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Abstract

The aim of this work is to develop new methodology to detect influential ob-
servations in cross-over design models with random individual effects. Various
case-weighted perturbations are performed. We derive the exact solution of influ-
ence of the perturbations on each parameter estimate and their dispersion matrix.
Closed-form maximum likelihood estimates (MLEs) of variance parameters as well
as fixed effect parameters in the cross-over design models are utilised. The work
exhibits the possibility to produce closed-form expressions of the influence using
the residuals in mixed models. A discussion on restrictions of the case-weighted
perturbation schemes is given. Some graphical tools are also presented.

Keywords: Cross-over design modelling, Explicit maximum likelihood estimate,
Influential observation, Mixed linear model, Perturbation scheme, Statistical
diagnostics

1. Introduction

Assessing influence when perturbing a statistical model is an essential area of
statistical research. Statistical inference in one way or another assumes that re-
sults are not sensitive to small deviations from the model due to observed data.
However, data mining experiences suggest that a dataset often contains several ob-
servations with demonstrably larger effects than other observations on estimating
or testing an assumed model. According to Belsley et al. (2004), such observations
are defined as influential observations. In this article, influential observations are
of interest under a specific mixed linear model, that is, the cross-over design model.

The cross-over designs, also mentioned in the literature as change-over or repeated
measurements designs, are designs in which subjects get different treatments in
certain orders with the goal of studying differences between individual treatments
(Jones and Kenward, 1989). These designs are often utilised because of their prac-
tical simplicity and yet greater power to detect differences of treatments than a
parallel study (Grizzle, 1965). They are used by studies in medicine, psychology
and agricultural sciences when a few independent subjects are available (examples
are, for instance, provided by Afsarinejad, 1990). Modelling cross-over studies
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has continued to be an active area of statistical research during the past 25 years
(Senn, 2006).

Although articles seldom address the issue of influential observations within the
framework of cross-over designs, detecting influential observations in statistical
models with covariance structure has been explored comprehensively by theoreti-
cal studies over the last 30 years, for example, Shi (2006) in a context of multilevel
models and Pan and Fang (2002) in the Growth Curve model. More and more
researchers, including Hodges (1998), Tan et al. (2001) and Banerjee and Frees
(1997), have realised that the well-performed Cook’s Distance in the homoscedastic
or general linear model meets problems when it is extended to multivariate set-ups.

Two methodologies dominate studies on influence analysis. One approach (see
e.g. Christensen et al., 1992; Haslett and Dillane, 2004; Shi and Chen, 2008a),
suggests to compare the estimates based on the models before and after removing
a subset of the data. The ideal outcome is to generate a computationally cheap
procedure, which can be expressed or approximated without re-fitting the model.
A second approach, namely likelihood-based local influence (Cook, 1986), is based
on the curvature of log-likelihood functions. The arguments for applying it are
that to omit the whole observation or subject yields a loss of information on the
influence, and therefore one should evaluate a minor modification of the original
model, which is by Cook (1986) referred to as the perturbation scheme. Beckman
et al. (1987), Lesaffre and Verbeke (1998) and Tan et al. (2001) apply the tech-
nique to mixed linear models. Likelihood-based local influence is demonstrated to
be a general effective method to discover influential observations, however, with-
out any straightforward explanation of the nature of the influence. Although the
likelihood distance is a summary measure which expresses the joint influence on
all parameters in the model (Schabenberger, 2005), when particular parameter
estimates or tests are of concern, influence analysis relying only on the likelihood
distance may make the problem at hand obscure. More explicit outcomes can
be achieved in some specific cases, for example outcomes from cross-over design
studies which this article discusses.

In this work, a compromise between case-deletion and likelihood-based local influ-
ence is presented. The method calculates the changes on the parameter estimates
via different case-weighted perturbation schemes. Pregibon (1981) in univariate
logistic regression, von Rosen (1995) in the Growth Curve model, Demidenko and
Stukel (2005) in mixed linear model, and Shi and Chen (2008b) in multilevel mod-
els adopt a similar paradigm. Closed-form maximum likelihood estimates (MLEs)
of the parameters in the cross-over designs are utilised. A main distinction of this
work from existing results is that it exhibits the possibility to produce closed-form
expressions of the influence by using the residuals, even in mixed models with
unknown variance components. A discussion on restrictions of the case-weighted
perturbation schemes, which to our knowledge has not yet been considered, is also
given.

In the next section, we introduce prerequired knowledge on the cross-over design
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model and influence analysis. Perturbation schemes and objective functions of
influence which are used in the coming discussion are also defined. In Sections 3,
the obtained results for balanced 2 × 2 cross-over designs are presented. Section
4 illustrates the main results via a simulation study. Conclusions are presented in
Section 5.

2. Preliminaries

Throughout this article, upper case letters with bold face denote matrices, bold
lower case letters denote column vectors and non-bold lower case letters with
subscripts are used to show elements of matrices or vectors. Let Ip , 1p and
Jp = 1p1

T
p denote the p× p identity matrix, the p× 1 vector and the p× p matrix

with elements equal to 1, respectively. The symbol ⊗ represents the Kronecker
product of matrices. Moreover, the vector space generated by the columns of
the p × q matrix A, C(A), is given by C(A) = {a : a = Az, z ∈ Rq}. The p-
dimensional multivariate normal distribution with mean vector µµµ and covariance
matrix ΣΣΣ is denoted Np(µµµ, ΣΣΣ).

2.1. Cross-over design model

Let yijk denote a response observed during the k-th period on the j-th subject
within sequence i of a cross-over design, where i = 1, 2, . . . , s; j = 1, 2, . . . , n;
k = 1, 2, . . . , p. The approach throughout this work is to assume a balanced
mixed linear model for yijk. There are various possibilities for model formulation
and data analysis, but once the model is set up, the important issue of model
validation can be addressed.

Suppose a comparison of two treatments, A and B, is of concern. A natural design
to employ is a two-sequence two-period (2×2) cross-over design, that is, s = 2 and
p = 2, whereby subjects are administered with two sequences of treatments, to
receive treatment A followed by treatment B (sequence AB) or to receive treatment
B followed by treatment A (sequence BA). One widely used model for this design
is the one specified in Grizzle (1965) with random effects, which after performing
a reparametrization can be presented as

y = Xβββ + Zγγγ + εεε, (1)

where y = (y111, y112, y121, . . . , y2n2)
T is a 4n×1 vector of responses. The parameter

βββ = (µ, π, φ, λ)T is a vector of unknown mean parameters, in which µ is the general
mean, π and φ represent the fixed effects for period and treatment, respectively,
and the treatment by period interaction, which is referred to as carry-over effect
in the literature, is given by λ. The matrix X = (x111,x112,x121, . . . ,x2n2)

T is a
4n × 4 known design matrix for βββ. Note that the column vector xijk is a row of
X and is given by

x1j1 =
(

1 1
2

1
2

1
4

)T
, x1j2 =

(
1 −1

2
−1

2
1
4

)T
,

x2j1 =
(

1 1
2
−1

2
−1

4

)T
, x2j2 =

(
1 −1

2
1
2
−1

4

)T
,
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for j = 1, 2, . . . , n. The vector γγγ = (γ11, γ12, . . . , γ2n)T is a random-effects vec-
tor representing individual effects which satisfies γγγ ∼ N2n(0, σ2

γI). The matrix
Z = I2 ⊗ In ⊗ 12 is the 4n× 2n known incidence matrix for γγγ. The vector of ran-
dom errors εεε ∼ N4n(0, σ2

eI) is assumed to be independent of γγγ, and the variances
σ2
γ and σ2

e are supposed to be unknown.

2.2. Perturbation schemes

As mentioned in the introduction, two issues on model validation are of impor-
tance: to detect influential observations, and to identify their roles on estimates or
tests. For these purposes, two central concepts are introduced, the perturbation
scheme (Beckman et al., 1987) and the objective functions of influence (Belsley
et al., 2004). In this article, the notation P (ωωω) denotes the perturbation scheme
where ωωω is the perturbation weight. The objective functions of influence used in
this work will be listed in the next subsection.

Case deletion (Cook and Weisberg, 1982) can be regarded as the best-known per-
turbation scheme, in which the influence is studied by complete removal of the
concerned cases from the analysis. But a direct comparison of the estimates ac-
cording to case deletion may become logically complicated under the cross-over
designs. One problem is that, if the whole subject is removed from the design, the
individual effect of this subject will no longer be estimable (Banerjee and Frees,
1997). More seriously, when a deletion occurs on the observation level of the data,
e.g., one period of a subject is removed from the design, imbalance will be intro-
duced by the deletion and the basic properties of the cross-over design will alter.
Therefore, case-weighted perturbation schemes are used in this article.

Definition 2.1. Suppose that a perturbation scheme P (ωωω) exists such that the
response vector is modified from y to yP (ωωω), and the design matrix from X to
XP (ωωω). The case-weighted perturbation scheme is a perturbation scheme which
satisfies the following two criteria.

(i) A subset of the data is removed when ωωω = 0;

(ii) yP (ωωω0) = y and XP (ωωω0) = X for some null perturbation weight ωωω0.

By introducing P (ωωω), a perturbed model of (1) can be written as

yP (ωωω) = XP (ωωω)βββ + Zγγγ + εεε, (2)

where γγγ ∼ N2n(0, σ2
γI), εεε ∼ N4n(0, σ2

eI) and Cov(γγγ, εεε) = 0. In further considera-
tions, (1) is referred as unperturbed model and (2) perturbed model.

The MLEs of the perturbed model, which we will mainly focus on, are then ex-
pected to be functions of the perturbation weight ωωω and the perturbation scheme
P (ωωω). Either a “large” influence on its estimates β̂ββ(ωωω) or a “large” influence on

its estimated dispersion matrix D̂
[
β̂ββ(ωωω)

]
will highlight the risk that the inference

is not robust.
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It is well recognised by now that an inappropriate perturbation scheme may lead
to unreasonable inference about the cause of influence (Chen et al., 2010). For
instance, when data are unbalanced, perturbing a subject which has more obser-
vations likely produces a larger effect than other subjects (Zhu et al., 2007). Now
we present some perturbation schemes which are examined later under the model
assumption (1). It should be made clear that this article focuses on case-weighted
perturbations, but many other kinds of P (ω) can be constructed. We refer to
Beckman et al. (1987) for details.

Case-weighted Perturbation I. Observation level.
Let

yP1(ω) = (yT
[ijk] : ωyijk)

T and XP1(ω) = (XT
[ijk] : ωxijk)

T, (3)

for some non-negative ω belonging to the neighbourhood of 1. The vector or
matrix with index [ijk] represents the associated vector or matrix with the k-th
period observation in the j-th subject within the i-th sequence removed.

Case-weighted Perturbation II. Subject level.
Let

yP2(ω) = (yT
[ij] : ωyT

ij)
T and XP2(ω) = (XT

[ij] : ωXT
ij)

T, (4)

for some non-negative ω belonging to the neighbourhood of 1, where yij =(yij1, yij2)
T

and the matrix Xij = (xij1, xij2)
T. The vector or matrix with index [ij] repre-

sents the associated vector or matrix with the j-th subject within the i-th sequence
removed.

For the extreme case ω = 0, the perturbation P1(ω) and P2(ω) exclude one ob-
servation and one subject, respectively. The next perturbation scheme P3(W)
is proposed in order to contain both observation-level and subject-level pertur-
bations. Ouwens et al. (2001) emphasize the importance to detect influence on
both observation and subject levels in mixed models. However, our discussion of
P3(W) will show that when the covariance matrix within subject is assumed to
be structural, observation-level perturbations need to be designed carefully. This
is especially true for the cross-over designs. Some observation-level perturbations,
such as P1(ω), may change the structure of the model, so that influential observa-
tions become unidentifiable by it. This finding is proven in Theorem 3.4.

Case-weighted Perturbation III. Linear combination.
Let

yP3(W) =
(
yT
[ij] : WyT

ij

)T
and XP3(W) =

(
XT

[ij] : WXT
ij

)T
, (5)

for some 2× 2 matrix

W =

(
ω1 ω2

ω3 ω4

)
,

where ω1, ω4 ≥ 0, ω1 ≥ ω3, and ω2 ∈ R.

The null perturbation of P3(W), which is mentioned in Definition 2.1, exists at
W0 = I2. When W = 0, P3(W) is analogous to the removal of the ij-th subject.
When

W =

(
1 0

0 0

)
,
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P3(W) is analogous to the removal of the observation on the second period in the
ij-th subject. When

W =

(
1 0

1 0

)
,

P3(W) is analogous to the replacement of the observation on the second period in
the ij-th subject with its correlated observation on the first period.

2.3. Objective functions of influence

Because the perturbed model (2) is the same as the unperturbed model (1) when
ω = ω0, the task of assessing the influence of a perturbation can be formulated by
studying local departures in (2) at ω0. To accomplish it, an appropriate objective
function to measure such departures, such as the likelihood displacement function
in Cook’s likelihood-based approach (Cook, 1986), or the delta-beta statistic (Bel-
sley et al., 2004) on which this article focuses, need to be defined according to the
inferential interests.

Definition 2.2. Let l(θθθ) and lωωω(θθθ) denote the log-likelihood functions under the un-

perturbed model (1) and the perturbed model (2), respectively, where θθθ=
(
βββT, σ2

γ, σ
2
e

)T
.

Let θ̂θθ and θ̂θθωωω denote the maximum likelihood estimators (MLEs) of the two models.
The likelihood displacement is defined as follows (Cook, 1986):

LD(ωωω) = 2{l(θ̂θθ)− l(θ̂θθωωω)}.

Alternative objective functions for summarizing the influence of a perturbation
are the above mentioned delta-beta statistic and special variance ratios.

Definition 2.3. Let β̂ββ(ωωω) be the MLE of βββ and D
[
β̂ββ(ωωω)

]
be the associated dis-

persion matrix under the perturbed model (2).
(i) The delta-beta statistic with respect to a perturbation P (ωωω) on the ij-th subject
is defined by

∆ijβ̂ββ = β̂ββ(ωωω)− β̂ββ(ωωω0). (6)

(ii) The influence on the estimation precision of mean parameters on the ij-th
subject with respect to a perturbation P (ωωω) is calculated by

∆ijD
[
β̂ββ
]

= D̂
[
β̂ββ(ωωω)

]
− D̂

[
β̂ββ(ωωω0)

]
, (7)

where D̂
[
β̂ββ(ωωω)

]
and D̂

[
β̂ββ(ωωω0)

]
are the estimators of D

[
β̂ββ(ωωω)

]
and D

[
β̂ββ(ωωω)

]
, re-

spectively, when the MLEs of σ2
γ and σ2

e are inserted.

Definition 2.4. Let σ2
γ(ωωω) and σ2

e(ωωω) be the MLEs of the variance parameters
in (2). The variance ratio for random errors (VRE) and the variance ratio for
random effects (VRR) with respect to the perturbation P (ωωω) on the ij-th subject
are defined by

VRRij =
σ̂2
γ(ωωω)

σ̂2
γ(ωωω0)

, (8)

VREij =
σ̂2
e(ωωω)

σ̂2
e(ωωω0)

. (9)
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Later, because of the existence of explicit MLEs in (1), we show that, by selecting
appropriate perturbation schemes, the above defined objective functions are con-
venient for analysis and yield closed-form expressions which, in our opinion, is an
important property.

The result presented in the following auxiliary lemma for the homoscedastic linear
model will be used in the subsequent.

Lemma 2.1. Let us consider the following linear model

y = Xβββ + εεε, εεε ∼ Nn(0, σ2
eIn),

where βββ and σ2
e are unknown. Suppose that the i-th observation is perturbed so

that yP (ω) = (yT
[i] : ωyi)

T, XP (ω) = (XT
[i] : ωxi)

T for some ω belonging to the

neighborhood of 1. Then, in the perturbed model, the functions defined by (6) and
(7) equal

∆iβ̂ββ =
(ω2 − 1)ri

(ω2 − 1)hii + 1
(XTX)−1xi,

∆iD
[
β̂ββ
]

=
(1− ω2)σ̂2

(ω2 − 1)hii + 1
(XTX)−1xix

T
i (XTX)−1.

and the variance ratio of random errors after and before perturbation defined in
(9) is

V REi = 1 +
ω2 − 1

(ω2 − 1)hii + 1

r2i∑n
i=1 r

2
i

,

where hij = xT
i (XTX)−1xj denotes the element in the i-th row and the j-th column

of the hat matrix X
(
XTX

)−1
XT for the unperturbed model, and ri = yi − ŷi

denotes the residual of the i-th observation.

Proof. If the matrices A, A + BCD and C are non-singular, according to the
inverse binomial theorem, we get

(A + BCD)−1 = A−1 −A−1B(DA−1B + C−1)−1DA−1.

Thus, (
XTX + (ω2 − 1)xix

T
i

)−1

= (XTX)−1 +
1− ω2

(ω2 − 1)hii + 1
(XTX)−1xix

T
i (XTX)−1,

and the MLE of βββ after the perturbation equals

β̂ββ(ω) =
(
XTX + (ω2 − 1)xix

T
i

)−1 (
XTy + (ω2 − 1)yixi

)
= β̂ββ(1) +

(ω2 − 1) (yi − ŷi)
(ω2 − 1)hii + 1

(XTX)−1xi,
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with dispersion matrix

D
[
β̂ββ(ω)

]
=
(
XTX + (ω − 1)x1x

T
1

)−1
σ2
e

= D
[
β̂ββ(1)

]
+

(1− ω2)σ2
e

(ω2 − 1)hii + 1
(XTX)−1xix

T
i (XTX)−1.

The MLE of σ2 after the perturbation equals

σ̂2
e(ω)=

1

n

(
yTy + (ω2 − 1)y2i

)
− 1

n

(
yTX + (ω2 − 1)yix

T
i

)
(
XTX + (ω2 − 1)xix

T
i

)−1 (
XTy + (ω2 − 1)yixi

)
=σ̂2

e(1) +
(ω2 − 1)r2i /n

(ω2 − 1)hii + 1
.

�

When ω approaches 0, the above outcome is identical with the well-known result
for case deletion.

2.4. Estimation in cross-over designs

The interest in (1) is usually connected to the mean estimator, β̂ββ, especially con-

cerning the treatment effect φ̂, when σ2
γ and σ2

e are assumed to be unknown. One
important feature of the cross-over design model is that it can be represented
as two randomly independent homoscedastic linear models with independent sets
of parameters. Therefore, both the maximum likelihood estimators and the dis-
persion matrices of the estimators can be obtained explicitly. The next lemma
presents the explicit MLE of βββ as well as those of σ2

γ and σ2
e in (1). The model

transformation in the proof will be repeated later when the objective functions of
influence are calculated in Section 3.

Lemma 2.2. (i) The MLE of βββ in (1) is given by

β̂ββ =


1
4
( y1·1 + y1·2) + 1

4
( y2·1 + y2·2)

1
2
( y1·1 − y1·2) + 1

2
( y2·1 − y2·2)

1
2
( y1·1 − y1·2)− 1

2
( y2·1 − y2·2)

( y1·1 + y1·2)− ( y2·1 + y2·2)

 .

The MLEs of σ2
γ and σ2

e in (1) equal

σ̂2
γ =

1

2n

∑
ij

rij1rij2, σ̂2
e =

1

4n

∑
ij

(rij1 − rij2)2,

where yi·k =
1

n

n∑
j=1

yijk and rijk = yijk − xijkβ̂ββ = yijk − yi·k is the residual, for

i, k = 1, 2, j = 1, 2, . . . , n.
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(ii) The dispersion matrix of β̂ββ equals

D
[
β̂ββ
]

=
1

n


1
4
(2σ2

γ + σ2
e) 0 0 0

0 σ2
e 0 0

0 0 σ2
e 0

0 0 0 4(2σ2
γ + σ2

e)

 .

Proof. The traditional way of how to obtain the estimators of βββ, σ2
γ and σ2

e is
demonstrated in Laird et al. (1992). We present a proof based on linear models
theory. If a full-rank matrix

T = I2n ⊗
(

1 1

1 −1

)
(10)

is pre-multiplied to both sides of model (1), the following two independent models
appear, ys = X1βββ1 + ηηη1,

yd = X2βββ2 + ηηη2,
(11)

where ys = (y111 + y112, . . . , y2n1 + y2n2)
T, yd = (y111 − y112, . . . , y2n1 − y2n2)

T,
βββ1 = (µ, λ)T, βββ2 = (π, φ)T, and

ηηη1 ∼ N2n(0, σ2
1I2n), ηηη2 ∼ N2n(0, σ2

2I2n), Cov(ηηη1, ηηη2) = 0,

with
σ2
1 = 2σ2

e + 4σ2
γ, σ2

2 = 2σ2
e .

The design matrices are as follows:

X1 =

(
2 2 · · · 2 2

1/2 1/2 · · · −1/2 −1/2

)T

, X2 =

(
1 1 · · · 1 1

1 1 · · · −1 −1

)T

.

The whole sample obtained from the 2 × 2 cross-over design can be analyzed by
these two independent models with functionally independent means and variance
parameters. We have

XT
1X1 = 2n

(
4 0

0 1
4

)
,
(
XT

1X1

)−1
=

1

2n

( 1
4

0

0 4

)
,

XT
1 ys = 2n

(
( y1·1 + y1·2) + ( y2·1 + y2·2)

1
4
( y1·1 + y1·2)− 1

4
( y2·1 + y2·2)

)
,

and

XT
2X2 = 2n

(
1 0

0 1

)
,
(
XT

2X2

)−1
=

1

2n

(
1 0

0 1

)
,

9



XT
2 yd = 2n

(
1
2
( y1·1 − y1·2) + 1

2
( y2·1 − y2·2)

1
2
( y1·1 − y1·2)− 1

2
( y2·1 − y2·2)

)
.

For each model, the homoscedastic setup is satisfied. Then, the MLEs of the mean
parameters in (11) equal

β̂ββ1 =
(
XT

1X1

)−1
XT

1 ys =

(
1
4
( y1·1 + y1·2) + 1

4
( y2·1 + y2·2)

( y1·1 + y1·2)− ( y2·1 + y2·2)

)
,

β̂ββ2 =
(
XT

2X2

)−1
XT

2 yd =

 1
2
( y1·1 − y1·2) + 1

2
( y2·1 − y2·2)

1
2
( y1·1 − y1·2)− 1

2
( y2·1 − y2·2)

 ,

with dispersion matrices

D
[
β̂ββ1

]
=

(
XT

1X1

)−1
σ2
1 =

2σ2
γ + σ2

e

n

( 1
4

0

0 4

)
,

D
[
β̂ββ2

]
=

(
XT

2X2

)−1
σ2
2 =

σ2
e

n

(
1 0

0 1

)
.

The MLEs of the variance components in (11) are given by

σ̂2
1 =

1

2n
yT
s

(
I2n −X1

(
XT

1X1

)−1
XT

1

)
ys,

σ̂2
2 =

1

2n
yT
d

(
I2n −X2

(
XT

2X2

)−1
XT

2

)
yd.

Since

X1

(
XT

1X1

)−1
XT

1 = X2

(
XT

2X2

)−1
XT

2 =
1

n
(I2 ⊗ Jn) ,

the MLEs σ̂2
γ and σ̂2

e in (1) equal

σ̂2
γ =

1

4

(
σ̂2
1 − σ̂2

2

)
=

1

8n

(
(ys + yd)

T

(
I2n −

1

n
(I2 ⊗ Jn)

)
(ys − yd)

)
=

1

2n

2∑
i=1

(
n∑
j=1

yij1yij2 −
1

n

n∑
j=1

yij1

n∑
j=1

yij2

)

=
1

2n

2∑
i=1

(
n∑
j=1

yij1yij2 − nY i.1Y i.2

)

=
1

2n

2∑
i=1

n∑
j=1

(
yij1 − Y i.1

) (
yij2 − Y i.2

)
=

1

2n

2∑
i=1

n∑
j=1

rij1rij2,

10



and

σ̂2
e =

1

2
σ̂2
2 =

1

4n
yT
d

(
I− 1

n
(I2 ⊗ Jn)

)
yd

=
1

4n

2∑
i=1

 n∑
j=1

(yij1 − yij2)2 −
1

n

(
n∑
j=1

(yij1 − yij2)

)2


=
1

4n

2∑
i=1

(
n∑
j=1

(yij1 − yij2)2 − n
(
Y i.1 − Y i.2

)2)

=
1

4n

2∑
i=1

n∑
j=1

((
yij1 − Y i.1

)2 − (yij2 − Y i.2

)2)
=

1

4n

2∑
i=1

n∑
j=1

(rij1 − rij2)2 .

�

3. Main Results

The algebraic basis of the early work on influential diagnostic, for example in the
context of ordinary regression, is that exact formulae are available for the deletion
quantity of mean and variance estimates. But such a nice property does not longer
hold if there exists dependence within subjects. In most mixed models, analogous
formulae can only be obtained by approximations.

However, the cross-over design models can be reformulated in a form where in-
fluential quantities for deletion or perturbation have closed-form solutions. The
influence of the ij-th subject on the estimates of the fixed effects and the variance
parameters is presented in Theorem 3.1.

Theorem 3.1. Assume that the subject-level case-weighted perturbation scheme
P2(ω) in (4) is applied to the ij-th subject in model (1). The functions defined by
(6) to (9) are in this case as follows:

(i) When i = 1, i.e., the perturbed subject comes from sequence AB,

∆ijβ̂ββ =
ω2 − 1

ω2 + n− 1


1
4
(rij1 + rij2)

1
2
(rij1 − rij2)

1
2
(rij1 − rij2)
(rij1 + rij2)

 . (12)

When i = 2, i.e., the perturbed subject comes from sequence BA,

∆ijβ̂ββ =
ω2 − 1

ω2 + n− 1


1
4
(rij1 + rij2)

1
2
(rij1 − rij2)
−1

2
(rij1 − rij2)

− (rij1 + rij2)

 . (13)

11



(ii) When i = 1, i.e., the perturbed subject comes from sequence AB,

∆ijD
[
β̂ββ
]

=
1− ω2

2n(ω2+n−1)


1
4

(σ2
e + 2σ2

w) 0 0 (σ2
e + 2σ2

w)

0 σ2
e σ

2
e 0

0 σ2
e σ

2
e 0

(σ2
e + 2σ2

w) 0 0 4 (σ2
e + 2σ2

w)

. (14)

When i = 2, i.e., the perturbed subject comes from sequence BA,

∆ijD
[
β̂ββ
]

=
1− ω2

2n(ω2+n−1)


1
4

(σ2
e + 2σ2

w) 0 0 −(σ2
e + 2σ2

w)

0 σ2
e−σ2

e 0

0 −σ2
e σ

2
e 0

−(σ2
e + 2σ2

w) 0 0 4 (σ2
e + 2σ2

w)

. (15)

(iii)

VRRij = 1 +
(ω2 − 1)n

ω2 + n− 1

rij1rij2∑2
i=1

∑n
j=1 rij1rij2

, (16)

VREij = 1 +
(ω2 − 1)n

ω2 + n− 1

(rij1 − rij2)2∑2
i=1

∑n
j=1(rij1 − rij2)2

, (17)

where rijk = yijk − yi·k is the residual for yijk in (1), i = 1, 2,
j = 1, . . . , n, k = 1, 2, and (rij1 + rij2) is independent from (rij1 − rij2), i =
1, 2, j = 1, . . . , n.

Proof. Use the matrix T defined in (10) to pre-multiply both sides of the per-
turbed model. The restriction on the perturbation scheme that the observations
within each subject are scaled by the same perturbation weight enables the per-
turbed model to be splitted into the following two models{

ys,P1(ω) = X1,P1(ω)βββ1 + ηηη1,

yd,P1(ω) = X2,P1(ω)βββ2 + ηηη2,
(18)

where the parameters βββ1, βββ2, the random terms ηηη1 and ηηη2 have the same meaning
as those given in (11). Let us denote the perturbed response variables

ys,P1(ω) = (yT
s,[ij] : ωys,ij)

T and yd,P1(ω) = (yT
d,[ij] : ωyd,ij)

T,

and the perturbed design matrices

X1,P1(ω) = (XT
1,[ij] : ωx1,ij)

T and X2,P1(ω) = (XT
2,[ij] : ωx2,ij)

T.

It can be shown that the diagonal elements in the hat matrices of the unperturbed
models in (11) equal

xT
1,ij(X

T
1X1)

−1x1,ij =xT
2,ij(X

T
2X2)

−1x2,ij =
1

n
, for i=1, 2, j=1, . . . , n,

12



according to Lemma 2.1, the MLEs in (18) equal

β̂ββ1(ω) = β̂ββ1(1) +
(ω2 − 1)n

ω2 + n− 1
(XT

1X1)
−1x1,ij (ys,ij − ŷs,ij) , (19)

β̂ββ2(ω) = β̂ββ2(1) +
(ω2 − 1)n

ω2 + n− 1
(XT

2X2)
−1x2,ij (yd,ij − ŷd,ij) , (20)

with the corresponding dispersion matrices

D
[
β̂ββ1(ω)

]
=D

[
β̂ββ1(1)

]
+

(1− ω2)n

ω2 + n− 1
(XT

1X1)
−1x1,ijx

T
1,ij(X

T
1X1)

−1σ2
1, (21)

D
[
β̂ββ2(ω)

]
=D

[
β̂ββ2(1)

]
+

(1− ω2)n

ω2 + n− 1
(XT

2X2)
−1x2,ijx

T
2,ij(X

T
2X2)

−1σ2
2, (22)

and

σ̂2
1(ω) = σ̂2

1(1) +
(ω2 − 1)n

ω2 + n− 1

(ys,ij − ŷs,ij)2

2n
, (23)

σ̂2
2(ω) = σ̂2

2(1) +
(ω2 − 1)n

ω2 + n− 1

(yd,ij − ŷd,ij)2

2n
, (24)

where ŷs,ij = yi·1 + yi·2 and ŷd,ij = yi·1 − yi·2 are the predictions of ys,ij and yd,ij
for the unperturbed model in the given order, j = 1, 2, . . . , n. It should be noted
that rij1 + rij2 = ys,ij − ŷs,ij and rij1 − rij2 = yd,ij − ŷd,ij can be interpreted as the
residuals in the terms of the two independent models in (11).

Subtracting (24) from (23) and using that σ̂2
1 = 4σ̂2

γ + 2σ̂2
e and σ̂2

2 = 2σ̂2
e , we get

σ̂2
γ(ω) = σ̂2

γ(1) +
ω2 − 1

8(ω2 + n− 1)

(
(rij1 + rij2)

2 − (rij1 − rij2)2
)

= σ̂2
γ(1) +

ω2 − 1

2(ω2 + n− 1)
rij1rij2,

σ̂2
e(ω) = σ̂2

e(1) +
ω2 − 1

4(ω2 + n− 1)
(rij1 − rij2)2.

According to Lemma 2.2,

σ̂2
γ(1) =

1

2n

2∑
i=1

n∑
j=1

rij1rij2 and σ̂2
e(1) =

1

4n

2∑
i=1

n∑
j=1

(rij1 − rij2)2,

explicit solutions of V RRij and V REij are obtained. Next, replacing the vectors
in (19) to (22) with

(XT
1X1)

−1x1,1j =
1

2n

(
1
2

2
)T
, (XT

1X1)
−1x1,2j =

1

2n

(
1
2
−2
)T
,

(XT
2X2)

−1x2,1j =
1

2n

(
1 1

)T
, (XT

2X2)
−1x2,2j =

1

2n

(
1 −1

)T
,

the proof is completed. �
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Theorem 3.1 (i) and (iii) show that influence of each subject on the MLEs of the
parameters is decided only by its sequence and the residual of the unperturbed
model. However, when random individual effects are assumed, the influence of
subjects is not presented by {rijk} but by its two independent decomposition{

1
2
(rij1 + rij2)

}
and

{
1
2
(rij1 − rij2)

}
. The subject with largest {rij1 + rij2} has

greatest influence on the estimation of µ and λ, while the subject with largest
{rij1 − rij2} has greatest influence on the estimation of π and φ. The influences
on σ2

γ and σ2
e are also given. Additionally, Theorem 3.1 (ii) indicates that, when

the variance parameters are known, the influences on the dispersion matrix of
the MLEs of the mean parameters are identical for all the subjects within the
same sequence. When variance parameters are unknown, vaguely speaking, large
influence on the estimation of the dispersion matrix only happens when estimates
of the variance parameters change much according to the perturbation.

Theorem 3.2. Under the perturbed model (2), the delta-beta statistic ∆ijβ̂ββ ob-
tained in Theorem 3.1 follows a multivariate normal distribution with expectation

E
[
∆ijβ̂ββ

]
= 0.

The dispersion matrix of ∆ijβ̂ββ is singular of rank 2. If the perturbed subject belongs
to sequence AB, then

D
[
∆ijβ̂ββ

]
=

(n− 1)(ω2 − 1)2

2n2ω2(ω2 + n− 1)


1
4

(σ2
e + 2σ2

w) 0 0 (σ2
e + 2σ2

w)

0 σ2
e σ

2
e 0

0 σ2
e σ

2
e 0

(σ2
e + 2σ2

w) 0 0 4 (σ2
e + 2σ2

w)

 ,

and if the perturbed subject belongs to sequence BA, then

D
[
∆ijβ̂ββ

]
=

(n− 1)(ω2 − 1)2

2n2ω2(ω2 + n− 1)


1
4

(σ2
e + 2σ2

w) 0 0 − (σ2
e + 2σ2

w)

0 σ2
e −σ2

e 0

0 −σ2
e σ

2
e 0

− (σ2
e + 2σ2

w) 0 0 4 (σ2
e + 2σ2

w)

 .

Proof. It was proven in Theorem 3.1 that

∆ijβ̂ββ =
ω2 − 1

ω2 + n− 1
L

(
rij1 + rij2

rij1 − rij2

)
,

where

L =

( 1
4

0 0 1

0 1
2

1
2

0

)T
, if i = 1,

L =

( 1
4

0 0 −1

0 1
2
−1

2
0

)T
, if i = 2.
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The statements of this theorem can be easily obtained by the distributions of the
two independent parts (rij1 − rij2) and (rij1 − rij2). Since rijk = yijk − yi·k,

rij1 + rij2 =
n− 1

n
(yij1 + yij2)−

1

n

∑
1≤l≤n
l 6=j

(yil1 + yil2).

The perturbation P2(ω) with respect to the ij-th subject implies the following
distributions under model assumption (2),

(yil1 + yil2) ∼


N

(
xij1βββ + xij2βββ,

2σ2
e + 4σ2

γ

ω2

)
, for l = j,

N

(
xij1βββ + xij2βββ, 2σ2

e + 4σ2
γ

)
, for l 6= j.

Since (yi11 + yi12), (yi21 + yi22), . . . , (yin1 + yin2) are independent, it follows that
(ri11 + ri12) is normally distributed with expectation

E(rij1 + rij2) =
n− 1

n
(xij1βββ + xij2βββ)− 1

n

∑
1≤l≤n
l6=j

(xij1βββ + xij2βββ) = 0,

and variance

V ar(rij1 + rij2) =

(
n− 1

n

)2 2σ2
e + 4σ2

γ

ω2
+

1

n

∑
1≤l≤n
l 6=j

(2σ2
e + 4σ2

γ)

=
2(n− 1)(ω2 + n− 1)(σ2

e + 2σ2
γ)

n2ω2
.

Similarly, we can find that the distribution of (rij1 − rij2) is giving by

(rij1 − rij2) ∼ N

(
0,

2(n− 1)(ω2 + n− 1)σ2
e

n2ω2

)
,

which completes the proof of the theorem. �

It is interesting to observe that, in the 2 × 2 cross-over designs, the matrices

∆ijD
[
β̂ββ
]

and D
[
∆ijβ̂ββ

]
have the same structure, which is stated in the next

corollary.

Corollary 3.3. The influence on the dispersion matrix of the mean estimate and
the dispersion matrix of the influence on the mean estimator are proportional,
according to the perturbation P2(ω):

D
[
∆ijβ̂ββ

]
= cncω∆ijD

[
β̂ββ
]
,

where cn = (n− 1)/n and cω = (1− ω2)/ω2 are two scalars.
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Until now, the subject-level perturbation P2(ω) defined by (4) was made so that
the observations within the same subject were perturbed with the same scalar.
As mentioned in the proof of Theorem 3.1, one important benefit by doing this is
that P2(ω) keeps basic estimation properties of the unperturbed cross-over design
models to their perturbed versions. In other words, model (2) can be transformed
into two independent homoscedastic linear models as well, which then also results
in explicit MLEs. However, such a perturbation scheme is not the only way to
have explicit estimations. In the following two theorems, the perturbation P3(W)
defined by (5) is considered. The response vectors ys and yd in (11) are perturbed
via a scaling with different quantities, which suggests an alternative perturbation
scheme for cross-over designs.

Theorem 3.4. Suppose that the linear-combination perturbation scheme P3(W)
in (5) with perturbation weight

W =

(
w1 w2

w3 w4

)
is applied to the ij-th subject in (1). The perturbed model (2) can be splitted into
two independent homoscedastic linear models if and only if ω3 = ω2 and ω4 = ω1.
A null perturbation exists at W0 = I2.

Proof. We prove sufficiency and necessity separately.

Sufficiency. Let ω3 = ω2, ω4 = ω1. By pre-multiplying with the same matrix (10),
the perturbed model is obviously equivalent to two independent homoscedastic
linear models given by {

ys,P1(δ1) = X1,P1(δ1)βββ1 + ηηη1,
yd,P1(δ2) = X2,P1(δ2)βββ2 + ηηη2,

(25)

where

ys,P1(δ1) = (yT
s,[ij] : δ1ys,ij)

T, X1,P1(δ1) = (XT
1,[ij] : δ1x1,ij)

T,

yd,P1(δ2) = (yT
d,[ij] : δ2yd,ij)

T, X2,P1(δ2) = (XT
2,[ij] : δ2x2,ij)

T,

and δ1 = ω1 + ω2, δ2 = ω1 − ω2.

Necessity. If the perturbed model (2) can be splitted into two independent ho-
moscedastic linear models, the MLEs of (2) have explicit representations.

Let ΣΣΣ = σ2
γI2n ⊗ J2 + σ2

eI4n denote the covariance matrix of the vector of the re-
sponse variable in (2). According to Theorem 2 and 5 in Szatrowski (1980), the
explicit MLEs exist only if the column space C

(
XP (W)

)
is ΣΣΣ-invariant, i.e.,

C
(
XP (W)

)
= C

(
ΣΣΣXP (W)

)
.

Note that the matrix T in (10) is constructed by orthogonal eigenvectors of ΣΣΣ
corresponding to the two distinct eigenvalues λ1 = σ2

e + 2σ2
γ and λ2 = σ2

e of
multiplicity 2n. The following matrix equation holds for ΣΣΣ,

TΣΣΣ = ΛΛΛT,
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where

T = I2n ⊗
(

1 1
1 −1

)
and ΛΛΛ = I2n ⊗

(
σ2
e + 2σ2

γ 0
0 σ2

e

)
.

Therefore, the perturbed model always satisfies

C(TXP (W)) = C(TΣΣΣXP (W)) = C(ΛΛΛTXP (W)),

where TXP (W) and ΛΛΛTXP (W) are 4n × 4 matrices. The matrix TXP (W) is ΛΛΛ-
invariant. Since the perturbation P3(W) in (5) is applied to the 2 × 2 cross-over
design, when i = 1,

TXP3(W)

=


2 0 · · · 2 0 ω1 + ω2 + ω3 + ω4 ω1 + ω2 − ω3 − ω4

0 1 · · · 0 1 1
2
(ω1 − ω2 + ω3 − ω4)

1
2
(ω1 − ω2 − ω3 + ω4)

0 1 · · · 0 −1 1
2
(ω1 − ω2 + ω3 − ω4)

1
2
(ω1 − ω2 − ω3 + ω4)

1
2

0 · · · −1
2

0 1
4
(ω1 + ω2 + ω3 + ω4)

1
4
(ω1 + ω2 − ω3 − ω4)


T

,

and

ΛΛΛTXP3(W)

=


2λ1 0 · · · 2λ1 0 λ1(ω1 + ω2 + ω3 + ω4) λ2(ω1 + ω2 − ω3 − ω4)

0λ2 · · · 0 λ2
λ1
2

(ω1 − ω2 + ω3 − ω4)
λ2
2

(ω1 − ω2 − ω3 + ω4)

0λ2 · · · 0−λ2 λ1
2

(ω1 − ω2 + ω3 − ω4)
λ2
2

(ω1 − ω2 − ω3 + ω4)

λ1
2

0 · · · −λ1
2

0 λ1
4

(ω1 + ω2 + ω3 + ω4)
λ2
4

(ω1 + ω2 − ω3 − ω4)


T

,

The equality of column spaces holds if and only if{
ω1 + ω2 − ω3 − ω4 = 0,

ω1 − ω2 + ω3 − ω4 = 0,

that is, ω3 = ω2 and ω4 = ω1. The same restriction is obtained when i = 2. �

Theorem 3.5. Assume that the perturbation scheme P3(W) under the restriction
in Theorem 3.4 holds. Denote

c1 =
ω2
1 + 2ω1ω2 + ω2

2 − 1

ω2
1 + 2ω1ω2 + ω2

2 + n− 1
and c2 =

ω2
1 − 2ω1ω2 + ω2

2 − 1

ω2
1 − 2ω1ω2 + ω2

2 + n− 1
.

The functions defined by (6) to (9) are given as follows.

(i) When i=1, i.e., the perturbed subject comes from sequence AB,

∆ijβ̂ββ = c1(rij1 + rij2)


1
4

0

0

1

+ c2(rij1 − rij2)


0
1
2
1
2

0

 .
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When i=2, i.e., the perturbed subject comes from sequence BA,

∆ijβ̂ββ = c1(rij1 + rij2)


1
4

0

0

−1

+ c2(rij1 − rij2)


0
1
2

−1
2

0

 .

(ii) When i = 1, i.e., the perturbed subject comes from sequence AB,

∆ijD
[
β̂ββ
]

= −
c1
(
σ2
e + 2σ2

γ

)
2n


1
4

0 0 1
0 0 0 0
0 0 0 0
1 0 0 4

− c2σ2
e

2n


0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

.
When i = 2, i.e., the perturbed subject comes from sequence BA,

∆ijD
[
β̂ββ
]

= −
c1
(
σ2
e + 2σ2

γ

)
2n


1
4

0 0−1
0 0 0 0
0 0 0 0
−1 0 0 4

− c2σ2
e

2n


0 0 0 0
0 1−1 0
0−1 1 0
0 0 0 0

.
(iii)

VRRij = 1 +
c1n(rij1 + rij2)

2

4
∑2

i=1

∑n
j=1 rij1rij2

− c2n(rij1 − rij2)2

4
∑2

i=1

∑n
j=1 rij1rij2

,

VREij = 1 +
c2n(rij1 − rij2)2∑2

i=1

∑n
j=1(rij1 − rij2)2

.

Proof. The proof is similar to that of Theorem 3.1. �

4. Illustrative example

Theorem 3.1 and 3.5 suggest that, when the 2×2 cross-over design modelling with
individual random effect is assumed, the residuals {rij1 + rij2} and {rij1 − rij2}
contain all the information to detect influential cases. We illustrate the obtained
result through a simulation study. This analysis uses the delta-beta-based local
influence and is compared with the case-deletion diagnostics computed by the
MIXED Procedure in SAS/STAT R© software. For details about the influential di-
agnostics in the MIXED Procedure, see Littell et al. (2006).

An artificial dataset for the 2× 2 cross-over design is generated based on (1) with
the following true values of parameters,

βββ =


µ
π
φ
λ

 =


40
−5
−10

20

 and θθθ =

(
σ2
γ

σ2
e

)
=

(
100

50

)
.
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The dataset contains 10 subjects for both sequence AB and BA and thus, there
are 40 observations in total. The likelihood distance (Cook and Weisberg, 1982)
suggests that model (1) has no obvious influential observations in the original sim-
ulated dataset. In order to verify whether our suggested residuals {rij1 + rij2} and
{rij1− rij2} can detect influential cases effectively, we contaminate three subjects.

The contaminated subjects are selected at random and constructed in the following
different ways. Firstly, subject 4 within sequence AB is contaminated by adding
30 to both of its responses, y1,4,1 and y1,4,2. Secondly, 30 and -30 are added to
the responses on the first and the second period of subject 5 within sequence BA,
y2,5,1 and y2,5,2, respectively. Thirdly, we add 60 to the first-period response of
subject 10 within sequence AB, y1,10,1. The next step is to figure out whether
the case-deletion diagnostics and the delta-beta-based local influence are able to
identify them.
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(c) COVRATIO: Fixed Effects
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(d) COVRATIO: Variances
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(a) Cook’s Distance: Fixed Effects

1 4 7 10 13 16 19
0

1
2

3

1 2 3

4

5 6 7 8 9

10

1 2 3 4

5

6 7 8 9 10

(b) Cook’s Distance: Variances

Figure 1: The subject-level case-deletion influence diagnostics. In each graph, the hol-

low and solid circles represent subjects from sequence AB and sequence BA, respectively.

(a) and (b) Cook’s Distances for fixed effects and variance parameters measure influ-

ences on the corresponding parameter estimates. (c) and (d) The COVRATIO statistics

for fixed effects and variance parameters measure influences on the dispersion matrices

of the corresponding parameter estimates.

Figure 1 illustrates main influence diagnostics with subject-level case deletions.
Cook’s Distance (Cook, 1977) and the COVRATIO statistic (Belsley et al., 2004)
are available by recursive algorithms or approximation methods, e.g. the ridge-
stabilised Newton-Raphson algorithm in the MIXED Procedure Littell et al. (2006)
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or the one-step approximation suggested by Christensen et al. (1992). Clearly, Fig-
ure 1 indicates that subjects 4 and 10 within sequence AB and subject 5 within se-
quence BA have larger influences on the estimates and the precision of estimates of
both the mean and the variance parameters. The case-deletion approach correctly
discovers all of the contaminated subjects. However, more detailed influence of
the subjects on each parameter are masked from the case-deletion measurements
and requires the recursive algorithms to evaluate the MLEs in the case-deleted
model.

−20 −10 0 10 20 30 40 50 60

−
40

−
20

0
20

40
60

80

4

10

5

Rd

R
s

Figure 2: The sums of the residuals within the subjects Rs = {rij1+rij2} versus the
differences Rd = {rij1− rij2} in the unperturbed model. Each hollow or solid circle
represents one subject from sequence AB or from sequence BA, respectively.

By contrast, the delta-beta-based local influence is computationally cheap and pro-
vides exact solutions. The conclusion of Section 3 implies that the location of the
subjects in Figure 2 indicates their distinct features on the parameter estimation.
Theorem 3.1 and 3.5 yield that

(i) The subjects deviating along the “sum axis” Rs, i.e. subject 4 and subject
10 within sequence AB in this case, present great influence on the general
mean µ and the carry-over effect λ.

(ii) The subjects deviating along the “difference axis” Rd, i.e. subject 10 within
sequence AB and subject 5 within sequence BA, present great influence on
the period effect π, the treatment effect φ and the variance of errors σ2

e .

(iii) The subjects close to the diagonal of the sum and difference axes have small
influence on the variance of the random effects, σ2

γ. So although subject 10
in sequence AB is influential with respect to the joint parameters as case
deletion methods suggests, its influence on σ2

γ is limited.

Let us do one more step. We calculate and plot the proposed ∆ijβ̂ββ, V RRij and

V REij, given in (12)-(17). Figure 3 displays the statistic ∆ijβ̂ββ, which presents
the influence on the each mean parameter estimates. Figure 4 is the plot of the
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VRR and VRE influences, which contains the information of the influence on σ2
γ

and σ2
e . The outcome confirms the three statements observed from the residuals.

Consequently, the delta-beta-based local influence approach provides an effective
method to detect influential observations, and to identify their roles on influence
in the cross-over models with random individual effects.
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(c) Delta−beta Influence: Period Effect
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(d) Delta−beta Influence: Treatment Effect
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(a) Delta−beta Influence: General Mean
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(b) Delta−beta Influence: Carry−over Effect

Figure 3: Influence of the case-weighted perturbations on the mean parameters. In each

graph, the hollow and solid circles represent subjects from sequence AB and sequence BA,

respectively. The perturbation weight ω is 0.9.
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(a) VRR Influence: Random Effects
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(b) VRE Influence: Random Errors

Figure 4: Influence of the case-weighted perturbations on the variance parameters.

In each graph, the hollow and solid circles represent subjects from sequence AB and

sequence BA, respectively. The perturbation weight ω is 0.9.
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5. Conclusions and Remarks

Statistical models play an important role when making practical decisions in a
wide number of fields. As a consequence, it follows an urgent task to investigate
sensitivity of the used model formulations. Our work have studied sensitivity of
the mixed linear model for the balanced 2 × 2 cross-over design. Influences of
observations on the MLEs and the estimating precisions are surveyed, based on
simple but powerful diagnostic tools, and ∆ijβ̂ββ under case-weighted perturbations
has been derived. The results suggest data users to survey the within-subject
sums and differences of residuals of the unperturbed model, i.e, {rij1 + rij2} and
{rij1 − rij2} in (1), to identify influential observations for parameters of interest.

For several reasons, this article does not provide any result on diagnostic criteria.
One main reason is that there is no precise or operational definition of influential
observation in the existing literature on robustness and diagnostics. The choice
of what to identify as an influential observation should depend on what charac-
ter of data and problems we are looking at, not on a universal numerical rule.
Moreover, as Shi (2006) argues, the true distributions of influence quantities are

often difficult to know. Although Theorem 3.2 presents the distribution of ∆ijβ̂ββ, it
assumes the perturbed cases normal distributed. Normal assumption may not be
satisfied, particularly, if the perturbed case is a prospective influential observation.

Although more complex and generalised diagnostic tools are available, our explicit
approach have direct interpretations in term of the effects on interested parame-
ters, see Figure 3 and 4. More important, we believe that our proposed approach
provides a theoretical interpretation of the structures of influence in the cross-over
design models. The mixed linear model has explicit MLEs in cross-over design,
and our delta-beta-based local influence approach has exploited this fact.

The proposed approach can quickly be extended to other mixed models with ex-
plicit MLEs. It directs our further attention to complicated cross-over design
models, for example, with different covariance structures or with repeated mea-
surements. Influence on maximum likelihood predictions of random effects and al-
ternative case-weighted perturbations, which have not been covered by this work,
are also points to further studies.
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