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BAYESIAN INFERENCE AND VARIABLE SELECTION IN

STRUCTURAL SECOND PRICE COMMON VALUE AUCTIONS

BERTIL WEGMANN AND MATTIAS VILLANI

Abstract. Over the last decade structural econometric models of auction data have gained
wide popularity, especially in the field of Internet auctions. To explore the determinants of
bidder and seller behaviour we model eBay auctions as independent second price common
value auctions, and assume a similar hierarchical Gaussian valuation structure as in Bajari and
Hortacsu (2003). We use an efficient Bayesian variable selection algorithm that simultaneously
samples the posterior distribution of the model parameters and does inference on the choice
of covariates. We show that the bid function approximation in Wegmann (2007) gives fast,
efficient and numerically stable inferences, and that the results are nearly identical to those
from using the exact bid function. This allows us to use the approximate bid function and get
fast explicit solutions of the equilibrium bid functions that can be inverted analytically, which
in turn gives much faster and numerically more stable evaluations of the likelihood function.
We apply the methodology to simulated data and to a carefully collected dataset of 1000 coin
auctions at eBay. The structural estimates are reasonable, both in sign and magnitude, and
the model fits the data well. Finally, we document good out-of-sample predictions from the
estimated model.
Keywords: eBay, Markov Chain Monte Carlo, Online auctions.

1. Introduction

Structural econometric models of auction data have become increasingly common in the vast
literature of auction theory. In a seminal piece of work, Laffont and Vuong (1996) emphasize
that auction models are particularly suited for structural estimation since many datasets are
available and well-defined game forms exists. Early examples of structural econometric auction
models are Paarsch (1992), who develops an empirical framework to test between a private or
a common value element in second price auctions of tree planting contract, and Elyakime et.
al. (1997) that estimate the distributions of the buyers’ and sellers’ private values by nonlinear
least squares from first price auction data on standing timber. More recently, economists have
developed structural estimation methods in the field of Internet auctions where high-quality
datasets can be collected for estimating auction models. Lucking-Reiley (2000) surveys 142
online auction sites and estimates the volumes of transactions at each individual auction site.
By far, eBay was estimated to be the world’s largest online auction site. At eBay, millions of
items are sold every day in thousands of categories from which rich datasets become available
to buyers and sellers through completed auction listings.

To explore the determinants of bidder and seller behaviour, Bajari and Hortacsu (2003)
examine a dataset of coin auctions from eBay. They argue that these coin auctions possess a
common value component and simplify their eBay auction model by assuming independency
across auctions. In second price Internet auctions with a fixed end time, Ockenfels and Roth
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2 BERTIL WEGMANN AND MATTIAS VILLANI

(2006) show that late bidding, i.e. that bidders tend to place bids very late in the auction,
can occur in auctions with both private and common values. Similarly, in the spirit of Wilson
(1977), Bajari and Hortacsu (2003) prove that late bidding is a Nash equilibrium in their
independent symmetric common value model of eBay auctions. As a consequence, they esti-
mate eBay auctions as independent second price common value auctions. In this environment
each bidder is assumed to place only one bid in the very last minute of the auction, so that
other bidders have no time to revise their bids. Wilcox (2000) and Schindler (2003) document
similar findings for last-minute bidding of Internet auctions with fixed end time.

Bajari and Hortacsu (2003) develop an interesting model for eBay auctions. In their model,
the common values are modelled as a heteroscedastic Gaussian regression, and entry into the
auctions is stochastically determined by a Poisson regression. The use of auction specific
covariates makes it possible to analyze aspects such as the effect of the seller’s minimum bid
on participation.

Following Bajari and Hortacsu (2003), we model eBay auctions as independent second price
common value auctions and assume a similar hierarchical Gaussian valuation structure as in
their model. Bajari and Hortacsu (2003) specify rather ad hoc which covariates to include in
the model. One of the contributions of our paper is the use of Bayesian inference methodology
that lets the data make this decision. We use an efficient Bayesian variable selection algorithm
that simultaneously samples the posterior distribution of the model parameters and does
inference on the choice of covariates. We conduct a small simulation study to check for the
sensitivity with respect to the priors and evaluate the general performance of the variable
selection procedure.

By exploiting a linearization property Bajari and Hortacsu (2003) reduce the computational
complexity significantly in their model, but the inverse bid function in the very complicated
likelihood function still needs to be evaluated by time-consuming numerical methods. A main
contribution of our paper is that we show that the approximate bid function in Wegmann
(2007) gives nearly identical inferences as when the exact bid function is used. This is an
important result since the approximate bid function yields fast explicit solutions of the equi-
librium bid functions that can be inverted analytically, which in turn gives much faster and
numerically more stable evaluations of the likelihood function.

We apply our Bayesian algorithm on a carefully collected dataset consisting of bids and
auction specific covariates from 1000 coin auctions at eBay. We perform reduced form analysis
as well as estimation of the full structural model, in both cases using Bayesian inference with
variable selection. The estimation results agree with intuition, model evaluations are excellent
and even out-of-sample predictions perform well.

Section 2 presents the general model for second price common value auctions and discuss the
equivalence to eBay auctions. Two censoring problems of the complicated likelihood function is
discussed and the bid function approximation in Wegmann (2007) is stated. Section 3 describes
Bayesian inference, specifies the prior distribution and describes the posterior variable selection
algorithm in detail. In section 4 we examine the performance of the variable selection on a
simulated data and compare the estimation results from the exact and the approximate bid
function. Our collected dataset of 1000 coin auctions are documented and analyzed in Section
5. The fit of the estimated model is evaluated by comparing the observed data to data simulated
from the model. Our finding is that estimated model gives an excellent fit. Section 5 concludes
with an evaluation of the out-of-sample prediction ability of the model on a test sample from
50 additional auctions. Section 6 concludes.
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2. Model for second price common value auctions

In an influential article Bajari and Hortacsu (2003, henceforth BH) model an eBay auction
as a second price common value auction with stochastic entry. In their model, the seller sets
a publicly announced minimum bid (public reserve price), r ≥ 0, and risk-neutral bidders
compete for a single object using the same bidding strategy. The value of the object, v, is
unknown and the same for each bidder at the time of bidding, but a prior distribution for v
is shared by the bidders. To estimate v, each bidder receives a private signal x from the same
distribution x|v. Thus, the auction involves symmetric bidders and a symmetric equilibrium
why we can focus on a single bidder without loss of generality.

Let fv(v) denote the probability density function of v, fx|v(x|v) the conditional probability
density function of x|v, and Fx|v(x|v) the conditional cumulative distribution function of x|v.

The bid function can then be written as1

(2.1) b(x, λ) =















P∞
n=2

(n−1)·pn(λ)·
R∞
−∞ v·f2

x|v
(x|v)·F n−2

x|v
(x|v)·fv(v) dvP∞

n=2
(n−1)·pn(λ)·

R∞
−∞ f2

x|v
(x|v)·F n−2

x|v
(x|v)·fv(v) dv

, if x ≥ x⋆

0, if x < x⋆ or b(x, λ) < 0,

where pn(λ) is the Poisson probability of (n−1) bidders in the auction with λ as the expected
value of the Poisson entry process. Bidders participate with a positive bid if their signal,
x, is above the cut-off signal level x⋆. Given an arbitrary bidder with signal x, let y be the
maximum signal of the other (n− 1) bidders. Then, the cut-off signal level is given in implicit
form as (Milgrom and Weber, 1982)

x⋆(r, λ) = inf
x

(EnE[v|X = x, Y < x, n] ≥ r) ,

which gives

(2.2) r(x⋆, λ) =
∞

∑

n=2

pn(λ) ·
∫ ∞
−∞ v · fx|v(x

⋆|v) · Fn−1
x|v (x⋆|v) · fv(v) dv

∫ ∞
−∞ fx|v(x⋆|v) · Fn−1

x|v (x⋆|v) · fv(v) dv
,

where r is the minimum bid set by the seller. Hence, the minimum bid r(x⋆, λ) is an explicit
function of x⋆ and λ.

Let vj denote the common value in auction j, where j = 1, ..., m, and let xij denote the
signal of the ith bidder in auction j, where i = 1, ..., nj , and nj is the number of bidders that
bid zero or place a positive bid in auction j. Similar to BH, we define an hierarchical normal
model for valuations as

vj
iid∼ N(µj , σ

2
j ), j = 1, ..., m,

xij |vj
iid∼ N(vj , κσ2

j ), i = 1, ..., nj ,

µj = z′µjβµ

σ2
j = exp

(

z′σjβσ

)

λj = exp
(

z′λjβλ

)

,

where zj = (z′µj , z
′
σj , z

′
λj)

′ are auction specific covariates in the regression models for (µj , σ
2
j , λj)

in auction j.
The model applies generally to second price common value auctions, but can also be cus-

tomized to eBay auctions. On eBay, similar single objects are being auctioned simultaneously
in parallel auctions. Bidders can thus choose to place bids in different auctions at the same
time, and strategic behaviour across auctions is therefore possible. Following BH, however,

1See Wegmann (2007) for a complete derivation of the implicit solution in BH.
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we assume that the auctions are independent conditional on a set of covariates. For a given
auction, Ockenfels and Roth (2006) show that last-minute bidding can occur at equilibrium
in auctions both with private and with common values, and BH show that last-minute bid-
ding on eBay is a symmetric Nash equilibrium. BH therefore model their eBay auctions as
independent second price common value auctions.

In Section 4 and 5 we assume this simplification of eBay auction models and use Bayesian
techniques to estimate the model parameters β = (κ, βµ, βσ, βλ). The likelihood function is
complicated because of two censoring problems: i) some bidders may draw a signal x < x⋆, in
which case their bids become unobserved, and ii) the highest bid is not observed because of
eBay’s proxy bidding system, see BH for a detailed description2.

We will now present the likelihood function for a single auction. Let b (x|β, r, z) be the
equilibrium bid function in a given auction conditional on the parameter coefficients β, the
minimum bid r, and the covariates z. Since the bid function is strictly increasing in signals,
an inverse bid function exists, which we denote as φ (b|β, r, z) . Let fb (b|β, r, z, v) be the prob-
ability density function of the bids conditional on (β, r, z, v) . Then, by variable substitution
from x|v to b, we get

(2.3) fb (b|β, r, z, v) = fx|v [φ (b|β, r, z) |v, κ, σ] φ
′
(b|β, r, z)

Let n be the number of bidders who submit a positive bid in a given auction and let b =
(b2, b3, . . . , bn) be the vector of observed bids3. Then, the likelihood function for that auction
is given by

fb (b2, b3, . . . , bn|µ, σ, λ, β, r, z)

=
N̄

∑

i=nj+1

p(i|λ) ·
∫ ∞

−∞
Fx|v (x⋆|v, κ, σ)i−n ·

{

1 − fx|v [φ (b2|β, r, z) |v, κ, σ]
}I(n≥1)

×
n

∏

i=2

fb (bi|β, r, z, v) · fv(v|µ, σ)dv,(2.4)

where p(i|λ) is the Poisson probability of i bidders in the auction with λ as the expected value,
I (n ≥ 1) is an indicator variable for at least one bidder in the auction, and N̄ is an upper
bound for the total number of potential bidders. For the sake of tractability, let N̄ = 30, as
in BH.

A single evaluation of the likelihood function requires numerical integration to compute
b (x|β, r, z) in (2.1), followed by additional numerical work to invert and differentiate b (x|β, r, z).
The same applies to compute x⋆. This costly procedure needs to be repeated for each of the
auctions in the data set. BH cleverly exploits a linearity property of the bid function that
confines a large portion of the numerical work to a single auction which is then extrapolated
linearly to the other auctions. Nevertheless, the likelihood evaluation suggested by BH is
not fast enough to be routinely used for inference. Instead, we take advantage of the linear
approximation of the bid function derived in Wegmann (2007). Wegmann’s approximation is
of an easily interpretable and computationally convenient form, defined as

b(x, λ) ≈ c + ωµ + (1 − ω)x,

2In some auctions the highest proxy bid is less than the second highest proxy bid plus one bid increment.
As a result, in those auctions the highest bid is actually observed and equal to the price the highest bidder
pays.

3The highest bid b1 is only observed if it is not higher than the second highest bid plus one bid increment,
which happens quite seldom. In our collected datamaterial of 1000 eBay auctions the highest bid was only
observed in 109 auctions. The likelihood function in (2.4) for such auctions is then modified accordingly.
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where c = −
√

κσγθ(λ−2)
γ(λ−2)+1+ κ

2

, ω =
κ
2

γ(λ−2)+1+ κ
2

, θ = 1.96 and γ = 0.1938. In addition, Wegmann

(2007) shows that the cutoff signal can be similarly approximated as

x⋆(r, λ) ≈ r − ∑∞
n=2 pn(λ)(cr + ωrµ)

∑∞
n=2 pn(λ)(1 − ωr)

,

where cr = −
√

κσγθ(λ−1)

γ(λ−1)+ 1

2
+κ

2

, and ωr =
κ
2

γ(λ−1)+ 1

2
+κ

2

. Moreover, the distribution of the bids in (2.3)

simplifies to b|v ∈ N [c+µ, (1−ω)2κσ2], which speeds up the likelihood evaluation even more.
Wegmann (2007) shows that his approximations are very accurate. We will later demonstrate
that the approximation can be safely used without distorting inferences.

3. Bayesian inference and variable selection

3.1. Prior. Bayesian inference combines the likelihood function in (2.4) with a prior distrib-
ution on the unknown model parameters. The numerical algorithms that we use for sampling
from the joint posterior distribution (see next section) can be used with any prior. This section
proposes a particular prior that can be used with very limited input from the user. Our prior
for βµ and βσ is motivated by the fact that the common values v = (v1, ..., vn)′ are modelled
as a heteroscedastic regression

(3.1) v = Zµβµ + ε, εi ∼ N(0, σ2
i ),

where σ2 = (σ2
1, ..., σ

2
n)′ = exp(Zσβσ). Premultiplying both sides of (3.1) by the n × n di-

agonal matrix D1/2 = Diag[exp(−z′σ1βσ/2), ..., exp(−z′σnβσ/2)] we obtain the homoscedastic
regression

(3.2) ṽ = Z̃µβµ + ε̃, ε̃i
iid∼ N(0, 1),

where ṽ = D1/2v, Z̃µ = D1/2Zµ and ε̃ = D1/2ε. We can now specify a g-prior (Zellner, 1986)
for βµ, conditional on βσ, as

βµ|βσ ∼ N [0, cµ(Z̃ ′
µZ̃µ)−1] = N [0, cµ(Z ′

µDZµ)−1].

where cµ > 0 is a scaling factor that determines the tightness of the prior. Setting cµ = n,
where n is the number of auctions in the sample, makes the information in the prior equivalent
to the information in a single auction (conditional on βσ), which is a useful becnhmark. The
marginal prior for βσ is also taken to be a g-prior

βσ ∼ N [0, cσ(Z ′
σZσ)−1].

Turning to the Poisson entry model, we use the following g-prior for βλ

βλ ∼ N [0, cλ(Z ′
λZλ)−1].

We use an inverse Gamma prior for κ, κ ∼ IG(κ̄, g), where κ̄ is the prior mean of κ and
g are the degrees of freedom. The user thus needs to specify the five hyper parameters cµ,
cσ, cλ, κ̄ and g. We document in Section 5 that the posterior distribution and the variable
selection inference are not sensitive to the exact choice of these prior hyperparameters.

Finally, in the variable selection we also need a prior for the covariate subsets. We will here
use the simple prior that includes covariates independently of each other with probability π,
where π is referred to as the prior inclusion probability.
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3.2. A Metropolis-Hastings algorithm for variable selection. It is clear from (2.4)
that the likelihood function for second price common value auctions is highly non-standard,
so the posterior distribution of the model parameters cannot be analyzed by analytical meth-
ods. The most commonly used algorithm for simulating from posterior distributions is the
Metropolis-Hastings algorithm, which belongs to Markov Chain Monte Carlo (MCMC) family
of algorithms, see e.g. Gelman et al. (2004) for an introduction. At a given step of the
algorithm, a draw βp is simulated from the proposal density f(βp|βc), where βc is the current
draw of the parameters (i.e. the most recently accepted draw). The proposal draw βp is then
accepted into the posterior sample with probability

a(βc → βp) = min

[

1,
p(βp|y)/f(βp|βc)

p(βc|y)/f(βc|βp)

]

,

where p(β|y) denotes the posterior density. If βp is rejected, then βc is included in the posterior
sample. This sampling scheme produces (autocorrelated) draws that converge in distribution
to p(β|y). The f(βp|βc) can in principle be any density, but should for efficiency reasons be
a fairly good approximation to the posterior density. One possibility is to let f(βp|βc) be

the multivariate-t density t(β̂,−H−1, h), where β̂ is the posterior mode of p(β|y), H is the
Hessian matrix at the mode and h is the degrees of freedom. The multivariate-t density is here
defined in terms of its mean and covariance matrix. The posterior mode and Hessian matrix
can be easily obtained using a standard Newton-Raphson algorithm with BFGS update of the
Hessian matrix (Fletcher, 1987).

The model analyzed here contains covariates in the mean and variance functions of the
common value distribution, as well as a set of covariates for modelling the Poisson entry
process. This opens up the issue of which covariates to include in the model and the importance
of the included covariates. Here we follow a Bayesian approach and compute the posterior
probability that a covariate belongs to the model, i.e. that it has a non-zero regression
coefficient. Starting with George and McCulloch (1993) and Smith and Kohn (1996), there
has been a number of algorithms that simultaneously draw the regression coefficients from the
posterior and does variable selection, all in a single run of the sampler. In particular, Nott
and Leonte (2004) propose an efficient algorithm for variable selection in generalized linear
models (GLM). Nott and Leonte’s algorithm requires that the gradient and hessian matrix
are available in closed form (which is the case for GLMs). The algorithm presented below is
of similar form, but can be applied to any problem as long as the likelihood and prior can be
evaluated numerically.

We present the algorithm for a general setting where β contains all the r model parameters
and D denotes the available data. Consider now setting a subset of the elements in β to
zero (any other value is also possible). In a regression situation, this is clearly equivalent to
selecting a subset of the covariates. Let J = (j1, ..., jr) be a vector of binary indicators such
that ji = 0 iff the ith element of β is zero. We can view these indicators as a set of new
parameters. We shall here for simplicity assume that the elements of J are independent a
priori with Pr(ji) = π for all i, so that π is the prior probabilty of including the ith covariate
in the model.4 The following algorithm samples β and J simultaneously using an extended
Metropolis-Hastings algorithm. The algorithm uses the following proposal density

f(βp,Jp|βc,Jc) = g(βp|Jp, βc)h(Jp|βc,Jc),

where βp and Jp are the proposed values for β and J , βc and Jc are the current values for β
and J , h is the proposal distribution for J and g is the proposal density for β conditional on

4A perhaps better way to view this is that the prior on the coefficients is given by a two-component mixture
density with one of the components degenerate at zero (Smith and Kohn, 1996).
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Jp. The Metropolis-Hasting acceptance probability then becomes

a[(βc,Jc) → (βp,Jp)] = min

(

1,
p(D|βp,Jp)p(βp|Jp)p(Jp)/g(βp|Jp, βc)h(Jp|βc,Jc)

p(D|βc,Jc)p(βc|Jc)p(Jc)/g(βc|Jc, βp)h(Jc|βp,Jp)

)

,

where p(D|βp,Jp) is the likelihood of the observed data conditional on β with zeros given by
Jp, p(β|J ) is the prior of the non-zero elements of β, p(J ) is the prior probability of J .

We will propose Jp using the two updating steps: i) randomly picking a small subset of
Jp and then always propose a change of the selected indicators (metropolized move), and ii)
randomly picking a pair of covariates (one currently in the model and the other currently
not in the model) and propose a switch of their corresponding indicators (switch move). Our
experience is that these two simple updating rules work well in practise. Note also that the
acceptance probability for these updates simplifies to

(3.3) a[(βc,Jc) → (βp,Jp)] = min

(

1,
p(D|βp,Jp)p(βp|Jp)p(Jp)/g(βp|Jp, βc)

p(D|βc,Jc)p(βc|Jc)p(Jc)/g(βc|Jc, βp)

)

.

More sophisticated ways to propose can be easily implemented, e.g. the adaptive scheme in
Nott and Kohn (2005), where the history of J -draws is used to adaptively build up a proposal
for each indicator.

The proposal density g(βp|Jp, βc) is obtained as follows. First we approximate the pos-

terior with all covariates included with the t(β̂,−H−1, h) density as described above for the
case without variable selection. We then propose βp|Jp from this multivariate t distribution
conditional on the zero restrictions dictated by Jp. Assume for notational simplicity that the
elements in β has been rearranged so that β = (β′

0, β
′
p)

′ where β0 are the p0 zero-restricted

elements of β under Jp, and βp are the non-zero parameters. Decompose β̂ and P = −H−1

conformably with the decomposition of β as

β̂ = (β̂0, β̂p)
′

P̂ =

(

P00 P0p

Pp0 Ppp

)

.

Using result from the conditional distributions of subsets of multivariate-t variables (see e.g.
Bauwens, Lubrano and Richard (1999, Theorem A.16)), we can now propose βp conditional
on β0 = 0 from

βp|(β0 = 0) ∼ t[β̂p + P−1
pp Pp0β̂0, Ppp, c(β0), v + p0].

c(β0) = 1 + β̂′
0(P̂00 − P̂0pP̂

−1
pp P̂p0)β̂0,

using the parametrization of the t distribution in Bauwens et al. (1999). A similar algorithm
has recently been suggested by Giordani and Kohn (2007) in their adaptive sampling frame-
work. They propose to use a mixture of multivariate normals as a proposal density rather
than a multivariate t. They document good performance on simulated data.

We use the mean acceptance probability and the inefficiency factor (IF) to measure the
efficiency of the Metropolis-Hastings algorithm. The inefficiency factor is defined as 1 +
2

∑K
k=1 ρk, where ρk is the autocorrelation at the kth lag in the MCMC chain for a given

parameter and K is an upper limit of the lag length such that ρk ≈ 0 for all k > K. The
inefficiency factor approximates the ratio of the numerical variance of the posterior mean from
the MCMC chain to that from hypothetical iid draws. Put differently, the IF measures the
number of draws needed to obtain the equivalent of a single independent draw. IFs close to
unity is therefore an indication of a very efficient algorithm.
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Table 1. Comparing the inferences from the exact and approx. bid functions

Parameter Mean Std Dev Incl prob

Exact Approx Exact Approx Exact Approx

lnκ −1.1312 −1.1215 0.1151 0.1117 1 1
β1 0.9955 0.9946 0.0048 0.0047 1 1
β2 −0.1336 −0.1360 0.0316 0.0352 0.9108 0.8921
β3 0.9531 0.9485 0.0128 0.0126 1 1
β4 −0.3001 −0.3039 0.0718 0.0686 0.9082 0.9113
β5 1.2533 1.2407 0.1009 0.1047 1 1
β6 0.2213 0.2242 0.0210 0.0212 1 1
β7 −0.0082 −0.0051 0.0332 0.0288 0.1189 0.0858
β8 −2.3584 −2.3689 0.1655 0.1658 1 1

Note: c = cµ = cσ = cλ = n, κ̄ = 0.25, g = 4, and π = 0.2.

4. Simulations

In this section we evaluate the performance of the variable selection procedure. We are
particularly interested in exploring the sensitivity of the posterior inclusion probabilities with
respect to changes in prior hyperparameters cµ, cσ, cλ, κ̄, and g. We set the prior inclusion
probability to π = 0.2 and κ̄ = 0.25 throughout the simulations. See Section 5 for a sensitivity
analysis with respect to π. We simulated 50 full data sets, each with 407 auctions, from the
eBay model in BH, using their posterior mean estimates as parameter values. The covariates
in the model were simulated independently to mimic the summary statistics in Table 1 and
2 in BH. The eBay auction model in BH for auction j, without a secret reserve price, can be
written as5

µj = β1BookValj + β2Blemishj · BookValj − 2.18

σj = β3BookValj + β4Blemishj · BookValj

logλj = β5 + β6LogBookValj + β7Negativej + β8
MinBidj

BookValj
.

To speed up the computations we use the approximate bid solution in (2.3). Wegmann (2007)
show that this approximation is very accurate by comparing the exact and approximate bid
function for several different sets of parameter values. In addition, we have simulated several
data sets to compare the inferences based on the approximate and exact bid function, and
the two always gave very similar results. As an example, Table 1 displays the results for a
randomly chosen dataset. The posterior inferences are nearly identical. We will therefore use
the approximate bid solution throughout the paper.

To check that the posterior variable selection procedure assigns small posterior inclusion
probabilities to insignificant covariates in the model, we include one superfluous covariate for
each regression in (µj , σj , λj), where each covariate is drawn independently from the stan-
dard normal distribution. In Figure 1, inclusion probabilities for each of the covariates in 50
simulated datasets are shown as Boxplots for the priors with g = 10 and different values on
c = cm = cs = cl. Other priors than g = 10 and cm = cs = cl were also used and gave very
similar results. As we can see in Figure 1, the inclusion probabilities for the most significant
variables are all close to one and differ very little across the different priors. The inclusion
probabilities for parameter β4 and β7 are low even if they were included with non-zero coef-
ficients in the data-generating process. This is not surprising, as they are quite close to zero

5See Appendix A for a detailed description of covariates.
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Figure 1. Boxplots of posterior inclusion probabilities across simulated data
sets for four different values of the prior hyperparameter c = cµ = cσ = cλ.
κ̄ = 0.25, g = 4 and π = 0.2 was used in all simulations.

in the generating model. As a consequence, the posterior variable selection process consider
them more or less as unnecessary covariates and removes them from the model with large
probability. Another finding from Figure 1 is the phenomena of higher inclusion probabilities
for insignificant variables as the prior information becomes more informative, which corre-
sponds to smaller scale factors c. Since the prior information is tighter around zero, the cost
of including a covariate with a small coefficient is smaller which in turn increases the posterior
inclusion probability.

It turns out that a simple way to characterize the posterior inclusion probabilities is to use
Bayesian t-ratios. We define these ratios as

tBayesian =
θ̂

s(θ̂)
,

where θ̂ and s(θ̂) are the posterior mode and the approximate/asymptotic posterior devia-
tion, respectively, from the optimization of the posterior function. In Figure 2, the inclusion
probabilities increase sharply around a threshold whose value depends on the prior hyperpa-
rameters (the dashed line in Figure 2 marks out the 1.96 threshold used in classical t-tests at
a 5% significance level). As c decreases (tighter prior) the thresholds move to the left and the
curves flatten out. Posterior distributions with more informative prior distributions requires
smaller t-ratio values for a certain inclusion probability.

Finally, most of the Metropolis-Hastings runs gave an acceptance probability in the range
0.6-0.8, only a few below 0.1, and none below 0.25 for the prior cm = cs = cl = n.

5. Application to eBay auction data

At eBay, millions of items are listed into thousands of categories and subcategories. To
search for an item, eBay provides a search engine which allows buyers to specify auction
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Figure 2. The relation between Bayesian t-ratios and the posterior inclusion
probabilities for the simulated datasets. Each subplot corresponds to a different
value of the prior hyperparameter c = cm = cs = cl.

characteristics, e.g. by keywords, location, price range, or ending time. In addition, the
search engine is also a useful tool to review completed auctions for recent transactions. In
either case, the listings typically contain detailed description of the item, the quantity that is
being sold, seller characteristics, reservation price policy, the highest bidder, and current bids
as reported on ”‘the bid history page”’6. Hence, high-quality datasets with detailed auction
characteristics and all but the highest bid can be collected at eBay and be used for estimating
auction models.

In this section, we document and analyze our collected eBay auction data and examine the
performance of the variable selection algorithm in Section 3.

5.1. Description of the data. The data used for estimation was collected between November
7 to December 19, 2007 and December 27, 2007 to January 22, 2008 from completed eBay
auctions, and contains auction characteristics and bids from 1000 auctions of U.S proof sets7.

6Not all bids are observed. The bid of the highest bidder is only observed if his bid is below the next highest
bid plus one bid increment.

7U.S. proof sets can be defined as the specially packaged set of Proof coins issued annually and sold by the
U.S. Mint. The proof set is characterized by the different denominations of proof coins struck by a nation in a
particular year.
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We exclude multi-unit objects, auctions with a Buy It Now option 8, and Dutch auctions.
We also collected data from 50 additional auctions between January, 23 to January, 29 2008
that are used in Section 5.4 to evaluate the out-of-sample predictions of auction prices. The
bids recorded on eBay’s Bid History Page are supposed to correspond to the final bids for
each bidder. A careful inspection of the bids reveals, however, that some bids are only a tiny
fraction of the object’s book value, and cannot realistically represent serious final bids. We
will therefore exclude the most extreme bids in our main analysis. A bid b is excluded if
b ≤ δ ·min(BookValue,Price), where δ = 0.25 in the benchmark estimations (this excludes 107
bids from the 3742 bids in the sample). We also present results for the case where all bids are
used in the estimation (δ = 0) and δ = 0.5 (431 bids removed). As in BH, we believe that
these coin auctions on eBay possess a common value component and for simplicity we model
the eBay auctions as independent second price common value auctions9.

In Table 2, summary statistics are shown for all collected covariates10 and bids in all auc-
tions, see Appendix A for a detailed description.

Table 2. Summary statistics for the eBay data

Variable Mean Std Dev Min Max µ σ λ
Book Value($)10 32.30 37.26 7.50 399.50 x x x
Price/Book Value, no Blemish 0.76 0.30 0.16 3.63
Price/Book Value, Blemish 0.61 0.24 0.05 1.20
Minor Blemish 0.09 x x x
Major Blemish 0.03 x x x
Number of Bidders 3.74 2.70 0 15.00
Minimum Bid/Book Value 0.35 0.34 0 1.34 x
Seller’s Feedback Score 2427 2883 0 12568
PowerSeller 0.53 x x x
ID Seller 0.06 x x x
Unopen 0.10 x x x
%Sold 0.86

The last three columns specifies the covariates used in the models for µ, σ, and λ in the next
sections.

5.2. Preliminary results from reduced form regressions. To specify suitable functional
forms for the regressions in (µ, σ, λ), we created scatterplots to illustrate the linear relationship
between the dependent variables and functions of non-dummy covariates. Since we do not
observe µ, σ, or λ in the data we derive simple estimates for each auction as follows.

The approximate bid solution in (2.3) as a function of (µ, σ) can be written as

b(x) = hσ + ωµ + (1 − ω)x,

where

h = −
√

κγθ(λ − 2)

γ(λ − 2) + 1 + κ
2

, and ω =
κ
2

γ(λ − 2) + 1 + κ
2

.

8In some auctions buyers have the option to purchase the item directly at a certain price. If so, the auction
is ended and the buyer pays an amount equal to the Buy It Now price.

9See BH for a complete treatment of the equivalence between the eBay auction format and a second price
common value auction.

10
BookValue is replaced with ln (BookValue) for the regressions in σ and λ.
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Table 3. Posterior inference for the reduced form regressions

Coeff Covariate Mean Stdev t-ratio Incl Prob IF
κ 3.042 − − − −
µ Const 24.191 0.293 88.377 1.000 5.1981

BookStd 0.672 0.008 78.600 1.000 2.6350
Book*Power 0.031 0.011 2.183 0.394 1.6808
Book*ID −0.008 0.024 −0.763 0.007 −
Book*Unopen 0.235 0.016 14.187 1.000 3.1463
Book*MinBlem 0.040 0.017 2.084 0.166 −
Book*MajBlem −0.243 0.021 −12.129 1.000 3.3420
Book*LargNeg −0.017 0.013 −0.666 0.019 −
σε 5.720 0.161 − − 2.544
R2 94.5%

σ Const 2.247 0.059 29.568 1.000 2.066
LBookStd 2.054 0.075 26.881 1.000 1.682
LBook*Power −0.025 0.035 −0.246 0.009 −
LBook*ID 0.103 0.076 1.159 0.017 −
LBook*Unopen 0.272 0.044 5.812 1.000 1.786
LBook*MinBlem 0.038 0.058 0.405 0.015 −
LBook*MajBlem −0.171 0.080 −1.998 0.101 −
LBook*LargNeg 0.096 0.050 2.009 0.073 −
σε 1.3092 0.036 − − 1.993
R2 57.2%

λ Const 1.059 0.023 34.966 1.000 2.124
Power −0.028 0.038 −0.559 0.021 −
ID −0.402 0.092 −4.275 1.000 1.618
Unopen 0.439 0.049 8.800 1.000 1.601
MinBlem −0.045 0.058 −0.871 0.048 −
MajBlem −0.232 0.091 −2.420 0.664 1.615
LargeNeg 0.078 0.054 1.260 0.077 −
LBookStd −0.112 0.029 −4.173 0.992 1.858
MinBidStd −1.901 0.070 −26.679 1.000 2.024

Upper: linear regression with µ̂ as dependent variable.

Middle: linear regression with lnσ̂2 as dependent variable.

Lower: Poisson regression with the number of bidders as dependent variable.

µ̂ and σ̂2 are the MLE conditional on the posterior mean of κ from the structural model.

Since x|v iid∼∼ N
[

µ, κσ2
]

, we have

b(x|v)
iid∼ N

[

µ + hσ, (1 − ω)2κσ2
]

.

The likelihood function for µ and σ2 is then obtained by integrating out v.
It is now straightforward to verify that the maximum likelihood estimates of µ and σ2,

conditional on κ, are given by

(µ̂, σ̂2) =

(

b̄ − hsb

(1 − ω)
√

κ
,

s2
b

(1 − ω)2κ

)

,

where we make the usual correction of the sample variance, defined as s2
b =

Pn
i=1

(bi−b̄)2

n−1 .
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Figure 3. Scatterplots of µ̂, ln σ̂2, and ln(nj + 1) against the suitable trans-
formations of the covariate BookValue, and ln(nj + 1) against the non-dummy
covariates in the entry model.

Note that these estimates can only be computed for auctions with at least two bidders (if the
highest bid is observed, otherwise three) why the results should be treated with care. Figure
3 displays scatterplots of µ̂ and ln σ̂2 against the suitable transformations of the covariate
BookValue, and the relationship seems to be appropriately linear. Figure 3 also plots ln(nj+1),
where nj is the number of bidders with non-zero bids in auction j, against the non-dummy
covariates in the entry model. The relationships are again very close to linear.

As a precursor to the analysis of the full structural model in Section 5.3, we perform separate
reduced form regressions with µ̂ and ln σ̂2 as dependent variables, respectively. The estimates
of µ and σ2 are conditioned on κ = 3.042, the posterior mean in the benchmark structural
model estimated in the next section. Other values for κ, e.g. the estimate in BH of κ = 0.25,
did not have any major effects on the results. Table 3 (upper and middle parts) presents the
results from a full Bayesian analysis with variable selection using the algorithm in Section 3.2.
Note that the non-dummy covariates have been standardized (demeaned) and a constant is
added to each model. As an example, BookStd is the covariate BookValue minus its mean.
This reduces the correlation among the coefficients, which is beneficial for numerical stability.
The same standardizations are also used in the structural model in Section 5.4.

The covariates BookStd and interactions of book values and Unopen and MajBlem clearly
belong in the model for µ̂, and their estimated coefficients are large and of the expected sign.
Similar results were also obtained from a Bayesian Tobit regression with auction prices as
the dependent variable11, see Table 4. The strongest predictors in the regression for ln σ̂2 are
LBookStd (standardized ln(BookValue)), and the interaction with Unopen.

11In auctions where the objects remain unsold, Tobit regressions use the information that the price is smaller
than the auctions’ minimum bids.
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Table 4. Posterior inference for the Tobit price regression

Covariate Mean Stdev t-ratio Incl Prob IF
Const 27.177 0.230 95.824 1.000 1.789
BookStd 0.757 0.007 86.353 1.000 1.796
Book*Power −0.005 0.009 −0.557 0.039 −
Book*ID 0.032 0.021 1.676 0.118 −
Book*Unopen 0.321 0.018 17.322 1.000 2.063
Book*MinBlem 0.003 0.014 0.291 0.035 −
Book*MajBlem −0.151 0.023 −6.673 1.000 1.601
Book*LargNeg 0.006 0.013 0.398 0.032 −
σε 6.664 0.158 − − 1.938

Tobit regressions with auction prices possibly censored at the minimum bid as dependent variable.

Finally, the last part of Table 3 gives the result for a Poisson regression with the number
of bidders with a non-zero bid as the dependent variable. Here the covariates MinBidStd
(standardized MinBid/BookValue), LBookStd, and the interactions LBook*ID, LBook*Unopen,
LBook*MajBlem come out as the most relevant covariates. All significant coefficients are of the
expected sign, except the negative coefficient on LBookStd and possibly also the result that
eBay verified sellers (ID) seem to attract less bids, all else equal. The negative coefficient on
LBookStd in the Poisson regression is somewhat unexpected, especially given positive relation
in the scatterplot in Figure 3. These conflicting pieces of evidence can be reconciled, however,
by noting that LBookStd is rather strongly negatively related to MinBidStd, the main driver
of the entry process.

The Metropolis-Hastings acceptance probabilities for all reduced form regressions were very
high (70-90%), the inefficiency factors are close to unity, and convergence was excellent.

5.3. Estimation results. Table 5 reports our parameter estimates for the structural model,
specified in Table 2 in Section 5.1. With a few exceptions, the parameter estimates in Table
5 agree fairly well with the reduced form estimates. Just as in Section 5.2 the estimated
coefficients are mostly of the expected sign and have reasonable magnitudes. The (significant)
negative coefficient on LBookStd in the model for λ is puzzling. The same result was also
obtained in the reduced form analysis, but here the this covariate is highly significant. The
covariates BookStd and LBookStd play a very central role in the models for µ and σ, respec-
tively. The large negative sign for MinBidStd is explained by the fact that a higher minimum
bid implies a higher cut-off signal, which reduces the number of positive bids. Overall, the
posterior inclusion probabilities are either close to 0 or 1, which gives conclusive evidence on
which covariates that are important for explaining valuations and participation in eBay auc-
tions for common value objects. It interesting to note that eBay’s detailed seller information
seems to be of little use to buyers: the covariates Power, ID and LargNeg (dummy for a large
proportion of negative feedbacks from buyers) are almost invariably removed from the model
by the algorithm. We experimented with other transformations of the negative feedback score
and also transformations of the overall feedback score as substitutes for Power and ID, with
unchanged results.

To check for the sensitivity of the prior hyperparameters, we repeated the estimations using
several different priors. In Table 6 we use the estimated model in Table 5 as a benchmark
and compare posterior means given various prior settings. Almost all parameter estimates are
insensitive to changes in priors, especially in the model for λ. Notable changes only appear
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Table 5. Posterior inference for the structural model

Parameter Covariate Mean St Dev t-ratio Incl prob IF

κ - 3.042 0.155 - - 27.668
µ Const 28.334 0.213 -12.462 1.000 10.857

BookStd 0.733 0.010 58.062 1.000 15.728
Book*Pow 0.022 0.011 1.775 0.021 -
Book*ID 0.116 0.030 3.420 0.967 31.986
Book*Unopen 0.392 0.027 13.928 1.000 13.413
Book*MinBlem -0.028 0.019 -1.958 0.020 -
Book*MajBlem -0.252 0.028 -8.984 1.000 9.827
Book*LargNeg -0.006 0.020 0.682 0.008 -

log(σ2) Const 3.340 0.027 93.668 1.000 23.766
LogBookStd 1.477 0.035 43.556 1.000 32.272
LBook*Pow 0.008 0.015 0.996 0.007 -
LBook*ID 0.048 0.033 1.582 0.010 -
LBook*Unopen 0.283 0.020 12.249 1.000 15.164
LBook*MinBlem -0.007 0.020 -0.867 0.008 -
LBook*MajBlem 0.017 0.031 0.897 0.007 -
LBook*LargNeg 0.043 0.019 2.109 0.044 -

log(λ) Const 1.448 0.022 60.094 1.000 38.941
Pow 0.054 0.041 0.824 0.008 -
ID -0.076 0.058 -1.455 0.005 -
Unopen 0.299 0.042 7.366 1.000 23.823
MinBlem -0.025 0.036 -1.475 0.004 -
MajBlem -0.145 0.075 -2.117 0.012 -
LargNeg 0.027 0.030 1.343 0.008 -
LogBookStd -0.087 0.025 -3.562 0.865 25.164
MinBidStd -1.452 0.076 -25.307 1.000 65.725

Note: c = n, κ̄ = 0.25, g = 4, and π = 0.2. The last column displays the inefficiency factors.

in the model for σ, where the estimated value of the constant increases and the estimated
value of the parameter for LBookStd decreases with more prior information. The tighter
prior distribution around zero reduces the impact of LBookStd and to compensate for this the
estimated constant is increased. The next to last column in Table 6 shows that varying the
prior inclusion probabilty, π, does not affect the posterior mean estimates, as expected.

Finally, the last column of Table 6 gives the posterior mean estimates when the benchmark
model is estimates on all bids (δ = 0), see Section 5.1. The main difference in results is in
κ and σ who both naturally increases as we face a wider dispersion in bids. Estimations
with δ = 0.5 (results not shown) reduced κ to 2.27. It should be noted however that the
relation between κ and the unconditional variance of the bids is complicated by the bidders’
strategic behavior. One way to see this is by looking at the unconditional variance of the bids
var(b) = (1 − ω)2(κ + 1)σ2 under the approximate bid function. var(b) obviously increases
with κ via the factor (κ + 1), but κ also affects var(b) via ω (the weight placed on the prior
mean) in a non-linear fashion that depends on λ. Figure 4 displays Std(b) as a function of κ
for σ2 = 1, for different values on λ. It is seen from Figure 4 that Std(b) is fairly insensitive
to κ over a large region. There are larger differences in Std(b) across λ for a given κ.
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Table 6. Sensitivity analysis - Posterior means

Coeff Covariate Bench c = n/16 c = n/64 c = n/256 π = .5 δ = 0
κ 3.042 3.245 3.676 3.217 3.013 3.251
µ Const 28.334 28.441 28.544 28.974 28.2385 28.536

BookStd 0.733 0.728 0.705 0.610 0.730 0.743
Book*Power 0.022 0.021 0.025 0.017 0.022 0.018
Book*ID 0.116 0.108 0.093 0.068 0.116 0.107
Book*Unopen 0.392 0.382 0.344 0.275 0.392 0.389
Book*MinBlem −0.028 −0.031 −0.024 −0.018 −0.026 −0.045
Book*MajBlem −0.252 −0.254 −0.246 −0.228 −0.255 −0.244
Book*LargNeg −0.006 −0.005 0.003 −0.001 0.003 −0.003

σ Const 3.340 3.415 3.522 3.612 3.333 3.441

LBookStd 1.477 1.367 1.176 0.956 1.473 1.646

LBook*Power 0.008 0.013 0.028 0.029 0.007 0.010
LBook*ID 0.048 0.033 0.029 −0.006 0.039 0.051
LBook*Unopen 0.283 0.259 0.218 0.146 0.283 0.256
LBook*MinBlem −0.007 −0.008 0.014 0.046 −0.021 0.025
LBook*MajBlem 0.017 0.030 0.057 0.072 0.018 −0.066

LBook*LargNeg 0.043 0.040 0.046 0.050 0.038 0.028
λ Const 1.448 1.441 1.428 1.400 1.446 1.470

Power 0.054 0.007 0.026 0.014 0.021 0.025
ID −0.076 −0.072 −0.066 −0.086 −0.073 −0.054
Unopen 0.299 0.302 0.281 0.317 0.305 0.279
MinBlem −0.025 −0.059 −0.055 −0.057 −0.031 −0.013
MajBlem −0.145 −0.131 −0.074 −0.139 −0.159 −0.173
LargeNeg 0.027 0.044 0.007 0.035 0.034 0.013
LBookStd −0.087 −0.072 −0.058 −0.090 −0.091 −0.051
MinBidShare −1.452 −1.436 −1.437 −1.507 −1.472 −1.437

The columns display the posterior mean of each parameter conditional on inclusion.

The bench column displays the results for the benchmark model, the other columns are results for

Variations of the benchmark model. Bold numbers indicate that the estimate lies outside the

benchmark model’s 95% posterior credibility interval.

In Table 7, we also check for the sensitivity of the prior hyperparameters by comparing
posterior inclusion probabilities for various prior settings and using the estimated model in
Table 5 as a benchmark. Overall, small inclusion probabilities for the benchmark model tend
to increase as the prior information becomes more precise (c increases), which is exactly the
same expected result as we discerned from the simulation study in Section 4. Again the results
are not overly sensitive to c. Furthermore, increasing the prior inclusion probability from 0.2
to 0.5 does not overturn the previous results on the variable selection inference.

5.4. Model evaluations and predictions. We will now evaluate the fit of the model by
comparing the observed data to simulated data from the estimated benchmark model. Given
the observed auction specific covariates, we simulated 100 new complete data sets for each of
a 100 systematically sampled posterior draws of the model parameters. This gives us 10.000
full data sets, each with bids from a 1000 auctions.

Following BH, we compare the observed and simulated data through two summary statistics:
within-auction bid dispersion and cross-auction heterogeneity. As we can see, in Figures 5 and
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Figure 4. The unconditional standard deviation of bids as a function of the
variance scale parameter κ.

6 the observed within-auction bid dispersion and the cross-auction heterogeneity are very well
captured by the model. This is not the case in BH where they greatly underestimate within-
auction bid dispersion and overestimate cross-auction bid dispersions.

A more severe test of the model is to evaluate its out-of-sample predictions. To test this, we
use the estimated benchmark model in Section 5.3 to predict a fresh data set of 50 additional
auctions of U.S. proof sets. Given the covariates from these auctions, we simulated price
distributions for each auction in a similar way as above. The parameters are drawn from the
posterior distribution computed using only the previously analyzed 1000 auctions. Figures
1 and 2 display the predictive distributions in the 50 out-of-sample auctions. Note these
distributions have three components: i) a probability that the item is not sold (Pr(No)), ii) a
point mass at the minimum bid (Pr(Min)), which is the price when there is a single bidder in
the auction, and iii) a continuous density when there is more than one bidder. The predictive
price distributions look reasonable and capture the observed prices very well in most cases.
This fact together with the good fit of the bid dispersion indicates strongly that our estimated
eBay auction model is quite accurate in explaining seller and bidder behaviour at eBay.
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Table 7. Sensitivity analysis - Posterior inclusion probabilities

Coeff Covariate Bench c = n/16 c = n/64 c = n/256 π = .5 δ = 0
κ − − − − − −
µ Const 1.000 1.000 1.000 1.000 1.000 1.000

BookStd 1.000 1.000 1.000 1.000 1.000 1.000
Book*Power 0.021 0.111 0.223 0.213 0.144 0.037
Book*ID 0.967 0.977 0.946 0.838 0.982 0.762

Book*Unopen 1.000 1.000 1.000 1.000 1.000 1.000
Book*MinBlem 0.020 0.066 0.089 0.134 0.050 0.061
Book*MajBlem 1.000 1.000 1.000 1.000 1.000 1.000
Book*LargNeg 0.008 0.031 0.064 0.072 0.016 0.007

σ Const 1.000 1.000 1.000 1.000 1.000 1.000
LBookStd 1.000 1.000 1.000 1.000 1.000 1.000
LBook*Power 0.007 0.028 0.295 0.772 0.038 0.021
LBook*ID 0.010 0.037 0.056 0.071 0.096 0.015
LBook*Unopen 1.000 1.000 1.000 1.000 1.000 1.000
LBook*MinBlem 0.008 0.020 0.048 0.631 0.019 0.008
LBook*MajBlem 0.007 0.044 0.133 0.786 0.019 0.069
LBook*LargNeg 0.044 0.203 0.547 0.915 0.235 0.010

λ Const 1.000 1.000 1.000 1.000 1.000 1.000
Power 0.008 0.021 0.031 0.069 0.016 0.001
ID 0.005 0.019 0.058 0.136 0.025 0.006
Unopen 1.000 1.000 1.000 1.000 1.000 1.000
MinBlem 0.004 0.027 0.055 0.105 0.010 0.001
MajBlem 0.012 0.053 0.037 0.246 0.090 0.159

LargeNeg 0.008 0.025 0.017 0.063 0.019 0.003
LBookStd 0.865 0.701 0.472 0.979 0.986 0.070

MinBidShare 1.000 1.000 1.000 1.000 1.000 1.000

The columns display the posterior inclusion probability of each parameter.

The bench column displays the results for the benchmark model, the other columns are results for

variations of the benchmark model. Bold numbers indicate a difference from bench by more than 0.1.



BAYESIAN INFERENCE IN SECOND PRICE AUCTIONS 19

0 0.5 1 1.5 2 2.5 3 3.5

Actual data

Within auction dispersion

0 0.5 1 1.5 2 2.5 3 3.5

Simulated data

Within auction dispersion

Figure 5. Posterior predictive check of the within-auction dispersion. The
within-auction dispersion is defined as the difference between the highest ob-
served bid and the lowest bid divided by the auctioned item’s book value.
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Figure 6. Posterior predictive check of the cross-auction heterogeneity. The
figure displays histograms of the bids divided by the corresponding book value
in that auction.
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Figure 7. Out-of-sample prediction for the first 25 auctions in the evaluation
sample. Each subplot displays the realized price marked out by a star (if
the item is sold), the minimum bid (vertical dotted line), and the book value
(vertical dashed line). Pr(No) and Pr(Min) are the predictive probabilities of no
bids and a single bid (in which case the winner pays the seller’s posted minimum
bid), respectively. The solid curve is the predictive density conditional on at
least two bids.
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Figure 8. Out-of-sample prediction for the last 25 auctions in the evaluation
sample. Each subplot displays the realized price marked out by a star (if
the item is sold), the minimum bid (vertical dotted line), and the book value
(vertical dashed line). Pr(No) and Pr(Min) are the predictive probabilities of no
bids and a single bid (in which case the winner pays the seller’s posted minimum
bid), respectively. The solid curve is the predictive density conditional on at
least two bids.
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6. Conclusions

In contrast to private value auctions, the estimation of models within the common value
framework is technically challenging. An important result of our paper is therefore the nearly
identical inferences for the approximate bid function in Wegmann (2007) and the exact bid
function. Thus, the approximate bid function is used to get fast, explicit and analytically
invertible solutions of the equilibrium bid function, which in turn gives much faster and nu-
merically more stable evaluations of the likelihood function.

We have shown how efficient Bayesian inference with variable selection can be performed
in a general setting, including structural models for second price common value auctions.
Simulated and real data was used to document the good performance of algorithm, and to
investigate the sensitivity of the variable selection to changes in the prior hyperparameters.
Bayesian t-ratios turned out to be a simple way to characterize the posterior inclusion prob-
abilities.

We collected a high-quality dataset from coin auctions on eBay and analyzed it both with
reduced form regressions and using a structural model for second price common value auctions.
The results pointed strongly to book values as the most important predictor of common values.
The minimum bid turned out to be the main determinant of the number of bids in an auction.
Interestingly, the detailed seller information provided by eBay, and eBays feedback score
system seemed to be of very little value to the buyers. No such covariate did consistenly
get a low posterior inclusion probability in the estimations. Finally, unopened coin envelopes
attracted high bidding activity and were sold at unusually large prices.

The estimated eBay model captured the within-auction bid dispersion and the cross-auction
heterogeneity very well. A more severe test was to evaluate the out-of-sample predictions.
The predictive price distributions looked reasonable and captured the observed prices very
well in most cases. Overall, this fact together with the good fit of the bid dispersion indicates
strongly that our estimated eBay auction model is quite accurate in explaining seller and
bidder behaviour at eBay.

Finally, possible extensions for future research could be to take into account and model
cross-auction heterogeneity. A careful inspection of the bids revealed that some bids are only
a tiny fraction of the objects book value, and cannot realistically represent serious final bids.
One possible explanation could stem from the presence of incremental bidding. Ockenfels and
Roth (2006) argue that late bidding may also arise out of equilibrium as a best reply to incre-
mental bidding. Another possibility could be the effect that bidders are searching the eBay
marketplace for low-price auctions, see Sailer (2006) for non-parameterically identification of
bidding costs in settings where the bidder searches with a ”‘reservation bid”’ for low-price
auctions. Other possible extensions include auctions with both a private and a common value
element of the object, multiunit objects, or auctions with risk-averse bidders that we do not
cover in this paper.



BAYESIAN INFERENCE IN SECOND PRICE AUCTIONS 23

Appendix A: Description of eBay covariates

The following list describes each covariate for our collected data of 1000 eBay auctions:

Book Value: The price of the item as reported by the large Internet coin seller Golden
Eagle Coins at http://www.goldeneaglecoin.com.

Minor Blemish: Dummy variable, coded as 1 if the proof set had a minor damage on
the box or packaging according to careful subjective assessment of the item using the seller’s
detailed descriptions and pictures.

Major Blemish: Dummy variable, coded as 1 if at least one coin were missing or if other
major imperfections were present.

Seller’s Feedback Score: For each transaction, buyers can rate the seller in terms of reli-
ability and timeliness in delivery. Next to the seller’s ID the net positive responses is displayed.

PowerSeller: Dummy variable, coded to be 1 if the seller is a PowerSeller. A PowerSeller is
a seller who ranks among the most successful sellers in terms of product sales and customer
satisfaction on eBay. The icon next to a member’s user ID means that the seller meets the
criteria for being a PowerSeller.

ID Seller: Dummy variable, coded to be 1 if the seller’s ID is verified.

UnOpened: Dummy variable, coded to be 1 if the proof set is delivered sealed and un-
opened in its original envelope. Most common for proof sets that origins from the fifties or
sixties.
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