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Abstract

This guide describes and explains the software package Model-Based
Cluster Analysis (MBCA), which is written in Matlab. The programs esti-
mates the parameters of a multivariate mixture model of normal distribu-
tions and clusters the observations. Full posterior distributions are obtained
using the Gibbs sampler. An introduction is given to the theory of model-
based clustering and to Bayesian inference. Instructions are presented on
how to enter data and prior speci�cations into the program. Special pro-
grams in this package take care of deviant observations, handle missing data,
and perform longitudinal cluster analysis.
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1 Introduction

Classi�cation or clustering of data is one of the most important techniques of
multivariate analysis. Many software packages contain prewritten programs for
handling deterministic cluster analysis. Model-based cluster analysis is a good
alternative for �nding group patterns in data. It has become increasingly preferred
over traditional deterministic clustering due to its �exibility. Clustering based on
probability models has certain advantages for handling overlapping groups and
groups of di¤erent sizes and shapes. The estimation method, however, relies on
an iteration procedure which is not straightforward to implement and the choice
of prewritten programs is limited. The MBCA program is written for the model-
based clustering approach. The program consists of �ve variants that can be used
in standard and non-standard situations. We give an introduction to the theory
and also practical guidance to the program.

The MBCA program is written in Matlab, and Bayesian inference is applied in the
program. Standard techniques such as ML-estimation are sometimes used for the
model-based approach, often with the EM-algorithm. MCLUST and MIXMOD
are two existing programs written for this purpose. Biernacki et al. (2005) give
an introduction to MIXMOD, and Fraley and Raftery (2007), (2006), and (2003)
do the same for the MCLUST software. MCLUST is available with an R or S-
PLUS language interface. MIXMOD is interfaced with SCILAB and Matlab. The
EM algorithm is advanced in the sense of allowing for di¤erent sizes, shapes, and
orientations of the clusters. Still, it comes with some limitations that we can
overcome with the Bayesian approach. The MCMC technique used will eventually
reach the target distribution, even if it takes some time. The maximum likelihood
estimator runs the risk of getting stuck in a local maximum, if present. In addition,
the method only gives point estimates and produces no estimates regarding the
uncertainty of the parameters. The Bayesian approach generates point estimates
of all variables as well as associated uncertainty in the form of the whole posterior
distribution. Moreover, the method generates posterior predictive probabilities for
a single observation�s being derived from all the di¤erent distributions (groups) in
the model. A comprehensive explanation of Bayesian analysis is given in Bernardo
and Smith (2000) and in Gelman et al. (2004), and MCMCmethods can be studied
in Gamerman and Lopez (2006)

WINBUGS is a widely used software package for MCMC computations for a wide
variety of Bayesian models, including normal mixtures. The program is very �exi-
ble, but because of that it is not straighforward to use. The user have to do some
own coding which requires previous knowledge about Bayesian inference and the
program itself. Discussions on how to use WINBUGS is found in Schollnik (2001),
Fryback et al. (2001), and Woodworth (2004, Appendix B). The MBCA pro-
gram is not nearly as comprehensive as WINBUGS, but is instead much more user
friendly. Without much previous knowledge, one may execute the MCMC simula-
tions for the basic case with a mixture of J multivariate normal distributions as
well as for a few special situations.
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The MBCA package is available on www.statistics.su.se/forskning/MBCA. The
package contains �ve programs written for special features and two programs for
graphical presentations of the results.

� The �rst program handles the basic case of grouping data into J clusters.

� Outliers or deviant observations may interfere in a negative way when clus-
tering data. The second program handles these observations by adding an
extra cluster into the solution. This group consists of observations which do
not �t into one of the general group patterns.

� Missing data is almost inevitable in real-life data. The model-based cluster-
ing approach can easily and e¤ectively be extended to handle data with item
non-response. In Program 3, multiple imputation is carried out as a step in
the algorithm.

� The next issue is longitudinal studies. Program 4 gives the possibility of
clustering data from two or three repeated measurements. Changes in cluster
divisions over time and transition patterns between clusters at di¤erent time
points may be analyzed.

� Repeated measurements are especially exposed to missing data. Program
5 combines the longitudinal clustering with missing data. All observations
from one or more time points may even be missing.

� Two programs are included for graphical presentations of the results. Iter-
ation plots and histograms over the estimated parameters can be obtained.
The program Graph1.m handles cross sectional data while Graph2.m handles
longitudinal data.

In the MBCA program, data is assumed to be generated from a mixture model
of multivariate normal distributions. Each distribution represents a cluster with
its speci�c group parameters. The programs do not come with limitations on
the number of variables or clusters. In Section 2, a short presentation of the
theory is given. The mixture model is presented and, in a Bayesian manner, prior
distribution and posterior derivations are given. The section also includes a brief
description of the MCMC estimation technique. A more complete description
of the theory and also a number of applications for the di¤erent features of the
program can be found in Franzén (2006), (2007), (2008a), and (2008b). Section 3
gives instructions on how to use each of the �ve programs. It gives guidance on
how to make the model- and prior speci�cations. Finally, in Section 4, a number
of practical considerations and possible challenges faced when using the program
are explained.
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2 Mixture Model

In MBCA, the n multivariate observations y = fy1; :::;yng are assumed to be
independent observations of a mixture distribution with density

f(yi j� ) =
JX
j=1

!jfj(yi
���j;�j ) i = 1; :::; n

where !j fj = 1; :::; Jg are the mixing proportions which satisfy 0 < !j < 1 andPJ
j=1 !j = 1: The density fj(yi

���j;�j ) denotes a multivariate normal distribu-
tion with mean vector �j and covariance matrix �j. Each of these J densities
corresponds to a cluster with speci�c characteristics described by its parameters.

The unknown parameters to be estimated are thus (�1; :::;�J ;�1; :::;�J ; !1; :::; !J) :
We also introduce a classi�cation vector V = (v1; :::; vn); where vi = j implies that
observation yi is classi�ed into Cluster j. The classi�cation vector is regarded as an
unknown parameter, and the marginal of its posterior are the cluster probabilities
for single observations.

2.1 Prior Distributions

In a Bayesian analysis each parameter of the model follows a distribution. The
prior opinion on a parameter is described by its prior distribution. We use conju-
gate priors for the parameters of the mixture model according to Lavine and West
(1992). When there are no prior opinions, a vague prior can be used within this
class of conjugate priors.

The prior distribution for �j is the inverse Wishart distribution

�j � W�1 �mj; j
�

with mj degrees of freedom and scale matrix  j.

No limitations are put on variability between clusters, i.e. we allow for each
cluster to have its own speci�c covariance matrix in terms of volume, shape and
orientation. This makes it possible to work with cases where one cluster (or more)
may have a distinguishing characteristic in terms of large variance.

The prior distribution for �j is the multivariate normal distribution with known
covariance matrix �j=� j for some precision parameters � j. That is,

�j j�j � NM
�
�j;�j=� j

�
The conjugate prior distribution for
 =(!1; :::; !J) is a multivariate generalization
of the beta distribution, known as the Dirichlet distribution
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(!1; :::; !J) � D(�1; :::; �J)
The prior distribution can be seen as a probability (or density) function describing
the uncertainty before the data is observed. The prior belief, speci�ed here by the
location and precision parameters mj;  j, �j, � j, and �j fj = 1; :::; Jg, can vary
between persons according to their knowledge and experience. With an uninfor-
mative prior the posterior distribution is almost completely determined by data.
In Section 3 there is an explanation of how to specify the priors in accordance with
ones choice.

2.2 Posterior Derivations

The likelihood from data, together with the priors described in the previous sec-
tion, generates the posterior distribution for each parameter. The transformation
from prior to posterior is given by Bayes theorem, which says that the posterior
distribution of the parameters, �; is proportional to the prior information times
the information from data, i.e. the likelihood function.

Posterior / Prior � Likelihood of data
�(�jdata) _ �(�) � p(dataj�)

The posterior distributions is in this program given by a set of conditional dis-
tributions. The posterior distribution of �j is the inverse Wishart distribution
conditional on y and V,

�j jy;V � W�1
�
nj+mj; j +�j +

nj� j
nj + � j

(yj � �j)(yj � �j)t
�

where �j =
P
i2j
(yi � yj)(yi � yj)t

The degrees of freedom equal the sum of the prior degrees of freedom mj, and the
number of observations in Cluster j, nj. The scale matrix has three components
- the prior opinion of �j, namely  j, the sum of squares �j, and the deviation
between prior and estimated mean values.

The posterior distribution for �j is the multivariate normal which is expressed
conditional on y, �j, and V, namely:

�j jy;�j;V � NM
�
�j;�j=(� j + nj)

�
where �j =

� j�j + njyj
(nj + � j)

The mean vector �j in the posterior distribution is a weighted sum of the prior-
and, by data, estimated mean values.
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The posterior distribution of the probability vector 
 conditional on V is the
Dirichlet distribution

(!1; :::; !J jV ) � D
�
�1 +

nP
i=1

I (vi = 1) ; :::; �J +
nP
i=1

I (vi = J)

�

The prior speci�cation �1; :::; �J , and the number of objects classi�ed into each
Cluster j described by

Pn
i=1 I (vi = j), are the updated parameters in the posterior

of 
:

The posterior probability tij for observation yi to belong to Cluster j is calculated
according to Bayes theorem conditionally on y, �j, and �j

tij
���j;�j;
 =

!jf
�
yi
���j�j �

JP
j=1

!jf
�
yi
���j�j

� i = 1; :::; n

The probabilities are the basis for the simulation of the classi�cation vector V.

2.3 Parameter Estimation through the Gibbs sampler

The Gibbs sample algorithm (Geman and Geman, 1984) is used to estimate the
model parameters �j, �j, 
, and the classi�cation vector V: The Gibbs sampler
works by iteratively drawing samples from the full conditional posterior distrib-
utions of the parameters in the model, as presented in the previous section. A
parameter value simulated from its posterior distribution in one iteration step is
used as a conditional value in the next step. Replicating the process, consisting
of steps 1 to 4 below, allows for an approximate random sample to be drawn from
the joint posterior density.

1. New values for �j, j = 1; :::; J , are simulated from the inverse Wishart
posterior distributions, conditional on y and the previous V.

2. New values for �j, j = 1; :::; J , are simulated from the multivariate normal
posterior distributions, conditional on y and the previous values of �j and
V. The new covariance matrices simulated in step 1 are considered as known
in step 2:

3. A new vector probability 
 is simulated from the Dirichlet posterior distri-
bution, conditional on the previous V:

4. In the last step, new classi�cation variables vi are simulated according to
their posterior probabilities tij, conditional on the new �, �, and 
. The
element vi = j with probability tij, independent of all other vi0 i0 6= i.
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3 Programs

The programs run in a Matlab environment. Versions 7.1 or later are recom-
mended. Previous versions have a fault in one of Matlab�s own m-�les, which may
overestimate the covariances. For e¤ective simulations, the recommended com-
puter capacity is an Intel Core 2 Duo processor with at least 2 GHz and 2 GB
RAM, or corresponding. Instructions on how to use the programs are given in the
following steps.

1. Download the programs

Download the Matlab programs from www.statistics.su.se/forskning/MBCA
into one catalogue without changing their names or formats. There are a
total of six �les, one for each program described below and two for graphical
presentations.

2. Create a data matrix

Open Matlab and the command window will appear. Before running any of
the programs, the data matrix Y has to be speci�ed in the command window.
The data matrix Y has to be of size K�n; where K is the dimension of data
and n the number of observations. Each observation in Y is then represented
by a column and each variable by a row. For small data materials, the matrix
can be typed directly in the Matlab command window. For an imaginary
data set with 4 observations in 3 dimensions type:

>> Y=[2.6 1.4 3.8 4.5;4.5 1.2 6.9 4.5;6.3 4.5 1.1 2.5]

which Matlab writes as:

Y =

2.6000 1.4000 3.8000 4.5000

4.5000 1.2000 6.9000 4.5000

6.3000 4.5000 1.1000 2.5000

Most data sets are too big to be typed manually. If data is stored in Excel,
one may fetch data by the Matlab command

>> Y = xlsread(��lename�)

Data in Excel is often in the format of columns representing variables and
rows representing observations, i.e. the opposite of the matrix Y: This is
easily put right by transposing the matrix;

>> Y = Y�
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Other alternatives to xlsread for other data forms than Excel are dlmread,
wk1read, cdfread, and textread. For information on these options, type help
followed by the desired alternative in the command window, or use the Mat-
lab help menu.

For Programs 4 and 5, where we work with longitudinal data, data is speci�ed
in one matrix for each time point. Y1 contains data from time point 1, Y2
from time point 2, and, if present, Y3 from time point 3. Speci�cations for
these data matrices are performed in the same way as above. Note that the
number of observations must be the same for all time points, but dimensions
on data may be di¤erent. This means the number of columns in Y1, Y2, and
Y3 have to be the same, but the number of rows may di¤er. The same column
must correspond to the same individual at all time points. If an individual
is not measured at a certain time point, enter NaN in that column.

3. Start the program

To start the desired program type its name in the command window. De-
pending on the current directory in Matlab, it may be enough just to print
the �le name. If the current directory, which shows if cd is typed in the
command window, is set to another location, the whole pathname must be
speci�ed. Alternatively, one may change the current directory by typing
cd(�directory�), where directory is the pathname.

4. Model and prior speci�cations

When the program is started, model and possibly prior speci�cations are
typed directly in the command window according to instructions that appear
on the screen. Necessary entries include the number of clusters, iterations,
and burn-in iterations. For Program 2, it also includes speci�cation of the
possible outcomes for the deviant cluster. After making model speci�cations,
one has the choice of using default prior speci�cations or making customized
speci�cations. Default prior values are prespeci�ed in the program. One may,
however, change these speci�cations to other values by typing 1 when the
question appears on the screen. If 1 is typed, a number of prior speci�cations
that need to be made appear in turn on the screen. Instructions on how to
make these speci�cations are given in the following subsections.

If 0 is typed, default values are used in the analysis. The default priors are
rather vague but center around the mean and covariance for the whole data
set. It should be said, that it is opposite to the Bayesian idea when using the
data in the prior speci�cations. However, we make this moderate overstep to
simplify for the user. At the same time we reduce the strength of the mean
and covariance priors by putting low values on the other prior parameters
for the mean vectors and covariance matrices. The degrees of freedom mj,
equal 10; and the precision parameters � j equal 1 for all clusters. Default
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priors for the cluster probabilities �j is 5 for all clusters. In Program 2, �j
is 5 for all non-deviant clusters and 1 for the last deviant group, re�ecting
the prior belief of a smaller deviant cluster. For Programs 3 and 4, the �j
speci�cations for the transitions matrices are all set to 5.

5. Running Time

After the speci�cations are made in the command window, the iteration
process starts. This might take a considerable amount of time depending on
the number of iterations, the extent of the data material, and the program
used. Running time for Program 1 with 6 clusters, 7 variables, 100 000
iterations, and 1 000 observations was a little over 3 hours on a computer with
3 GHz and an Intel Core 2 Duo E6850 processor with 3 GB RAM. Running
time for Program 4, with the same number of iterations and observations,
and with 4 clusters in 3 dimensions at Time 1 and 3 clusters in 4 dimensions
at Time 2, was almost 5.5 hours on the same computer. 100 000 iterations
are usually considered a long iteration chain.

6. Results

Estimation results are automatically presented in the command window after
the program is executed. MEAN are the mean estimates where each column
represents one cluster. PROB shows all the cluster probability estimates,
and COV1, COV2,..., COVJ are the covariance estimates for the J clusters.
To receive the cluster probabilities of all n objects, write

>> CLUSTERPROB

in the Matlab command window.

Each row in CLUSTERPROB shows cluster probabilities for one observation.
The columns represent the J clusters in the same order as the mean and
covariance estimates are presented. When we have more than one time point,
i.e. in Programs 4 and 5, the name of the estimation results are followed
by a number corresponding to the time. MEAN1 are for example the mean
estimates at Time 1 and COV12 is the covariance matrix for Cluster 2 at
Time 1. Cluster probabilities at Time 2 for example are received by typing
CLUSTERPROB2.

7. Save the results

Save the results under "Save Workspace As" in the �le menu. When opening
the workspace again, the results will not automatically appear on the screen.
You have to call each estimate by its name given above. Before running a
new program, make sure to clear the previous data by typing

>> clear

and

>> clc
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8. Graphical presentations of the results.

Iteration plots and histograms over estimated parameters may be obtained
after the program is run. Iteration plots are useful when checking the conver-
gence. If the method works properly, the iterations should generate �white
noise� around the estimated mean value. The iterations, after the speci�ed
burn-in period, underlie the histogram which gives a visual representation of
the posterior distribution of the estimated value. The �gures below show an
example of an iteration plot and corresponding histograms for three mean
variables from one cluster. The convergence for this example was short, and
the burn-in period of 5 000 iterations was much longer than necessary.

0 2 4 6 8 10

x 10 4

1

2

3

4

5

6

7

2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5
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0

5000

10000

15000

6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8
0

5000

10000

15000

Figure 1: Left graph - Iteration plot for 3 mean variables. Right graph - Histograms
for the same variables created from the last 95 000 iterations (100 000 minus a burn-in
of 5 000).

To obtain iteration plots and/or histograms for the estimates, open the program
Graph1.m or Graph2.m through the �le menu. The �rst program handles cross
sectional data and is used after running Program 1, 2, or 3. The second program
handles longitudinal data and is used after running Program 4 or 5. When opening
the suitable program, one will then enter the editor where several sections are
prepared for di¤erent plots and histograms. To obtain a speci�c graph, copy
the corresponding section and simply paste it into the Matlab command window.
Before copying, minor speci�cations need to be made as, for example, which cluster
the graph shall illustrate. The �rst section in the Graph1.m program is shown
below. When pasted into the command window, this section plots the iterations
for one probability estimate. If another cluster than 1 is desired, change j = 1 to
the number of the desired cluster.

%ITERATION PLOT FOR CLUSTER PROBABILITIES
%Before copying, enter j for the desired cluster j = 1; :::; J
j = 1;
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plot(Theta(:; j))

The iteration plots show all generated values, including the burn-in iterations in
the beginning. This way one can study how long it takes for the chain to converge.
The histograms are plotted without the burn-in iterations, to give a picture of the
true posterior distribution.

3.1 Program 1 - Clustering of J Groups

The �rst program handles the basic case where data is to be clustered in J di¤erent
groups. The program is the foundation for the extended and modi�ed programs to
follow in the next sections. For a demonstration and application of this program
see Franzén (2006). Below are instructions on how to enter model and prior
speci�cation into the program.

Model speci�cations

� The program asks for the number of clusters J . Specify and press enter.

� The program asks for the number of iterations T . The larger the number of T
the better the estimates, but keep in mind that a large number of iterations
may demand a lot of computer time, memory, and capacity.

� The program asks for the number of iterations F to discard in the beginning
, i.e. the burn-in period. More on this in Section 5.1.

� The program asks if one wants to use default priors or not. For default
values, type 0. If customized prior speci�cations are wanted, type 1. The
program will then ask for new prior speci�cations. Below are instructions
for each step.

Prior speci�cations for �

� Instruction 1. Specify the precision parameters for each cluster in vector
form, i.e. [� 1 � 2 ::: �J ]. The length of the vector is equal to the number of
clusters J .

� Instruction 2. Specify the mean of the prior beliefs of the mean values �j in
matrix form. The size of the matrix has to beK�J . Rows represent variables
and columns represent clusters. Each column in the matrix represents the
vector �j for Cluster j. For example

[1 2 3;1 2 3;1 2 3;1 2 3]

generates a matrix with values equal to 1 in column 1, 2 in column 2, and 3
in column 3. This corresponds to a prior belief of 1 for all variables in Cluster
1, and 2 for all variables in Cluster 2, and 3 for all variables in Cluster 3.
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The cluster means are expected to be around the selected values in �j, j = 1; :::; J .
A small value of the precision parameters � j gives less weight to the prior means
and larger variance in the posterior distributions, compared to higher values. The
precision of the prior opinion corresponds to having observed � j individuals that
are known to come from that cluster. The choice � j = 0; corresponds to having
no information at all.

Prior speci�cations for �

� Instruction 3. Specify the degrees of freedom for each cluster in vector
form i.e. [m1 m2 ::: mJ ]. The length of the vector is equal to the number of
clusters J .

� Instruction 4. Specify the prior belief of the covariance matrices �j for
each cluster in matrix form. The program asks for one covariance matrix at
a time, starting with the covariance for Cluster 1. The size of the matrix has
to be K �K. If, for example, one wants to use the identity matrix I as the
prior covariance, type eye(K): If another value a is desired instead of 1 in
the diagonal, simply write a � eye(K): If other values than 0 are desired for
the non-diagonal values, i.e. the covariances, each matrix has to be typed
out in its complete form. For example, if K = 3, [1.2 0.5 0.5;0.5 2 0.5;0.5 0.5
3] generates the prior covariance matrix

1.2000 0.5000 0.5000

0.5000 2.0000 0.5000

0.5000 0.5000 3.0000

Observe that  j = mj�j; but we specifymj and �j separately and leave it to
the program to calculate  j. �j should re�ect the actual prior belief of the
covariance matrix. The strength of our prior belief for �j is adjusted with
mj. Our best prior guess of �j would thus be  j=mj; and the knowledge
of the variance corresponds to the knowledge obtained from mj individuals.
The choice mj = 0, corresponds to no prior knowledge.

Prior speci�cations for 


� Instruction 5. Specify the prior beliefs of the cluster proportions in vector
form, i.e. [�1 �2 ::: �J ] : The length of the vector is equal to the number of
clusters J .

The relative sizes of the Dirichlet parameters �j describe the expected proportions
between groups, and the sum of the �j�s is a measure of the strength of the prior
distribution. The prior distribution is mathematically equivalent to a likelihood
resulting from

PJ
j=1 (�j � 1) observations with �j � 1 observations of the j:th

group.
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3.2 Program 2 - Clustering with Deviant Observation

Usually, outlier or deviant observations are simply ignored in the analysis, or, more
preferably, removed from the data set prior to the analysis. In this program we
allow for deviant observations within the model. The mixture model is extended
with one deviant cluster where the observations are assumed to follow a uniform
distribution f0(y) over the whole sample space.

f(yi j� ) =
JX
j=1

!jfj(yi
���j;�j ) + p0f0(y)

The cluster probabilities satisfy
PJ

j=1 !j+!0 = 1: Theory and application related
to this program may be found in Franzén (2007).

The model and prior speci�cations in Program 1 also apply in this program. One
additional entry concerning the deviant cluster needs to be made in the model
speci�cations.

� Instruction 1. The program asks for the possible outcomes of the deviant
cluster. For discrete data: Give the number of possible outcomes for each
variable in vector form for example [10 5 10] means that the �rst variable,
among a total of three, may attain 10 possible values, the second 5 and
the last 10. For continuous data: Give instead the interval length of each
variable�s range.

Priors for the J non-deviant clusters are speci�ed in the same way as they are for
the J clusters in Program 1, with one exception. No prior speci�cations are made
on the mean vector and covariance matrix of the deviant cluster, since estimates
for this cluster would be uninformative. The size of the deviant cluster, is, however
of great interest. Therefore, the vector specifying the cluster proportions will now
be of length J + 1.

� Instruction 2. The program asks for the prior beliefs of the cluster propor-
tions in vector form, i.e. [�1 �2 ::: �J+1] : The vector is now of length J + 1
where the last value corresponds to the deviant cluster. The prior speci�ca-
tions on the last value are usually lower than the rest of the � parameters
since we normally expect this deviant cluster to be smaller than the others.

After the program is executed, one may in addition to the automatically presented
results obtain information on the observations in the deviant cluster.

>> DEVOBS
Shows the values of those observations where cluster probabilities are the highest
for the deviant cluster.

>> PLACE
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Shows which observation numbers these observations have.

Instead of assuming a uniform distribution for the deviant cluster, one may assume
a normal distribution with a much larger variance than the rest of the clusters.
In that case, Program 1 can be used to model the existence of a deviant group.
This is simply done by specifying large values on the prior variances in �j for the
cluster corresponding to the deviant group.

3.3 Program 3 - Clustering with Missing Data

Missing values are handled as an extra step in the iteration process. Missing values
for an observation are replaced by values generated from the normal distribution
of which the observation is a member at that iteration step.

The missing variables are denoted NaN in the program. To change numeric values
representing missing values (for example 99) in the data matrix Y to NaN, write
in the command window

>> Y(Y==99)=NaN

No additional entries from Program 1 need to be made. The model and prior
speci�cations are speci�ed in the same way. The prior default values of the mean
and covariance are now only based on the observations with a complete variable
set.

3.4 Program 4 - Longitudinal Clustering

This program clusters data collected at 2 or 3 consecutive time points. At each
time point t, data y(t)i fi = 1; :::; ng is assumed to come from a mixture model of
multivariate normal distributions

f
�
y
(t)
i

�
=

J(t)X
j=1

!
(t)
j f

(t)
j

�
y
(t)
i

����(t)j ;�(t)j � i = 1; :::; n

where !(t)j is the proportion of objects belonging to Cluster j at Time t and f (t)j
is a multivariate normal density. J (t) denotes the number of clusters at Time t.
The mixture model theory is the same as when clustering cross-sectional data.
The allocation of objects is however done in a longitudinal manner. An object�s
classi�cation is determined simultaneously for all time points. Information from
all occasions is taken into consideration when determining an object�s develop-
ment pattern. We introduce the transition matrix Qt; which consists of transition
probabilities from clusters at Time t to clusters at Time t + 1: Given a cluster
membership at Time t corresponding to one row in Qt, the columns in Qt give
transition probabilities to all possible clusters at Time t + 1: In addition to the
cross sectional study one may study transition patterns between time points and
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also see how cluster structures change. The model allows for the number of clusters
and/or the number of variables to di¤er between time points.

The prior distribution for each row in the transition matrix Qt is the Dirichlet
distribution

Qt(j
(t); �) � Dir(�(t)1 ; :::; �

(t)

J(t)
)

where the � parameters have functions equivalent to the � parameters in the
Dirichlet distribution for the cluster probabilities.

The posterior distributions for each row in Qt is

Qt(j
(t); �)

��V(t) � Dir
�
�
(t)
1 + n

(t) �
j(t); 1

�
; :::; �

(t)

J(t)
+ n

(t) �
j(t); J (t+1)

��
where n(t)(j(t); j(t+1)) counts the number of transitions from Cluster j(t) to Cluster
j(t+1) between Times t and t+1 and �(t)1 ::: �

(t)

J(t)
are the parameters from the prior

Dirichlet distribution.

For more information on the theory of longitudinal clustering and applications of
this particular program see Franzén (2008a).

Except for the addition of the transition matrices Qt, the model- and prior speci-
�cations do not di¤er much from Program 1. The same speci�cations have to be
made, but now for more than one time point. We specify changes and additions
from Program 1 below.

Model speci�cations

� The program asks for the number of time points, i.e. 2 or 3.

� The program asks for the number of clusters at each time point in vec-
tor form, i.e.

�
J (1) J (2) J (3)

�
if we have data from 3 time points, or else�

J (1) J (2)
�
:

Prior speci�cations for �

� Instruction 1. Specify the precision parameters for each cluster in vector
form, i.e.

h
�
(t)
1 �

(t)
2 ::: �

(t)
J

i
: The speci�cation is repeated for t = 1; :::; T:

� Instruction 2. Specify the prior beliefs of the mean values �(t)j in matrix
form. The size of the matrix has to be K(t) � J (t). Rows represent variables
and columns represent clusters, both at Time t. Each column in the matrix
corresponds to the vector �(t)j for Cluster j. Either one types out the whole
matrix as shown in Program 1, or if the same value is desired within the same
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matrix we simplify and type 0 � ones(D(1); J(1)). This results in a matrix
in the right size (at Time 1) with zeros on all places. Replace the zero when
the prior belief is of another magnitude. The speci�cation is repeated for
t = 1; :::; T:

Prior speci�cations for �

� Instruction 3. Specify the degrees of freedom for each cluster in vector
form i.e.

h
m
(t)
1 m

(t)
2 ::: m

(t)
J

i
: The speci�cation is repeated for t = 1; :::; T:

� Instruction 4. Specify the prior belief of the covariance matrices �(t)j at
Time t, in the same way as in Program 1. The size of the matrix has to be
K(t) �K(t): The speci�cation is repeated for t = 1; :::; T:

Prior speci�cations for 


� Instruction 5. Specify the prior beliefs of the cluster proportions for the
clusters at Time t in vector form, i.e.

h
�
(1)
1 �

(1)
2 ::: �

(1)
J

i
: No speci�cations are

needed for Times 2 and 3 since these probabilities are a direct consequence
of the cluster probabilities at Time 1 and the transition matrices speci�ed
in the next steps.

Prior speci�cations for Q

� Instruction 6. Specify the prior beliefs of the transition probabilities be-
tween Times t and t + 1 in matrix form. Note that the number of rows
corresponds to the number of clusters at Time t and the number of columns
to the number of clusters at Time t + 1. The size of the matrix between
Time 1 and 2 is J (1) � J (2) and between Time 2 and 3 (if there is a third
point) J (2) � J (3). Each row is speci�ed unconditional of any other rows.
As for the � parameters, the relative sizes of the �(t)j in one row describe

the expected proportions between groups, and the sum of the �(t)j �s in one
row is a measure of the strength of the prior distribution. If there are three
time points, the matrix speci�cation is repeated once, for transition between
Times 2 and 3.

3.5 Program 5 - Longitudinal Clustering with Missing Val-
ues

Longitudinal data in several dimensions are in particular subject to incomplete-
ness. Deleting observations with one or more missing variables at one or more
time points may drastically reduce the data set and worsen the result. In the
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same way as in Program 3, multiple imputation is performed as a step in the it-
eration process. This time the method is applied to longitudinal data. Franzén
(2008b) presents the theory and applies it to simulated and real data.

The entries are the same as in Program 4. Like Program 3, the missing values in
the data matrices Y 1, Y 2, and possibly Y 3 have to be encoded NaN.

4 Practical Issues

4.1 Start values

The iteration process successively updates the values in the Markov chain. To get
the process started we need a set of start values for all parameters. Start values
in the MBCA programs are decided by default by doing a preliminary clustering
by the k-means clustering method. The values could be settled in an easier way,
for example through a quali�ed guess or neutral values. The gain from using
a more de�ned method is that the start values probably become closer to their
target values and therefore make the Markov chain converge faster. Generally it
is best to try several starting points in the state space. If they lead to noticeably
di¤erent posterior estimates the Markov-chain has not yet converged. The opposite
condition, i.e. if one starts at di¤erent starting points and ends up in the same
region, does not guarantee that the chain has reach its stationary distribution. It
may be stuck in a local maximum and will need more iteration runs to eventually
�nd its way out. This means that, within reason, as many iterations T as possible
should be chosen.

Changes of the default start values are not straightforward but can be done in
any of the Programs P1.m to P5.m. Lines 138-141 in Program P1.m, for example,
look like this:

M(:,:,1)=M0(:,1:J);
V(1,:)=V0;
Theta(1,:)=Theta0;
Sigma(:,:,1)=Sigma0(:,1:K*J);

To change start values, the expressions to the right of the equal signs are in turn
replaced by:

� AK�J matrix where each column represents the start values for one cluster.
For example, type zeros(K; J) if all starting mean values are to be 0.

� A 1 � n vector where each value represents the cluster belonging for that
corresponding observation. This may be a long vector if n is large, and
therefore be time-consuming to type. One may then leave the line unchanged,
which means the cluster classi�cations generated by the k-means are valid.
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� A 1 � J vector where each value is the cluster probability for each cluster.
The sum of all values has to be 1. For example, type (1=J) � ones(1; J) for
equal size of all start values.

� A K � (J � K) matrix where the �rst K columns represent the covariance
matrix for Cluster 1, the next K columns Cluster 2 and so on. For example,
type repmat(eye(K); 1; J) for J identity covariance matrices in a row or
repmat(a � eye(K); 1; J) if the value a is desired in the diagonal instead of
1.

The same lines are found on lines 167-170 in Program P2.m and lines 153-156 in
Program P3.m. When we are dealing with data from more than one time point,
we have to change start values for all time points. The lines in Program P4.m are
found on lines 386-394 for Time 1 and 2 and on lines 424-427 if there are three
times. For Program P5.m the lines are 424-432 and 462-465.

4.2 Burn-in Period

Usually it takes a number of iteration rounds before the algorithm converges to
the desired limiting distribution. The length of the burn-in period, during which
the generated values are not representative of the posterior distribution, must be
decided. The slower the chain is to converge the longer the burn-in period has
to be. Even when starting the chain in the target area, there is no guarantee the
burn-in period is unimportant. It will always take some time for the Markov chain
to forget its starting position.

There is no guaranteed way to decide the length of the burn-in period, which we
denote F in the programs. There are methods of approximation, but we settle
for a visual inspection of the iteration output. By studying an iteration plot,
one would most often get an idea how many iterations are needed before the
chain seems to have reached its stationary distribution. Iteration plots of all the
cluster proportions in one graph usually give a good indication. Figure 2 shows
the iteration plot for the cluster proportions for a mixture of 4 groups. The
burn-in period for these estimates, in this particular run, consists of about 400
iterations. The burn-in period in the next run may be much longer. It is always
better to exaggerate the length of the burn-in period than the opposite. The only
disadvantage with a longer burn-in period than necessary would be that useful
generated values are discarded.

4.3 Label Switching

So-called label switching is a well known problem when taking a Bayesian approach
to clustering using mixture models. Label switching is the name for the event when
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Figure 2: Illustration of the burn-in period. For these iterations convergence was
reached after about 400 iterations.

Clusters j and j0 change places during the iteration process. This phenomenon
arises because the likelihood

L (� jy ) =
nY
j=1

[!1f (yi j�1�1 ) + :::+ !Jf (yi j�J�J )]

is the same for all permutations of clusters. This means the parameters in the
model are not identi�able by a speci�c cluster number. If we have no prior in-
formation that distinguishes the components of the mixture, i.e. if the priors are
the same for all permutations of �, then the posterior distribution will be simi-
larly symmetric. The same prior distribution for all components of the mixture is
usually the case if one has no real prior information about the components.

Label switching can often be detected by studying the iteration plots.

A common solution to the label switching problem is to introduce some iden-
ti�ability constraints on the parameter space such as !1 > !2 > :: > !J or
�1 > �2 > ::: > �J . The �rst constraint, where the cluster sizes are ordered, can
be included in the programs. The constraints are prepared for by an inactive line
in each program. To activate, simply remove the %-sign on rows 188, 220, 257,
561, or 767 depending on which program among P1.m to P5.m is being used. It
should be said that this is not a guaranty for eliminating label switching. However,
when experiencing label switching, this measure should at least be tried. Stephens
(2000) gives an explanation and proposals for other solutions to this particular
problem.
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4.4 Other Problems

The programs in the MBCA package are prepared for a number of problems and
deviations that may occur in the simulation process. However, it is not possible
to account for every possible situation that may occur for all types of data set.
The program may be interrupted for some reason other than when the user has
made a wrong entry. When this happens, one should try to run the program again
and see if an odd situation was created by chance. In that case it would probably
not be repeated in another run. The whole idea with MCMC simulation is to
base the inference on randomness. This is an e¤ective method but may also create
unexpected situations.
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