
  

RReesseeaarrcchh  RReeppoorrtt  
Department of Statistics 

 
 
 

No. 2008:2 
 
 
 

Successive Clustering of Longitudinal Data 
A Bayesian Approach 

 
 
 

Jessica Franzén 
 
 
 
 
 
 
 
 
 

Department of Statistics, Stockholm University, SE-106 91 Stockholm, Sweden 
 



Successive Clustering of Longitudinal Data
A Bayesian Approach

Jessica Franzén�

Department of Statistics
University of Stockholm

January 2008

Abstract

A Bayesian approach to longitudinal cluster analysis is presented. At
each time point data is assumed to come from a number of multivariate
distributions, each one with its speci�c size, shape and orientation. Lon-
gitudinal movements are studied through transition matrices, where one
matrix applies between two consecutive time points. We estimate cluster
parameters and transition probabilities through Markov Chain Monte Carlo
(MCMC) simulations. We apply the method on two generated data sets,
one with two time points and the other with three. The results are com-
pared to k-means clustering by looking at the classi�cation accuracy. The
results show that our method is well on a par with k-means clustering. We
also apply the method on a real data set, where logical cluster divisions and
transitions between them appear. Our Bayesian approach, in comparison to
a frequentist approach, not only generates point estimates of the parame-
ters of interest, but also information about their uncertainties in the form
of the posterior distributions. We also obtain information on probabilities
for a single object belonging to a cluster at a speci�c time point, or to a
longitudinal development pattern.

Keywords: Longitudinal, Transition matrix, Cluster analysis, Clus-
tering, Classi�cation, Gaussian, Mixture model, Hidden Markov Model,
MCMC, Gibbs sampler.
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1 Introduction

Cluster analysis with the aim of �nding group structures in data, is applicable in
many di¤erent �elds. Longitudinal data give a new perspective on cluster analysis.
There are two main routes to take when working with longitudinal cluster analysis.
In the �rst, the development of each individual over time is studied, and the aim is
to cluster the individuals into a few typical development classes. The longitudinal
types are identi�ed directly in the classi�cation: see for example Pauler and Laird
(2000). In the second approach, which is the focus of this paper, each object
is classi�ed at each time point, and in the longitudinal analyses, one learns how
subjects move between groups over time and how group structures change as time
passes. Classi�cation of individual development patterns in psychology, and the
e¤ectiveness of a drug or treatment in medicine, are two examples among a wide
range of applications.

We present a Bayesian and model-based approach to longitudinal cluster analysis.
All objects are measured on several variables at certain time points. The number
of variables and which variables to use, may change between times. We study the
case with continuous data, which we assume to come from di¤erent multivariate
normal distributions at each time point. The units are to be classi�ed on each mea-
surement occasion, and we are interested in both the speci�c cluster parameters
and the movements between clusters. These are modeled by Markov transition ma-
trices, where one matrix is applied between two consecutive data collection points.
The method accounts for uncertainty in the parameters, conditional only on the
correctness of the underlying model. The analysis provides information, not only
on group structures at di¤erent time points and transition patterns between them,
but also on every single object. One may, for example, study an object to see its
possible movements between clusters and the probabilities for each movement.

Our model belongs to the category of hidden Markov models (HMM). In a Markov
model objects move between di¤erent states where the future states depend only
on the present state, and not on the previous state. In a hidden Markov model
the states are latent and can not be observed directly. We can only use a number
of indicators to determine them. In an ordinary Markov model, the states are
known and visible to the observer, leaving the transition probabilities as the only
parameters in the model. Hidden Markov models are widely applied in �nancial
time series analysis - see for example Shi and Weigend (1997) and Knab et al.
(2002) - and are also used with great success in signal processing �elds like speech
recognition (Rabiner (1989) and Huang et al. (1990).

The study of longitudinal clustering using transition matrices is not new. How-
ever, the methods most frequently used are deterministic clustering where each
object is assigned to a cluster at each time independently. After that, the cluster
assignments and cluster centers are treated as known and the results are used to
estimate transition probabilities and to �nd movement patterns. Examples can
be seen in Sugar et al. (1998) and (2004), where k-means clustering is used to �t

1



health state models, and in Bergman et al. (2003) where Ward�s method is used
for this purpose in studying individual development.

The deterministic clustering, even though easy to implement, comes with some
drawbacks. It is a two-step procedure where objects are �rst assigned to clusters,
after which the transition probabilities are estimated. This procedure does not
take into account all available information. Our method simultaneously estimates
the parameters of the mixture components and the transition probabilities, in-
cluding information from all time points. Furthermore, k-means clustering and
other deterministic methods often work best when the data stem from a mix-
ture of Gaussian distributions with identity covariance matrices: see Scott et al.
(2005). This might cause problems when the clusters are in fact di¤erently shaped.
These methods also make clear cuts between clusters, while our method handles
overlapping groups by producing cluster membership probabilities in these areas.

Scott et al. (2005) use a similar HMM method specially designed to study tran-
sitions between health states after di¤erent treatments. Their model incorporates
treatment data into the procedure, to directly assess a treatment�s e¤ectiveness.
The model accounts for treatments starting, ending, or switching during the time
period. Instead of normal distributions, Scott et al. use the t-distribution, which
calls for an extra iteration step to estimate the degrees of freedom in the distrib-
ution.

In Section 2, we begin by presenting the model for an arbitrary number of time
points. The method, including prior speci�cation and posterior derivation, is given
in Section 3. Two simulated data studies, the �rst with two time points and the
second with three time points, are analyzed, discussed and compared to k-means
clustering in Section 4. Results from a real data set are given in Section 5. Finally,
in Section 6, concluding remarks are given.

2 Model

We follow n objects over a number of T time points. At each time t; we assume
data to be generated from a mixture of multivariate normal distributions, each
distribution with its speci�c mean vector �(t)j and covariance matrix �(t)j . We
allow for the groups to have di¤erent shapes, volumes, and directions described by
their covariance matrix. The number of distributions may vary between the time
points and so may the dimensions of data. At time t there is a mixture of J (t)

distributions in d(t) dimensions. We assume that all objects and time points are
independent. Data for object i at time t; y(t)i is a vector with length equal to the
dimension of data. The mixture distribution for data at time t is expressed as

f
�
y
(t)
i

����(t)j ;�(t)j � = J(t)X
j=1

!
(t)
j f

(t)
j

�
y
(t)
i

����(t)j ;�(t)j � i = 1; :::; n
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where !(t)j is the probability that an object belongs to Cluster j at time t and f (t)j
is a multivariate normal density.

We introduce the matrix V =
�
V(1):::V(T )

�
, where each V(t) is a vector containing

the classi�cation for all n objects at time t; i.e. V(t) =
h
v
(t)
1 ::: v

(t)
n

i0
where v(t)i = j

means that object i belongs to group j at time t.

In a hidden Markov model, the objects move between the distributions (hidden
states) according to a Markov chain with the transitions matricesQt and the initial

distribution between clusters 
(1) =
h
!
(1)
1 ::: !

(1)

J(1)

i
. We use an inhomogeneous

hidden Markov model where we allow for di¤erent transition matrices between
di¤erent time periods. The matrixQt contains the transition probabilities between
times t and t + 1. The transition matrix Qt is of size J (t) � J (t+1), containing
the elements qj(t);j(t+1) ; which gives the transition probability between Cluster j

(t)�
j = 1; :::; J (t)

	
at time t; and Cluster j(t+1)

�
j(t+1) = 1; :::; J (t+1)

	
at time t +

1. The clusterprobabilities at time t + 1, 
(t+1) =
h
!
(t+1)
1 ::: !

(t+1)

J(t+1)

i
, is a direct

consequence of 
(t) and the transition probabilities in Qt according to


(t+1) =
h
!
(t+1)
1 ; :::; !

(t+1)

J(t+1)

i
= 
(t) �Qt

�i;j(1);j(2);:::;j(T ) is the indicator for observation i as belonging to a certain develop-
ment pattern, i.e. it belongs to Cluster j(1) at time 1; and Cluster j(2) at time 2;
until the last time point T where it belongs to Cluster j(T ). The indicator proba-
bilities are the basis for the simulation of the classi�cation matrixV. According to
Bayes�rule we may express the conditional probability for a speci�c development
pattern for object i given the data and the parameters as

P
�
�i;j(1);:::;j(T ) = 1

���y(1)i ; :::;y(T )i ;�
(1)
j ; :::;�

(T )
j ;�

(1)
j ; :::;�

(T )
j ;
(1);Q1; :::;QT�1

�
=

P
�
�i;j(1);:::;j(T ) = 1;y

(1)
i ; :::;y

(T )
i

����(1)j ; :::;�(T )j ;�
(1)
j ; :::;�

(T )
j ;
(1);Q1; :::;QT�1

�
P
�
y
(1)
i ; :::;y

(T )
i

����(1)j ; :::;�(T )j ;�
(1)
j ; :::;�

(T )
j ;
(1);Q1; :::;QT�1

� =

!
(1)

j(1)
�
T�1Q
t=1

qj(t);j(t+1) �
TQ
t=1

f
(t)
j

�
y
(t)
i

����(t)j ;�(t)j �P
j(1);::;;j(T )

�
!
(1)

j(1)
�
T�1Q
l=1

qj(t);j(t+1) �
TQ
t=1

f
(t)
j

�
y
(t)
i

����(t)j ;�(t)
j

��
for i = 1; :::; n and all possible combinations of j(1); :::; j(T ):
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3 Method

3.1 Prior Speci�cation

According to Bayesian standards, we specify the prior distributions and accompa-
nying hyperparameters for each model parameter, in this case �(t)j , �

(t)
j , 


(1), and
Qt for j = 1; :::; J (t) and t = 1; :::; T: The derivations of posterior distributions are
given in the next section.

An inverse Wishart distribution is used as prior for �(t)
j � W�1

�
m
(t)
j ; 

(t)
j

�
, with

m
(t)
j degrees of freedom and scale matrix  (t)j . The prior for �

(t)
j given �(t)

j is a

multivariate normal distribution, �(t)j
����(t)

j � NM
�
�
(t)
j ;�

(t)
j =�

(t)
j

�
; for some preci-

sion parameter � (t)j . A small value of the precision parameters �
(t)
j gives less weight

to the prior means and larger variance in the posterior distributions.

The prior distribution for the cluster probabilities at Time 1; is a Dirichlet distri-
bution with hyperparameters �1; :::; �J(1) , i.e. (!

(1)
1 ; :::; !

(1)

J(1)
) � Dir (�1; :::; �J(1)).

The relative sizes of the parameters describe the expected cluster proportions, and
the sum of the �j�s is a measure of the strength of the prior distribution.

The transition matrixQt contains the group transition probabilities between Time
t and t + 1. Given the cluster membership at Time t, the transition probabilities
to Time t+1 follow Dirichlet distributions, which means that each row in Qt may
be expressed as,

Qt(j
(t); �) � Dir(�(t)1 ; :::; �

(t)

J(t)
)

where the � hyperparameters have functions equivalent to those of the � parame-
ters.

Rows in Qt are independent of each other and of previous or future Q0s:

3.2 Conditional Posterior Distributions

When the posterior belongs to the same distributional family as the prior, the
likelihood and the prior distributions are said to be conjugate. This is the case in
this paper. The conditional posterior distributions have the same form as the pri-
ors, but with updated parameters. The conditional posterior distribution for �(t)j ;
containing the hyperparameters from the prior distributions and the likelihood
information is

�
(t)
j

��y(t);V(t) � W�1

 
n
(t)
j +m

(t)
j ; 

(t)
j +�

(t)
j +

n
(t)
j �

(t)
j

n
(t)
j + �

(t)
j

(y
(t)
j � �(t)j )(y

(t)
j � �(t)j )

0

!
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where n(t)j is the number of observations from Cluster j, y(t)j is the sample mean

in Cluster j, and �(t)j =
P
i2j
(y
(t)
i � y(t)j )(y

(t)
i � y(t)j )

0
; for t = 1; :::; T:

The conditional posterior for �(t)j has the following form:

�
(t)
j

���y(t);�(t)j ;V(t) � NM
�
�
(t)

j ;�
(t)
j =(�

(t)
j + n

(t)
j )
�

where �
(t)

j =
�
(t)
j �

(t)
j + n

(t)
j y

(t)
j�

n
(t)
j + �

(t)
j

� t = 1; :::; T:

The conditional posterior distribution for the cluster probabilities at Time 1 de-
pends on the prior belief and the actual number of objects classi�ed into each
respective group, described by the indicator function I below.

!
(1)
1 ; :::; !

(1)

J(1)
j V(1) � Dir

��
�1 +

nP
i=1

I
�
v
(1)
i = 1

��
; :::;

�
�J(1) +

nP
i=1

I
�
v
(1)
i = J (1)

���

Each row in Qt is generated separately. Conditional on an object�s origin at Time
t, the posterior distribution is

Qt(j
(t); �)

��V(t) � Dir
�
�
(t)
1 + n

(t) �
j(t); 1

�
; :::; �

(t)

J(t)
+ n

(t) �
j(t); J (t+1)

��
where n(t)(j(t); j(t+1)) counts the number of transitions from Cluster j(t) to Cluster
j(t+1) between Times t and t + 1 and �(t)1 ; :::; �

(t)

J(t)
are the hyperparameters from

the prior Dirichlet distribution.

3.3 Gibbs Sampler

The parameters of our model are estimated with the Gibbs sampler algorithm
which is the most commonMarkov ChainMonte Carlo (MCMC) technique. MCMC
techniques work by drawing samples from a parameter�s density, producing a chain
of samples in the right proportion, whereupon summary statistics of the parameter
can be made. The Gibbs sampler algorithm generates a new sample from all pa-
rameters in each iteration step. Each parameter is generated conditionally on the
others, successively updating the parameters. A detailed explanation of MCMC
techniques and the Gibbs sampler can be found in, for example, Gamerman (2006)
or Gilks et al. (1999).

The Gibbs sampler algorithm cycles, in our case, between sampling from the pos-
teriors of p

�
�
(t)
j

��y(t);V(t)
�
, p
�
�
(t)
j

���y(t);�(t)j ;V(t)
�
, p
�
P(1)

��V(1)
�
,
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p
�
V
���y(t);
(1);�

(t)
j ;Q

�
and p (Q jV ) for all t and j, according to the posterior

distributions given in the previous section.

4 Simulated Data Study

We test our method on two simulated data sets. In the �rst example, we generate
data from two time points, with di¤erent dimensions and number of clusters at
the separate times. At the �rst time point, two of the clusters are generated with
di¤erent variances within the covariance matrix, testing the method�s ability to
handle non-spherical distributions. In example 2, three time points are used and
the number of clusters and dimensions is increased. Data in both examples are
assumed independent between time points and are generated accordingly. The sim-
ulations are performed in Matlab, version 7.4, by a customized program written by
the author. The program is available for downloading, together with instructions
on www.statistics.su.se/forskning/MBCA.

4.1 Example 1

The �rst data set consists of 1100 objects generated from four multivariate normal
distributions in three dimensions at Time 1, and from three multivariate normal
distributions in four dimensions at Time 2. The mean vectors and cluster proba-
bilities, from which data is generated, are given in Table 1. The identity covariance
matrix is used for all clusters, except for two clusters at Time 1, where they have
smaller variance in one dimension. Data, in all three dimension combinations for
Time 1, can be seen in the �rst three graphs in Figure 1. We only present one
graph from the �rst two dimensions, out of four, for Time 2, since data is gener-
ated from distributions with the same mean values for all dimensions. This would
generate four almost identical graphs.

The prior belief for the mean is set to 0 for all dimensions and clusters, i.e. �(1)j =

[ 0 0 0 ]0 and �(2)j = [ 0 0 0 0 ]0 with the precision parameters � (1)j = �
(2)
j = 1.

The covariance priors �(1)j and �
(2)
j are equal to the identity matrix where 	(t)

j =

m
(t)
j �

(t)
j with m(1)

j = m
(2)
j = 5 degrees of freedom for all j. The expected cluster

probabilities at the �rst time point are assumed equal, �1 = �2 = �3 = �4 = 10;
and so are the transition probabilities within each row in the transition matrix,
�
(1)
1 = �

(1)
2 = �

(1)
3 = 5.

The results from 95 000 iterations (100 000 minus a burn in of 5 000) are shown in
Table 1. The algorithm manages to separate the objects into their original clusters
to a high extent, and to estimate the model parameters in a satisfactory way. The
two non-spherical clusters at Time 1, are recognized by the model.
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Figure 1: Generated data from Times 1 and 2. The �rst three graphs are from Time 1,
presented for all dimension combinations. The last graph presents data from Time 2 in
the �rst two dimensions. The rest of the combinations give similar graphs since data are
generated from distributions with mean values and variances equal for all dimensions.
Cluster 1: dots, Cluster 2: circles, Cluster 3: stars, and Cluster 4: plus signs.
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Posterior Estimates at Time 1
Cluster Mean Covariance Probability

1
2:90
0:07
0:93

3
0
1

0@ 0:35 �0:04 0:02
0:97 0:15

0:85

1A0@ 0:25 0 0
1 0

1

1A 0:19 0:18

2
�1:03
�0:02
1:96

�1
0
2

0@ 1:02 0:10 0:10
0:45 0:00

1:00

1A0@ 1 0 0
0:50 0

1

1A 0:22 0:23

3
�0:94
�1:96
�0:79

�1
�2
�1

0@ 0:93 0:05 �0:10
1:24 0:05

1:09

1A0@ 1 0 0
1 0

1

1A 0:28 0:27

4
0:95
2:00
3:02

1
2
3

0@ 1:04 0:07 0:15
0:99 0:07

1:01

1A0@ 1 0 0
1 0

1

1A 0:31 0:32

Posterior Estimates at Time 2
Cluster Mean Covariance Probability

1

1:02
0:98
1:03
0:99

1
1
1
1

0BB@
1:17 0:04 �0:08 �0:01

0:98 �0:04 0:02
1:03 0:02

0:97

1CCA
0BB@
1 0 0 0

1 0 0
1 0

1

1CCA 0:32 0:32

2

�0:96
�1:11
�1:03
�1:20

�1
�1
�1
�1

0BB@
1:48 0:23 0:05 0:45

1:22 0:25 0:21
0:90 0:13

1:20

1CCA
0BB@
1 0 0 0

1 0 0
1 0

1

1CCA 0:27 0:30

3

�1:81
�1:88
�1:92
�1:83

�2
�2
�2
�2

0BB@
1:06 0:08 0:14 0:07

0:95 �0:01 0:15
1:23 0:12

1:22

1CCA
0BB@
1 0 0 0

1 0 0
1 0

1

1CCA 0:41 0:38

Table 1: The top table contains estimates from Time 1 and the bottom table estimates
from Time 2. The posterior estimates are the mean of 95 000 iterations (100 000 minus
a burn-in of 5 000 iterations). To the right of each estimate are values from which data
were generated. The proportion estimates at Time 2 are a direct consequence of the
proportion estimates at Time 1, and the estimated transition matrix presented in Table
2.

In the transitions matrix Q, the rows represent the four clusters at Time 1 and
the columns, the three clusters at Time 2: The estimated transition matrix, seen
in Table 2, agrees well with its true values presented to the right.

Transition Matrix0B@ 0:67 0:18 0:15
0:22 0:49 0:29
0:19 0:19 0:62
0:28 0:26 0:45

1CA
0B@ 0:7 0:2 0:1
0:2 0:5 0:3
0:2 0:2 0:6
0:3 0:3 0:4

1CA
Table 2: The transition probabilities estimated from 95 000 iterations. To the right
are the probabilities from which data were generated.
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For a graphical illustration of the results and an understanding of the spread
around the estimated means, we give iteration plots and histograms for a small
selection of the estimated variables. Histograms for mean values from one cluster
at each time point are given in Figures 3 and 4. In addition, the iteration plot
for the mean values at Time 1, underlying the histogram in Figure 3, is given in
Figure 2. The values for each dimension are presented. The histograms in Figure
3 are located around the true mean values, whereas in Figure 4, there is a small
drift towards the right for all dimensions. The prior belief, put to 0 for all mean
values, may result in a higher estimate. Studying the probability estimates for
Time 2 in Table 1, one can see that the current Cluster 3 �steals� objects from
Cluster 2, which has mean values equal to -1, making the estimates of Cluster 3
a little higher than -2. It should be said that when estimating many values, a few
posterior distributions are expected to be skewed or not even to cover the right
value. We could expect the posterior estimates to cover the true value for about
95 out of a 100 estimates. For this example, we are estimating 24 mean values, 3
cluster probabilities, 54 variances and covariances, and 12 transition probabilities,
adding up to a total of 54 parameters.

0 2 4 6 8 10

x 104

0.5

1

1.5

2

2.5

3

3.5

Iterations

M
ea

n 
va

lu
es

Figure 2: Iteration plot over mean values from Cluster 4 at Time 1, underlying the
histograms in Figure 3.
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Figure 3: Histogram over mean values from cluster 4 at Time 1. The results from
95 000 iterations are presented for all three dimensions. Data are generated from mean
values equal to 1, 2 and 3.
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Figure 4: Histogram over mean values from cluster 3 at Time 2. The results from
95 000 iterations are presented for all four dimensions. Data are generated from mean
values equal to -2 in all dimensions.
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In Figure 5, we show the histograms for four out of the twelve transition proba-
bilities.

0.5 0.6 0.7 0.8 0.9
0

1

2

3
x 104 Going f rom 1 to 1

0 0.2 0.4 0.6 0.8
0

1

2

3
x 104 Going f rom 4 to 2

0 0.2 0.4 0.6 0.8
0

1

2

3
x 104 Going f rom 3 to 2

0 0.2 0.4 0.6 0.8
0

1

2

3
x 104 Going f rom 2 to 3

Figure 5: Histogram over four of the twelve transition probabilities in the transition
matrix estimated from 95 000 iterations. The probabilities from where data are generated
are 0.7, 0.3, 0.2 and 0.3.

In addition to the posterior information of the cluster parameters, the iterations
provide us with information about single objects. For each object we may get a
chart like the one presented in Table 3, showing the number of times a chosen
object is classi�ed into each development pattern. For instance, the chosen object
in Table 3 is generated from Cluster 1 at Time 1 with values [ 2:4 0:6 2:3 ] and
Cluster 1 at Time 2 with values [ 0:8 1:8 1:2 2:8 ]. In the iteration process the
object ended up in the correct cluster combination 88.3 percent of the time. The
rest of the time the object was misclassi�ed, mainly to the combination going from
Cluster 4 at Time 1 to Cluster 1 at Time 2; i.e. it has a slight tendency to be
misclassi�ed into Cluster 4 at the �rst time point. In the margins of Table 3 the
probabilities for each cluster at each separate time is presented. The mean values
for Cluster 1 at Time 1 are [ 3 0 1 ] and for Cluster 4 [ 1 2 3 ], leaving the
generated values [ 2:4 0:6 2:3 ] in between the clusters, but closer to the centre
of its true cluster.

Cluster 1 2 3 Prob.at Time 1
1 83 922 14 0 88:3%
2 327 1 0 0:3%
3 0 0 0 0:0%
4 10 730 6 0 11:3%

Prob.at Time 2 99:9% 0:01% 0:0%

Table 3: The frequency of the cluster allocation combination for a chosen object after
95 000 iterations, generated from cluster 1 at Time 1, and cluster 1 at Time 2.
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4.1.1 Comparison with K-means Clustering

K-means clustering is a non-hierarchical clustering algorithm, which means that
it does not create a tree structure to describe the groupings in data, but creates
rather a single level of clusters. As opposed to hierarchical clustering the number of
groups must be known prior to the clustering. K-means uses an iterative algorithm
that minimizes the sum of distances from each object to its cluster centroid, over
all clusters. This algorithm moves objects between clusters until the sum cannot
be further decreased. The result is a set of clusters that are as compact and
well-separated as possible.

We compare the performance of our method with k-means clustering for this data
set. This is done by looking at the classi�cation accuracy, i.e. the percentage
of the objects classi�ed into the correct cluster. We look at the two time points
separately and simultaneously to see how the methods perform in a longitudinal
manner. The two methods show very similar results. In addition, our model-based
method generates more information, such as probabilities for single objects and
uncertainty information on estimated parameters.

k-means Model-based
Classi�cation accuracy at Time 1 94% 93%
Classi�cation accuracy at Time 2 87% 87%
Classi�cation accuracy at Time 1 and 2 82% 81%

Table 4: The classi�cation accuracy for k-means and model-based clustering. Per-
centage of objects that are correctly classi�ed at the two time points separately and
simultaneously. In our model-based method, each object is classi�ed to the cluster it
most often ended up in during the 95 000 iterations.

4.2 Example 2

In the second example, we expand the algorithm to cover three time points. 2000
data objects are generated from six normal distributions in four dimensions at
Time 1, from four normal distributions in �ve dimensions at Time 2, and from
�ve normal distributions in six dimensions at Time 3. In plain numbers we have
n = 2000, J (t) = 6; 4; 5 and d(t) = 4; 5; 6 for t = 1; 2; 3: Mean vectors from where
data is generated are given in Table 5. The identity matrix is used as the covariance
matrix for all distributions. To give a visual picture of our multivariate data set,
we reduce data at each time point to their �rst two principal components. The
graphs are presented in Figure 6.
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Figure 6: Generated data from the three time points presented by their �rst two
principal components. Graph 1: Data at Time 1, generated from six distributions
in four dimensions. The two principal components stand for 80.9 percent of the total
variance. Graph 2: Data at Time 2, generated from four distributions in �ve dimensions.
The two principal components stand for 74.0 percent of the total variance. Graph 3:
Data at Time 3, generated from �ve distributions in six dimensions. The two principal
components stand for 70.5 percent of the total variance. Cluster 1: x:s, Cluster 2: circles,
Cluster 3: triangles, Cluster 4: plus signs, Cluster 5: stars, and Cluster 6: dots.

The prior speci�cations for the parameters to be estimated are as follows. Prior
mean values are set to 0 for all dimensions and clusters, i.e. �(1)j = [ 0 0 0 0 ]0 ;

�
(2)
j = [ 0 0 0 0 0 ]0, �(3)j = [ 0 0 0 0 0 0 ]0 ; with the precision parameters

�
(1)
j = �

(2)
j = �

(3)
j = 1: The identity covariance matrices are used for the covariance

priors �(1)j ; �
(2)
j ; and �

(3)
j ; where 	

(t)
j = m

(t)
j �

(t)
j with m(1)

j = m
(2)
j = m

(3)
j = 5

degrees of freedom for all j. Equal probabilities for clusters at the �rst time point
�1 = ::: = �6 = 10; and equal transition probabilities within each row of the
transition matrices �(1)1 = ::: = �

(1)
5 = 5 and �(2)1 = ::: = �

(2)
4 = 5 are used. Table

5 contains posterior estimates after 95 000 iterations together with values from
which data were generated. Covariance matrices are presented in the Appendix.
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Posterior Estimates at Time 1
Cluster 1 Cluster 2 Cluster 3

Mean

�2:89
�0:91
�2:69
�2:77

�3
�1
�3
�3

�1:08
0:01

�0:94
�0:91

�1
0

�1
�1

0:96
0:00
0:89
1:08

1
0
1
1

Prop. 0:10 0:10 0:16 0:15 0:16 0:20

Cluster 4 Cluster 5 Cluster 6

Mean

1:76
�0:71
1:80

�0:64

2
�1
2

�1

0:11
2:00
2:02
0:11

0
2
2
0

3:99
2:94
1:95
1:00

4
3
2
1

Prop. 0:13 0:10 0:16 0:15 0:29 0:30

Posterior Estimates at Time 2
Cluster 1 Cluster 2 Cluster 3 Cluster 4

Mean

�2:02
�1:95
�2:01
�1:94
�1:91

�2
�2
�2
�2
�2

0:08
0:12

�0:03
�0:05
�0:08

0
0
0
0
0

�0:81
�1:01
�0:96
�0:99
�0:87

�1
�1
�1
�1
�1

0:88
0:92
0:96
0:96
0:91

1
1
1
1
1

Prop. 0:26 0:27 0:26 0:31 0:22 0:18 0:26 0:24

Posterior Estimates at Time 3
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Mean

�0:91
�0:98
�1:08
�0:95
�0:98
�0:83

�1
�1
�1
�1
�1
�1

�0:10
1:94
0:12
1:01
0:10
2:05

0
2
0
1
0
2

1:07
1:06
0:88
1:02
1:04
1:02

1
1
1
1
1
1

3:14
2:08
0:88
0:07

�0:96
�2:15

3
2
1
0

�1
�2

�1:79
�1:07
0:03

�1:04
�1:76
�2:83

�2
�1
0

�1
�2
�3

Prop. 0:27 0:29 0:24 0:24 0:17 0:17 0:12 0:12 0:21 0:19

Table 5: The posterior estimates are the mean of 95 000 iterations. To the right are
values from which data were generated. The proportion estimates at Times 2 and 3
are a direct consequence of the proportion estimates at Time 1 and the two estimated
transition matrices.

The method manages to satisfactorily estimate the mean, covariance, and cluster
probability parameters according to the true origin of data. At each time point
there are a few, minor drifts from the original values. At Time 1, Cluster 4 has
somewhat higher values for probability and mean parameters than wanted. It
�steals� values from Cluster 3, which ends up with somewhat lower estimates
compared to the origin of data. The same phenomenon can be seen at Time 2,
where Clusters 3 and 4 attract objects from Cluster 2, which lies between the two,
and at Time 3, where Cluster 5 attracts some values from Cluster 1, since the two
clusters are close in space.
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The estimates of the transition matrices Q1 and Q2 are presented in Table 6.
The estimates are accurate with a few exceptions. The largest deviation between
estimates and true values are the transition probability from Cluster 6 to 2 between
Times 1 and 2. It deviates by 10 percent, being estimated at 0.3 compared to the
true value of 0.4. It is partly a consequence of the random realization that Cluster
2, at Time 2, has a 5 percent lower probability estimate than the original value,
leaving fewer objects in the path to Cluster 2 at Time 2. The same tendencies are
present for most values in the second column of the estimated transition matrix
Q1, i.e. independent of the classi�cation at Time 1, objects move to Cluster 2 at
Time 2 to a lower extent than they should.

Transition Matrices
Between Times 1 and 20BBBBB@

0:48 0:22 0:16 0:15
0:07 0:35 0:11 0:46
0:10 0:32 0:36 0:22
0:30 0:18 0:22 0:30
0:52 0:10 0:12 0:26
0:22 0:30 0:27 0:21

1CCCCCA

0BBBBB@
0:5 0:2 0:1 0:2
0:1 0:4 0:1 0:4
0:1 0:4 0:3 0:2
0:3 0:2 0:2 0:3
0:6 0:1 0:1 0:2
0:2 0:4 0:2 0:2

1CCCCCA
Between Times 2 and 30B@ 0:45 0:20 0:13 0:09 0:12

0:31 0:08 0:16 0:11 0:35
0:08 0:51 0:17 0:10 0:14
0:20 0:20 0:21 0:18 0:21

1CA
0B@ 0:5 0:2 0:1 0:1 0:1
0:3 0:1 0:2 0:1 0:3
0:1 0:6 0:1 0:1 0:1
0:2 0:2 0:2 0:2 0:2

1CA
Table 6: The posterior estimates of the two transition matrices. To the right are the
values from which data were generated.

The paths for an object generated from Clusters 5, 1 and 1 in time order, with
values

�
�1:6 2:5 2:9 1:9

�
at Time 1,

�
�4:1 �2:1 �2:4 �2:4 �1:6

�
at Time

2, and
�
�1:8 �0:1 �2:7 �0:2 �1:0 �1:3

�
at Time 3, are presented in Table 7.

During the 95 000 iterations the object is correctly classi�ed to its true cluster
combination 98:7 percent of the time. When it is wrongly classi�ed, it is mainly
to Cluster 5 at Time 3, which is the cluster closest to Cluster 1 at that time point.

Path 5; 1; 1 5; 1; 5 3; 1; 1 5; 3; 1 4; 1; 1 5; 3; 5 4; 1; 5 3; 3; 1 6; 1; 1 2; 1; 1 4; 3; 1
Times 98 834 796 158 100 100 5 2 2 1 1 1

Table 7: Path frequency for an object generated from the cluster path 5,1,1. Paths
not presented have no hits during the 95 000 iterations .

4.2.1 Comparison with K-means Clustering

Comparing classi�cation accuracy for the two models gives similar results. Since
the model-based clustering takes data from all time points into account when
allocating objects to clusters, one would expect it to be better than k-means
clustering. However, this does not seem to matter much for the results. The
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di¤erences in Table 8 are too small to claim one method is superior to the other,
as regards classi�cation accuracies.

k-means Model-based
Classi�cation accuracy at Time 1 88:9% 90:0%
Classi�cation accuracy at Time 2 79:8% 83:3%
Classi�cation accuracy at Time 3 91:1% 89:0%
Classi�cation accuracy at Times 1, 2 and 3 64:6% 67:0%

Table 8: The classi�cation accuracy for k-means and model-based clustering. Percent-
age of objects that are correctly classi�ed at the three time points separately and at all
time points together.

The advantages of taking information from all time points into consideration does
not seems to have signi�cant e¤ect. The number of time points in the two examples
are few. With longer time chains, the e¤ect would probably have been more
noticeable.

5 An Application to the Cognitive Development
of School Children

We study the development of school children between third and sixth grade as
regards their attitudes to school work and their marks. Our data contain attitudes
to three school subjects - Religion, Mathematics, and their mother tongue Swedish,
as well as their marks in the same three subjects. The data comes from the
longitudinal research project �Individual Development and Adaption�(IDA) from
the Department of Psychology at Stockholm University. Our material covers all
1200 children in the Swedish town of Örebro who were born in 1954. Data was
collected in 1965 and 1968. This is just a part of the material in the IDA database
which contains much more information about the children from 1965 until the
present. In the study, many variables relating to behavior, social relations, family
climate, psychological, mental, and socioeconomic factors were measured. Further
information about the project can be found in Bergman and Magnusson (1997)
and Magnusson (1988).

Attitudes are measured on a scale from 1 to 5 corresponding to �dislike it�, �don�t
like it very much�, �neither-nor�, �like it�, and �like it very much�. The marks are
measured on the same scale with 1 being the worst mark and 5 the best. The data
used was collected when the students were in third grade and then again when
they reached sixth grade. The analysis is made on 720 individuals without partial
non-response for all variables at both time points. Mean vectors and covariance
matrices for the whole data set are presented in Table 9, for each time point
separately.
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Time 1
Variables Mean Covariance

Attitude Swedish
Attitude Math
Attitude Religion
Mark Swedish
Mark Math
Mark Religion

2:42
3:06
2:73
3:19
3:25
3:15

1:38 0:21 0:29 0:21 0:06 0:10
1:33 0:13 0:13 0:25 0:02

1:50 �0:05 �0:06 0:13
0:93 0:58 0:46

0:87 0:40
0:65

Time 2
Variables Mean Covariance

Attitude Swedish
Attitude Math
Attitude Religion
Mark Swedish
Mark Math
Mark Religion

2:14
2:70
1:81
3:18
3:23
3:14

1:08 0:13 0:36 0:18 0:05 0:16
1:35 0:20 0:06 0:35 0:10

1:33 0:15 0:15 0:31
0:88 0:64 0:68

1:06 0:67
0:97

Table 9: Mean values and covariance matrices for 720 individuals in the IDA data set,
presented for each time point.

The period from the age of 9 to 12 is an important period of a young person�s life.
The spread in the population increases between those who are successful at school
and those who are not. The marks are relative, so this cannot be seen from Table
9; but it is seen that the covariances increase between the time points. It will thus
be interesting to see if the present method can capture something of the changes.

The knowledge about the cluster structure for this data set is very limited. Mean
priors are set to 3 for all dimensions and clusters, i.e. �(1)j = [ 3 3 3 3 3 3 ]0 ;

�
(2)
j = [ 3 3 3 3 3 3 ]0 for all j; with the precision parameters � (1)j = �

(2)
j = 1:

The identity covariance matrices are used for the covariance priors �(1)j and �(2)j ,

where 	(t)j = m
(t)
j �

(t)
j with m(1)

j = m
(2)
j = 5 degrees of freedom for all j. Equal

probabilities for clusters at the �rst time point �1 = ::: = �5 = 10; and equal
transition probabilities within each row of the transition matrices �(1)1 = ::: =

�
(1)
5 = 5 are used to let data stand for the majority of information in the estimation
process.

The algorithm was run for di¤erent numbers of clusters, and the solution with
�ve clusters at each time point was �nally chosen. The decision is based on a
procedure starting with two groups and successively adding one group at a time.
The procedure was done for each time point separately. Up until a number of
�ve groups, additional cluster structure appeared for the new cluster at both time
points. Adding new clusters after that resulted in two or more clusters with almost
identical characteristics. Cluster solutions with up to ten clusters were tried. The
result for the �ve-cluster solution is seen in Table 10. The estimates are based
on 95 000 (100 000 minus a burn-in of 5 000). As an example, the iteration plot
for the probability estimates at Time 2 are given in Figure 7. A clear graphical
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picture of the mean estimates is given in Figure 8, and the cluster division for data
through the �rst two principal components is given in Figures 9 and 10.

0 2 4 6 8 10

x 104
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Figure 7: Iteration plot for all �ve proportion parameters at Time 2. These values
are not generated directly but are a consequence of the generated proportion values at
Time 1 and the generated transition probabilities.

Time 1
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Attitude Swedish 2.29 2.77 2.22 2.74 2.15
Attitude Math 2.51 3.99 2.93 3.39 1.85
Attitude Religion 2.51 2.76 2.69 3.63 2.10
Mark Swedish 3.89 3.79 2.95 2.44 2.23
Mark Math 4.17 4.10 3.00 2.07 1.86
Mark Religion 3.71 3.53 3.01 2.60 2.45
Probability (percent) 18.3 23.8 34.4 12.6 10.9

Time 2
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Attitude Swedish 2.19 2.19 2.14 2.10 1.96
Attitude Math 3.06 3.06 2.74 2.25 1.64
Attitude Religion 2.02 1.97 1.77 1.57 1.74
Mark Swedish 4.12 3.73 3.04 2.39 2.09
Mark Math 4.95 3.99 3.00 2.01 1.58
Mark Religion 4.15 3.70 2.98 2.31 2.08
Probability (percent) 13.8 25.6 33.8 18.7 8.1

Table 10: Posterior estimates of the mean values for each cluster at the two time
points. Proportions between clusters are also given.

In the third grade, the attitudes are in general more positive than in the sixth.
The mark and attitude variables are more unanimous at Time 2 than at Time 1.
Good marks and a positive attitude towards a subject do not necessary go hand
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in hand for the students in third grade. The attitudes become more in line with
the mark variables at Time 2, and are also more even among groups compared to
Time 1, where they have a more sprawling nature. For both time points, Cluster
3 is the largest cluster, and lies more or less in the middle for all variables, making
it the �average group�.

It is interesting to see from Figure 8 that the classi�cation is not essentially one-
dimensional at third grade. If we classify the attitudes as P (Positive), M (Middle),
and N (Negative) and the marks as H (High), M (Median), and L (Low), the
�ve groups can be described as PH, PL, MM, NH, and NL. In the sixth grade,
the grouping is essentially one-dimensional and follows the marks more closely.
In particular, the mark in mathematics was central for the classi�cation. Even
though this classi�cation was done using longitudinal data, this can be seen as a
cross-sectional description.

Attitude Swedish Attitude Religion Attitude Math Mark Swedish Mark Math Mark Religion

1.5

2

2.5

3

3.5

4

4.5

1

Time 1

Cluster 1 (NH)
Cluster 2 (PH)
Cluster 3 (MM)
Cluster 4 (PL)
Cluster 5 (NL)

Attitude Swedish Attitude Religion Attitude Math Mark Swedish Mark Math Mark Religion
1

1.5

2

2.5

3

3.5

4

4.5

5
Time 2
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Cluster 2
Cluster 3
Cluster 4
Cluster 5

Figure 8: Mean estimates for the �ve clusters at Time 1 (top) and Time 2 (bottom).
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Figure 9: Data from Time 1 projected onto the �rst two principal components standing
for 56.2 percent of the total variance. Each observation is allocated to one of �ve clusters
by looking at which cluster the observation most often ended up in during the 95 000
iterations
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Figure 10: Data from Time 2 projected onto the �rst two principal components stand-
ing for 58.1 percent of the total variance. Each observation is allocated to one of �ve
clusters by looking at which cluster the observation most often ended up in during the
95 000 iterations.

20



Estimates of the transition probabilities between the two time points are presented
in Table 11. The clusters at both time points are ordered in descending order of
the marks. At each row, there are three probabilities appreciable greater than the
last two. Not surprisingly, transitions to clusters of similar characteristics have
the greatest probabilities.

The two groups NH and PH have almost identical transition probabilities. This
indicates that those who succeed at school their attitudes have almost no impor-
tance for their future development. On the other hand, the two groups NL and PL
di¤er. Those with positive attitudes are less likely to appear in the bottom group
(5) after three years compared to those with negative attitudes. One explanation
may be that children with positive attitudes are more likely to put more e¤ort into
their schoolwork.

Time 2
1 2 3 4 5

1 (NH) 0.25 0.45 0.22 0.04 0.04
2 (PH) 0.30 0.43 0.20 0.04 0.03

Time 1 3 (MM) 0.03 0.17 0.54 0.23 0.04
4 (PL) 0.05 0.06 0.35 0.39 0.15
5 (NL) 0.05 0.06 0.17 0.40 0.31

Table 11: Posterior estimate of the transition matrix between Times 1 and 2. Between
the demarcation lines are the three highest probabilities for each row. Given a cluster
membership at Time 1, transitions are more probable to clusters of similar characteristics
at Time 2.

6 Concluding Remarks

We have presented a model-based approach to longitudinal clustering. At each
time point, data is assumed to come from one of a number of multivariate normal
distributions, each with speci�c mean vector and covariance matrix. Transition
movements between clusters are studied through transition matrices. Di¤erent
transition probabilities apply for di¤erent transition periods. Changes over time
may occur naturally such as in the case of processes in nature, or be caused
by premeditated interference such as when di¤erent treatments are applied to a
population to see how it a¤ects transition patterns.

Application to two generated data sets gives promising results. The method man-
ages to estimate cluster parameters in a satisfactory way, as well as probabilities
between clusters at each time point, and transitions probabilities between clusters
at two consecutive time points. Comparing our method with k-means clustering
gives similar results for classi�cation accuracy, leaving our method with additional
information. An application is also made on a real data set consisting of data from
720 students. Data is collected at the third grade and then again at the sixth. A
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logical cluster solution at both time points appears together with a transition ma-
trix with high probabilities for transitions to clusters with similar characteristics.

The clustering for the real data set is based more on the mark variables than
the attitude variables. This can be seen for example by looking at the variance
estimates for each variable in each cluster. The variances are in general lower
for the mark variables than the attitude variables. The attitudes towards di¤er-
ent subjects among students in third grade, are more or less independent of their
marks in the same subjects. What the students enjoy is not dependent on their
performance. When the students reach sixth grade, their attitudes have a much
stronger connection with their marks. The cluster division at this time is basi-
cally ordered from clusters with negative attitudes and low marks to clusters with
positive attitudes and high marks.

For all estimated parameters, we are provided with the whole posterior distribu-
tion, giving us information about the accuracy of the point estimates. Moreover,
we obtain information about single objects. In k-means clustering and other de-
terministic methods each object is classi�ed in a group with probability 1. In our
model-based method we get probability estimates for each object�s belonging to
each cluster at each time point and also probabilities for all possible longitudinal
trajectories through time.

The method simultaneously estimates the parameters of the mixture components
and the transition probabilities, including information from each time point. With
a longitudinal viewpoint in mind, this is an advantage compared to an approach
where classi�cation is made at each time point before the transition probabilities
are estimated. For two or three time points, the advantages of using a longitudinal
viewpoint when clustering longitudinal data, were not signi�cant. A study, with
longer time chains, would get a better answer on how this approach impacts the
clustering result. However, once the time points and clusters increase, the number
of possible trajections from the �rst to the last time point for an object increases
drastically, which requires greater computer capacity.

Our approach is very general, allowing for clusters of di¤erent sizes, shapes, and
directions. In practice, it may be better to use a less general approach, for instance
constant variances between clusters. Another point of view is that the cluster
membership may not be the only information to use throughout the estimation.
There may be a correlation between the values at di¤erent clusters and/or times.
For example, if an object stays in a cluster where its values are a little below the
cluster means, this may have the e¤ect that its values are still somewhat low at a
later time. Dependencies between time points is not considered in this paper, but
can be built into the model.
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Appendix

Posterior Covariance Estimates at Time 1
Covariance 1 Covariance 2 Covariance 30BB@

1:12 �0:01 0:12 0:12
1:05 0:05 0:02

1:11 0:22
0:89

1CCA
0BB@
1:09 �0:05 �0:02 �0:04

1:01 0:00 0:03
1:03 0:01

1:06

1CCA
0BB@
1:00 �0:02 �0:10 0:03

0:82 �0:03 0:03
0:89 0:05

1:04

1CCA
Covariance 4 Covariance 5 Covariance 60BB@

1:14 �0:12 0:21 �0:12
1:06 �0:03 0:15

1:17 0:00
1:50

1CCA
0BB@
0:96 �0:13 �0:07 0:04

1:12 �0:04 0:00
1:01 0:04

1:07

1CCA
0BB@
1:04 �0:04 0:05 0:03

1:05 0:02 0:07
1:02 0:04

0:98

1CCA

Posterior Covariance Estimates at Time 2
Covariance 1 Covariance 20BBBB@

0:91 0:00 �0:11 �0:07 �0:08
0:98 0:00 0:10 0:04

1:08 0:01 0:00
1:08 0:02

1:11

1CCCCA
0BBBB@
1:17 0:10 0:01 0:09 �0:01

0:89 �0:05 �0:14 �0:04
0:94 �0:02 �0:04

1:02 0:00
0:99

1CCCCA
Covariance 3 Covariance 40BBBB@

1:05 0:06 0:15 0:09 0:13
0:97 �0:03 �0:01 0:15

1:07 0:02 0:13
1:20 0:16

1:32

1CCCCA
0BBBB@
1:16 0:07 0:13 �0:01 0:05

1:02 0:04 0:05 0:10
0:99 0:01 �0:06

1:00 �0:02
1:13

1CCCCA

Posterior Covariance Estimates at Time 3
Covariance 1 Covariance 20BBBBBB@

0:98 0:04 0:04 0:07 0:09 0:02
1:05 0:02 0:07 �0:06 �0:05

0:96 �0:10 0:01 0:03
1:06 0:00 0:10

1:08 0:07
1:00

1CCCCCCA

0BBBBBB@
0:96 0:02 �0:08 0:00 �0:11 0:12

1:02 �0:02 0:06 0:01 0:01
1:12 �0:04 0:11 �0:17

0:97 �0:08 �0:01
1:03 0:00

1:14

1CCCCCCA
Covariance 3 Covariance 40BBBBBB@

0:89 0:11 0:04 �0:02 �0:06 0:01
0:90 �0:05 0:08 �0:11 0:04

0:93 �0:02 0:01 �0:03
1:17 0:02 0:11

1:03 0:04
1:08

1CCCCCCA

0BBBBBB@
1:20 0:09 �0:16 �0:03 �0:06 �0:07

1:01 0:07 �0:03 �0:05 0:01
0:91 0:03 �0:01 0:04

0:93 �0:08 �0:08
1:02 0:03

1:02

1CCCCCCA
Covariance 50BBBBBB@

1:02 0:01 �0:02 �0:03 0:14 0:23
1:01 0:01 0:05 �0:01 �0:07

0:91 �0:04 �0:11 0:03
1:05 0:09 �0:05

1:02 0:17
1:24

1CCCCCCA
Table 12: Posterior estimates of covariance matrices for Example 2.
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Posterior Covariance Estimates at Time 1
Covariance 1 Covariance 20BBBBBB@

1:37 �0:11 0:20 0:23 0:01 0:13
0:91 0:10 0:01 0:08 �0:01

1:40 0:02 �0:03 0:18
0:62 0:12 0:26

0:25 0:05
0:51

1CCCCCCA

0BBBBBB@
1:00 0:01 0:36 0:10 0:01 0:03

0:06 0:01 0:01 0:01 0:01
1:22 0:03 0:12 0:13

0:56 0:15 0:24
0:33 0:10

0:44

1CCCCCCA
Covariance 3 Covariance 40BBBBBB@

1:38 0:18 0:24 0:21 0:00 0:08
1:40 0:06 �0:10 0:00 �0:15

1:64 0:03 0:00 0:20
0:57 0:00 0:20

0:02 0:00
0:51

1CCCCCCA

0BBBBBB@
1:34 0:13 0:04 0:15 0:01 0:00

0:65 0:04 �0:04 �0:01 �0:06
0:36 �0:06 �0:01 �0:01

0:56 0:02 0:13
0:15 �0:00

0:52

1CCCCCCA
Covariance 50BBBBBB@

1:75 �0:01 0:05 �0:05 �0:07 0:09
1:63 �0:58 �0:01 �0:06 �0:15

1:84 �0:20 �0:09 0:27
0:78 0:09 0:05

0:32 �0:01
0:50

1CCCCCCA
Table 13: Posterior estimates of covariance matrices at Time 1 for the real data study.

Posterior Covariance Estimates at Time 2
Covariance 1 Covariance 20BBBBBB@

1:03 0:26 0:33 �0:03 0:01 0:00
1:27 0:36 �0:13 0:04 �0:12

1:18 0:05 0:01 0:18
0:41 0:03 0:24

0:13 0:03
0:66

1CCCCCCA

0BBBBBB@
0:98 0:16 0:28 0:20 0:00 0:12

0:99 0:20 �0:12 0:01 �0:13
1:20 0:01 �0:00 0:12

0:56 0:00 0:30
0:04 0:00

0:52

1CCCCCCA
Covariance 3 Covariance 40BBBBBB@

1:17 0:12 0:33 0:17 �0:00 0:15
1:19 0:03 �0:19 0:00 �0:16

1:31 0:04 �0:00 0:26
0:51 0:00 0:26

0:02 �0:00
0:61

1CCCCCCA

0BBBBBB@
1:10 �0:04 0:50 0:26 �0:00 0:20

1:46 0:15 �0:27 �0:00 �0:16
1:49 0:10 0:00 0:24

0:52 0:00 0:27
0:05 0:01

0:55

1CCCCCCA
Covariance 50BBBBBB@

1:16 �0:05 0:22 �0:11 0:06 0:11
1:20 0:05 �0:13 �0:28 �0:02

1:57 0:19 0:03 0:30
0:53 0:11 0:18

0:62 0:18
0:52

1CCCCCCA
Table 14: Posterior estimates of covariance matrices at Time 2 for the real data study.
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