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Abstract

This paper explores the connection between Dow-Jones industrial average (DJIA) stock
prices and the US GDP growth. The analysis is mainly done in the frequency domain
but relevant time domain results are also reported. Prior to such studies, time series
are often rather mechanically detrended using i.e. the Hodrick-Prescott �lter. De-
trending is however a complicated task, which might lead to distortions, especially in
the often neglected presence of heteroscedasticity.

Keywords: Spectral analysis, detrending �lters, heteroscedasticity, the connection be-
tween stock prices and economic growth.

1. Introduction

Numerous time domain studies have described the relationship between eco-
nomic variables. Some other studies have investigated the relationship between,
say economic growth, and non-economic variables such as current age distribu-
tion in a country or energy consumption, see e.g. Lee (2005). In the frequency
domain similar studies are also quite common. Öller (1990) used a frequency
domain approach to investigate the �t and comovements of business survey data
and industrial production data in Finland. The exchange rate comovements of
12 countries were studied by Orlov (2009).

National product series, such as GDP, typically contain a unit root (Granger,
1966). Trends and unit roots show up as low or in�nite frequency variations in
the spectral density. Standard analysis requires stationarity and hence economic
time series are detrended prior to further analysis. Done properly, detrending
eliminates an in�nite peak at zero frequency. Given a �nite time series, it is
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impossible to design an ideal �lter, and one has to make a good approxima-
tion. Filters may distort the frequency content of the cyclical part. Simple
�rst-di¤erencing, for instance, ampli�es the higher frequencies at the expense of
lower frequencies. Moreover, in the case of short series, abrupt variations in the
frequency response give rise to Gibbs´ phenomenon, see e.g. Priestley (1981,
pp. 561).

The most widely used detrending �lters are the ones suggested by Hodrick and
Prescott (HP) (1997), Beveridge and Nelson (BN) (1981) and Baxter and King
(BK) (1999). Ma and Park (2004) used the HP �lter in a comovement study of
the interest rates in US, Japan and Korea. The HP �lter was also applied in
Uebele and Ritschl (2009), prior to a comovement study of stock markets and
business cycles in Germany before World War I. The BK �lter has been used
by i.a. Stock and Watson (1999). Most studies focus solely on business cycle
frequencies, typically on the business cycle band-pass suggested by Burns and
Mitchell (1946) of between 6 and 32 quarters. But much information may be
extracted also outside this frequency band. This is further discussed in Section
4.

To the author´s best knowledge no detrending �lter exists, which takes the
highly possible event of heteroscedasticity into consideration. This is surprising
because in spectral analysis contributions to the variance at speci�c frequen-
cies are of prime interest. Neglecting heteroscedasticity will distort frequency
domain results, see the discussion in e.g. Engle (1974). Because of this the
heteroscedasticity removing �lter of Öller and Stockhammar (2007) will be con-
sidered here. The univariate and comovement frequency domain results from
the �lter proposed in ibid. will be compared with the results from the ones
that do not take heteroscedasticity into account. The detrending �lters will be
further discussed in Section 3.

In Stockhammar and Öller (2008) it was shown that a Normal-Asymmetric
Laplace (NAL) mixture distribution accurately describes the frequency distrib-
utions of US, UK and Australian GDP quarterly series. Interestingly, in Stock-
hammar and Öller (2010) the same distribution was found also to work well for
Dow-Jones industrial average (DJIA) daily closing prices. This fact encouraged
a closer look at the movements of stock indexes and GDP series. This will be
pursued here using the above �lters to detrend the series prior to spectral analy-
sis of their relations. Comovements of two series are in the time domain studied
using cross correlation coe¢ cients. Frequency domain techniques allow us to
study correlation di¤erentiated by frequency (coherency), and thus to concen-
trate on cycles. If the two series are related we suspect the strongest coherency
to occur on the business cycle frequencies, typically 6 to 32 quarters. As a check
of our results, we also report the relevant time domain estimates.

This paper is organized as follows. Section 2 presents the data. In Section 3
�lters are discussed used to detrend the series prior to the comovement inves-
tigation of Dow Jones Stock Index data and US GDP in Section 4. Section 5
concludes.
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2. The data

Here, quarterly �gures 1947-2007 (244 observations) of the seasonally adjusted
DJIA and the US GDP are studied as appearing on www.�nance.yahoo.com and
the website of the Bureau of Economic Analysis, www.bea.gov, respectively.
The DJIA series was converted to quarterly �gures from daily closing prices
and calender e¤ects have been accounted for. These series together with their
logarithms are presented in Figure 2.1.

Figure 2.1:.DJIA (dashed line) and US GDP (solid line), the original series (left
panel), logarithmic series (right panel)
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The issue of detrending the above series to enable spectral analysis of their re-
lationships is discussed in the next section.

3. Detrending �lters

As emphasized by Granger (1966), business cycle peaks in spectral densities are
often buried in the massive share of low frequency (trend) variations. Moreover,
as noted already by Burns and Mitchell (1946), the business cycle often take
the shape of an inverted U followed by a V. These characteristics cannot be
described using the harmonic spectral functions in the frequency domain. See
e.g. Jenkins and Watts (1968) for a thorough treatment of the spectral and
cross spectral functions used in this paper. Several �lters have been suggested
to reduce the trend domination and to isolate the business cycle. The com-
ponents of a time series can be de�ned in at least two ways (Cogley, 2001).
One is the �lter-design approach and the other is the model-based approach.
For completeness, members of both approaches are compared in this study. In
the �lter-design approaches, the trend and business cycle are de�ned as com-
ponents passing through an ideal1 , low, high or band pass �lter, whose bands
are predetermined according to the assumed variation at speci�c frequencies.

1An ideal �lter completely eliminates the frequencies outside the predetermined ones, while
passing the remaining ones unchanged.
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The approaches are typically ad hoc by nature, in the sense that the statisti-
cal properties of the business cycle are not speci�ed. Here, in the presence of
�nite-length time series, it is impossible to design an ideal �lter and a good
approximation will have to su¢ ce. The HP and BK �lters decribed below are
examples of this approach. To overcome some of the criticism mentioned below
of the �lter-design approach (see e.g. Harvey and Jaeger, 1993), the model-
based approach has been suggested. The BN �lter described in Section 3.3 is
an example of the model-based approach.

The simplest way to detrend a time series yt is to calculate the �rst di¤er-
ences (FD)2 , yFDt = �yt where yFDt is the detrended series from the FD �lter,
� = (1 � B) where B is the backshift operator such as Bkyt = yt�k. The FD
of the logarithmic (Di¤ ln) DJIA and US GDP are shown in Figure 3.1 (upper
panel) together with their spectral densities (lower panel).

Figure 3.1: The Di¤ ln series (upper panel) and the corresponding spectral den-
sities (lower panel)
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Heteroscedasticity is evident in the upper panels in Figure 3.1, especially in the
�ltered US GDP. There are some drawbacks using �rst di¤erences. First, it is
not a symmetric �lter. This is however of no consequence when applying cross-
spectral functions on two FD detrended series. As indicated by the lower panels

2Another way to get rid of unit roots in bivariate studies is to model in error correction
form, given that the root is present in both series.
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in Figure 3.1, the densities of the FD series are still dominated by low frequency
variations. This is because the true integrating order of the series is somewhere
between one and one and a half, see the discussion in Öller and Stockhammar
(2007), ÖS(2007) hereafter. Candelon and Gil-Alana (2004) concluded that the
US GDP series is integrated of order I(1:4): That is, an additional fractional
di¤erence of order 0:4 will eliminate the spectral density domination at low fre-
quencies. Also, the FD �lter reweights the densities towards higher frequencies
as indicated by Figure 3.2.

Figure 3.2: The gain function of the FD �lter 3

Despite the drawbacks with FDs they have been used in comovement studies
like this one, e.g. by Wilson and Okunev (1999), and recently by Orlov (2009).
Also, Knif et. al (1995) used the FD �lter prior to cross-spectral analysis of the
Finnish and Swedish stock markets.

Calculating deviations from centered moving averages (MA) generated as

yc;MA
t = yt �

1

2p+ 1

pX
i=�p

yt+i;

where k = 2p+1 is the window length and yc;MA
t is the cyclical component calcu-

lated from the MA �lter, is another method of detrending time series sometimes
used in practice. Figure 3.3 shows the gain of various values for k:

3The gain function of the �rst di¤erence �lter is G (w) =
p
2 (1� cosw), where w is the

frequency.
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Figure 3.3: The gain functions of yc;MA
t using k = 3 (dashed line), k = 9 (solid

line) and k = 15 (dotted line)4

The MA is a symmetric �lter. Applying the MA(k = 15) �lter on the DJIA
and US GDP series yields the �ltered series in Figure 3.4. The corresponding
spectral density and the spectral densities of the MA(k = 3) and the MA(k = 9)
�lter are also included (lower panel).

Figure 3.4: The MA( k = 15) detrended DJIA and US GDP (upper panel). The
lower panel shows the spectral densities of the cyclical components calculated
from the MA( k = 3) (dashed line), MA( k = 9) (solid line) and MA( k = 15)
(dashed/dotted line)
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4The gain function of the moving average �lter that estimates the cycle is G (w; k) =q
1� 1�cos kw

k2(1�cosw) .
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Comparing with the FD �lter, the MA �lter does a better job removing the trend
in the series. As the window lengths get wider, the spectral peaks are shifted to
the left. Both the FD and MA �lter produce series found to be stationary using
the Phillips-Perron (PP) or the augmented Dickey-Fuller (ADF) tests. But they
are also signi�cantly heteroscedastic according to the ARCH-LM test.

The most widely used detrending �lters are described in subsections 3.1-3.3.5

3.1 The Hodrick-Prescott �lter

Perhaps the most commonly used �lter to detrend economic time series is the
one suggested by Hodrick and Prescott (1997). The HP-�lter was designed to
decompose a macroeconomic time series into a nonstationary trend component
and a stationary cyclical component. Given a non-seasonal time series yt, the
decomposition into unobserved components is

yt = gt + ct;

where gt denotes the unobserved trend component at time t, and ct the un-
observed cyclical component at time t. Estimates of the trend and cyclical
components are obtained as the solution to the following minimization problem

min
[gt]

N
t=1

(
NX
t=1

c2t + �
NX
t=3

(42gt)
2

)
; (3.1)

where 4gt = gt � gt�1 and gmin is the HP-�lter and the cyclical component
is calculated as: yc;HPt = yt � gt. The �rst sum of (3.1) accounts for the
accuracy of the estimation, while the second sum represents the smoothness of
the trend. The positive smoothing parameter � controls the weight between
the two components. As � increases, the HP trend becomes smoother and vice
versa. Note that the second sum, (42gt), is an approximation to the second
derivative of g at time t. The HP-�lter is symmetric and can eliminate up to
four unit roots in the data, see e.g. Cogley and Nason (1995). For quarterly
data (the frequency used in most business-cycle studies) there seems to be a
consensus in employing the value � = 1600. The gain of deviations from the
HP trend using various values on � is presented in Figure 3.5.

5The �lter proposed by Christiano and Fitzgerald (2003) is here omitted. The asymmetric
and time-varying features of this �lter generate phase shifts, and nothing can be said about
the stationarity of the output (even if the input is stationary).
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Figure 3.5: The gain of the HP �lter using � = 100 (dashed line), � = 1 600
(solid line) and � = 50 000 (dotted line)6

As with �rst di¤erences and deviations from moving averages, the HP-�lter
places zero weight at zero frequency. King and Rebelo (1993) criticized the HP-
�lter and provided examples of how it alters measures of persistence, variability,
and comovement when it is applied to observed time series. In addition, Harvey
and Jaeger (1993) and Cogley and Nason (1995) showed that the HP �lter
induces spurious cycles when applied to the level of a random walk process.
Criticism are also found in Maravall (1995) and Canova (1998). Because of this,
Kaiser and Maravall (1999) provided a computationally convenient modi�cation
of the HP �lter by including two model based features.

The upper panel in Figure 3.6 shows the HP(1 600) detrended series and the
corresponding spectral density (lower panel). The spectral densities from the
HP(100) and HP(50 000) �lters are also included.

6The gain function of the HP �lter that estimates the cycle is G (w; �) = 1� 1
1+4�(1�cosw)2 .
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Figure 3.6: The HP( 1 600) detrended DJIA and US GDP (upper panel). The
lower panel shows the spectral densities of the cyclical components calculated
from the HP �lter using � = 100 (dashed line), � = 1 600 (solid line) and
� = 50 000 (dashed/dotted line)
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As shown in Figure 3.6, detrending using the HP(� = 50 000) failed. That is,
much of the trend remains in the HP(� = 50 000) cyclical component. Using
� = 100, the cyclical components have almost no density at zero frequency and
peaks at 12 quarters both for DJIA and US GDP. Using the standard value for
quarterly data � = 1 600, the spectral densities are larger at zero frequency
with the e¤ect that the peaks are shifted towards lower frequencies and peaks
at 16:5 quarters both for DJIA and US GDP (equivalent of frequency w = 0:38
in the above cross-spectral formulas). All series were found to be stationary and
heteroscedastic.

3.2 The Baxter-King �lter

The above �lters are all approximations of an ideal high-pass �lter, which would
remove only the lowest frequencies from the data. The ideal band-pass �lter re-
moves both low and high frequencies, passing the intervening frequencies. Baxter
and King (1999) proposed a moving average type approximation of the business
cycle band de�ned by Burns and Mitchell (1946). That is, the BK �lter is de-
signed to pass through time series components with frequencies between 6 and
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32 quarters, while dampening higher and lower frequencies. This is done using a
symmetric �nite odd-order k = 2p+1 moving average. The cyclical component
using the BK-�lter takes the form

yc;BKt =

pX
i=�p

hiB
iyt; (3.2)

where yc;BKt is the BK �ltered series and hi are the �lter weights obtained by
solving the optimization problem

min
hi
Q =

�Z
��

j�(w)j2 dw; (3.3)

where �(w) = �(w)� �(w) is the error arising from approximating the Fourier
transform of the ideal �lter, �(w), by an approximation of the same, �(w).
For the solutions of (3.3), see Baxter and King (1999). Since the BK-�lter is
symmetric it does not induce phase shifts. Also the �lter is designed to produce
stationary output. The BK �lter has the ability to remove up to two unit roots.
Ibid suggested a value of p = 12 for the frequency band 6 to 32 quarters, and
argued that the �ltering is basically equivalent for larger values of p. Iacobucci
and Noullez (2005) showed that the size of p beyond p = 12 matters, and
suggested the value p � 12 irrespective of the sample size and the band to be
extracted. This might cause response leakage due to the truncation. By adding
a constant to the ideal �lter coe¢ cients in (3.3), a discontinuity at the endpoints
results, which makes the leakage at high frequencies worse. Note that, like all
moving average smoothers, p observations will be lost at the beginning and at
the end of the �ltered series. Figure 3.7 shows the cycle and spectral densitity
of the BK (k = 16) �ltered series (using bandpass 6 to 32 quarters).
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Figure 3.7: The cycle and spectral densities of the cyclical components calculated
from the BK �lter using k = 16:
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The shape of the spectral densities using k = 12; 24 and 36 are very similar. As
the window length becomes larger the peak is shifted slightly to the right. The
spectral densities of the cyclical component from the BK �lter is very similar in
shape to the HP �lter.

The standard frequency band of 6 to 32 quarters used to extract business cy-
cles seems to work well when applied to individual series. Section 5 will reveal
that this choice of band greatly in�uences the shape of the coherency and phase
functions, especially at frequencies shorter than 6 quarters. We argue that high
frequency comovements are important encouraging us to extend the BK fre-
quency band to between 2 to 32 quarters. This does not change the frequency
domain properties of the individual �ltered series much, see Table 3.1. The two
BK �lter alternatives are hereafter denoted BK(6;32)(k) and BK(2;32)(k). The
spectral densities of the BK �lter using frequency band 1 to 32; showed peaks
at zero frequency for k = 24 and k = 36; and will therefore not be included in
this study.

3.3 The Beveridge-Nelson �lter

The model-based decomposition suggested by Beveridge and Nelson (1981) is
based on Wold�s representation theorem and separates a time series into a per-
manent (P) and transitory (T) component. A shock at time t results in a
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permanent change to the series if it a¤ects the permanent component, while
the e¤ect of the shock will damp down over time if it a¤ects the transitory
component. The series, yt is thus decomposed as follows:

yt = Pt + Tt:

It is further assumed that yt is an ARIMA(p; 1; q) process (and thus �yt =
�Pt + �Tt). The �rst di¤erence, �yt, of an ARIMA(p; 1; q) process can be
expressed as an in�nite order moving average process

�yt = c(B)at

= c0at +  (B)(1�B)at;

where  (B) =  0+ 1(B)+ ::: , is an in�nite order polynomial. The permanent
and transitory components are identi�ed as

�Pt = c0at

�Tt =  (B)(1�B)at;

Note that Tt =  (B)at, thus Pt is a process of integrating order one, I(1),
whereas Tt is I(0). That is, one di¤erence is required to make Pt stationary
wheras Tt is stationary by de�nition. There are basically two ways to estimate
the BN components (Morley, 2007). Here the approach suggested by Beveridge
and Nelson (1981) is used. Figure 3.8 shows the cyclical series and the corre-
sponding spectral densities.
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Figure 3.8: Cyclical components calculated from the BN �lter (upper panel) and
the corresponding spectral densities (lower panel)7
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Note the high-pass properties of the BN �lter for the DJIA, for which the �lter
eliminates most of the low frequency variation, including the business cycles.
The �rst hump represents the business cycle, almost overshadowed by the high
frequency variations. The spectral densities of the US GDP series is quite sim-
ilar in shape to the ones in Figures 3.6 and 3.7. As before, heteroscedasticity is
revealed in the upper panel of Figure 3.8, as noted before, especially in the US
GDP series.

3.4 A trend and heteroscedasticity removing �lter

None of the above �lters accounts for the highly possible event of heteroscedas-
ticity in economic and �nancial series. Despite �rst order stationarity in the
detrended series, the null hypothesis of homoscedasticity is rejected for every
one of them. This is a major drawback when applying a frequency domain
approach (as in this study), see e.g. Engle (1974). Because of this, ÖS(2007)
proposed the following detrending and heteroscedasticity removing �lter

7The models with the smallest AIC among the adequate ones were an ARIMA(1,1,1) and
ARIMA(2,1,2), for DJIA and US GDP, respectively.
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ezt = sy

266664
�
z
(i)
t

�d
HP ()

 rPt+�
�=t��

�
z
(i)
�

�2d
=2�

!
377775+ y; (3.4)

where t = max[k��; l��];max[k��+1; l��+1]; :::, k and l (both odd) is the
window length in the numerator and denominator, respectively. � = (k � 1)=2,
� = (l�1)=2, ezt is the �ltered series and i = a; b from the detrending operations

(a) z
(a)
t = �yt �

t+�X
�=t��

�y� /k ; t = � + 1; � + 2; :::; n� � (3.5a)

and with y� delayed one period:

(b) z
(b)
t = �yt�

t+�X
�=t��

�y��1 /k ; t = �+2; �+3; :::; n��+1 (3.5b)

where �yt = yt�yt�1, yt is the logaritmic series at time t, k (odd) is the window
length, and � = (k�1)=2 and even. This transformation is generalized by raising
zt to the power d,

�
z
(i)
t

�d
. Using di¤erent values on � in (3.5), di¤erent degrees

of integration are achieved. There are two extremes. For � = (n�1)=2; the termPt+�
�=t���y� /k equals �y assuming that the original series is I(1) centered at

zero. The other extreme appears when k equals one; that is � = 0: Operation
(3.5b) is used only in the latter case and is equivalent to the second di¤erence
operation, �2yt. The choice of � depends on the series studied. If it is close to
I(1) then you should just choose � close to (n � 1)=2, and if the series is close
to I(2) then choose � = 0 in (b) or a small value on � in (a).

Filter (3.4) was designed to remove heteroscedasticity in time series data in a
simple, yet e¢ cient way. As proposed by Hodrick and Prescott (1997), � = 1600
is suitable for quarterly data, ÖS (2007) further suggest the use of k = 15 in
(3.4). The upper panel in Figure 3.9 shows the �ltered series using this �lter.
The spectral density functions of the two time series �ltered by (3.4) (using
� = 1 600 and di¤erent window lengths) are presented in the lower panel.
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Figure 3.9: The detrended and heteroscedasticity corrected �ltered series (upper
panel). The lower panel shows the spectral densities using �lter (3.4) with � =
1 600 and k = 5 (dashed line), k = 15 (solid line) and k = 25 (dashed/dotted
line)
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Both �ltered series are found to be stationary according to ADF and PP tests,
and (contrary to all other �lters discussed in this section) homoscedastic accord-
ing to the ARCH-LM test. The window length proposed in ÖS(2007), k = 15,
results in a spectral peak at 10:4 quarters both for DJIA and US GDP. In-
creasing the window length to k = 25 shift the peaks close to 14 quarters: The
operations in (3.5) contain �rst di¤erencing implying a small phase shift, but
everything else is symmetrical.

Table 3.1 summarizes the main spectral properties of the above �lters. The
peak frequencies are measured in quarters.
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Table 3.1: Spectral density peaks

DJIA US GDP
Peak freq. value Peak freq. value
(quarters) (quarters)

FD 12:8 0:0009 10:6 0:00005

MA(k = 3) 7:9� 0:0002 9:0� 0:00001
MA(k = 9) 9:8 0:0017 9:8 0:00011

MA(k = 15) 13:5 0:0046 11:1 0:00024

HP(� = 100) 12:0 0:0025 12:0 0:00013
HP(� = 1 600) 16:5 0:0052 16:5 0:00023

HP(� = 50 000) � � � �
BK(6;32)(12), BK(2;32)(12) 16:9 15:7 0:0054 0:0054 18:3 18:3 0:0002 0:0002

BK(6;32)(16), BK(2;32)(16) 16:5 16:3 0:0056 0:0055 17:8 17:7 0:0002 0:0002

BK(6;32)(24), BK(2;32)(24) 14:9 15:1 0:0048 0:0049 16:2 15:1 0:0001 0:0001

BK(6;32)(36), BK(2;32)(36) 14:5 14:3 0:0045 0:0044 15:8 15:6 0:0001 0:0001

BN 11:6� 0:0000 9:0 0:00012
(3.4),( k = 5,� = 1 600) 4:2� 0:0012 7:6� 0:00002
(3.4),( k = 15,� = 1 600) 10:4 0:0011 10:4 0:00005

(3.4),( k = 25,� = 1 600) 14:1 0:0011 14:1 0:00004

Mean 13:2 13:6

�The high frequency peaks are assumed to be spurious, c.f. Figures 3.4, 3.8 and 3.9.

As summarized in Table 3.1, the length of the business cycle depends on the
choice of detrending �lter. The spectral peaks for MA(k = 9), HP(� = 100),
HP(� = 1 600) and �lter (3.4) (using � = 1 600; and k = 15; 25), are located
at the same frequency. That is a favourable feature improving the estimates of
cross-spectral densities. The BK �lter seems rather robust to di¤erent window
lengths, but with peak frequencies between 14 and 18 quarters. This accords
well with the HP(� = 1 600) �lter. Accounting for heteroscedasticity using �lter
(3.4) and the suggested window length k = 15, slightly shortens the cycle.

4. Comovements between the two series
The choice of detrending �lter not only a¤ects the shape of the spectral den-
sities, but also the cross-spectral functions. The cross-spectral di¤erences of
the detrending procedures is the issue of this section. Figure 4.1 shows the co-
herency and phase spectrum between the cyclical components of DJIA and US
GDP using the FD �lter and the MA �lter. In creating all subsequent phase
spectrums, the DJIA series have been put before US GDP.
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Figure 4.1: Cross-spectral densities of the cyclical components of DJIA and
US GDP using the FD �lter (upper panel) and the MA( k = 3) (dashed line),
MA( k = 9) (solid line) and MA( k = 15) (dashed/dotted line) (lower panel).
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The coherency function using the FD �lter in Figure 4.1 (upper panel) peaks
(K2

1;2(w = 0:72) = 0:26) at 8:7 quarters, which means that the relationship be-
tween the two series is closest at a frequency of just over two years. The spectra
of the two individual series, f1(w) and f1(w), peak at 10 � 12 quarters, essen-
tially the frequency to focus on in the coherency plots. At these frequencies,
the approximate coherency is K2

1;2(w) = 0:23: Extending the window length in
the MA �lter shifts the coherency peaks to the right.

The frequency to focus on in the phase spectrum is the peak coherency frequency.
In most cases in this study this corresponds to a relatively linear (positively)
part of the phase spectrum, see e.g. Figure 4.1. The slope is estimated us-
ing linear regression on the frequency of interest and four observations on each
side. Most �ltered series also indicates rather high coherency at high frequencies
(around 2� 2:5 quarters). At this frequency, the trend in the phase spectrum is
typically negative and is again estimated using a linear regression on nine ob-
servations surrounding the (high frequency) peak coherency frequency. Put in
practice, the phase spectrum for the FD �ltered series indicates that DJIA leads
US GDP on the business cycle frequencies by on the average of 0:45 quarters.
It also shows signs of feedback at high frequencies, where US GDP leads DJIA
by on average 1:34 quarters. Figure 4.2 shows the same measures using the HP
and BN �lters.
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Figure 4.2: Cross-spectral densities of the cyclical components of DJIA and US
GDP using the HP �lter with � = 100 (dashed line), � = 1 600 (solid line) and
� = 50 000 (dashed/dotted line) (upper panel) and using the BN �lter (lower
panel)
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In Figure 4.2 (upper panel), the coherency function using the HP(100) and
HP(1600) peaks at 8:1 quarters. Increasing � to 50 000 slightly shifts the
peak to the left. Using HP(1 600), the spectra of the two individual series,
f1(w) and f2(w), peak at around 16:5 quarters, for which the coherency is
K2
1;2(w = 0:38) = 0:23. The coherency function using the BN �lter is simi-

lar, but note that its phase spectrum does not have the typical discontinuities
around w = 1:8 and w = 2:5. Also, the HP(50 000) and the BN �lters both have
a low frequency discontinuities in the phase spectrum. The phase function is
de�ned as the arctan of the ratio between the quadrature and the co-spectrum
resulting as discontinuities at frequency multiples of �

2 , see e.g. Jenkins and
Watts (1968) for details. In Figure 4.3 the coherency and phase spectrum for
the BK(2;32)(k = 16) and BK(6;32)(k = 16) �ltered series are presented. The
densities using other values on k show very similar patterns.
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Figure 4.3: Cross-spectral densities of DJIA and US GDP using the BK (2;32)(k=16)
(solid line) and BK (6;32)(k=16) (dashed line) �lter
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The choice of frequency band to extract in the BK �lter has a large e¤ect on
the coherency and phase. The BK standard frequency band, 6 � 32 quarters,
by de�nition completely miss the information that can be extracted at high
frequencies. This results in a peculiar shape of the coherency function which
peaks far from the business cycle. As with the BN �lter, the phase spectrum
does not have the typical discontinuity at high frequencies. On the contrary,
the cross-spectral densities of the BK(2;32)(k = 16) �ltered series are similar to
the �ltered series discussed above and below.

The cross-spectral densities between the two series detrended by �lter (3.4) with
� = 1 600 and k = 5; 15 and 25 are shown in Figure 4.4.

Figure 4.4: Cross-spectral densities of DJIA and US GDP using �lter (3.4)
with � = 1 600 and k = 5 (dashed line), k = 15 (solid line) and k = 25
(dashed/dotted line)
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The coherency function for the (3.4) �ltered series (using � = 1 600 and k = 15)
peaks on the average at 8:2 quarters at which K2

1;2(0:76) = 0:40. At this fre-
quency, �1;2(0:76) = 1:20 quarters, with feedback �1;2(2:77) = �1:48: At the
peak spectral frequencies of 10:4 quarters (see Table 3.1), K2

1;2(0:60) = 0:35.
The results are summarized in Table 4.1.
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Table 4.1: Cross-spectral density peaks

Coherency Phase
Peak Value Value at peak At peak At high
freq.(q) spectral freq. coh. freq.(q) freq.(q)

FD 8:7 0:26 0:23 0:45 �1:34
MA(k = 3) 9:4 0:26 0:25 0:49 �1:59
MA(k = 9) 8:7 0:25 0:24 0:33 �1:84
MA(k = 15) 7:8 0:26 0:17 0:73 �1:51
HP(� = 100) 8:1 0:28 0:23 0:65 �1:45
HP(� = 1 600) 8:1 0:27 0:23 0:51 �1:40
HP(� = 50 000) 9:0 0:25 � 0:26 �1:39
BK(6;32)(12) 8:5� 0:29 0:21 0:35 �0:23
BK(6;32)(16) 8:9� 0:35 0:23 0:41 �0:10
BK(6;32)(24) 8:1� 0:39 0:24 0:24 0:14
BK(6;32)(36) 7:6� 0:35 0:17 0:09 0:13
BK(2;32)(12) 8:5 0:28 0:22 0:16 2:54
BK(2;32)(16) 8:2 0:38 0:21 0:51 �1:02
BK(2;32)(24) 8:5 0:36 0:26 �0:18 �0:44
BK(2;32)(36) 7:8 0:35 0:17 �0:23 �1:45
BN 8:7 0:27 0:24 0:67 �1:49
(3.4),( k = 5,� = 1 600) 9:3 0:40 0:10 0:73 �1:35
(3.4),( k = 15,� = 1 600) 8:2 0:40 0:35 1:20 �1:48
(3.4),( k = 25,� = 1 600) 8:1 0:35 0:26 0:99 �1:02

Mean 8:4 0:32 0:22 0:44 �0:86

�The high frequency peaks are assumed to be spurious, c.f. Figure 4.3.

The column to the far right shows the phase shift at the rightmost coherency
peak frequency, see Figures 4.1-4.4. The coherency seems quite robust to di¤er-
ent �lters. Its peak frequencies varies from 7:6 to 9:4 quarters, with an average
of 8:4 quarters. The choice of BK(6;32)(k) or BK(2;32)(k) does not seem to matter
much, but this is true only for the Burns and Mitchell (6 to 32 quarters) business
cycle frequencies. Due to the extended high frequency band, the BK(2;32)(k) has
the ability to also describe variations at shorter frequencies, see Figure 4.3. It
is therefore in comovement studies advisable to use this �lter (if the series are
homoscedastic). The phase at peak coherency frequency is less robust with val-
ues varying from �0:23 to 1:20 quarters (average 0:44). All �lters (with the
exeptions of the BK(2;32)(24) and BK(2;32)(36) �lters) reports that DJIA leads
USGDP at peak coherency frequency. Both BK �lters show scattered phase.
Accounting for heteroscedasticity using �lter (3.4) shows coherency peaks ap-
proximately on average frequency, with larger than average coherency values.
Also, the homoscedastic series induce the longest lead shifts.

It is possible from cross-spectral analysis to detect lead or lag of the series un-
der a common cyclical period. The phase densities show both the lead times
and reveal the direction of the comovements. As a double check of the results,
the time domain Granger causality test was performed on the (3.4) �ltered and
stationary series. The results are presented in table 4.2.
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Table 4.2: Granger-causality tests, p-values

nLag 1 2 3 4 5 6 7 8
DJIA doesn´t Granger-cause USGDP 0:00 0:00 0:00 0:00 0:00 0:00 0:01 0:00
USGDP doesn´t Granger-cause DJIA 0:08 0:02 0:00 0:12 0:02 0:14 0:36 0:45

Table 4.2 shows that the null hypotheses of Granger-noncausality is rejected for
all lags from DJIA to US GDP, using the 0.05 signi�cance level. At lags 2; 3
and 5, there seems to exist a feedback - US GDP leads DJIA. This further con-
�rms the phase densities in Figures 4.1-4.3 and is also supported by the cross
correlation function between the (3.4) �ltered series:

Figure 4.5: The cross correlations between DJIA and US GDP
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where the dashed lines denotes �2 standard errors for the estimates. Table
4.3 presents the cross correlations (at lag 1) between DJIA and US GDP for
the entire period, and for three subperiods (standard errors in paranthesis and
signi�cant correlations in bold �gures). The subperiods were chosen in accor-
dance with US GDP volatility, where 1947-1960, 1961-1983 and 1984-2007 are
periods denoted as high, medium and low volatility, respectively. This is also
in compliance with Stock and Watson (2003) who reported that the US GDP
variance declined over 50 per cent from 1960-1983 to 1984-2002 when averaged
over four quarters. The decline in volatility was even larger in e.g. Italy and
Japan, and also widespread across sectors within the US. As indicated by ÖS
(2007, 2008), the volatility in the US GDP was even larger before 1960. Note
that the decreasing volatility does not apply to DJIA, cf. Figure 3.1.
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Table 4.3: First order cross correlations between DJIA and US GDP

Full sample 1947-1960 1961-1983 1984-2007

FD 0:173
(0:064)

0:534
(0:135)

0:167
(0:104)

0:125
(0:102)

MA(k = 3) 0:151
(0:064)

0:448
(0:134)

0:061
(0:104)

0:060
(0:102)

MA(k = 9) 0:335
(0:064)

0:559
(0:134)

0:339
(0:104)

0:139
(0:102)

MA(k = 15) 0:336
(0:064)

0:574
(0:134)

0:294
(0:104)

0:152
(0:102)

HP(� = 100) 0:338
(0:064)

0:642
(0:134)

0:294
(0:104)

0:074
(0:102)

HP(� = 1 600) 0:329
(0:064)

0:573
(0:134)

0:250
(0:104)

0:196
(0:102)

HP(� = 50 000) 0:092
(0:064)

0:309
(0:134)

�0:190
(0:104)

0:112
(0:102)

BK(6;32)(12), BK(2;32)(12) 0:285
(0:067)

0:275
(0:067)

0:514
(0:151)

0:537
(0:151)

0:225
(0:104)

0:242
(0:104)

0:083
(0:109)

0:048
(0:109)

BK(6;32)(16), BK(2;32)(16) 0:309
(0:069)

0:288
(0:069)

0:621
(0:158)

0:597
(0:158)

0:231
(0:104)

0:208
(0:104)

0:039
(0:112)

0:066
(0:112)

BK(6;32)(24), BK(2;32)(24) 0:223
(0:071)

0:218
(0:071)

0:606
(0:177)

0:578
(0:177)

0:193
(0:104)

0:150
(0:104)

�0:321
(0:118)

�0:265
(0:118)

BK(6;32)(36), BK(2;32)(36) 0:131
(0:076)

0:133
(0:076)

0:335
(0:224)

0:750
(0:224)

0:368
(0:104)

0:018
(0:104)

0:484
(0:129)

�0:427
(0:129)

BN 0:170
(0:064)

0:192
(0:134)

0:318
(0:104)

0:080
(0:104)

(3.4),( k = 5,� = 1 600) 0:168
(0:064)

0:139
(0:134)

0:044
(0:104)

0:066
(0:102)

(3.4),( k = 15,� = 1 600) 0:263
(0:064)

0:275
(0:134)

0:222
(0:104)

0:090
(0:102)

(3.4),( k = 25,� = 1 600) 0:236
(0:064)

0:210
(0:134)

0:166
(0:104)

0:077
(0:102)

Table 4.3 further corroborates that the detrending method used has e¤ect on
estimated cross correlations. This is expected due to the one-to-one relationship
betweeen cross covariances and spectral densities, see Section 3. In addition,
Table 4.3 shows that the cross correlation decresases with US GDP volatility,
but less so using �lter (3.4). The choice of BK(6;32)(k) or BK(2;32)(k) has little
e¤ect on correlations exept when k = 36. Odd looking negative correlation is
also present in the mid volatilty part using the HP(50 000) �lter. The BN �lter
shows for the same period its the maximum cross correlation. This could be
due to the cross correlation between opposite cyclical phases in the two series
(see the feedback discussion above).

5. Conclusions
This paper reveals frequency domain relationships between the Dow-Jones in-
dustrial average stock prices and US GDP growth. Both series are heteroscedas-
tic, making standard detrending procedures, such as Hodrick-Prescott or Baxter-
King, inadequate. Neglecting heteroscedasticity distorts frequency domain re-
sults and render ine¢ cient estimation of the spectral densities. Surprisingly,
many frequency domain studies do not take notice of this and mechanically use
standard detrending �lters. Prior to the comovement study, the univariate and
comovement frequency domain results from these �lters are compared to the re-
sults from the heteroscedasticity removing �lter suggested by ÖS (2007). Thus,
the e¤ect of the often neglected heteroscedasticity is measured.

Accounting for the heteroscedasticity somewhat shortens the business cycles.
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No matter which �lter is used, signi�cant comovements exist between the DJIA
and US GDP series. The coherency seems quite robust to the di¤erent �lters.
Accounting for heteroscedasticity slightly shifts the coherency peak to the left
and with larger than average coherency values. The phase shift is less robust,
especially for the BK �ltered series. Most �lters report that DJIA leads US
GDP at peak coherency frequency (7:6 � 9:4 quarters), but also reveal a feed-
back from US GDP to DJIA at around 2 � 2:5 quarters. The �ltered series
using the suggested heteroscedasticity removing �lter induce the longest lead
shifts ( 1:2 quarters) at peak coherency frequency, and also above average feed-
back lag (1:48 quarters). Using the Baxter-King �lter with frequency band 6
to 32 quarters (as �rst suggested by Burns and Mitchell, 1946) by de�nition
completely misses this information. The same apply to the Beveridge-Nelson
�lter. It is therefore advisable to extend the frequency bands to 2 to 32 quar-
ters in comovement studies like this (under the condition that the series are
homoscedastic). The frequency domain results were also con�rmed in the time
domain using cross correlations and Granger-causality tests. When applied on
subperiods in accordance with US GDP volatility, most �ltered series showed
scattered �rst order cross correlations, but less so in the homoscedastic series.
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