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Abstract

Equilibrium bid functions in common value auctions are in general complex
and not easy to analyze. A handful closed form solutions have been derived,
but only for quite unrealistic model assumptions. We derive closed form
approximations of the bid function for two empirically important models
within second price common value auctions. We treat both the case with a
known number of bidders, and the case where bidders enter the auction sto-
chastically. The approximated bid functions are of a very simple and easily
interpretable form. Moreover, the approximate bid functions can be evalu-
ated directly without time consuming numerical integration. This is crucial
for speeding up likelihood/Bayesian estimations on auction data. Several
interesting features are discerned from the bid approximation, e.g. the win-
ner’s curse effect is quantified analytically and explicit bidding strategies,
as a weighted function between a bidder’s private information and public
information, are identified.
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1 Introduction

The theory of auctions has developed extensively since Vickrey’s (1961) sem-
inal paper, particularly over the last decades, see e.g. Wolfstetter (1996),
Klemperer (1999,2004), and Milgrom (2004) for recent surveys and a gen-
eral introduction. Most of the existing literature on auction theory analyzes
either the private or the common value model'. Private value models are
desirable in auctions with non-durable goods, where every bidder knows the
value to himself and knowledge of other bidders’ valuation would not affect
his valuation. In a common value auction, the value of the object, V| is
unknown but the same for all bidders. Each bidder uses his private informa-
tion (the signal) of the object’s value to estimate V. Common value auctions
occur in markets where the market price is unknown at the time of bidding.
For example, the sale of oil rights, timber tracts, and markets for Treasury
bills.

In an influential paper, Milgrom and Weber (1982, Theorem 6) derive the
equilibrium bid function for a second price common value auction. In practice
it is difficult, however, to specify distributional assumptions that yield closed
form solutions of the bid function. The lack of closed form solutions has two
major drawbacks. First, it is hard to see how the bid function depends
on various distributional components of the model, which makes it more
difficult to bring out model characteristics. Second, to evaluate the bid
function one has to make use of numerical integration which is very time
demanding. This is a crucial step for econometric analysis of auction data
(e.g. likelihood/Bayesian estimation) where the equilibrium bid function
has to be evaluated over and over again (Bajari and Hortacsu, 2003). Some
closed form solutions exists, though, for specific distributional assumptions.

Kagel and Levin (1986) obtain closed form solutions for values and sig-
nals following uniform distributions. Matthews (1984) find a closed form
solution for signals as the highest order statistic of 6 independent draws
from a uniform distribution, and values drawn from a Pareto distribution.
Other specifications are even more restrictive. Thiel (1988) imposes three
restrictions which guarantee the existence of linear strategies. Engelbrecht-
Wiggans and Weber (1979) and Wilson (1988) note their existence when the
prior value distribution is assumed to be diffuse (restriction 1), Rothkopf
(1980) and Winkler and Brooks (1980) derive linear bidding strategies when
estimation errors are assumed to be independent of the object’s true value
(restriction 2), and Levin and Smith (1991) find closed form solutions under
all three restrictions in a comment on Thiel (1988).

However, these restrictions rule out most realistic models of empirical
interest. Models with a diffuse prior, for example, are not that realistic

! Almost every auction includes both a private and a common value element, but models
with a mixture of both elements are often too complex to analyze. As such, these models
are rare in the literature.



since there are no bounds on the object’s public value, which is a natural
ingredient in common value auction models. To decide between the private
or the common value paradigm for a certain auction, Paarsch (1992) develop
an empirical framework by using two models of bidding. One of the models
is build upon the results in Levin and Smith (1991), and the other is a model
by Smiley (1979) with restrictions on the signal and value distributions which
yield bid functions that are proportional to the signal.

More recently, Gordy (1997) introduces two more realistic distributional
assumptions and derives nearly closed form solutions of the bid function. A
problem with his setup is that the inverse of the equilibrium bid function,
an integral part of the likelihood, can not be calculated explicitly. Instead,
the need of root finding algorithms implies time consuming evaluations of
the inverse bid function and thus slow down likelihood estimation. Probably
the most important model, at least from an empirical point of view, is the
hierarchical normal model in Bajari and Hortacsu (2003). They assume nor-
mal priors for the unknown public value, as a part of an hierarchical normal
valuation structure, to estimate an eBay auction model.

In this paper, we show how convenient closed form solutions can be ob-
tained by approximating the equilibrium bid function for two realistic dis-
tributional assumptions. First, a linear bid approximation is derived for the
Normal-Normal model, defined in Bajari and Hortacsu (2003), and then a
noun-linear approximation is obtained for the Gamma-Gamma model, as de-
fined by Gordy (1997). The accuracy of both approximations is quite good,
especially for the normal model, and yield straightforward and fast explicit
solutions of the equilibrium bid functions that can be inverted analytically.
Furthermore, we also derive a closed form approximation for the normal
model with a stochastic number of bidders.

Section 2 presents the general equilibrium bid function for a second price
common value auction together with the distributional assumptions of the
normal and gamma model. In section 3 we derive a linear approximation
for the normal model, document approximation accuracy, and present several
interesting features that can be discerned from the approximated bid function
in both an analytical and a graphical way. Using a similar technique in
section 4, the approximation of the gamma case is derived and evaluated.
Finally, section 5 concludes.

2 The Models

Following Milgrom and Weber (1982) we consider a second price common
value auction in which risk-neutral bidders follow the same strategy and
compete for a single object. The value of the object, V, is unknown and the
same for each bidder, but a prior distribution for V' is shared by the bidders.
To estimate V, each bidder receives a private signal X drawn independently



from the same distribution of X |V. We will consider two cases. First, the case
with a known number of bidders, and further on a model with a stochastic
number of bidders.

Since the auction involves symmetric bidders and a symmetric equilib-
rium we can focus on bidder i without loss of generality?. Let X; be the
signal for bidder i, and let Y; be the highest signal among the other bidders’
signals X1, Xo, ..., X;-1, Xi+1,..., Xn. The equilibrium bid is then given by
(Milgrom and Weber, 1982, Theorem 6)

b(z) =v(z,z) = E[V|X; =2,Y; = z].

In words, bidder i submits a bid equal to the expected value of V given
his own signal and the signal of his worst competitor, both equal to x. Let
fv(v) denote the probability density function of V, fx,y(z|v) the condi-
tional probability density function of X;|V, and Fx,y(z|v) the conditional
cumulative distribution function of X;|V. Using Bayes’ theorem repeatedly
we can rewrite the bid function easily as®

S v f7 (o) - B 2 () - fu(v) do
S f2 o) - B 2( [v) - fu(v)dv
The announcement of a public reserve price (minimum bid) is commonly used

in second price auctions*. Therefore, assume that the seller sets a minimum
bid 7 > 0. Then, the equilibrium bid function becomes

b(z) = (1)

I v f2 @) 2(z]v)-fo (v) dv

ilv

s ffih, zfv)-F 2 (@) fo(v)do

,if ©>ar
b(x) = (2)

0, if z<a*orifblx)<0,
where x* is the cutoff signal, above which bidders participate in the auction

with a positive bid. The cutoff signal is given in implicit form as (Milgrom
and Weber, 1982)

x*(r) =inf Ep|X; =2,Y; <z] >,
x
and by using Bayes’ theorem repeatedly as before gives

S v fe(@t|o) - F o) - fulv) do
ffooo fl“i\v(x*lv) Fnlvl(x*|v) - fo(v) dv .

*Explanations of symmetric bidders/equilibrium are given by Krishna (2002).

3Consult Appendix A for details of derivation.

1A secret reserve price can also be set by the seller. Bajari and Hortacsu (2003) assume
that the seller sets the secret reserve price by using the same bid function as the bidders,
and therefore treat the seller as just another bidder.

r(z*) =

(3)




Hence, the minimum bid is an explicit function of z*.

We now turn to the case with a stochastic number of bidders. Bajari
and Hortacsu (2003) model an eBay auction as a second price auction where
entry into the auction is stochastic. Specifically, N potential bidders view a
particular listing for a common value object on eBay and participate only if
they can bear a bid-preparation cost. The probability of bearing this cost is
assumed to be identical for each bidder which form the stochastic feature of
the auction. As in Levin and Smith (1994) and Bajari and Hortacsu (2003),
assume that the unconditional distribution of bidders within an auction is
binomial with the same probability for each bidder entering the auction.
Thus, the model under consideration focus on the symmetric equilibrium of
the endogenous-entry game. On eBay, however, the number of potential bid-
ders is expected to be large compared to the actual bidder participation. As
a consequence, we therefore use the Poisson approximation to the Binomial
distribution.

Using the derivation of the equilibrium bid in Bajari and Hortacsu (2003)
and rewriting by using Bayes’ theorem repeatedly, gives the bid function for
a stochastic number of bidders, with a minimum bid r, as

o (=1 P (V-7 v-fﬁl.‘v(x\v)-F;Tf(ﬂf\v)-fv(v) dv

o0

Zf:Q(n—l)-p;(A)-f_oo fﬁi‘U(x|v).F;Li‘fv2(x|v).fv(v) dv

, if x> a*

b(xz,\) = (4)
0, if x<a*orif b(z,\) <O,

where p? ()) is the poisson probability of (n — 1) bidders in the auction with
X as the expected value of the Poisson entry process®. The cutoff signal is
now given in implicit form as (Milgrom and Weber, 1982)

z*(r,\) =inf E,Fu|X; =z,Y; <x,n]>r,
x

which gives

o E R faple) ) - o) do
Tt = 2 N T Ty (e (o) de

where p,,(A) is the poisson probability of n bidders in the auction with ex-
pected value \. Hence, the minimum bid r(z*, \) is an explicit function of
x*, and A.
Following Bajari and Hortacsu (2003), we assume an hierarchical normal
model for valuations as®
X;|V ~ N(v,ko?)

The poisson probability notation, p’ (), is used here as in Bajari and Hortacsu (2003),
since the derivation of the equilibrium bid function is conditional on bidder i’s presence.

5Negative valuations due to normal distributions are not unreasonable. First, in many
auctions there exists administrative costs for a winning bidder. Second, unreasonable
high negative signals (in absolute terms) are rare since the variance compared to the
expected value can be assumed to be small, see for example estimation results in Bajari
and Hortacsu (2003). If a signal gives a negative bid b(z) < 0, however, let b(z) = 0.



V ~ N(u,0%),

where k scales the variance of the signal distribution relative to the variance
of the common value V.

In order to account for other distributional settings, we also derive results
for the Gamma-Gamma model in Gordy (1997). Following Gordy (1997) we
define the prior distribution of V' as a Gamma («, ) distribution, where
a>0,0>0,and

fv(v) = i @ le P,

To get the integrand of the bid function on a tractable form it is convenient
to solve the model in terms of inverse signals S = % Let S be conditionally
independent given V' = v and identically Gamma (7, 7v) distributed, 7 >
0,v > 0, with probability density function

(r0)”

gs\v = m

87—16—7v~s

and distribution function Ggyy .

3 Approximation of the equilibrium bid function
for the Normal-Normal model

The derived equilibrium bid functions are quite complex and not easy to
analyze. It is hard to see how the bid function depends on x for different
distributional assumptions. In an influential paper, Bajari and Hortacsu
(2003) perform Bayesian estimation of a second price common value auction
with a stochastic number of bidders. For each bid b in every auction they find
the corresponding signal x by numerical evaluations of integrals. That can
be very time demanding, but by exploiting a linear property across auctions
they reduce the computational complexity significantly. However, Bajari
and Hortacsu (2003) argue that the convenient linear property also holds for
cutoff signals z*, but it can be easily verified numerically that this is not
true. As a consequence, one has to make use of a numerical routine like
Newton-Rhapson to compute each x* for each minimum bid, which is very
time demanding.

Instead, we obtain convenient linear approximations for both the bid and
the minimum bid functions of signals x and cutoff signals x*, respectively.
The approximation is easily understood and includes several interesting fea-
tures, for example: every signal (cutoff signal) connects to a bid (minimum
bid) directly without numerical evaluations, quantifying the winner’s curse
is straightforward, and the bid function as a weighted function of the signal
x and the expected value p is identified.



3.1 Known number of bidders n

The derivation of the linear approximation can roughly be divided into the
following steps’:
Step 1 : Substitute ¢t = ff” to get standard normal distributed signals.
RO

Then, the bid function becomes

[ te o2 () zor mVRI® gy

b(z) =1 — ko

2, e an—2(t)e z2 @ VEIm? gy
where ®(+) is the standard normal c.d.f.

Step 2 : Approximate ®(¢) with the kernel of a normal probability den-
sity function over the interval [—a,a] for a = 2.

Step 3 : Complete the squares in the exponents of the exponential func-
tions to rewrite the integrands to one normal density. In the numerator
we get the expected value of a normal density and in the denominator this
normal density integrates to 1. Constants cancel out.

From this it follows that the bid approximation can be written as

bx)~c+wp+ (1—w)x, (6)

MBS

VEoA0(n—2)
F(n—=2)+1+5" F(n—=2)+1+5%"
mation is a weighted function of the signal x and the expected value pu. If
n = 2, then ®~2(¢) = 1, and the bid function in equation (1) can be com-
puted exactly, in the same way as in step 3 above. The bid function then

becomes

where ¢ = — and w = Hence, the linear approxi-

K
K 1
b(z) = —2
(@) [

which is exactly what the approximation also gives in this case.
Note, by using the same approximation technique as above, the minimum
bid function in equation (3) can be approximated as

r(@*) = e +wrp+ (1 — wp)x, (7)

—%, and w, = @ In this case, the minimum
bid function can be computed exactly for n = 1, which again gives the same
result as the approximation.

Some interesting and valuable features should be noted from the approx-
imation of the equilibrium bid function. A higher variance of the common
value V implies a higher risk of drawing a large signal value and thus a higher
risk of overestimating the true value of the object, why bidders should lower

their bids. The constant term ¢ of the approximated bid function captures

where ¢, =

"See Appendix B for detailed explanations in each step.



this effect well, increasing the value of o leads to lower bids. Less precision in
signals, as xk increases, gives a bidder incentives to place more weight on pub-
lic information, captured by parameter u, and less weight on his own private
signal z. In fact, the weight w of the approximated bid function increases
monotonically towards 1 as x increases, and

b(x) — zif k — 0, and b(z) — pif Kk — oc.

Intuitively, one could expect this result. The higher precision in signals the
more the bidders trust their private information.

3.2 Stochastic number of bidders

The bid function for a stochastic number of bidders with a minimum bid
r counsists of b(x,\) in equation (4), and the corresponding minimum bid
function r(z*,\) in equation (5). As for the case with a known number of
bidders, the minimum bid function can be approximated and written as

P X) ~ S0 PN (6w + (1 - w)a”)
n=2

The same way to approximate the bid function, b(x, A), does not hold unfor-
tunately. We could do the approximation term by term, but constants will
not cancel out in this case since they are parts of the summation over n, and,
more importantly, inverting the bid function is not possible. One obvious
way to proceed, however, is to extract the information in A, the mean of the
Poisson process, by letting n = A and approximate the bid function for a
stochastic number of bidders with the linear approximation in equation (6).
This simple approximation turns out to be surprisingly good, see section 3.3.

3.3 Accuracy of approximations

The accuracy of the approximated bid function for a known number of bid-
ders depends only on how well the standard normal distribution function is
approximated. As we can see in Figure 1, the approximation with a = 2
is quite good within the approximation interval and seems to be the most
suitable value for a by considering the whole graph. However, choosing the
value of a is somewhat arbitrary. Other values than a = 2 could also work.
For example, the shorter interval with a = 1 gives better approximations on
[—1,1], but due to worse approximation outside this interval we prefer the
approximation with a = 2.

The accuracy of the bid approximation is a function of the bidder’s sig-
nal z, the parameters (i, 0, k), the number of bidders n (A for the stochastic
case), and the minimum bid r if the seller has set a public reserve price. In
auctions with a minimum bid 7, the bid functions are equal to zero whenever



the signal x is below the cutoff signal x*, and identical to the bid functions
without a minimum bid for x > z*. This fact is illustrated in Figures 2 to
9, where one also can note that the worst bid approximations occur for low
values of x that gives a positive bid. Thus, the approximations of the bid
functions with a minimum bid are remarkable better than the approxima-
tions without a minimum bid.

In Figures 2 to 3 for a known number of bidders, the approximation
works very well for both a small and a large number of bidders®, especially
for k = 0.25. The somewhat crude approximation for a stochastic number of
bidders, by letting n = X\, works surprisingly good. In Figure 4 for x = 0.25
there are only small differences between the bid functions, whereas there are
some notable differences for a large number of expected bidders in Figure 5.
However, these differences are especially for unusual signals, located almost
2 standard deviations from the expected value. By considering a very large
number of bidders in Figures 6 to 9, the approximations still works very well.
An increment in the number of bidders implies a shift of the bid function
down to the right, and as such only gives worse bid function approximations
for negative bids, which we never observe.

3.4 Illustrations of the winner’s curse effect

The winner’s curse is by far the most highlighted phenomena in common
value auctions where bidders face effects from both information and com-
petition perspectives’. More bidders leads to more competition which gives
a bidder incentives to submit a higher bid (competition effect). However, a
bidder must also account for the risk of overestimating the value if he wins,
since his signal is then the highest signal among all bidders. As such, a bidder
should also lower his bid when facing more bidders (overestimation effect).
To illustrate how the approximated bid function captures the winner’s curse
effect as a mixture between the competition and the overestimation effect,
we split the bid approximation in equation (6) into two parts as

iln-2)+1
An—2)+1+%

(1_“‘})1": (I)v

and .

&= roY(n - 2)
An—2)+1+5

Taking first-order derivatives in respect to n of parts (I, 1) gives (I, 1))

as

ctwp = (I1).

YK
2[4(n—2) + 1+ 4]

x>0 forz>0 (I))

8Kagel and Levin (1986) mention that 3 — 4 bidders can be considered as a small
number of bidders, whereas a large number of bidders typically involves 7 — 8 bidders.
9See Thaler (1988) for a careful discussion.



A9A2 ~

2[4(n—2) +1+ 5]

Hence, increasing the number of bidders, n, increases bids for positive signals
x in part (I), reflecting the economic effects of competition, and decreases
bids for all signals in part (I7), reflecting the overestimation effect of drawing
the highest signal among bidders. In equilibrium, the effect of correcting for
the winner’s curse decreases bids (Krishna, 2002), see Figures 10 and 12 for
an illustration, which implies that the overestimation effect decreases bids
more than the competition effect increases bids in equilibrium. However, the
effect of the winner’s curse correction, for the bid function approximation in
equation (6), does not always decrease bids, see Figures 11 and 13 for an
illustration. This is not a big problem, though, since it only occurs for fairly
high and unreasonable values of the variance scale parameter « and signals
x, see Appendix D for an analytical result.

3.5 Bidder’s expected profit and expected seller revenue

Following Gordy (1997) one might expect that more competition, as the
number of bidders n increases, drives expected seller revenue upwards. In
addition, by intuition from the mechanism-design literature, one might also
expect a bidder’s expected profit to increase with the magnitude of his signal.
Nevertheless, counter-examples are often available. For example, at low
values of n, Matthews (1984) shows, in an example where signals follow a
Pareto distribution, that seller revenue goes down by increasing the number
of bidders n.

Gordy (1997) shows comparative statics for bidder profits and simulate
expected seller revenue for the Gamma-Gamma model in Section 2, which
resulted in no evidence of pathological behaviour. We now perform a similar
analysis for the Normal-Normal model. Comparative statics for a bidder’s
expected profit and expected seller revenue are illustrated by using both the
exact and the approximated bid function for a known number of bidders. To
simulate expected seller revenue we utilize the same Monte Carlo techniques
as in Gordy (1997).

In a second price common value auction, a bidder’s expected profit for a
given signal z is given by

x
() = [ (o)~ b)) frpx, (o) dy. ®
—oco
This integral can be solved by using Gaussian quadrature methods. However,
by using the bid approximation technique in section 3.1, we can derive an
explicit approximative solution that yield a much faster computation of the
bidder’s expected profit. The approximation of the expected profit can be

10



simplified to

1

U~ 53—y 75 o~ W) do

where fy;x,(y|z) is given by

S5 Taito @[0) o (yI0) Fy  (yl0) o (v) du
ffooo fl’i|v(x|v)fv(v) dv ’

Further simplifications requires some tedious algebra which results in a very
messy and non-intuitive expression. Therefore, the interested reader is ad-
vised to consult Appendix F for a complete explicit approximative solution.

As we can see in Figures 22 and 23, the bidder’s expected profit increases
with signals x, and decreases with more competition as n increases. However,
as we can see in Figure 23, the bidder’s expected profits do not monotonically
increase with higher precision in signals as x decreases. By intuition this is an
expected result. Gordy (1997) suggests that higher precision in signals only
increase II(x) to a certain point and will eventually after this point decrease
II(z) when signal precision becomes too high. In the limit, as Kk — 0,
signals become perfectly precise. Thus, the true unknown value of the object
becomes common knowledge and the bidders face Bertrand competition,
which results in zero expected profits. To estimate expected seller revenue
we found that 100000 auctions were good enough for convergence. In Figures
24 and 25 we see that expected seller revenues increases with n and E(V') as
expected. Overall, we find no evidence of pathological behaviour whatsoever.

frix, (ylz) = (n —1)

4 Approximation of the equilibrium bid function
for the Gamma-Gamma model

In order to account for other distributional settings, we also show how the
equilibrium bid function can be approximated for the Gamma-Gamma model
10 Gordy (1997) obtains a nearly closed form solution for the Gamma-
Gamma case (see Ba(x) formula (7)), and mention that computations goes
quite simple and fast. However, it is still time demanding since the inverse
bid function has to be solved numerically for each bid, and it is still not easy
to see how the bid function depends on signals = for different distributional
asssumptions.
The bid function of signal X becomes

S v (1= Gy (1/z]0)" 2 - gy (1/]v) - fo(v) dv
S (L= Gy (1/z[))" =2 - g&y (1/z]v) - fulv) dv

10Similar illustrations as in Section 3.4 and 3.5 can be performed for the Gamma case
too, but we do not give it here since it follows the same approach as in previous section.

b(x) =

11



The approximation goes over (1—Gg/(1/x|v)) by using one unique Gamma
probability density function with parameters (é-, BT) as the approximating
function, see Appendix C for a complete discussion and derivation. Replacing
(1= Gg(1/zlv)) with Gammal(é., 3;) and simplifying, the approximated
bid function can be written as

a—l—27‘—|—(n—2)(d7—1)]-x‘

l
b(z) ~ Bz + 27+ (n— 2)37

(10)

The bid function in equation (9) can be computed exactly for n = 2, as for
the normal case, and for 7 = 1, which yield the same results as what the
approximation gives. The bid function for n = 2 is given by

(oz+27')-:n'

be) = Bx + 21

If 7 = 1, the conditional distribution of S|V follows the exponential distribu-
tion with parameter v. This gives (1 —Ggy(1/z|v)) = e~ =, which is exactly
the same result as the Gamma p.d.f. with parameters (&, BT) = (1,1) used
for approximation. The bid function is now equal to

b(x) = m.

4.1 Accuracy of approximations

It is not that informative to evaluate the approximation of (1—G gy (1/7|v))
for some values of 7. Instead, the approximated bid function, in equation
(10), is compared to the exact bid function, in equation (9), for various sets
of parameter values in Figures 14 to 21.

Considering Figures 14 and 15 for a known number of bidders, the ap-
proximation works pretty well when the number of bidders is small, regard-
less the other parameter values. Increasing the expected value p tend to
give worse approximations in absolute terms, but by comparing Figure 14
up left with Figure 14 up right and Figure 15 up left with Figure 15 up right,
there seems to be no differences of how well the approximation performs in
relative terms. The approximated bids, for signals equal to p, are about 5
per cent higher than the exact bids in all these figures which is fairly low.
Higher values of 7 does not seem to change the accuracy of approximations
for n = 4, but for n = 8 there is a small impairment in the approximation.
In general, there are notably worse approximations for n = 8. Approximated
bids are about 10 per cent higher than the exact bid function for signals
equal to p.

The crude approximation for the stochastic case works surprisingly good
here too, as for the Normal-Normal model in the previous section. Figures 16
and 17 indicate that the approximations for the stochastic cases are almost

12



as good as the approximations for a known number of bidders, and the bid
functions change in a similar way for different sets of parameter values. In
Figures 18 to 21 we allow for a very large number of bidders, where one get
further indications that the bid approximations get worse as the number of
bidders increases. Approximated bids are now about 20 per cent higher than
the exact bid function for signals equal to u, and n = 16.

5 Conclusions

In this paper, we derive approximative closed form solutions of the equilib-
rium bid function for two realistic models of empirical interest in second price
common value auctions. The approximations bring out several interesting
features which we divide into three major parts.

First, it is straightforward to measure how much the bid function de-
pends on the signal for various distributional components. Second, we are
able to compute the inverse of the equilibrium bid function (the signal) di-
rectly without time consuming numerical integration. This is a crucial step
for Bayesian/likelihood estimation of auction data, where the inverse bid
function has to be evaluated over and over again. Third, the magnitude of
the winner’s curse and the expected bidder profits can be quantified analyt-
ically.

We investigate the accuracy of the approximations and conclude that the
approximation of the bid function in the normal model is highly accurate
for all parameter values and number of bidders. The approximation for
the gamma model is in general less accurate than the normal case, but it
performs satisfactory unless the number of bidders is too large. A possible
improvement of the approximation in the gamma case, especially when n is
large, could be to approximate (1—Ggp(1/x|v))" 2 in equation (9) directly,
rather than approximating (1—G) and then taking the power as we have done
here. The drawback is, however, that we would have a new approximation
for every n, but polynomial interpolation could be used to handle this.

Finally, possible extensions could be to derive closed form bid approxi-
mations in auctions with both a private and a common value element of the
object, multiunit objects, or auctions with risk-averse bidders.

13



Appendix A: Derivation of the equilibrium bid func-
tion by using Bayes’ Theorem

The equilibrium bid function is given by
b(z) =v(z,z) = Ep|X; =z,Y; =y] = / v - fv|%yi(Xi =uz,Y; =y)dv.

Rewriting the density function in the integrand gives

J (Xi==xzY, =y) = fozip: (v, @, 7) — Syilo.z: (@0, @) - foa,(v, @)
vlw,y; i i =Y feiw: (2, 2) T2 fai i (@, @, v)dv

_ fyi\v,xi(liyvvx) ’ fv7xi(v7$) _ fyi|v,xi(x|vvl‘) : f:}cl|v(‘r|v)fv(v)
ffooo fyi|v,xi ($|U, .CC) ' fv,ﬂfi (’U, x)dv ffooo fyi|v,zi (x‘vv LE) : fzﬂv(x‘v)f’v(v)dv

. o f Z‘v(.%"’l)) ’ fm\v(x’v)fv<v)
_ [fyi|v,aci (z|v, ) depends only on v} == Z}yiw(ﬂv) @0 fo(0)do

Thus, b(x) can be written as

ol ) = e V- fyi|v(x‘v) ' f:cz|v(x‘v)fv(v) .
o= [ R T G o
_ f—oooov : fyi|v($|v) : fxl|v(x|v)fv(v) dv
ffooo fyi|v(x|v) : fxi|v(x|v)fv(v)dv
Jov - (n=1) - foo(lo) - 2 @lo) - fopo(@lo) fo(v) do
I = 1) - fo (o) - F 2 (o) - foo(@lo) fo(v)do
_ R f§i|v(x\v) : ng}?(w[u) - fu(v) dv
S 12 o) - B2 o) - folw)dv

since the highest order statistic of (n — 1) competing signals, where competi-
tors’ (bidders’) signals are i.i.d. with p.d.f. f,,(%i|v), has p.df. fy,,(z|v) =

(0= 1) fopo(alo) - FI52(alo).

b(x) =
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Appendix B: The linear approximation of the equi-
librium bid function for the normal case

The derivation of the linear approximation is divided into four steps. Each
step is here presentated carefully.

Step 1

Substitution gives the bid function on standard normal form as

oy = Lo v P @le) - P al) - £0) do [t_ _}
T Gl F ) fol)do T LT Vo

J2 b et B (r) e m VR gy

:aj—\/E.o-.

[ e PRty - e mr @Rt gy

—00

where ¢t ~ N(0,1).

Step 2

Let hy(t]y,0) = e 70" be the approximating function to the standard
normal distribution function ®;(¢) on [—a,a]. The function h.(t|v,0) can be
considered as the "kernel” of a normal p.d.f. for ¢ and is all we need for
the approximation. Multiplicative constants, not depending on ¢, will cancel
out in the numerator and the denumerator. Using a numerical routine'! the
best fitted pair of values (%,6) is obtained on [—a,a] to approximate ®,(t)
by a specified minimized function. To make things simple, we define a basic

suitable minimized function, My, as

Ma(3.0) = i (max 1e(t].6) — 24(0)]).

7,0

where (¥, 6) is the minimizing pair of the function.

As a result of this estimation procedure, we obtained the best fitted pair
of values as

(%,0) = (0.1937,1.9600).

The approximation works well, even if the normal p.d.f. is a bell-shaped
density function, compared to the strict increasing c.d.f. Figures in Section
3.3 show that an acceptable approximation within [—a,al, for a = 2.2, is
good enough. Poor approximations for high values above a seems to give no
considerable effect on the bid approximation.

"For example MatLab’s build-in function "‘fminsearch.m"’
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Step 3

Replacing ®;(t) by hy(t|3,6), the approximated bid function becomes

[2 e e (=20 | gz (e VRetR)? gy
b ~x— P e '
e [ et e~ (n=2)3(t=0) . o5z @—VEot—p)? g

Expanding the exponent of the exponentialfunction gives

B t2+(n—2)-7'(t_é)2+ﬂ'(t_m_N)Q]

= —m3- (t —my)>

Thus, the bid function b(z) can be simplified to

St emma(t=ma)® gy
2o, emmalt=ma)® g

bx)~x— k-0

[t e maltma) gy
25, emmalt=ma)? gt
E(?)

:x—\/E-J-T:x— k-0 My,

b))~z — k-0

(n 2)79+\F(5€ ©)
14+(n—=2)3+35

of the normal kernel of the numerator and the denomlnator cancel out. By

Substituting the expression for my, the bid approximation can be simplified

to

where m3 = 1+ (n—2)y+ %, and my = . Note, the constants

ba) ~ — (P2 (n—2)-5+1

- + - T
=2 A+1+5 -2 A+1+5" " =2 4+1+5

Hence, the linear approximation is a weighted function between the signal x
and the expected value p.
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Appendix C: Gamma-Gamma approximation by us-
ing multivariate regression

The approximation goes over (1—Gg)y(1/7|v)) by using Gamma probability
density functions. By substitution, the distribution function of S|V can be
written as

R G0 [P — U S
Gy (1/z|v) —[w F(7_)l e dl_[oo mt e " dt.
Hence, the distribution function G|,y depends on the parameter 7 through
the support 7. Approximation of (1 — Ggy(1/x|v)) with only one unique
Gamma p.d.f. is therefore not possible. Tabulation of Gamma p.d.f. ap-
proximations for different values of 7 is one way to tackle the non-uniqueness
feature, but to get some structure we utilize multivariate regression.

Let the dependent variables be the two parameters, (ar;,37;), of the
Gamma p.d.f. approximations for each value of 7;, where NAppr is the
number of approximations and i = 1,2,..., N Appr. Further, define the in-
dependent variables as functions of 7, e.g. 7;,7%,log(7;),1/7;'2. Then, by
comparing adjusted R-square for each regression model we choose and esti-
mate the best regression model (&, 3;) using all subsets of the independent
variables as independent variables. This resulted in the following two best
regression models, estimated as

&, = 1.02 — 0.00488618 - 7 + 0.00002205 - 72 + 0.125789 - log T,

and
R 1
Br = 0.448417 + 0.00095877 - 7 + 0.496667 - -

with adjusted R? equal to 98.6% and 99.5%, respectively.

Let hy(v|ér, 3r) = (2)ar=t. e P x v 1. e P% be the "Gamma
kernel” approximating function to (1 — Ggy(1/z[v)). Then, by replacing
(1=Ggy(1/z|v)) with hy(v|ar, f3;), the approximated bid function becomes

[y p=D(@r—D+2r+a-1, o~ (3 (Br(n=2)+21)+B)v g,

bz) ~ 2= : -
ffooo p(n—=2)(&r—1)+27+a~1 . e—(;(ﬁf(”—2)+27)+ﬂ)'v dv

Let o/ = (n—2)(é&; — 1)+ 274, and let 5/ = %(BT(n —2)+27)+ (. Then,
we get the approximated bid function as

5 Gamma(e/ +1,8) dv  T(d/ +1) g~

bz) ~ [ Gamma(d/,3) dv Bt T(«)
o fat+2r+(n-2)(&;—1)] -z
B Bz + 27 + (n — 2) 5, .

123everal functions of 7; were used but we do not list everyone here.
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Appendix D: The winner’s curse effect as a net bid
shading effect of the approximated bid function

It is easily verified that the unconditional distribution of signals is given by
X ~ N(u, (k+1)0?), and as such & = p+ dov/k + 1 represents signals that
deviate from the expected value p with d standard deviations. By replacing
x with p+dov/k + 1, the net bid shading effect, defined as the winner’s curse
effect by NBS := (—II] — I), can be written as

VEoY (02 + k) = dy/k(k+ 1))
2[4(n—2) +1+ 4]

NBS = (—II, - II)) =

)

6(2+r)

k(Kk+1)
to estimation results in Bajari and Hortacsu (2003), but in order to allow
for larger values, let K = 1. Then, the net bid shading effect only becomes
negative for d > 4.16 (see Figure 11), corresponding to signals more than
four standard deviations above their expected value, which is of course very
unlikely.

which is negative if d > . We could assume x = 0.25 according

Appendix E: Approximation of the bidder’s expected
profit

By using the approximation of the standard normal distribution function,
the bidder’s expected profit can be approximated and written as

(n —1)e =20 /o T ( C7(x)) 1 _de
) P _ il )
3c1V/2mkey Cg les(@)] | @ 2¢q + ¢

206

2 2
8
exp |eac? — c3ci(x) + 8y/kocacacs(x) N c7(x) ’
8Kko2cicy 4cg
where
A k E+1 .
61:1_‘_7(”_2)—’_57 62:T7 C3:1+2’7(7’L—2),
~A Cg(k? + 1)2
ca=70(n—2), cs(x) = +krp, c6= Brolcicy |
8Vkocges(k+ 1) + 2(k + 1) eses(x) — cr(x)
er(z) = 8ka2cico @) = Vi (ZE 2 > '
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Figure 1: The approximation of the standard normal distribution function
is compared to the exact function on [—a,a|, where a = 1,2 or 3. The thick
solid curve represents the standard normal distribution function ®;(¢). Other
curves are approximations of ®;(t) as kernels of normal p.d. f.s with different

values of a.
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Figure 2: The exact versus the approximated bid function, with or without
minimum bid 7, for the Normal-Normal model with a known number of
bidders. Dotted lines along the y-axis represent standard deviations from
the expected value p in the unconditional distribution of x, where the middle

lines indicate the position of pu.
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Figure 3: The exact versus the approximated bid function, with or without
minimum bid 7, for the Normal-Normal model with a known number of
bidders. Dotted lines along the y-axis represent standard deviations from
the expected value p in the unconditional distribution of x, where the middle
lines indicate the position of pu.
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Figure 4: The exact versus the approximated bid function, with or without
minimum bid 7, for the Normal-Normal model with a stochastic number of
bidders. Dotted lines along the y-axis represent standard deviations from the
expected value p in the unconditional distribution of x, where the middle
lines indicate the position of u.
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Figure 5: The exact versus the approximated bid function, with or without
minimum bid 7, for the Normal-Normal model with a stochastic number of
bidders. Dotted lines along the y-axis represent standard deviations from the
expected value p in the unconditional distribution of z, where the middle
lines indicate the position of pu.
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Figure 6: The exact versus the approximated bid function, with or without
minimum bid 7, for the Normal-Normal model with a known number of
bidders. Dotted lines along the y-axis represent standard deviations from
the expected value p in the unconditional distribution of x, where the middle
lines indicate the position of u.
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Figure 7: The exact versus the approximated bid function, with or without
minimum bid 7, for the Normal-Normal model with a known number of
bidders. Dotted lines along the y-axis represent standard deviations from
the expected value p in the unconditional distribution of x, where the middle
lines indicate the position of pu.
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Figure 8: The exact versus the approximated bid function, with or without
minimum bid 7, for the Normal-Normal model with a stochastic number of
bidders. Dotted lines along the y-axis represent standard deviations from the
expected value p in the unconditional distribution of x, where the middle
lines indicate the position of u.
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Figure 9: The exact versus the approximated bid function, with or without
minimum bid 7, for the Normal-Normal model with a stochastic number of
bidders. Dotted lines along the y-axis represent standard deviations from the
expected value p in the unconditional distribution of z, where the middle
lines indicate the position of pu.

23



H=6,0=25k=1,n=[4812 16]

15
~—~
£
~
b 10;
=
X
N—r’
o 5F —n=4
---n=8
--n=12
o n=16
0 g ‘ ‘ :
0 5 10 15 20

Figure 10: The Winner’s curse effect of the exact bid function with a known
number of bidders. Dotted lines along the y—axis represent the number of
standard deviations from the expected value, starting from minus 4 to plus
4 standard deviations.
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Figure 11: The Winner’s curse effect of the approximated bid function with
a known number of bidders. Despite a fairly large value of the variance scale
parameter, k = 1, large signals is needed to give a negative net bid shading
(NBS) effect, since this only occur for signals larger than 4 standard devi-
ations above the expected value p. Dotted lines along the y—axis represent
number of standard deviations from the expected value, starting from minus
2 to plus 4 standard deviations.

24



H=6,0=25 k=1, A=[4812 16]

=
[$)]
T

b(x,1,0,Kk[A)

[¢)]
T

1
B
M>=>>->~

— =00
(=2 \]

o
9]
=
o
=
9]
N
o

Figure 12: The Winner’s curse effect of the exact bid function with a stochas-
tic number of bidders. Dotted lines along the y—axis represent the number
of standard deviations from the expected value, starting from minus 4 to
plus 4 standard deviations.
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Figure 13: The Winner’s curse effect of the approximated bid function with
a stochastic number of bidders. Despite a fairly large value of the variance
scale parameter, x = 1, large signals is needed to give a negative net bid
shading (NBS) effect, since this only occur for signals larger than 4 standard
deviations above the expected value p. Dotted lines along the y—axis repre-
sent number of standard deviations from the expected value, starting from
minus 2 to plus 4 standard deviations.
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Figure 14: The exact versus the approximated bid function for the Gamma-
Gamma model with a known number of bidders. Concerning the dotted lines
along the y-axis, middle lines represent the position of p, left lines the posi-
tion of the 2.5—percentile, and right lines the position of the 97.5—percentile.
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Figure 15: The exact versus the approximated bid function for the Gamma-
Gamma model with a known number of bidders. Concerning the dotted lines
along the y-axis, middle lines represent the position of p, left lines the posi-
tion of the 2.5—percentile, and right lines the position of the 97.5—percentile.
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Figure 16: The exact versus the approximated bid function for the Gamma-
Gamma model with a stochastic number of bidders. Concerning the dot-
ted lines along the y-axis, middle lines represent the position of u, left

lines the position of the 2.5—percentile, and right lines the position of the
97.5—percentile.
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Figure 17: The exact versus the approximated bid function for the Gamma-
Gamma model with a stochastic number of bidders. Concerning the dot-
ted lines along the y-axis, middle lines represent the position of u, left

lines the position of the 2.5—percentile, and right lines the position of the
97.5—percentile.
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Figure 18: The exact versus the approximated bid function for the Gamma-
Gamma model with a known number of bidders. Concerning the dotted lines
along the y-axis, middle lines represent the position of p, left lines the posi-
tion of the 2.5—percentile, and right lines the position of the 97.5—percentile.
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Figure 19: The exact versus the approximated bid function for the Gamma-
Gamma model with a known number of bidders. Concerning the dotted lines
along the y-axis, middle lines represent the position of p, left lines the posi-
tion of the 2.5—percentile, and right lines the position of the 97.5—percentile.
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Figure 20: The exact versus the approximated bid function for the Gamma-
Gamma model with a stochastic number of bidders. Concerning the dot-
ted lines along the y-axis, middle lines represent the position of u, left
lines the position of the 2.5—percentile, and right lines the position of the
97.5—percentile.
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Figure 21: The exact versus the approximated bid function for the Gamma-
Gamma model with a stochastic number of bidders. Concerning the dot-
ted lines along the y-axis, middle lines represent the position of u, left
lines the position of the 2.5—percentile, and right lines the position of the
97.5—percentile.
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Figure 22: The bidder’s expected profit for different number of bidders n.
Thinner lines, located just below assigned thick lines for the exact cases,
correspond to the approximated values of the bidder’s expected profits.
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Figure 23: The bidder’s expected profit for different values of x, the variance
scale parameter for signals. Thinner lines, located just below assigned thick
lines for the exact cases, correspond to the approximated values of the bid-
der’s expected profits. The precision in signals when x = 1.5 was estimated
to give the highest expected profits for sufficient high values of x. Lower and
higher precision from this point results in a decline of II(z).
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Figure 25: Approximated expected seller revenue for different number of
bidders n. The approximations seem to work well compared to the exact
cases above.
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