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Abstract

Consistent negative correlations between sibship size and cognitive
performance (as measured by IQ and other mental aptitude tests) have
been observed in past empirical studies. However, the issue of poten-
tial selection process in the decision to have larger families (larger
sibship size) has been partly neglected in past single- and multilevel
investigations. The present work extends existing knowledge in three
aspects: (1) as factors affecting decision to increase family size may
vary across the number and composition of current family size, we
propose a sequential probit model (as opposed to binary or ordered
models) for the propensity to increase sibship size; (2) we investigate
if families who choose to increase family size are a representative ran-
dom sample of the population of families or there exists selection; (3)
in order to disentangle selection and causality we propose a multilevel
multiprocess modelling where a continuous model for performance is
estimated jointly with a sequential probit model for family-size deci-
sions. The issues are illustrated through analyses of scores on PIAT
tests among children of the NLSY79. We find substiantial between-
family heterogeneity in the propensity to increase family size - thereby
providing empirical evidence in support of the admixture hypothesis.
Ignoring such adverse selection led to overestimation of the negative
effects of sibship size on cognitive performance but our multiprocess
modelling could mitigate the biasing effects of selection.

*Department of Statistics, Stockholm University, SE-106 91 Stockholm - Sweden.
(Gebre@stat.su.se or Linda.Wanstrom@stat.su.se). The work was financed partially
through grants by the Faculty of Social Sciences, Stockholm University.



1 Introduction

Studies have consistently found negative correlations between children’s sib-
ship size and outcome variables such as their intelligence test scores, achieve-
ment test scores, or educational attainment (e.g. Anastasi, 1956; Higgins,
Reed, & Reed, 1962; Belmont & Marolla, 1973; Jaeger, 2008; 2009; Nisbet &
Entwistle, 1967; Page & Grandon, 1979; Velandia, Grandon, & Page, 1978;
Zajonc & Markus, 1975; Zajonc, Markus, Berbaum, Bargh & Moreland,
1991).

These findings have resulted in theories such as the confluence model
(Zajonc & Markus, 1975; Zajonc, 2001) and the resource dilution theory
(Blake, 1981; Downey, 1995; 2001; Armor, 2001). In brief, the confluence
model states that the intellectual levels in our families influence our own
intellectual levels, and this level will be lower in families with more children.
In addition, those of us who have younger siblings benefit from a “tutoring”
function, i.e. our intellectual levels are positively influenced from us teaching
our younger siblings. Thus, we are both affected by the intellectual climate
of the home, which in turn is affected by the number of siblings, and by our
birth orders. The resource dilution theory explains the negative correlations
by a dilution of parental resources that occurs in families with more children.
Children in smaller families get more attention, more help with homework
etc. than children in larger families.

However, parents that have large families may differ from parents that
have small families (e.g. Page & Grandon, 1979; Velandia, Grandon, & Page,
1978; Rodgers et al., 2000; Rodgers, 2001), and the variables influencing de-
cisions to have large families may also influence children’s cognitive perfor-
mance. For example, parents with a lower level of education may decide to
have larger families whereas families with a higer level of education may de-
cide to have smaller families because they need to focus more on work-related
issues. On the other hand, parents with a higher level of education may de-
cide to have larger families because they have better paying jobs and can
afford to spend more money on children. Parental education, household in-
come and related variables, may also affect childrens’ cognitive performance.
If researchers fail to account for these types of variables in looking at the
relationship between children’s sibship size and cognitive performance, the
results may be invalid. Most previous studies of this relationships have ac-
knowledged this and included what has appeared to be relevant variables into
statistical models. All relevant variables may not be known to the researcher,



however, resulting in misspecified models and biased estimates of effects.

Most data in the social sciences have a hierarchical or clustered structure.
For example, the analysis of child data involves a natural hierarchy where
children are grouped within mothers or families, classes, etc., and the latter,
in turn, are grouped into households, communities, or schools. Children in
the same family tend to be more alike in their characteristics than children
chosen at random from the population at large. Ignoring this grouping risks
overlooking the importance of group effects, and may also render invalid
many of the traditional statistical analysis techniques used for studying data
relationships. This is relevant in studying the relationship between child sib-
ship size and cognitive performance as data often consist of multiple children
from the same family and this clustered structure should be accounted for in
the models.

In the present study, we address the relationship between cognitive perfor-
mance on the one hand, and child- and family-specific background variables
on the other, using data on children of the NLSY79 (National Longitudi-
nal Study of Youth, 1979). In contrast to traditional approaches where the
collection of children is assumed to be an independent random sample, we
treat children of the same mother as correlated cases (multilevels) within
the same observation (mother). Our formulation also enables us to allow
for unobserved family-specific heterogeneity (shared-frailty) in the models.
This, in turn, enables us to address an important but partly neglected issue -
selection bias. Since there are no randomized trials of couple’s decisions on
their family-size, it is difficult to assess the impact of such size on children’s
cognitive ability without accounting for selection processes in the decision
on family size. Thus, we will examine the biasing effects of selection on es-
timates of sibship size by using multiprocess models in order to model the
outcome variable and endogenous explanatory variable(s) simultaneously.

The paper is organized as follows. We begin, in Section 2, by describ-
ing the data used in the illustration together with some summary statistics
across the variables used as correlates of congitive performance. In Section
3, we first fit standard models to get a preliminary idea about correlates of
cognitive performance by treating children as independent observations. We
then build on the standard models and treat children of the same mother as
nested cases (multilevels) within one observation (mother) and fit a multilevel
model of perfomance that allows for mother-specific unobserved heterogene-
ity. In Section 4, we explore for possible selection processes in the decision to
have larger family size (sibship size) by fitting binary-, and sequential pro-
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bit models of decision. Section 5 is devoted to joint modelling of cognitive
performance and family size decisions and, thereby, adjusting for selection
bias. Section 6 ties up the findings of the paper in the form of summary and
concluding remarks.

2 Data and variables

The NLSY79 Child and Young Adult Data originated as a multi-stage strat-
ified area probability sample of 12,686 males and females in 1979 in the
U.S. Starting in 1986, the biological children of the 6283 females were also
interviewed, and they have been interviewed every second year since then.
Some of the assessments administered to the children include the PPVT, the
PIAT tests, and the Digit Span test. These data are suitable for our analy-
ses because they contain the outcome of cognitive assessment as well as vast
background information about the 11,428 children and their families. The
present study is based on 6430 children who were assessed as a 5- or 6 year
old in 1986, 1988, 1990, ..., or 2006. Thus, a child who was assessed as a 5-
or 6-year old in 1986 will contribute with his/her 1986 score, whereas his/her
brother or sister who was assessed as a five- or six-year old in, say, 1992 will
contribute with his/her 1992 score.

The response variable, cognitive performance, is a subset of the Peabody
Individual Achievement Test (PIAT) assessment. The PIAT subtests were
administered to children ages five to 14 biannually starting in 1986. They
measure academic achievement and have high test-retest reliability and con-
current validity. They have also been found to be predicted by and to predict
other assessment tests. The Mathematics subtest, used in our study, consists
of 85 multiple-choice questions of increasing difficulty, assessing skills such as
numerals recognition, geometry, and trigonometry. The child answers each
problem by pointing to or naming one of four options.The response variable
will from now on be referred to as Score

Five mother-specific and six child-specific variables were used as explana-
tory variables. The mother-specific variables are Mother’s 1Q (Standardized
score of the Armed Forces Qualifications Test in 1979), Mother’s Race with
3 levels (Black, Hispanic, Other), Mother’s age at birth of first child, House-
hold Income (standardized score), and Mother’s Level of Education with 2
leves (No College, Some College). Household income and Educational level
refer to the values attained in 2006 or, in the absence of a value in 2006, to



the closest year of measurement with available value. These family-specific
variables take the same value across children of the same mother (siblings)
even though siblings have measurements in different years.

The child-specific variables are Year of measurement (1 for 1986, 2 for
1988, ..., 11 for 2006), Birth order, Sibship size - the number of biological
children born to the mother at time of measurement (it is also referred to
as family size and is the main explanatory variable of interest), Mother’s
marital status at time of measurement with 3 levels (Married, Never married,
Other), Father’s presence in the household (Yes, No), Sex (Male, Female).
These child-specific variables may differ between siblings because siblings
have often been measured (when they are five or six years old) at different
times. Summary statistics of these variables is shown in Table 1.

The above variables are among those considered to be correlated with
cognitive performance in previous analyses of the same data set (Wénstrom,
2007; Wichman, Rodgers and MacCallum, 2006) or other data sets. Based on
previous studies (Wanstrom, 2007; Rodgers and Wénstrom, 2006; Wichman,
Rodgers and MacCallum, 2006), mother’s 1Q, mother’s age at birth of first
child, household income, and mother’s education are expected to have posi-
tive effects on cognitive performance. On the other hand, we expect negative
effects of sibship size and birth order. Further, children with married moth-
ers as well as non-Black, non-Hispanic children, and children with present
fathers are also expected to have higher cognitive performance scores than
children with non-married mothers, or Black or Hispanic children. The chil-
dren of the NLSY79 show increasing scores over time (Rodgers & Wanstrom,
2006), a phenomenon referred to as the Flynn effect (Flynn, 1984; 1987) and
the year of measurement is thus expected to have positive effects on cognitive
performance.

3 Modelling Correlates of Cognitive Perfor-
mance

3.1 Standard (single-level) linear regression on log-Score

An extract from the data set is shown is Table 2 below. The mean score by
sibship size (plotted in Figure 1) shows a linearly decreasing relationship.



Table 1: Summary statistics across mother- and child-specific variables

Nunber of observations: 3340
Maxi mum nunber of |evel 2 branches in any observation:

LEVEL 1 VARI ABLES:

Vari abl e N Mean Std Dev Mn Max
_id 3340 1670.5 964. 3193 1.0 3340.0
I Q 3340 -. 003457 . 9849737 -1.3919 2. 144257
Race 3340 2.346707 . 7697706 1.0 3.0
Agefirst 3340 22. 71437 5. 230692 13.0 41.0
I ncone 3340 - 0. 02885 . 9542863 -.873624 10. 2515
Educ 3340 . 4404192 . 4965118 0.0 1.0
LEVEL 2 VAR ABLES:
Vari abl e N Mean Std Dev Mn Max
Score 6430 99. 88927 14. 00594 65.0 135.0
Year 6430 4.524261 2.604294 1.0 11.0
O der 6430 2. 025039 1. 133558 1.0 10.0
Si bsi ze 6430 2.639191 1.245113 1.0 11.0
Mar st at 6430 2.056921 . 5925297 1.0 3.0
Fat her 6430 . 6430793 . 4791284 0.0 1.0
Sex 6430 1. 491602 . 4999683 1.0 2.0
Suppose we fit a standard linear regression model on log-Score:
log (Score;) = 'X; + ¢, (1)

where j (j = 1,2, ...,6430) indicates index child, X is a vector of mother- and
child-specific variables; and ;"N (0,02) represents child-specific residuals.
Results of fitting such model are shown in Table 3:



Table 2: An extract from the data set (the first 11 and the last 2 children)

Child | Mother-specific variables Child-specific variables
1Q Race Age Inc Ed | Score Yr Ord Sib Mar Fath Sex

1 -1.15 3 34 -064 0 90 7 1 2 2 1 2
2 -1.15 3 34 -064 O 103 8 2 2 2 1 2
3 0.36 3 19 -034 1 98 4 3 3 2 1 2
4 0.16 3 17 -0.40 1 125 1 2 3 2 1 1
5 0.16 3 17 -0.40 1 107 2 3 3 3 0 2
6 -0.33 3 22 -017 O 103 2 1 2 2 1 2
7 -0.33 3 22 -0.17 O 106 5 2 2 2 1 2
8 1.78 3 30 032 1 106 5 1 2 2 1 1
9 0.39 3 31 088 1 110 6 1 2 2 1 1
10 0.39 3 31 088 1 97 8 2 3 2 1 1
11 0.39 3 31 0.88 1 112 9 3 3 2 1 2
6429 | -0.44 1 21 049 O 114 1 1 2 1 1
6430 | -0.44 1 21 049 O 69 4 3 3 3

Figure 1: PIAT Mean Scores by SibSize




Table 3: Estimates of effects on log(Score) in a standard linear model

Parameter Estimate z-value

IQ .033 15.769
Hisp -.0276  -6.3645
Black -.023  -5.6030
Age .00168 3.2155
Inc .009 5.6203
No Coll -.0078  -2.2096
Year .00226 2.3557
Order -.00053  -0.1892
Sibsize -.0104 -5.2011
Married .0139 2.3041
Other 0.00625 1.2298
Father .0079 1.4603
Girls .0184 5.6160
O 1302 118.0222

The effects are in the expected direction - positive and significant effects
of Mother’s IQ, Mother’s age at first birth, Household Income, Year of mea-
surement, Married women and Girls; and negative and significant effects of
Sibship size, and children of Hispanics, Blacks, and those with lower educa-
tion. Note that all estimates are based on the Maximum-Likelihood (ML)
method and the z-values (including for the estimate of standard error) are
results of asymptotic properties of ML-estimates.

3.2 A multilevel model on log(Score) with family-specific
heterogeneity

Consider the data structure again - now with one more dimension (mother
ID) shown in the first column of Table 4. We note that child 1 and 2 are
siblings as are child 4 and 5. Child 6 and 7 also have the same mother while
Mother 6 contributes 3 children (child 9, 10, and 11), etc...



Table 4: An extract from the data set (the first 11 and the last 2 children) with Mother ID

Moth | Child | Mother-specific variables Child-specific variables
1Q Race Age 1Inc Ed | Score Yr Ord Sib Mar Fath Sex

1 1 -1.15 3 34 -0.64 O 90 7 1 2 2 1 2
1 2 -1.15 3 34 -0.64 0 103 8 2 2 2 1 2
2 3 0.36 3 19 -034 1 98 4 3 3 2 1 2
3 4 0.16 3 17 -040 1 125 1 2 3 2 1 1
3 5 0.16 3 17 -040 1 107 2 3 3 3 0 2
4 6 -0.33 3 22 -017 O 103 2 1 2 2 1 2
4 7 -0.33 3 22 -017 O 106 5 2 2 2 1 2
5 8 1.78 3 30 032 1 106 5 1 2 2 1 1
6 9 0.39 3 31 088 1 110 6 1 2 2 1 1
6 10 0.39 3 31 088 1 97 8 2 3 2 1 1
6 11 0.39 3 31 088 1 112 9 3 3 2 1 2
3340 | 6429 | -0.44 1 21 0.49 0 114 1 2 1 1
3340 | 6430 | -0.44 1 21 049 0 69 4 3 3 3

A legitimate question that arises now is if our standard (single-level)
model is appropriate. In other words, is it appropriate to ignore the hierar-
chical nature of the data and what is the price of ignoring it? We recall that
the variance of the sum of two variables is the sum of their individual vari-
ances plus twice their covariance. Children of the same mother are expected
to be positively correlated. Thus, if we treat children of the same mother
as independent - as in the single-level model (1), we ignore their positive
covariance and, thereby, underestimate the variance (standard error). Such
underestimated standard error will, in turn, lead to spurious significance, as
the z-values are often computed as ratios of estimated values to their stan-
dard errors. This problem and its alternative solution (multilevel modelling)
is well known in the litterature.

For the j* child in the i family a two-level model of performance with
a family-specific heterogeneity-term is given by

log (Score;;) = ' X + Ti + €4 (2)

where 4 indicates mother (family), j indicates index child, X;; is a vector of
child- and mother-specific variables; and ¢;; "N (0, 02) represents child-specific
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residuals. This is a continuous two-level model with family /mothers as the
experimental units and children as repeated outcomes (multilevels) within
observations. Because children from the same family are likely to be more
correlated than children from the population at large, 7; captures family-level
unobserved heterogeneity (shared-frailty) that may affect children’s scores, 7;
" N(0,02). Models of this type (or their variants) have been used in a number
of previous studies - among others Wichman, Rodgers and MacCallum (2006)
and Wénstrom (2007). Results of fitting such model to our data set are shown
in Table 5:

Table 5: Estimates of effects on log(Score) in a multilevel standard linear model

Parameter Estimate z-value

1Q .0333 13.0710
Hisp -0.0267 -5.0405
Black -.0226 -4.5052
Age .0015 2.5925
Inc .009 4.4520
No coll -.0074 —1.7205
Year .0025 2.4435
Order -.0014 -0.5262
Sibsize -.0096 -4.4118
Married .01334 1.9917
Other 0.0068 1.1668
Father .008 1.5045
Girls .0176 5.4156
O 0.119457 88.8254
o 0.05179 18.3733

We see the same pattern as in Table 3, but the size of estimated ef-
fects (specially the mother-specific variables) is now deflated - for some even
changing the level of significance. Why? Consider the variances in the two
tables. We note (where 1L and 2L stand for single level and multilevel mod-
els, respectively):

o2ay = (0.1302)* = 0.016952
02y = (0.119457)% = 0.014270
020 = (0.05179)% = 0.0026822
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Thus,
0.014270 + 0.0026822 = 0.016952
a §(2L) to 72—(2L) = 0 ?(m)

and, hence, the Intra-class (Intra-mother) correlation coefficient (ICC)
is given by:

2o 0.0026822

0%ony + 02 0.014270 + 0.0026822

0.16

implying that 16% of the total variance (in the single-level model) comes
from variability between mothers. If we igniore this between-mother
correlation the result is that our effect-estimates will be inflated as shown in
Table 3 (compared to Table 5).

4 Exploring for selection in the process of
family-size decisions

Our inferences above about the possible effect of sibship size on cognitive per-
formance are based on observational study where the assignment of children
into small versus large families is outside the control of the investigator. Since
there are no randomized trials on decisions to have small or large sibship size,
it is difficult to assess its impact on cognitive ability without controlling for
selection processes that can inhibit or promote decisions on larger sibship
size. For more details on selection bias see, for instance, Heckman (1979),
Heckman and Singer (1984), Winship and Mare (1992), Frick & Lantz (1996),
Vella (1998), Ghilagaber (2004), Yoo and Frick (2006).

4.1 A binary probit model for sibship size: with family
specific heterogeneity

In the log(Score) model above, one of the explanatory variables in the X-
vector is sibship size. This is the number of children in the family (including
the index child) and ranges between 1 and 11 in our data set. Let’s begin
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with dichotomizing sibship size into ’small’ and ’large’:

0, if 5 child in #*" family belongs to a small family
P =
1, if j® child in i*" family belongs to a large family

The propensity (for family ¢ of index child j) to have a large family may then
be modelled as a binary probit model:

* / * X
PL=a X+ v

(3)
where P;; represents the propensity of having a large family size, X7, are
family specific explanatory variables (that have same value for all children
within the same family); and v; captures family level unobserved heterogene-

ity (shared-frailty) that may affect the decision on family size, v;” N (0, 02).

Table 6: Estimates of effects on propensity to have a large family

large family is defined as:
> 2 children | > 3 children | > 4 children | > 5 children

1Q 0.050 -0.023 0.16** -0.220

Hisp -0.0014 0.21 0.67*** 0.450**
Black -0.34%* 0.059 0.51%%* 0.017

Age -0.14%%* -0.20%** -0.25%%* -0.28%**

Inc 0.39%%* 0.25%%* 0.14%%* -0.033

No Coll | -0.074 -0.10 0.056 0.0087

o 1.70*** 1.88*** 1.92%** 2.17*%*

with *, ** and *** indicating significance at 5%, 1%, and 0.1% levels,
respectively.

While the effects of family-specific variables vary depending on how we
define ’large family’, we note that there are sociodemographic differentials
in the decision to have a large family. As would be expected, women who
get their first child late are less likely to have large families, households
with higher incomes are more likely to have larger families, while Blacks and
Hispanics tend to have larger families (when large family is defined as having
more than 4 children including the index child).
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4.2 A sequential probit model for the propensity to
increase sibship size

We note that dichotomization into ’small’ and ’large’ family is too subjective
and that effects vary depending on how it is defined. Since the actual family—
size-decision process requires successful completion of the prior level (parity)
for passage into the subsequent one, a sequential decision model accurately
reflects the real decision process (Yamaguchi & Ferguson, 1995; Upchurch,
Lillard, & Panis, 2002). The model of family-size-decision used in this paper
specifies the propensity of progressing to successively higher parity levels,
conditional on having completed the next lower parity — a discrete sequential
choice model. Apart from measured covariates, the sequential probabilities
may depend on individual and decision-varying covariates and unobserved
heterogeneity in the propensity to continue to the next parity. We group the
ten possible transitions into four:

e transition from 1 child to 2 children
e transition from 2 children to 3 or 4 children
e transition from 4 children to 5 or 6 children

e transition from 6 children to 7 children or more

As the reasons to have a 2"¢ child may differ from those to have a 3rd and
4th child, etc..., we allow the effects on the transition propensities to vary
between these four transitions.

Thus, there are up to four sequential choices of whether to continue to
the next level (s = 1,2,...,4), each conditional on having continued to the
previous level. Here, s = 1 corresponds to transition from 1 to 2 children,
s = 2 corresponds to transition from 2 to 3-4 children, s = 3 corresponds to
transition from 4 to 5-6 children, and lastly s = 4 corresponds to transition
from 6 to 7 or more children.

We use a multilevel sequential probit model of individual-family (mother)
choice. Family j progresses from having completed parity s to complete the
next parity s + 1 if its propensity to continue is positive, Iy > 0. The
propensity of mother (family) ¢ progressing is thus determined by the probit
index function

I;

) — Qos + O/lin(S) + vi + s (4)
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for s = 1,2,3,4, where X, is a vector of exogenous covariates affecting
sibship-size decisions, ag, and a1, are decision-specific intercepts and coeffi-
cients, respectively, v; is a residual term capturing family level unobserved
heterogeneity (shared-frailty) that may affect all levels of decision on family
size, and 0, is a decision specific stochastic element (normalized to 6, = 1,
for all s). Each is assumed to be normally distributed:

v"N (0,02), 6,"N(0,1)

The model also allows parameters to vary across decisions (hence the s
subscript on the parameter vector «). In other words, we will estimate four
intercepts and four sets of coefficient estimates, one set for transition to 2"?
child, another set for transition from 27¢ to 3" and 4" child, a third set for
transition from 4" to 5" and 6 child, and a fourth set for transition from
6" to 7' child and above.

Table 7: Estimates of effects propensity of transition to the next group of family-size

Constant effect Varying effects on transition to:

2nd 3rd _ 4th 5th _ 6th >=17
1Q .004 -.004 0.017 0.044 -.0101 -0.034
Hisp .082%* .037 0.047 0.23%%* 33 -0.17
Black .015 -.020 -0.21°%F* 0.11 .066 -0.72%
Age =037 | - 035%HK | -0.085%HK | -0.12%FF | L 15%*F -0.088
Inc .034%* .040 0.26%** 0.11%%* .028 -0.42
No Coll || .0081 -.028 -.070 -.040 15 .22
Oy - 0.85*** .85%**

Columns 2 and 3 in Table 7 report results from models (without and
with heterogeneity, respectively) assuming that the effects of variables are
constant across all levels of decision. Accordingly, we note that Hispanics
and households with higher income tend to have larger families while women
who begin child birth late are less likely to end up with large families. We
note, further, that there is an unignorable between-mother heterogeneity in
the propensity to have a large family. In columns 4-7, we allow the effects to
vary across decision levels and we observe that they do vary. For instance,
differentials due to household incomes show only until transition to 3"¢ and
4" child while higher age at first birth continues, as would be expected, to
be an inhibiting factor for larger families.

14



5 Adjusting for selection bias with a multi-
process model

We have now estimated models for cognitive performance (2) and for sibship-
size decision (a sequential variant of Eq. (3)). In both cases, we found
evidence of unobserved family specific characteristics that affect children’s
performance and family-size decisions. If families of children with predom-
inantly below-average cognitive ability have higher propensity to increase
their family size, the result will be that the large values of the regressor sib-
ship size in (2) consists of a disproportionately high mix of low performing
children. If ignored, this adverse selection will inflate (overestimate) the
negative effect of sibship size on cognitive ability. Conversely, the regressor
sibship size in (2) may consist of a disproportionately high mix of children
with above average cognitive ability if selection is favorable in the sense that
it is the families with well performing children that have a higher propen-
sity of increasing their family size. These may include more wealthy families
with extra resources to enhance children’s learning and who can afford larger
family sizes. In this later type of selection, ignoring the favorable selection
will deflate (underestimate) the negative effect of sibship size on cognitive
performance.

The above limitations prompt us to address the potential endogeneity
of sibship size and estimate a joint model (multiprocess model) of cognitve
ability and sibship size decisions. The joint model consists of two sets of
equations:

e a linear model for cognitive performance,

Score;; = B/ X5 + Ti + €4 (5)

and

e a sequential probit model for sibship size (a sequential variant of Eq.

(3)),

P} =o' X} + v (6)

If the correlation between 7 and v is nonzero, estimation of equation (5)
without regard to equation (6) will be biased. Thus, the main issue addressed

15



here is that we wish to allow for the possibility that unobserved family specific
characteristics affect both the child’s cognitive performance and decisions on
family size. In other words, we wish to allow for a correlation between 7 and

R ORC

The bias due to selection effects is mitigated by making the source of the
bias (the correlation) part of the model. In our present case, the effect of
sibship size on cognitive performance will be biased because of non random
decisions on sibship-size.

The joint likelihood of the continuous model for log(Score) and sequential
probit model outcomes may be separated into a continuous and a probit part,
where the probit residual v becomes conditional on the realized value of 7,
and thus on the continuous outcome:

L(CP) — LgC)LgP), (8)
where (with y = log(Score)),

L = ! exp {——(y — XY } (9)

o' X*+p .
- 1-@ —“), if P=0 (= P; <0)
P v|T
Ly’ = Xt
@(U—vlr)’ lfpzl(:Pj*>0)

where (7,v) is bivariate normal:

(0)=21(5) (7))

so that

or, equivalently,
Oy
U|TNN |:pTUO__(y_/8,X)7 O-g (1_p72—v):| ’ (10)
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We fit this multiprocess model to our data with results as shown in Table
8. Comparing the results in Table 8 with those in Table 5, we now note
that the effect of sibship size on log-score is reduced from a highly significant
effect -0.0096 (z-value = —4.41) in Table 5 to an insignificant (or marginally
significant) effect —0.0064 (with z-value = —1.94) in Table 8. This is
in accordance with the estimate of the correlation coefficient. We note that
P (the correlation between family-specific unobserved heterogeneity terms
that affect cognitive performance and family-size decisions) is estimated at
P, = —0.091. This negative correlation, though statistically insignificant,
indicates adverse selection in the sense that it is families to children with
below-average performance that are more likley to increase family size. If
ignored and the log(Score) model is estimated separately without due account
of the probit model, this negative correlation pushes the effect of sibship
negatively (to the left) from —0.0064 (with z-value = —1.94) to -0.0096
(with z-value = —4.41). In other words, the adverse effect of sibship size
on cognitive ability will be inflated. To focus thoughts, consider the last
row in Table 9 where we report results from a standard model and selection
(multiprocess) model when we exclude the Ethnicity variable:

We recall from Table 5 that children of hispanics and blacks have lower
performance than their baseline counterparts. We also recall from results
in our probit model (Tables 6 and 7) that ethnicity is a potential source of
selection as we found ethnic differentials in family-size decisions. Specifically,
we found that hispanics are more likely to have larger families than their
baseline counterparts. Thus, if ethnicity is excluded from the models and
becomes part of the unobserved heterogeneity, the effect is that the negative
correlation between the unobserved heterogeneity terms gets stronger p.s =
—0.201 (z-value = —3.4306). More interestingly, the effect of ignoring such
a strong negative correlation will be to overestimate the adverse effect of
sibship size from an insignificant effect —0.00286 (z-value = — 0.8912) to a
highly significant effect —0.00998 (z-value = — 4.5829).
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Table 8: Estimates of effects on log(Score) in a multilevel multiprocess model

est. z-value
1Q 0.033 12.9953
Hisp -0.027  -5.0522
Black -0.023  -4.4607
Age 0.0019  2.8701
Inc 0.0090  4.2302
No Coll -0.00745 -1.7183
Year 0.0022 2.0484
Order -0.0017  -0.6309
Sibsize -0.0064 -1.9463
Married 0.013 1.9821
Other 0.0068 1.1513
Father 0.0082 1.4517
Girls 0.018 5.3811
O 0.12 87.3452
o 0.052 18.0021
0o 0.85 35.8924
Pro -0.091  -1.4561

Table 9: Changing effects of sibship size on log(Score) in three models

variables Standard model Selection model Correlation (p,)
est. z-value | est. z-value | est. z-value

All (no het) | —0.0104 | —5.2011 | — - - -

All (het) —0.00958 | —4.4118 | —0.0064 | —1.9463 | —0.0908 | —1.4561

- Ethn —0.00998 | —4.5829 | —0.00286 | —0.8912 | —0.201 | —3.4306

6 Concluding Remarks

In the present paper we have used recently developed multilevel multiprocess
modelling (Lillard and Panis, 2003) to address selection-bias in the relation-
ship between sibship and size and cognitive performance. Our concern was
that sibship-size decisions are not random but rather that there is a selection
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in the process. If so, selection-bias can arise because the regressor “sibship
size" will be correlated with the residual term in the equation.

Some previous theories in the area - like the Confluence and Resource-
dilution theories focus within the family - invoking interactions of family
members. Others have attempted to explain the patterns through the ad-
mixture hypothesis in the sense that the causal sources of the systematic
patterns observed in their data were outside the family. For instance, Page
& Grandon (1979) note:

"The apparent effects of family size, far from explaining population differences,

seem themselves to be better explained as the result of group admixtures".

Our empirical analysis based on data from the NLSY79 reveals an appre-
ciable between-family variation in sibship-size decisions. In other words, our
results provide empirical evidence in support of the admixture hypothe-
sis. This, in turn, casts doubts on previous conlcusions that relied on within-
family factors and processes in explaining sibship size - intelligence patterns.
Overall, family-specific unobserved heterogeneity that affects sibship-size de-
cision was negatively correlated to family-specific unobserved heterogeneity
that affect cognitive ability. Ignoring such negative correlation (adverse
selection) led to overestimation of the negative effects of sibship size on
cognitive ability. Thus, we recommend mutilevel-multiprocess modelling to
account for between-family variability, address selection bias and come up
with adjusted estimates of sibship size effects on cognitive ability.

The multiprocess procedure we used estimates two equations (continuous
and probit models) jointly and it allows to model that correlation (source
of selection-bias) directly, thereby mitigating (if not eliminating) the bias.
The tradeoff in the procedure we have used is that we have to assume the
mother-specific heterogeneity terms in the two equations are jointly normally
distributed. If the true model is known, then a proper model will eliminate
selection bias. In real life, we don’t know the precise nature of selection.
We may theorize that there is unobserved mother-effect which is normally
distributed. If the distribution of that effect is in fact something other than
normal, the selection bias will be reduced but not necessarily eliminated.
And if there is some other selection effect (say from siblings who share the
same teacher), the resulting bias would remain. Thus, while the modeling
approach we used is designed to certainly mitigate selection-biases, it may not
be taken for granted that such biases are fully eliminated. A possible area for
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future studies would, therefore, be a deeper examination on the validity of the
distributional assumptions (and proposal of alternative distributions) as well
as investigation of the robustness to violations of distributional assumptions
of the procedure used here.
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