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Abstra
tEquilibrium bid fun
tions in 
ommon value au
tions are in general 
omplexand not easy to analyze. A handful 
losed form solutions have been derived,but only for quite unrealisti
 model assumptions. We derive 
losed formapproximations of the bid fun
tion for two empiri
ally important modelswithin se
ond pri
e 
ommon value au
tions. We treat both the 
ase with aknown number of bidders, and the 
ase where bidders enter the au
tion sto-
hasti
ally. The approximated bid fun
tions are of a very simple and easilyinterpretable form. Moreover, the approximate bid fun
tions 
an be evalu-ated dire
tly without time 
onsuming numeri
al integration. This is 
ru
ialfor speeding up likelihood/Bayesian estimations on au
tion data. Severalinteresting features are dis
erned from the bid approximation, e.g. the win-ner's 
urse e�e
t is quanti�ed analyti
ally and expli
it bidding strategies,as a weighted fun
tion between a bidder's private information and publi
information, are identi�ed.Keywords: 
losed form solution, equilibrium bidding strategies, bid ap-proximation, normal valuations, winner's 
urse, likelihood estimation
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1 Introdu
tionThe theory of au
tions has developed extensively sin
e Vi
krey's (1961) sem-inal paper, parti
ularly over the last de
ades, see e.g. Wolfstetter (1996),Klemperer (1999, 2004), and Milgrom (2004) for re
ent surveys and a gen-eral introdu
tion. Most of the existing literature on au
tion theory analyzeseither the private or the 
ommon value model1. Private value models aredesirable in au
tions with non-durable goods, where every bidder knows thevalue to himself and knowledge of other bidders' valuation would not a�e
this valuation. In a 
ommon value au
tion, the value of the obje
t, V, isunknown but the same for all bidders. Ea
h bidder uses his private informa-tion (the signal) of the obje
t's value to estimate V. Common value au
tionso

ur in markets where the market pri
e is unknown at the time of bidding.For example, the sale of oil rights, timber tra
ts, and markets for Treasurybills.In an in�uential paper, Milgrom and Weber (1982,Theorem 6) derive theequilibrium bid fun
tion for a se
ond pri
e 
ommon value au
tion. In pra
ti
eit is di�
ult, however, to spe
ify distributional assumptions that yield 
losedform solutions of the bid fun
tion. The la
k of 
losed form solutions has twomajor drawba
ks. First, it is hard to see how the bid fun
tion dependson various distributional 
omponents of the model, whi
h makes it moredi�
ult to bring out model 
hara
teristi
s. Se
ond, to evaluate the bidfun
tion one has to make use of numeri
al integration whi
h is very timedemanding. This is a 
ru
ial step for e
onometri
 analysis of au
tion data(e.g. likelihood/Bayesian estimation) where the equilibrium bid fun
tionhas to be evaluated over and over again (Bajari and Horta
su, 2003). Some
losed form solutions exists, though, for spe
i�
 distributional assumptions.Kagel and Levin (1986) obtain 
losed form solutions for values and sig-nals following uniform distributions. Matthews (1984) �nd a 
losed formsolution for signals as the highest order statisti
 of θ independent drawsfrom a uniform distribution, and values drawn from a Pareto distribution.Other spe
i�
ations are even more restri
tive. Thiel (1988) imposes threerestri
tions whi
h guarantee the existen
e of linear strategies. Engelbre
ht-Wiggans and Weber (1979) and Wilson (1988) note their existen
e when theprior value distribution is assumed to be di�use (restri
tion 1), Rothkopf
(1980) and Winkler and Brooks (1980) derive linear bidding strategies whenestimation errors are assumed to be independent of the obje
t's true value(restri
tion 2), and Levin and Smith (1991) �nd 
losed form solutions underall three restri
tions in a 
omment on Thiel (1988).However, these restri
tions rule out most realisti
 models of empiri
alinterest. Models with a di�use prior, for example, are not that realisti
1Almost every au
tion in
ludes both a private and a 
ommon value element, but modelswith a mixture of both elements are often too 
omplex to analyze. As su
h, these modelsare rare in the literature. 2



sin
e there are no bounds on the obje
t's publi
 value, whi
h is a naturalingredient in 
ommon value au
tion models. To de
ide between the privateor the 
ommon value paradigm for a 
ertain au
tion, Paars
h (1992) developan empiri
al framework by using two models of bidding. One of the modelsis build upon the results in Levin and Smith (1991), and the other is a modelby Smiley (1979) with restri
tions on the signal and value distributions whi
hyield bid fun
tions that are proportional to the signal.More re
ently, Gordy (1997) introdu
es two more realisti
 distributionalassumptions and derives nearly 
losed form solutions of the bid fun
tion. Aproblem with his setup is that the inverse of the equilibrium bid fun
tion,an integral part of the likelihood, 
an not be 
al
ulated expli
itly. Instead,the need of root �nding algorithms implies time 
onsuming evaluations ofthe inverse bid fun
tion and thus slow down likelihood estimation. Probablythe most important model, at least from an empiri
al point of view, is thehierar
hi
al normal model in Bajari and Horta
su (2003). They assume nor-mal priors for the unknown publi
 value, as a part of an hierar
hi
al normalvaluation stru
ture, to estimate an eBay au
tion model.In this paper, we show how 
onvenient 
losed form solutions 
an be ob-tained by approximating the equilibrium bid fun
tion for two realisti
 dis-tributional assumptions. First, a linear bid approximation is derived for theNormal-Normal model, de�ned in Bajari and Horta
su (2003), and then anon-linear approximation is obtained for the Gamma-Gamma model, as de-�ned by Gordy (1997). The a

ura
y of both approximations is quite good,espe
ially for the normal model, and yield straightforward and fast expli
itsolutions of the equilibrium bid fun
tions that 
an be inverted analyti
ally.Furthermore, we also derive a 
losed form approximation for the normalmodel with a sto
hasti
 number of bidders.Se
tion 2 presents the general equilibrium bid fun
tion for a se
ond pri
e
ommon value au
tion together with the distributional assumptions of thenormal and gamma model. In se
tion 3 we derive a linear approximationfor the normal model, do
ument approximation a

ura
y, and present severalinteresting features that 
an be dis
erned from the approximated bid fun
tionin both an analyti
al and a graphi
al way. Using a similar te
hnique inse
tion 4, the approximation of the gamma 
ase is derived and evaluated.Finally, se
tion 5 
on
ludes.2 The ModelsFollowing Milgrom and Weber (1982) we 
onsider a se
ond pri
e 
ommonvalue au
tion in whi
h risk-neutral bidders follow the same strategy and
ompete for a single obje
t. The value of the obje
t, V, is unknown and thesame for ea
h bidder, but a prior distribution for V is shared by the bidders.To estimate V, ea
h bidder re
eives a private signal X drawn independently3



from the same distribution of X|V. We will 
onsider two 
ases. First, the 
asewith a known number of bidders, and further on a model with a sto
hasti
number of bidders.Sin
e the au
tion involves symmetri
 bidders and a symmetri
 equilib-rium we 
an fo
us on bidder i without loss of generality2. Let Xi be thesignal for bidder i, and let Yi be the highest signal among the other bidders'signals X1, X2, . . . , Xi−1, Xi+1, . . . , Xn. The equilibrium bid is then given by(Milgrom and Weber, 1982, Theorem 6)
b(x) = v(x, x) = E[V |Xi = x, Yi = x].In words, bidder i submits a bid equal to the expe
ted value of V givenhis own signal and the signal of his worst 
ompetitor, both equal to x. Let

fV (v) denote the probability density fun
tion of V, fXi|V (x|v) the 
ondi-tional probability density fun
tion of Xi|V, and FXi|V (x|v) the 
onditional
umulative distribution fun
tion of Xi|V. Using Bayes' theorem repeatedlywe 
an rewrite the bid fun
tion easily as3
b(x) =

∫∞
−∞ v · f2

xi|v(x|v) · Fn−2
xi|v (x|v) · fv(v) dv

∫∞
−∞ f2

xi|v(x|v) · Fn−2
xi|v (x|v) · fv(v)dv

. (1)The announ
ement of a publi
 reserve pri
e (minimum bid) is 
ommonly usedin se
ond pri
e au
tions4. Therefore, assume that the seller sets a minimumbid r ≥ 0. Then, the equilibrium bid fun
tion be
omes
b(x) =







∫∞
−∞ v·f2

xi|v
(x|v)·F n−2

xi|v
(x|v)·fv(v) dv

∫∞
−∞ f2

xi|v
(x|v)·F n−2

xi|v
(x|v)·fv(v)dv

, if x ≥ x⋆

0, if x < x⋆ or if b(x) < 0,

(2)where x⋆ is the 
uto� signal, above whi
h bidders parti
ipate in the au
tionwith a positive bid. The 
uto� signal is given in impli
it form as (Milgromand Weber, 1982)
x⋆(r) = inf

x
E[v|Xi = x, Yi < x] ≥ r,and by using Bayes' theorem repeatedly as before gives

r(x⋆) =

∫∞
−∞ v · fxi|v(x

⋆|v) · Fn−1
xi|v (x⋆|v) · fv(v) dv

∫∞
−∞ fxi|v(x

⋆|v) · Fn−1
xi|v (x⋆|v) · fv(v) dv

. (3)2Explanations of symmetri
 bidders/equilibrium are given by Krishna (2002).3Consult Appendix A for details of derivation.4A se
ret reserve pri
e 
an also be set by the seller. Bajari and Horta
su (2003) assumethat the seller sets the se
ret reserve pri
e by using the same bid fun
tion as the bidders,and therefore treat the seller as just another bidder.4



Hen
e, the minimum bid is an expli
it fun
tion of x⋆.We now turn to the 
ase with a sto
hasti
 number of bidders. Bajariand Horta
su (2003) model an eBay au
tion as a se
ond pri
e au
tion whereentry into the au
tion is sto
hasti
. Spe
i�
ally, N potential bidders view aparti
ular listing for a 
ommon value obje
t on eBay and parti
ipate only ifthey 
an bear a bid-preparation 
ost. The probability of bearing this 
ost isassumed to be identi
al for ea
h bidder whi
h form the sto
hasti
 feature ofthe au
tion. As in Levin and Smith (1994) and Bajari and Horta
su (2003),assume that the un
onditional distribution of bidders within an au
tion isbinomial with the same probability for ea
h bidder entering the au
tion.Thus, the model under 
onsideration fo
us on the symmetri
 equilibrium ofthe endogenous-entry game. On eBay, however, the number of potential bid-ders is expe
ted to be large 
ompared to the a
tual bidder parti
ipation. Asa 
onsequen
e, we therefore use the Poisson approximation to the Binomialdistribution.Using the derivation of the equilibrium bid in Bajari and Horta
su (2003)and rewriting by using Bayes' theorem repeatedly, gives the bid fun
tion fora sto
hasti
 number of bidders, with a minimum bid r, as
b(x, λ) =







∑∞
n=2

(n−1)·pi
n(λ)·

∫∞
−∞ v·f2

xi|v
(x|v)·F n−2

xi|v
(x|v)·fv(v) dv

∑∞
n=2

(n−1)·pi
n(λ)·

∫∞
−∞ f2

xi|v
(x|v)·F n−2

xi|v
(x|v)·fv(v) dv

, if x ≥ x⋆

0, if x < x⋆ or if b(x, λ) < 0,

(4)where pi
n(λ) is the poisson probability of (n− 1) bidders in the au
tion with

λ as the expe
ted value of the Poisson entry pro
ess5. The 
uto� signal isnow given in impli
it form as (Milgrom and Weber, 1982)
x⋆(r, λ) = inf

x
EnE[v|Xi = x, Yi < x, n] ≥ r,whi
h gives

r(x⋆, λ) =
∞∑

n=1

pn(λ) ·
∫∞
−∞ v · fxi|v(x

⋆|v) · Fn−1
xi|v (x⋆|v) · fv(v) dv

∫∞
−∞ fxi|v(x

⋆|v) · Fn−1
xi|v (x⋆|v) · fv(v) dv

, (5)where pn(λ) is the poisson probability of n bidders in the au
tion with ex-pe
ted value λ. Hen
e, the minimum bid r(x⋆, λ) is an expli
it fun
tion of
x⋆, and λ.Following Bajari and Horta
su (2003), we assume an hierar
hi
al normalmodel for valuations as6

Xi|V ∼ N(v, κσ2)5The poisson probability notation, pi
n(λ), is used here as in Bajari and Horta
su (2003),sin
e the derivation of the equilibrium bid fun
tion is 
onditional on bidder i′s presen
e.6Negative valuations due to normal distributions are not unreasonable. First, in manyau
tions there exists administrative 
osts for a winning bidder. Se
ond, unreasonablehigh negative signals (in absolute terms) are rare sin
e the varian
e 
ompared to theexpe
ted value 
an be assumed to be small, see for example estimation results in Bajariand Horta
su (2003). If a signal gives a negative bid b(x) < 0, however, let b(x) = 0.5



V ∼ N(µ, σ2),where κ s
ales the varian
e of the signal distribution relative to the varian
eof the 
ommon value V.In order to a

ount for other distributional settings, we also derive resultsfor the Gamma-Gamma model in Gordy (1997). Following Gordy (1997) wede�ne the prior distribution of V as a Gamma (α, β) distribution, where
α > 0, β > 0, and

fV (v) =
βα

Γ(α)
vα−1e−βv.To get the integrand of the bid fun
tion on a tra
table form it is 
onvenientto solve the model in terms of inverse signals S = 1

X . Let S be 
onditionallyindependent given V = v and identi
ally Gamma (τ, τv) distributed, τ >
0, v > 0, with probability density fun
tion

gS|V =
(τv)τ

Γ(τ)
sτ−1e−τv·sand distribution fun
tion GS|V .3 Approximation of the equilibrium bid fun
tionfor the Normal-Normal modelThe derived equilibrium bid fun
tions are quite 
omplex and not easy toanalyze. It is hard to see how the bid fun
tion depends on x for di�erentdistributional assumptions. In an in�uential paper, Bajari and Horta
su(2003) perform Bayesian estimation of a se
ond pri
e 
ommon value au
tionwith a sto
hasti
 number of bidders. For ea
h bid b in every au
tion they �ndthe 
orresponding signal x by numeri
al evaluations of integrals. That 
anbe very time demanding, but by exploiting a linear property a
ross au
tionsthey redu
e the 
omputational 
omplexity signi�
antly. However, Bajariand Horta
su (2003) argue that the 
onvenient linear property also holds for
uto� signals x⋆, but it 
an be easily veri�ed numeri
ally that this is nottrue. As a 
onsequen
e, one has to make use of a numeri
al routine likeNewton-Rhapson to 
ompute ea
h x⋆ for ea
h minimum bid, whi
h is verytime demanding.Instead, we obtain 
onvenient linear approximations for both the bid andthe minimum bid fun
tions of signals x and 
uto� signals x⋆, respe
tively.The approximation is easily understood and in
ludes several interesting fea-tures, for example: every signal (
uto� signal) 
onne
ts to a bid (minimumbid) dire
tly without numeri
al evaluations, quantifying the winner's 
urseis straightforward, and the bid fun
tion as a weighted fun
tion of the signal

x and the expe
ted value µ is identi�ed.6



3.1 Known number of bidders nThe derivation of the linear approximation 
an roughly be divided into thefollowing steps7:
Step 1 : Substitute t = x−v√

κσ
to get standard normal distributed signals.Then, the bid fun
tion be
omes

b(x) = x −
√

κσ

∫∞
−∞ te−t2Φn−2(t)e−

1
2σ2 (x−√

κσt−µ)2 dt
∫∞
−∞ e−t2Φn−2(t)e−

1
2σ2 (x−√

κσt−µ)2 dt
,where Φ(·) is the standard normal c.d.f.

Step 2 : Approximate Φ(t) with the kernel of a normal probability den-sity fun
tion over the interval [−a, a] for a = 2.
Step 3 : Complete the squares in the exponents of the exponential fun
-tions to rewrite the integrands to one normal density. In the numeratorwe get the expe
ted value of a normal density and in the denominator thisnormal density integrates to 1. Constants 
an
el out.From this it follows that the bid approximation 
an be written as

b(x) ≈ c + ωµ + (1 − ω)x, (6)where c = −
√

κσγ̂θ̂(n−2)
γ̂(n−2)+1+ κ

2
, and ω =

κ
2

γ̂(n−2)+1+ κ
2
. Hen
e, the linear approxi-mation is a weighted fun
tion of the signal x and the expe
ted value µ. If

n = 2, then Φn−2(t) = 1, and the bid fun
tion in equation (1) 
an be 
om-puted exa
tly, in the same way as in step 3 above. The bid fun
tion thenbe
omes
b(x) =

κ
2

1 + κ
2

µ +
1

1 + κ
2

x,whi
h is exa
tly what the approximation also gives in this 
ase.Note, by using the same approximation te
hnique as above, the minimumbid fun
tion in equation (3) 
an be approximated as
r(x⋆) ≈ cr + ωrµ + (1 − ωr)x, (7)where cr = −

√
κσγ̂θ̂(n−1)

γ̂(n−1)+ 1
2
+κ

2

, and ωr =
κ
2

γ̂(n−1)+ 1
2
+κ

2

. In this 
ase, the minimumbid fun
tion 
an be 
omputed exa
tly for n = 1, whi
h again gives the sameresult as the approximation.Some interesting and valuable features should be noted from the approx-imation of the equilibrium bid fun
tion. A higher varian
e of the 
ommonvalue V implies a higher risk of drawing a large signal value and thus a higherrisk of overestimating the true value of the obje
t, why bidders should lowertheir bids. The 
onstant term c of the approximated bid fun
tion 
aptures7See Appendix B for detailed explanations in ea
h step.7



this e�e
t well, in
reasing the value of σ leads to lower bids. Less pre
ision insignals, as κ in
reases, gives a bidder in
entives to pla
e more weight on pub-li
 information, 
aptured by parameter µ, and less weight on his own privatesignal x. In fa
t, the weight ω of the approximated bid fun
tion in
reasesmonotoni
ally towards 1 as κ in
reases, and
b(x) −→ x if κ −→ 0, and b(x) −→ µ if κ −→ ∞.Intuitively, one 
ould expe
t this result. The higher pre
ision in signals themore the bidders trust their private information.3.2 Sto
hasti
 number of biddersThe bid fun
tion for a sto
hasti
 number of bidders with a minimum bid

r 
onsists of b(x, λ) in equation (4), and the 
orresponding minimum bidfun
tion r(x⋆, λ) in equation (5). As for the 
ase with a known number ofbidders, the minimum bid fun
tion 
an be approximated and written as
r(x⋆, λ) ≈

∞∑

n=2

pi
n(λ) (cr + ωrµ + (1 − ωr)x

⋆) .The same way to approximate the bid fun
tion, b(x, λ), does not hold unfor-tunately. We 
ould do the approximation term by term, but 
onstants willnot 
an
el out in this 
ase sin
e they are parts of the summation over n, and,more importantly, inverting the bid fun
tion is not possible. One obviousway to pro
eed, however, is to extra
t the information in λ, the mean of thePoisson pro
ess, by letting n = λ and approximate the bid fun
tion for asto
hasti
 number of bidders with the linear approximation in equation (6).This simple approximation turns out to be surprisingly good, see se
tion 3.3.3.3 A

ura
y of approximationsThe a

ura
y of the approximated bid fun
tion for a known number of bid-ders depends only on how well the standard normal distribution fun
tion isapproximated. As we 
an see in Figure 1, the approximation with a = 2is quite good within the approximation interval and seems to be the mostsuitable value for a by 
onsidering the whole graph. However, 
hoosing thevalue of a is somewhat arbitrary. Other values than a = 2 
ould also work.For example, the shorter interval with a = 1 gives better approximations on
[−1, 1], but due to worse approximation outside this interval we prefer theapproximation with a = 2.The a

ura
y of the bid approximation is a fun
tion of the bidder's sig-nal x, the parameters (µ, σ, κ), the number of bidders n (λ for the sto
hasti

ase), and the minimum bid r if the seller has set a publi
 reserve pri
e. Inau
tions with a minimum bid r, the bid fun
tions are equal to zero whenever8



the signal x is below the 
uto� signal x⋆, and identi
al to the bid fun
tionswithout a minimum bid for x ≥ x⋆. This fa
t is illustrated in Figures 2 to
9, where one also 
an note that the worst bid approximations o

ur for lowvalues of x that gives a positive bid. Thus, the approximations of the bidfun
tions with a minimum bid are remarkable better than the approxima-tions without a minimum bid.In Figures 2 to 3 for a known number of bidders, the approximationworks very well for both a small and a large number of bidders8, espe
iallyfor κ = 0.25. The somewhat 
rude approximation for a sto
hasti
 number ofbidders, by letting n = λ, works surprisingly good. In Figure 4 for κ = 0.25there are only small di�eren
es between the bid fun
tions, whereas there aresome notable di�eren
es for a large number of expe
ted bidders in Figure 5.However, these di�eren
es are espe
ially for unusual signals, lo
ated almost
2 standard deviations from the expe
ted value. By 
onsidering a very largenumber of bidders in Figures 6 to 9, the approximations still works very well.An in
rement in the number of bidders implies a shift of the bid fun
tiondown to the right, and as su
h only gives worse bid fun
tion approximationsfor negative bids, whi
h we never observe.3.4 Illustrations of the winner's 
urse e�e
tThe winner's 
urse is by far the most highlighted phenomena in 
ommonvalue au
tions where bidders fa
e e�e
ts from both information and 
om-petition perspe
tives9. More bidders leads to more 
ompetition whi
h givesa bidder in
entives to submit a higher bid (
ompetition e�e
t). However, abidder must also a

ount for the risk of overestimating the value if he wins,sin
e his signal is then the highest signal among all bidders. As su
h, a biddershould also lower his bid when fa
ing more bidders (overestimation e�e
t).To illustrate how the approximated bid fun
tion 
aptures the winner's 
ursee�e
t as a mixture between the 
ompetition and the overestimation e�e
t,we split the bid approximation in equation (6) into two parts as

(1 − ω)x =
γ̂(n − 2) + 1

γ̂(n − 2) + 1 + κ
2

· x (I),and
c + ωµ =

κµ
2 −√

κσγ̂θ̂(n − 2)

γ̂(n − 2) + 1 + κ
2

(II).Taking �rst-order derivatives in respe
t to n of parts (I, II) gives (I ′n, II ′n)as
γ̂κ

2
[
γ̂(n − 2) + 1 + κ

2

]2 x > 0 for x > 0 (I ′n)8Kagel and Levin (1986) mention that 3 − 4 bidders 
an be 
onsidered as a smallnumber of bidders, whereas a large number of bidders typi
ally involves 7 − 8 bidders.9See Thaler (1988) for a 
areful dis
ussion.9



−
√

κσγ̂θ̂(2 + κ) + γ̂κµ

2
[
γ̂(n − 2) + 1 + κ

2

]2 < 0 (II ′n).Hen
e, in
reasing the number of bidders, n, in
reases bids for positive signals
x in part (I), re�e
ting the e
onomi
 e�e
ts of 
ompetition, and de
reasesbids for all signals in part (II), re�e
ting the overestimation e�e
t of drawingthe highest signal among bidders. In equilibrium, the e�e
t of 
orre
ting forthe winner's 
urse de
reases bids (Krishna, 2002), see Figures 10 and 12 foran illustration, whi
h implies that the overestimation e�e
t de
reases bidsmore than the 
ompetition e�e
t in
reases bids in equilibrium. However, thee�e
t of the winner's 
urse 
orre
tion, for the bid fun
tion approximation inequation (6), does not always de
rease bids, see Figures 11 and 13 for anillustration. This is not a big problem, though, sin
e it only o

urs for fairlyhigh and unreasonable values of the varian
e s
ale parameter κ and signals
x, see Appendix D for an analyti
al result.3.5 Bidder's expe
ted pro�t and expe
ted seller revenueFollowing Gordy (1997) one might expe
t that more 
ompetition, as thenumber of bidders n in
reases, drives expe
ted seller revenue upwards. Inaddition, by intuition from the me
hanism-design literature, one might alsoexpe
t a bidder's expe
ted pro�t to in
rease with the magnitude of his signal.Nevertheless, 
ounter-examples are often available. For example, at lowvalues of n, Matthews (1984) shows, in an example where signals follow aPareto distribution, that seller revenue goes down by in
reasing the numberof bidders n.Gordy (1997) shows 
omparative stati
s for bidder pro�ts and simulateexpe
ted seller revenue for the Gamma-Gamma model in Se
tion 2, whi
hresulted in no eviden
e of pathologi
al behaviour. We now perform a similaranalysis for the Normal-Normal model. Comparative stati
s for a bidder'sexpe
ted pro�t and expe
ted seller revenue are illustrated by using both theexa
t and the approximated bid fun
tion for a known number of bidders. Tosimulate expe
ted seller revenue we utilize the same Monte Carlo te
hniquesas in Gordy (1997).In a se
ond pri
e 
ommon value au
tion, a bidder's expe
ted pro�t for agiven signal x is given by

Π(x) =

∫ x

−∞
(v(x, y) − b(y)) fYi|Xi

(y|x) dy. (8)This integral 
an be solved by using Gaussian quadrature methods. However,by using the bid approximation te
hnique in se
tion 3.1, we 
an derive anexpli
it approximative solution that yield a mu
h faster 
omputation of thebidder's expe
ted pro�t. The approximation of the expe
ted pro�t 
an be10



simpli�ed to
Π(x) ≈ 1

2
(
1 + γ̂(n − 2) + κ

2

)

∫ x

−∞
(x − y)fYi|Xi

(y|x) dy,where fYi|Xi
(y|x) is given by

fYi|Xi
(y|x) = (n − 1)

∫∞
−∞ fxi|v(x|v)fxi|v(y|v)Fn−2

xi|v (y|v)fv(v) dv
∫∞
−∞ fxi|v(x|v)fv(v) dv

.Further simpli�
ations requires some tedious algebra whi
h results in a verymessy and non-intuitive expression. Therefore, the interested reader is ad-vised to 
onsult Appendix E for a 
omplete expli
it approximative solution.As we 
an see in Figures 22 and 23, the bidder's expe
ted pro�t in
reaseswith signals x, and de
reases with more 
ompetition as n in
reases. However,as we 
an see in Figure 23, the bidder's expe
ted pro�ts do not monotoni
allyin
rease with higher pre
ision in signals as κ de
reases. By intuition this is anexpe
ted result. Gordy (1997) suggests that higher pre
ision in signals onlyin
rease Π(x) to a 
ertain point and will eventually after this point de
rease
Π(x) when signal pre
ision be
omes too high. In the limit, as κ −→ 0,signals be
ome perfe
tly pre
ise. Thus, the true unknown value of the obje
tbe
omes 
ommon knowledge and the bidders fa
e Bertrand 
ompetition,whi
h results in zero expe
ted pro�ts. To estimate expe
ted seller revenuewe found that 100000 au
tions were good enough for 
onvergen
e. In Figures
24 and 25 we see that expe
ted seller revenues in
reases with n and E(V ) asexpe
ted. Overall, we �nd no eviden
e of pathologi
al behaviour whatsoever.4 Approximation of the equilibrium bid fun
tionfor the Gamma-Gamma modelIn order to a

ount for other distributional settings, we also show how theequilibrium bid fun
tion 
an be approximated for the Gamma-Gamma model10. Gordy (1997) obtains a nearly 
losed form solution for the Gamma-Gamma 
ase (see B2(x) formula (7)), and mention that 
omputations goesquite simple and fast. However, it is still time demanding sin
e the inversebid fun
tion has to be solved numeri
ally for ea
h bid, and it is still not easyto see how the bid fun
tion depends on signals x for di�erent distributionalasssumptions.The bid fun
tion of signal X be
omes

b(x) =

∫∞
−∞ v · (1 − GS|V (1/x|v))n−2 · g2

S|V (1/x|v) · fv(v) dv
∫∞
−∞(1 − GS|V (1/x|v))n−2 · g2

S|V (1/x|v) · fv(v) dv
. (9)10Similar illustrations as in Se
tion 3.4 and 3.5 
an be performed for the Gamma 
asetoo, but we do not give it here sin
e it follows the same approa
h as in previous se
tion.11



The approximation goes over (1−GS|V (1/x|v)) by using one unique Gammaprobability density fun
tion with parameters (α̂τ , β̂τ ) as the approximatingfun
tion, see Appendix C for a 
omplete dis
ussion and derivation. Repla
ing
(1 − GS|V (1/x|v)) with Gamma(α̂τ , β̂τ ) and simplifying, the approximatedbid fun
tion 
an be written as

b(x) ≈ [α + 2τ + (n − 2)(α̂τ − 1)] · x
βx + 2τ + (n − 2)β̂τ

. (10)The bid fun
tion in equation (9) 
an be 
omputed exa
tly for n = 2, as forthe normal 
ase, and for τ = 1, whi
h yield the same results as what theapproximation gives. The bid fun
tion for n = 2 is given by
b(x) =

(α + 2τ) · x
βx + 2τ

.If τ = 1, the 
onditional distribution of S|V follows the exponential distribu-tion with parameter v. This gives (1−GS|V (1/x|v)) = e−
v
x , whi
h is exa
tlythe same result as the Gamma p.d.f. with parameters (α̂τ , β̂τ ) = (1, 1) usedfor approximation. The bid fun
tion is now equal to

b(x) =
(α + 2)x

βx + n
.4.1 A

ura
y of approximationsIt is not that informative to evaluate the approximation of (1−GS|V (1/x|v))for some values of τ. Instead, the approximated bid fun
tion, in equation

(10), is 
ompared to the exa
t bid fun
tion, in equation (9), for various setsof parameter values in Figures 14 to 21.Considering Figures 14 and 15 for a known number of bidders, the ap-proximation works pretty well when the number of bidders is small, regard-less the other parameter values. In
reasing the expe
ted value µ tend togive worse approximations in absolute terms, but by 
omparing Figure 14up left with Figure 14 up right and Figure 15 up left with Figure 15 up right,there seems to be no di�eren
es of how well the approximation performs inrelative terms. The approximated bids, for signals equal to µ, are about 5per 
ent higher than the exa
t bids in all these �gures whi
h is fairly low.Higher values of τ does not seem to 
hange the a

ura
y of approximationsfor n = 4, but for n = 8 there is a small impairment in the approximation.In general, there are notably worse approximations for n = 8. Approximatedbids are about 10 per 
ent higher than the exa
t bid fun
tion for signalsequal to µ.The 
rude approximation for the sto
hasti
 
ase works surprisingly goodhere too, as for the Normal-Normal model in the previous se
tion. Figures 16and 17 indi
ate that the approximations for the sto
hasti
 
ases are almost12



as good as the approximations for a known number of bidders, and the bidfun
tions 
hange in a similar way for di�erent sets of parameter values. InFigures 18 to 21 we allow for a very large number of bidders, where one getfurther indi
ations that the bid approximations get worse as the number ofbidders in
reases. Approximated bids are now about 20 per 
ent higher thanthe exa
t bid fun
tion for signals equal to µ, and n = 16.5 Con
lusionsIn this paper, we derive approximative 
losed form solutions of the equilib-rium bid fun
tion for two realisti
 models of empiri
al interest in se
ond pri
e
ommon value au
tions. The approximations bring out several interestingfeatures whi
h we divide into three major parts.First, it is straightforward to measure how mu
h the bid fun
tion de-pends on the signal for various distributional 
omponents. Se
ond, we areable to 
ompute the inverse of the equilibrium bid fun
tion (the signal) di-re
tly without time 
onsuming numeri
al integration. This is a 
ru
ial stepfor Bayesian/likelihood estimation of au
tion data, where the inverse bidfun
tion has to be evaluated over and over again. Third, the magnitude ofthe winner's 
urse and the expe
ted bidder pro�ts 
an be quanti�ed analyt-i
ally.We investigate the a

ura
y of the approximations and 
on
lude that theapproximation of the bid fun
tion in the normal model is highly a

uratefor all parameter values and number of bidders. The approximation forthe gamma model is in general less a

urate than the normal 
ase, but itperforms satisfa
tory unless the number of bidders is too large. A possibleimprovement of the approximation in the gamma 
ase, espe
ially when n islarge, 
ould be to approximate (1−GS|V (1/x|v))n−2 in equation (9) dire
tly,rather than approximating (1−G) and then taking the power as we have donehere. The drawba
k is, however, that we would have a new approximationfor every n, but polynomial interpolation 
ould be used to handle this.Finally, possible extensions 
ould be to derive 
losed form bid approxi-mations in au
tions with both a private and a 
ommon value element of theobje
t, multiunit obje
ts, or au
tions with risk-averse bidders.

13



Appendix A: Derivation of the equilibrium bid fun
-tion by using Bayes' TheoremThe equilibrium bid fun
tion is given by
b(x) = v(x, x) = E[v|Xi = x, Yi = y] =

∫ ∞

−∞
v · fv|xi,yi

(Xi = x, Yi = y)dv.Rewriting the density fun
tion in the integrand gives
fv|xi,yi

(Xi = x, Yi = y) =
fv,xi,yi

(v, x, x)

fxi,yi
(x, x)

=
fyi|v,xi

(x|v, x) · fv,xi
(v, x)

∫∞
−∞ fxi,yi,v(x, x, v)dv

=
fyi|v,xi

(x|v, x) · fv,xi
(v, x)

∫∞
−∞ fyi|v,xi

(x|v, x) · fv,xi
(v, x)dv

=
fyi|v,xi

(x|v, x) · fxi|v(x|v)fv(v)
∫∞
−∞ fyi|v,xi

(x|v, x) · fxi|v(x|v)fv(v)dv

=
[

fyi|v,xi
(x|v, x) depends only on v] =

fyi|v(x|v) · fxi|v(x|v)fv(v)
∫∞
−∞ fyi|v(x|v) · fxi|v(x|v)fv(v)dv

.Thus, b(x) 
an be written as
b(x) = v(x, x) =

∫ ∞

−∞
v ·

fyi|v(x|v) · fxi|v(x|v)fv(v)
∫∞
−∞ fyi|v(x|v) · fxi|v(x|v)fv(v)dv

dv

=

∫∞
−∞ v · fyi|v(x|v) · fxi|v(x|v)fv(v) dv
∫∞
−∞ fyi|v(x|v) · fxi|v(x|v)fv(v)dv

=

∫∞
−∞ v · (n − 1) · fxi|v(x|v) · Fn−2

xi|v (x|v) · fxi|v(x|v)fv(v) dv
∫∞
−∞(n − 1) · fxi|v(x|v) · Fn−2

xi|v (x|v) · fxi|v(x|v)fv(v)dv

=

∫∞
−∞ v · f2

xi|v(x|v) · Fn−2
xi|v (x|v) · fv(v) dv

∫∞
−∞ ·f2

xi|v(x|v) · Fn−2
xi|v (x|v) · fv(v)dv

,sin
e the highest order statisti
 of (n−1) 
ompeting signals, where 
ompeti-tors' (bidders') signals are i.i.d. with p.d.f. fxi|v(xi|v), has p.d.f. fyi|v(x|v) =

(n − 1) · fxi|v(x|v) · Fn−2
xi|v (x|v).

14



Appendix B: The linear approximation of the equi-librium bid fun
tion for the normal 
aseThe derivation of the linear approximation is divided into four steps. Ea
hstep is here presentated 
arefully.Step 1Substitution gives the bid fun
tion on standard normal form as
b(x) =

∫∞
−∞ v · f2

xi|v(x|v) · Fn−2
xi|v (x|v) · fv(v) dv

∫∞
−∞ f2

xi|v(x|v) · Fn−2
xi|v (x|v) · fv(v) dv

=

[

t =
x − v√

κσ

]

= x −
√

κ · σ ·
∫∞
−∞ t · e−t2 · Fn−2

t (t) · e−
1

2σ2 ·(x−
√

κσt−µ)2 dt
∫∞
−∞ e−t2 · Fn−2

t (t) · e−
1

2σ2 ·(x−
√

κσt−µ)2 dt
,where t ∼ N(0, 1).Step 2Let ht(t|γ, θ) = e−γ·(t−θ)2 be the approximating fun
tion to the standardnormal distribution fun
tion Φt(t) on [−a, a]. The fun
tion ht(t|γ, θ) 
an be
onsidered as the �kernel� of a normal p.d.f. for t and is all we need forthe approximation. Multipli
ative 
onstants, not depending on t, will 
an
elout in the numerator and the denumerator. Using a numeri
al routine11 thebest �tted pair of values (γ̂, θ̂) is obtained on [−a, a] to approximate Φt(t)by a spe
i�ed minimized fun
tion. To make things simple, we de�ne a basi
suitable minimized fun
tion, Md, as

Md(γ̂, θ̂) = min
γ,θ

(

max
t

|ht(t|γ, θ) − Φt(t)|
)

,where (γ̂, θ̂) is the minimizing pair of the fun
tion.As a result of this estimation pro
edure, we obtained the best �tted pairof values as
(γ̂, θ̂) = (0.1937, 1.9600).The approximation works well, even if the normal p.d.f. is a bell-shapeddensity fun
tion, 
ompared to the stri
t in
reasing c.d.f. Figures in Se
tion

3.3 show that an a

eptable approximation within [−a, a], for a = 2.2, isgood enough. Poor approximations for high values above a seems to give no
onsiderable e�e
t on the bid approximation.11For example MatLab's build-in fun
tion "`fminsear
h.m"'15



Step 3Repla
ing Φt(t) by ht(t|γ̂, θ̂), the approximated bid fun
tion be
omes
b(x) ≈ x −

√
κ · σ ·

∫∞
−∞ t · e−t2 · e−(n−2)γ̂(t−θ̂)2 · e−

1
2σ2 ·(x−

√
κσt−µ)2 dt

∫∞
−∞ e−t2 · e−(n−2)γ̂(t−θ̂)2 · e−

1
2σ2 ·(x−

√
κσt−µ)2 dt

.Expanding the exponent of the exponentialfun
tion gives
−
[

t2 + (n − 2) · γ̂ · (t − θ̂)2 +
κ

2
·
(

t − x − µ√
κσ

)2
]

t∝ −
[

t2 ·
(

1 + (n − 2) · γ̂ +
κ

2

)

− 2 · t ·
(

(n − 2) · γ̂ · θ̂ +

√
κ · (x − µ)

2σ

)]

t∝ −
(

1 + (n − 2) · γ̂ +
κ

2

)

︸ ︷︷ ︸

m3

·










t −

m4
︷ ︸︸ ︷
(

(n − 2) · γ̂ · θ̂ +
√

κ·(x−µ)
2σ

)

1 + (n − 2) · γ̂ + κ
2










2

= −m3 · (t − m4)
2.Thus, the bid fun
tion b(x) 
an be simpli�ed to

b(x) ≈ x −
√

κ · σ ·
∫∞
−∞ t · e−m3(t−m4)2 dt
∫∞
−∞ e−m3(t−m4)2 dt

.

b(x) ≈ x −
√

κ · σ ·
∫∞
−∞ t · e−m3(t−m4)2 dt
∫∞
−∞ e−m3(t−m4)2 dt

= x −
√

κ · σ · E(t)

1
= x −

√
κ · σ · m4,where m3 = 1+(n−2)γ̂ + κ

2 , and m4 =
(n−2)γ̂θ̂+

√
κ(x−µ)

2σ

1+(n−2)γ̂+κ
2

. Note, the 
onstantsof the normal kernel of the numerator and the denominator 
an
el out. BySubstituting the expression for m4, the bid approximation 
an be simpli�edto
b(x) ≈ −

√
κ·σ· (n − 2) · γ̂ · θ̂

(n − 2) · γ̂ + 1 + κ
2

+
κ
2

(n − 2) · γ̂ + 1 + κ
2

·µ +
(n − 2) · γ̂ + 1

(n − 2) · γ̂ + 1 + κ
2

·x.Hen
e, the linear approximation is a weighted fun
tion between the signal xand the expe
ted value µ.

16



Appendix C: Gamma-Gamma approximation by us-ing multivariate regressionThe approximation goes over (1−GS|V (1/x|v)) by using Gamma probabilitydensity fun
tions. By substitution, the distribution fun
tion of S|V 
an bewritten as
GS|V (1/x|v) =

∫ 1/x

−∞

(τv)τ

Γ(τ)
lτ−1e−τv·l dl =

∫ τ · v
x

−∞

1

Γ(τ)
tτ−1e−t dt.Hen
e, the distribution fun
tion GS|V depends on the parameter τ throughthe support v

x . Approximation of (1 − GS|V (1/x|v)) with only one uniqueGamma p.d.f. is therefore not possible. Tabulation of Gamma p.d.f. ap-proximations for di�erent values of τ is one way to ta
kle the non-uniquenessfeature, but to get some stru
ture we utilize multivariate regression.Let the dependent variables be the two parameters, (ατ,i, βτ,i), of theGamma p.d.f. approximations for ea
h value of τi, where NAppr is thenumber of approximations and i = 1, 2, . . . , NAppr. Further, de�ne the in-dependent variables as fun
tions of τi, e.g. τi, τ
2
i , log(τi), 1/τi

12. Then, by
omparing adjusted R-square for ea
h regression model we 
hoose and esti-mate the best regression model (α̂τ , β̂τ ) using all subsets of the independentvariables as independent variables. This resulted in the following two bestregression models, estimated as
α̂τ = 1.02 − 0.00488618 · τ + 0.00002205 · τ2 + 0.125789 · log τ,and

β̂τ = 0.448417 + 0.00095877 · τ + 0.496667 · 1

τwith adjusted R2 equal to 98.6% and 99.5%, respe
tively.Let hv(v|α̂τ , β̂τ ) = ( v
x)α̂τ−1 · e−β̂τ · v

x
v∝ vα̂τ−1 · e−β̂τ · v

x be the �Gammakernel� approximating fun
tion to (1 − GS|V (1/x|v)). Then, by repla
ing
(1−GS|V (1/x|v)) with hv(v|α̂τ , β̂τ ), the approximated bid fun
tion be
omes

b(x) ≈
∫∞
−∞ v · v(n−2)(α̂τ−1)+2τ+α−1 · e−( 1

x
(β̂τ (n−2)+2τ)+β)·v dv

∫∞
−∞ v(n−2)(α̂τ−1)+2τ+α−1 · e−( 1

x
(β̂τ (n−2)+2τ)+β)·v dv

.Let α′ = (n− 2)(α̂τ − 1)+2τ +α, and let β′ = 1
x(β̂τ (n− 2)+2τ)+β. Then,we get the approximated bid fun
tion as

b(x) ≈
∫∞
−∞ Gamma(α′ + 1, β′) dv
∫∞
−∞ Gamma(α′, β′) dv

=
Γ(α′ + 1)

β′α′+1
· β′α′

Γ(α′)

=
α′

β′ =
[α + 2τ + (n − 2)(α̂τ − 1)] · x

βx + 2τ + (n − 2)β̂τ

.12Several fun
tions of τi were used but we do not list everyone here.17



Appendix D: The winner's 
urse e�e
t as a net bidshading e�e
t of the approximated bid fun
tionIt is easily veri�ed that the un
onditional distribution of signals is given by
X ∼ N(µ, (κ + 1)σ2), and as su
h x = µ + dσ

√
κ + 1 represents signals thatdeviate from the expe
ted value µ with d standard deviations. By repla
ing

x with µ+dσ
√

κ + 1, the net bid shading e�e
t, de�ned as the winner's 
ursee�e
t by NBS := (−II ′n − I ′n) , 
an be written as
NBS =

(
−II ′n − I ′n

)
=

√
κσγ̂

[

θ̂(2 + κ) − d
√

κ(κ + 1)
]

2
[
γ̂(n − 2) + 1 + κ

2

]2 ,whi
h is negative if d > θ̂(2+κ)√
κ(κ+1)

. We 
ould assume κ = 0.25 a

ordingto estimation results in Bajari and Horta
su (2003), but in order to allowfor larger values, let κ = 1. Then, the net bid shading e�e
t only be
omesnegative for d > 4.16 (see Figure 11), 
orresponding to signals more thanfour standard deviations above their expe
ted value, whi
h is of 
ourse veryunlikely.Appendix E: Approximation of the bidder's expe
tedpro�tBy using the approximation of the standard normal distribution fun
tion,the bidder's expe
ted pro�t 
an be approximated and written as
(n − 1)e−γ̂(n−2)θ̂2√

c2

3c1
√

2πκc1
·
[√

π

c6
Φ[c8(x)]

(

x − c7(x)

2c6

)

+
1

2c6
e−

c28(x)

2

]

·exp [c2c
2
4 −

c3c
2
5(x) + 8

√
κσc2c4c5(x)

8κσ2c1c2
+

c7(x)2

4c6

]

,where
c1 = 1 + γ̂(n − 2) +

k

2
, c2 =

k + 1

2
, c3 = 1 + 2γ̂(n − 2),

c4 = γ̂θ̂(n − 2), c5(x) = x + κµ, c6 =
c3(k + 1)2

8κσ2c1c2
,

c7(x) =
8
√

kσc2c4(k + 1) + 2(k + 1)c3c5(x)

8κσ2c1c2
, c8(x) =

√
2c6

(

x − c7(x)

2c6

)

.

18



Figures

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

C
D

F

 

 

Φt(t)
a=1
a=2
a=3Figure 1: The approximation of the standard normal distribution fun
tionis 
ompared to the exa
t fun
tion on [−a, a], where a = 1, 2 or 3. The thi
ksolid 
urve represents the standard normal distribution fun
tion Φt(t). Other
urves are approximations of Φt(t) as kernels of normal p.d.f.s with di�erentvalues of a.
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Figure 14: The exa
t versus the approximated bid fun
tion for the Gamma-Gamma model with a known number of bidders. Con
erning the dotted linesalong the y-axis, middle lines represent the position of µ, left lines the posi-tion of the 2.5−per
entile, and right lines the position of the 97.5−per
entile.
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Figure 15: The exa
t versus the approximated bid fun
tion for the Gamma-Gamma model with a known number of bidders. Con
erning the dotted linesalong the y-axis, middle lines represent the position of µ, left lines the posi-tion of the 2.5−per
entile, and right lines the position of the 97.5−per
entile.
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Figure 16: The exa
t versus the approximated bid fun
tion for the Gamma-Gamma model with a sto
hasti
 number of bidders. Con
erning the dot-ted lines along the y-axis, middle lines represent the position of µ, leftlines the position of the 2.5−per
entile, and right lines the position of the
97.5−per
entile.

0 10 20 30
0

5

10

x

b(
x|

µ,
σ,

k,
λ)

µ = 2, [α,β] = [4 2], τ = 7, λ = 4

 

 
Exact
Approx

0 10 20 30
0

5

10

x

b(
x|

µ,
σ,

k,
λ)

µ = 2, [α,β] = [4 2], τ = 7, λ = 8

 

 
Exact
Approx

0 10 20 30
0

5

10

x

b(
x|

µ,
σ,

k,
λ)

µ = 6, [α,β] = [12 2], τ = 7, λ = 4

 

 
Exact
Approx

0 10 20 30
0

5

10

x

b(
x|

µ,
σ,

k,
λ)

µ = 6, [α,β] = [12 2], τ = 7, λ = 8

 

 
Exact
Approx

Figure 17: The exa
t versus the approximated bid fun
tion for the Gamma-Gamma model with a sto
hasti
 number of bidders. Con
erning the dot-ted lines along the y-axis, middle lines represent the position of µ, leftlines the position of the 2.5−per
entile, and right lines the position of the
97.5−per
entile.
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Figure 18: The exa
t versus the approximated bid fun
tion for the Gamma-Gamma model with a known number of bidders. Con
erning the dotted linesalong the y-axis, middle lines represent the position of µ, left lines the posi-tion of the 2.5−per
entile, and right lines the position of the 97.5−per
entile.
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Figure 19: The exa
t versus the approximated bid fun
tion for the Gamma-Gamma model with a known number of bidders. Con
erning the dotted linesalong the y-axis, middle lines represent the position of µ, left lines the posi-tion of the 2.5−per
entile, and right lines the position of the 97.5−per
entile.
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Figure 20: The exa
t versus the approximated bid fun
tion for the Gamma-Gamma model with a sto
hasti
 number of bidders. Con
erning the dot-ted lines along the y-axis, middle lines represent the position of µ, leftlines the position of the 2.5−per
entile, and right lines the position of the
97.5−per
entile.
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Figure 21: The exa
t versus the approximated bid fun
tion for the Gamma-Gamma model with a sto
hasti
 number of bidders. Con
erning the dot-ted lines along the y-axis, middle lines represent the position of µ, leftlines the position of the 2.5−per
entile, and right lines the position of the
97.5−per
entile.
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Figure 22: The bidder's expe
ted pro�t for di�erent number of bidders n.Thinner lines, lo
ated just below assigned thi
k lines for the exa
t 
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orrespond to the approximated values of the bidder's expe
ted pro�ts.
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Figure 23: The bidder's expe
ted pro�t for di�erent values of κ, the varian
es
ale parameter for signals. Thinner lines, lo
ated just below assigned thi
klines for the exa
t 
ases, 
orrespond to the approximated values of the bid-der's expe
ted pro�ts. The pre
ision in signals when κ = 1.5 was estimatedto give the highest expe
ted pro�ts for su�
ient high values of x. Lower andhigher pre
ision from this point results in a de
line of Π(x).
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ted seller revenue for di�erent number of bidders n.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

µ

A
pp

ro
xi

m
at

ed
 e

xp
ec

te
d 

se
lle

r 
re

ve
nu

e

κ = 0.5, σ =
√

µ

 

 

n = 2
n = 4
n = 8
n = 12Figure 25: Approximated expe
ted seller revenue for di�erent number ofbidders n. The approximations seem to work well 
ompared to the exa
t
ases above.

31



Referen
es[1℄ Bajari, Patri
k and Ali Horta
su (2003), The Winner's Curse, Re-serve Pri
es and Endogenous Entry: Empiri
al Insights from eBayAu
tions, The Rand Journal of E
onomi
s, 3(2), 329-355.[2℄ Engelbre
ht-Wiggans, R. and R. J. Weber (1979), On the Nonexis-ten
e of Multipli
ative Equilibrium Bidding Strategies, Cowles Foun-dation Dis
ussion Paper No. 523, Yale University.[3℄ Gordy, B. Mi
hael (1998), Computationally Convenient Distrib-utional Assumptions for Common-Value Au
tions, ComputationalE
onomi
s, 12, 61-78.[4℄ Kagel, J.H. and D. Levin (1986), The Winner's Curse and Publi
 In-formation in Common Value Au
tions, Ameri
an E
onomi
 Review,
76(5), 894-920.[5℄ Klemperer, D. Paul (1999), Au
tion Theory: A Guide to the Litera-ture, Journal of E
onomi
 Surveys, 13(3), 227-286.[6℄ �� (2004), Journal of E
onomi
 Surveys, 13(3), 227-286.[7℄ Krishna, Vijay (2002), Au
tion Theory. San Diego: A
ademi
 Press.[8℄ Levin, Dan and James L. Smith (1991), Some Eviden
e on the Win-ner's Curse: Comment, The Ameri
an E
onomi
 Review, 81(1), 370-375.[9℄ �� (1994), Equilibrium in Au
tions with Entry, The Ameri
an E
o-nomi
 Review, 84(3), 585-599.[10℄ Matthews, S. (1984), Information A
quisition in Dis
riminatory Au
-tions, In Boyer, M. and R.E. Kihlstrom (eds), Bayesian Models inE
onomi
 Theory. Vol. 5 of Studies in Bayesian E
onometri
s. Else-vier S
ien
e Publishers, Amsterdam, pp. 181-207.[11℄ Milgrom, Paul (2004), Putting Au
tion Theory to Work. Cambridge,England: Cambridge University Press.[12℄ Milgrom, Paul and Robert Weber (1982), A Theory of Au
tions andCompetitive Bidding, E
onometri
a, 50, 1089-1022.[13℄ Paars
h, J. Harry (1992), De
iding between the Common and Pri-vate Value Paradigms in Empiri
al Models of Au
tions, Journal ofE
onometri
s, 51, 191-215.[14℄ Rothkopf, H. Mi
hael (1980), Equilibrium Linear Bidding Strategies,Operations Resear
h, 28, 576-83.32



[15℄ Smiley, A. (1979), Competitive Bidding under Un
ertainty: The Caseof O�shore Oil, Ballinger, Cambridge, MA.[16℄ Thaler, H. Ri
hard (1988), Anomalies: The Winner's Curse, Journalof E
onomi
 Perspe
tives, 2, 191-202.[17℄ Thiel, E. Stuart (1988), Some Eviden
e on the Winner's Curse, Amer-i
an E
onomi
 Review, 78, 884-95.[18℄ Vi
krey, William (1961), Counterspe
ulation, Au
tions, and Com-petitive Sealed Tenders, The Journal of Finan
e, 16(1), 8-37.[19℄ Wilson, B. Robert, Strategi
 Analysis of Au
tions, In Aumann, R.and S. Hart (eds), Handbook of Game Theory, Amsterdam: North-Holland.[20℄ Winkler, L. Robert and D. G. Brooks (1980), Competitive Biddingwith Dependent Value Estimates, Operations Resear
h, 28, 603-13.[21℄ Wolfstetter (1996), Au
tions: An Introdu
tion, Journal of E
onomi
Surveys, 10(4), 367-420.

33




