we have

Σ12 =

n2∑
i2,j2=1

n1∑
i1,j1=1

σ(i2,i1)(j2,j1)(P
(1)e2,i2e

′
2,j2P

(1)′)⊗(P (2)e1,i1e
′
1,j1P

(2)′)

=

n2∑
i2,j2=1

∑
i1=j1

σ(i2,i1)(j2,i1)(P
(1)e2,i2e

′
2,j2P

(1)′)⊗ (P (2)e1,i1e
′
1,i1P

(2)′)

+

n2∑
i2,j2=1

∑
i1 6=j1

σ(i2,i1)(j2,j1)(P
(1)e2,i2e

′
2,j2P

(1)′)⊗ (P (2)e1,i1e
′
1,j1P

(2)′).

14



Denoting σ1(i2)(j2) = σ(i2,i1),(j2,i1) for ∀i1 = j1; ∀i2, j2 and σ2(i2)(j2) = σ(i2,i1),(j2,j1) for
∀i1 6= j1; ∀i2, j2, we have

Σ12 =

n2∑
i2,j2=1

σ1(i2)(j2)(P
(1)e2,i2e

′
2,j2P

(1)′)⊗ In1

+

n2∑
i2,j2=1

σ2(i2)(j2)(P
(1)e2,i2e

′
2,j2P

(1)′)⊗ (Jn1 − In1)

=

[n2/2]∑
k2=0

∑
i2,j2

|i2−j2|=k2,
n2−k2

σ1(i2)(j2)(P
(1)e2,i2e

′
2,j2P

(1)′)⊗ In1

+

[n2/2]∑
k2=0

∑
i2,j2

|i2−j2|=k2,
n2−k2

σ2(i2)(j2)(P
(1)e2,i2e

′
2,j2P

(1)′)⊗ (Jn1 − In1). (29)

Let us now define τk2 = σ1(i2)(j2), ∀|i2 − j2| = k2, n2 − k2;∀i1 = j1, and τk2+[n2/2]+1 =
σ2(i2)(j2),∀|i2 − j2| = k2, n2 − k2;∀i1 6= j1. Thus, (29) becomes

Σ12 =

[n2/2]∑
k2=0

SC(n2, k2)⊗
[
τk2In1 + τk2+[n2/2]+1(Jn1 − In1)

]
,

and (28) is obtained. Due to the structure of Σ12, it is straightforward to show that
P 12Σ12P

′
12 = Σ12. �

The following corollary illustrates the block structure of Σ12 which is G2-invariant.

Corollary 3.6. A G2-invariant covariance matrix Σ12 has the following block struc-
ture:

Σ12 =



Σ(0) Σ(1) Σ(2) · · · Σ(2) Σ(1)

Σ(1) Σ(0) Σ(1) · · · Σ(3) Σ(2)

Σ(2) Σ(1) Σ(0) · · · Σ(4) Σ(3)

...
...

...
. . .

...
...

Σ(2) Σ(3) Σ(4) · · · Σ(0) Σ(1)

Σ(1) Σ(2) Σ(3) · · · Σ(1) Σ(0)


(30)

=

[n2/2]∑
k2=0

[
SC(n2, k2)⊗Σ(k2)

]
.

where Σ(k2) = τk2In1 + τk2+[n2/2]+1(Jn1 − In1). The number of distinct elements of
Σ12 is 2([n2/2] + 1).
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In the next example G2-invariant Σ12 will be presented when n2 = 4 and n1 = 4.

Example 3.2. If n2 = 4, n1 = 4, then

Σ12 =



τ0 τ3 τ3 τ3 τ1 τ4 τ4 τ4 τ2 τ5 τ5 τ5 τ1 τ4 τ4 τ4
τ3 τ0 τ3 τ3 τ4 τ1 τ4 τ4 τ5 τ2 τ5 τ5 τ4 τ1 τ4 τ4
τ3 τ3 τ0 τ3 τ4 τ4 τ1 τ4 τ5 τ5 τ2 τ5 τ4 τ4 τ1 τ4
τ3 τ3 τ3 τ0 τ4 τ4 τ4 τ1 τ5 τ5 τ5 τ2 τ4 τ4 τ4 τ1
τ1 τ4 τ4 τ4 τ0 τ3 τ3 τ3 τ1 τ4 τ4 τ4 τ2 τ5 τ5 τ5
τ4 τ1 τ4 τ4 τ3 τ0 τ3 τ3 τ4 τ1 τ4 τ4 τ5 τ2 τ5 τ5
τ4 τ4 τ1 τ4 τ3 τ3 τ0 τ3 τ4 τ4 τ1 τ4 τ5 τ5 τ2 τ5
τ4 τ4 τ4 τ1 τ3 τ3 τ3 τ0 τ4 τ4 τ4 τ1 τ5 τ5 τ5 τ2
τ2 τ5 τ5 τ5 τ1 τ4 τ4 τ4 τ0 τ3 τ3 τ3 τ1 τ4 τ4 τ4
τ5 τ2 τ5 τ5 τ4 τ1 τ4 τ4 τ3 τ0 τ3 τ3 τ4 τ1 τ4 τ4
τ5 τ5 τ2 τ5 τ4 τ4 τ1 τ4 τ3 τ3 τ0 τ3 τ4 τ4 τ1 τ4
τ5 τ5 τ5 τ2 τ4 τ4 τ4 τ1 τ3 τ3 τ3 τ0 τ4 τ4 τ4 τ1
τ1 τ4 τ4 τ4 τ2 τ5 τ5 τ5 τ1 τ4 τ4 τ4 τ0 τ3 τ3 τ3
τ4 τ1 τ4 τ4 τ5 τ2 τ5 τ5 τ4 τ1 τ4 τ4 τ3 τ0 τ3 τ3
τ4 τ4 τ1 τ4 τ5 τ5 τ2 τ5 τ4 τ4 τ1 τ4 τ3 τ3 τ0 τ3
τ4 τ4 τ4 τ1 τ5 τ5 τ5 τ2 τ4 τ4 τ4 τ1 τ3 τ3 τ3 τ0



. (31)

It is interesting to observe that the G3-invariant matrix Σ21 : 16 × 16 in (27) has a
different structure from the G2-invariant matrix Σ12 : 16×16. One is block compound
symmetry with SC-Toeplitz blocks, another is block SC-Toeplitz with compound sym-
metric blocks. Transformation P 12 and P 21 only affect indices of a response vector
Y = (yij), and the question is whether the labeling of yij (observations) affects the
covariance structure of the model. The answer is negative. The relationship between
the two covariance structures, obtained in Theorem 3.3 and 3.5, respectively, can be
described in the theorem below.

The following matrix is needed. Let ei be the i-th column vector of In1 and dj be the
j-th column vector of In2 . Then the commutation matrix Kn1,n2 is defined as

Kn1,n2 =

n1∑
i=1

n2∑
j=1

(eid
′
j)⊗ (dje

′
i). (32)

Theorem 3.7. With rearrangement of the observations in the response vector Y in
model (3), the covariance matrix Σ21 given in (23), can be transformed into the co-
variance matrix Σ12 given in (28), i.e. Σ12 = Kn1,n2Σ21K

′
n1,n2

, where Kn1,n2 :
n2n1 × n2n1 is the commutation matrix given in (32).

Proof. In Theorem 3.3,

Σ21 = In2⊗
[n1/2]∑
k1=0

τk1SC(n1, k1)+(Jn2 − In2)⊗
[n1/2]∑
k1=0

τk1+[n1/2]+1SC(n1, k1)
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= In2 ⊗ τ0SC(n1, 0) + . . .+ In2⊗τ[n1/2]SC(n1, [n1/2])

+ (Jn2 − In2)⊗ τ[n1/2]+1SC(n1, 0) + . . .

+ (Jn2 − In2)⊗ τ2[n1/2]+1SC(n1, [n1/2]).

Using the following property of the Kronecker product (cA)⊗B = A⊗ (cB), where
c is an arbitrary scalar, we have

Σ21 = τ0In2 ⊗ SC(n1, 0) + . . .+ τ[n1/2]In2 ⊗ SC(n1, [n1/2])

+ τ[n1/2]+1(Jn2 − In2)⊗ SC(n1, 0) + . . .

+ τ2[n1/2]+1(Jn2 − In2)⊗ SC(n1, [n1/2])

=
[
τ0In2 + τ[n1/2]+1(Jn2 − In2)

]︸ ︷︷ ︸
Σ(0)

⊗SC(n1, 0) + . . .

+
[
τ[n1/2]In2 + τ2[n1/2]+1(Jn2 − In2)

]︸ ︷︷ ︸
Σ([n1/2])

⊗SC(n1, [n1/2])

=

[n1/2]∑
k1=0

[
Σ(k1) ⊗ SC(n1, k1)

]
,

where Σ(k1) = τk1In2 + τk1+[n1/2]+1(Jn2 − In2), k1 = 0, . . . , [n1/2]. Moreover, let Y =

(y11, y12, . . . , y1n1 , . . . , yn21, yn22, . . . , yn2n1)′. Applying Kn1,n2 to Y yields,

(Kn1,n2Y ) = (y11, y21, . . . , yn11, . . . , y1n2 , y2n2 , . . . , yn1n2)′,

the labeling is changed.

With the help of the commutation matrix, we can interchange the elements of the
Kronecker product, namely,

Kn1,n2

[n1/2]∑
k1=0

[
Σ(k1) ⊗ SC(n1, k1)

]
K ′n1,n2

=

[n1/2]∑
k1=0

[
SC(n1, k1)⊗Σ(k1)

]
,

and the structure of Σ12 in Theorem 3.5 is obtained.

If the covariance matrix has the structure Σ12, using the commutation matrix Kn2,n1 ,
we obtain the same structure as in Theorem 3.3, i.e.,

Σ21 = Kn2,n1Σ12K
′
n2,n1

= In1⊗
[n1/2]∑
k2=0

τk2SC(n2, k2)+(Jn1 − In1)⊗
(n2/2)∑
k2=0

τk2+[n2/2]+1SC(n2, k2).

�
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We use a simple example to demonstrate the statement of Theorem 3.7.

Example 3.3. In the case of Theorem 3.3, when n2 = 3, n1 = 4, let

Y = (y11, y12, y13, y14, y21, y22, y23, y24, y31, y32, y33, y34)
′

and γ2 has the covariance matrix Σ21 given in (27). According to Theorem 3.7, there
exists the following commutation matrix

K4,3 =



1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1


such that

K4,3Y = (y11, y21, y31, y12, y22, y32, y13, y23, y33, y14, y24, y34)
′

and Σ12 = K4,3Σ21K
′
4,3. The example shows that, (27) and (31) reflect the depen-

dence structure of the same data, which however, arise from different labeling of factor
levels.

4. Spectra of G2 and G3-invariant matrices

In this section we study the spectra of the covariance matrices Σ21 and Σ12, given in
Theorem 3.3 and Theorem 3.5, respectively. The novelty of our results is that we use
the eigenvalues of the blocks which constitute corresponding matrices (26) and (30),
instead of direct calculation of the eigenvalues using the elements of Σ21 and Σ12.
Here the concept of commutativity is important since if two normal matrices commute
then they have a joint eigenspace and can be diagonalized simultaneously, for example
see Kollo and von Rosen (2005, Chapter 1). The multiplicities of the eigenvalues and
the number of distinct eigenvalues will also be given.

Theorem 4.1. Let the covariance matrix Σ21 : n2n1×n2n1 be G3-invariant and have a
structure obtained in (26). Let λ

(i)
h be the eigenvalue of Σ(i) : n1×n1 with multiplicity

mh, i,= 1, 2, h = 1, . . . , [n1/2] + 1. The spectrum of Σ21 consists of the eigenvalues

λ
(1)
h −λ

(2)
h , each of multiplicity (n2−1)mh, and λ

(1)
h +(n2−1)λ

(2)
h , each of multiplicity

mh. The number of distinct eigenvalues is 2([n1/2] + 1).
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Proof. The SC-matrices SC(ni, ki), ki = 0, . . . , [ni/2] commute. So Σ(1) and Σ(2)

commute as well, and they have a joint eigenspace. Hence, there exists an orthog-
onal matrix V 2, such that V ′2Σ

(1)V 2 = Λ(1) and V ′2Σ
(2)V 2 = Λ(2), where Λ(i) =

diag(λ
(i)
1 , . . . , λ

(i)
n1), i = 1, 2. Furthermore, In2 ⊗ Σ(1) and (Jn2 − In2) ⊗ Σ(2) also

commute. Define the orthogonal matrix V 1 = (n
−1/2
2 1n2

...H), where H has the size
of n2 × (n2 − 1), satisfying both H ′1n2 = 0 and H ′H = In2−1. Then V ′1Jn2V 1 =
diag {n2,0n2−1} . Let V = V 1⊗V 2, then using the property of the Kronecker product
(A⊗B)(C ⊗D) = AC ⊗BD, we have

V ′Σ2V = (V ′1 ⊗ V ′2)(In2 ⊗Σ(1))(V 1 ⊗ V 2)

+ (V ′1 ⊗ V ′2)
[
(Jn2 − In2)⊗Σ(2)

]
(V 1 ⊗ V 2)

= (V ′1V 1)⊗ (V ′2Σ
(1)V 2) + (V ′1(Jn2 − In2)V 1)⊗ (V ′2Σ

(2)V 2)

= In2 ⊗Λ(1) + diag {n2 − 1,−In2−1} ⊗Λ(2). (33)

The obtained matrix in (33) is a diagonal matrix and the elements in Λ(1) and Λ(2)

are obtained from Lemma 2.1, as well as their multiplicities. We know that there are[
n1
2

]
+ 1 distinct eigenvalues in Λ(i), i = 1, 2. From the diagonal matrix (33), the

number of distinct eigenvalues in Σ21 is obtained. �

Now we illustrate the results obtained in Theorem 4.1 on two examples.

Example 4.1.
Let Σ21 = I3 ⊗ Σ(1) + (J3 − I3) ⊗ Σ(2), where Σ(1) =

∑2
k1=0 τk1SC(4, k1) and

Σ(2) =
∑2

k1=0 τk1+3SC(4, k1).

The block Σ(1) : 4× 4, is a SC-Toeplitz matrix with three distinct eigenvalues:

λ
(1)
1 = τ0 − τ2,

λ
(1)
2 = τ0 − 2τ1 + τ2,

λ
(1)
3 = τ0 + 2τ1 + τ2,

with multiplicities m1 = 2, m2 = 1 and m3 = 1, respectively.

Similarly, the block Σ(2) : 4×4, is a SC-Toeplitz matrix with three distinct eigenvalues:

λ
(2)
1 = τ3 − τ5,

λ
(2)
2 = τ3 − 2τ4 + τ5,

λ
(2)
3 = τ3 + 2τ4 + τ5,

with the same multiplicities mh, h = 1, . . . , 3, as in Σ(1).
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The distinct eigenvalues of Σ21 : 12× 12 are:

λ1 = λ
(1)
1 − λ

(2)
1 = τ0 − τ2 − τ3 + τ5 with multiplicity (3− 1)m1 = 4,

λ2 = λ
(1)
2 − λ

(2)
2 = τ0 − 2τ1 + τ2 − τ3 + 2τ4 − τ5

with multiplicity (3− 1)m2 = 2,

λ3 = λ
(1)
3 − λ

(2)
3 = τ0 + 2τ1 + τ2 − τ3 − 2τ4 − τ5

with multiplicity (3− 1)m3 = 2,

λ4 = λ
(1)
1 + (n2 − 1)λ

(2)
1 = τ0 − τ2 + 2(τ3 − τ5) with multiplicity m1 = 2,

λ5 = λ
(1)
2 + (n2 − 1)λ

(2)
2 = τ0 − 2τ1 + τ2 + 2(τ3 − 2τ4 + τ5)

with multiplicity m2 = 1,

λ6 = λ
(1)
3 + (n2 − 1)λ

(2)
3 = τ0 + 2τ1 + τ2 + 2(τ3 + 2τ4 + τ5)

with multiplicity m3 = 1.

Example 4.2.
Let Σ21 = I3 ⊗ Σ(1) + (J3 − I3) ⊗ Σ(2), where Σ(1) =

∑1
k1=0 τk1SC(3, k1) and

Σ(2) =
∑1

k1=0 τk1+2SC(3, k1).

Both blocks Σ(1) : 3 × 3 and Σ(2) : 3 × 3 are SC-Toeplitz matrices. The distinct
eigenvalues are:

λ
(1)
1 = τ0 − τ1, m1 = 2; λ

(1)
2 = τ0 + 2τ1, m2 = 1,

λ
(2)
1 = τ2 − τ3, m1 = 2; λ

(2)
2 = τ2 + 2τ3, m2 = 1.

The distinct eigenvalues of Σ21 : 9× 9 are:

λ1 = λ
(1)
1 − λ

(2)
1 = τ0 − τ1 − τ2 + τ3 with multiplicity 4,

λ2 = λ
(1)
2 − λ

(2)
2 = τ0 + 2τ1 − τ2 − 2τ3 with multiplicity 2,

λ3 = λ
(1)
1 + (n2 − 1)λ

(2)
1 = τ0 − τ1 + 2(τ2 − τ3) with multiplicity 2,

λ4 = λ
(1)
2 + (n2 − 1)λ

(2)
2 = τ0 + 2τ1 + 2(τ2 + 2τ3) with multiplicity 1.

Note. The spectrum of Σ12, given in (30), is the same as Σ21 in (26). Since it
also can be found from Theorem 3.7, Σ12 and Σ21 are similar matrices, i.e, Σ12 =
Kn1,n2Σ21K

′
n1,n2

, where Kn1,n2 is an orthogonal matrix. Essentially, it is an orthog-
onal matrix transformation and will not change the spectrum, i.e., the characteristic
equation is given by the following determinant,

|Σ12 − λI|=|Kn1,n2Σ21K
′
n1,n2

− λI|=|Kn1,n2(Σ21 − λI)K ′n1,n2
|=|Σ21 − λI|.
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5. Concluding remarks

In practice, a symmetry study starts with a data set in which symmetry relations
can be identified (Viana, 2008). We have derived the covariance structures under
invariance related to two groups of orthogonal transformations (permutations and ro-
tations). In MM, particular patterns of the covariance matrices reflect how the data
share common characteristics in different hierarchies. This is important when perform-
ing estimation and testing. When we estimate the fixed effects, usually the imposed
structure can improve the precision of the fixed effects estimator. Furthermore, there
might exist a risk of misspecification of the covariance structure that could result in
misleading inference of the fixed effects. Thus, it is also necessary to discuss different
hypotheses of the covariance structures to verify the model (Jensen, 1988). In addi-
tion, the existence of explicit MLEs for such symmetry models should be studied, for
example, Szatrowski (1980) and Ohlson and von Rosen (2010) provided the explicit
MLEs of some patterned covariance structures. Our study of the spectral properties
can be used to obtain explicit MLEs of a covariance matrix which has block circular
symmetric structure and discuss concerning the existence of explicit MLEs.

In this article, we only considered model with two random factors and it could be
of interest to study MM cases with more factors. In such cases, the higher order
interactions will be involved. For example, when we investigate MM with s random
factors, the potential structured data might be possibly identified by considering dif-
ferent groups of symmetry transformations, i.e., when different symmetry patterns are
observed in different hierarchies.
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