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An algebraic expression for the variance of tharest of slope differences
in latent growth curve models was presented in \Wans(2007). This ex-
pression can be used in formulas to determine nkesdmple sizes. In this
paper, we present more general algebraic variaxpressions that allow re-
searchers to evaluate factors such as spacingcaéions, indicator reliabil-
ities, factor variances and covariances, as wedit@ition. Not surprisingly,
sample sizes decrease with indicator reliabilifag number of indicators,
and increase with loss of observations, e.g witlitiah. Observations close
to the end points are more important than middkeolations, and later ob-
servations are more important than earlier obsemnatin cases of equal
baseline levels in groups. Correlations betweerrlbeslevels and growth
as well as between indicator residuals may eithherease or decrease
needed sample size.

Key words: sample size; latent growth curve models; slofiierdinces; sample size calcula-
tions.

1. Introduction

Researchers are often interested in the nature of clarggpopulation, the
average individual growth or decline of one or several viesalhe varia-
tion around this change, as well as differences in change dretgreups.
Consider for example the IQ scores of a group of children felibaver
time. One may want to examine the children’s average chanig@ per
year, look at variations in change across all children, oiff@rehces be-
tween groups such as boys or girls, or children randomized tagngnt
group and a control group.

There are advantages to conducting longitudinal studies as oppasedso
sectional studies when the aim is to study change. Assesstageaugi indi-
viduals, repeatedly allows us to distinguish between variationeleatindi-
viduals at one point in time as well as variation witmdividuals over time
(e.g. Diggle, Heagerty, Liang, & Zeger, 2002). Longitudinal stucses e
more expensive, however, because we assess individuals saweglOb-
serving a small number of individuals, on the other hand, can resudior
power and meaningful effects may be neglected (see e.g. digtusdiran,
1997). Sample size calculations can be used to aid in deternifi@ngm-
ber of individuals to observe as well as the number of occadiahghey
should be observed.



In this paper, we will present algebraic variance expresgiaisan be used

in sample size calculations when the aim is to examine grofgretites in
slope means using latent growth curve models. These expressiofe ca
used for multiple indicator designs, for designs in which we assgual
baseline levels in the groups, as well as for designs with dhilly varying
times of observation. We will illustrate the expressionsampe size calcu-
lations and discuss various effects on sample size. Before loakthg for-
mulas, however, we will provide some background on LGC models and
sample size estimation.

2. Background

2.1 Latent growth curve (LGC) models

Latent growth curve (LGC) models (McArdle, 1988; MeredithT&ak,
1990; Rao, 1958; Tucker, 1958), also referred to as latent trajectaigisn
have been widely used in the study of average change as weltiason
around the change. They can be thought of as confirmatory factosianaly
models where individual growth or decline is captured by latetbrs with
(usually) non-zero means and some fixed loadings (Meredith & ,T1S80;
Muthén & Curran, 1997). Observed scores at repeated occasiohsaghtt

to reflect the underlying latent variables. For example, assutimegr
growth, an individual’s score at each occasion is the result of his or her late
level, latent growth, and latent “error”.

LGC models are closely related to multilevel models, hiereatHinear
models, random effects and other similar models (for desmpwf these
models, see e.g. Goldstein, 2003; Bryk & Raudenbush, 1992; Longford,
1993) and the factor means in the LGC models correspond to the fixed e
fects, whereas the factor variances and covariances correspbeddaodom
effects in these models. Comparisons among LGC and multilevel models can
be found e.g. in Hox and Stoel (2005), Stoel, van der Wittenboer and Hox
(2003), and Raudenbush (2002). LGC model parameters can be estimated
through structural equation modeling methods (SEM: Bollen, 1989; Jéreskog
& Sorbom, 1979, 1993; Loehlin, 1992) and SEM software can be used (e.g.
LISREL, Mplus, Amos, Mx etc.). Parameters can also be egirtatough
multilevel software (e.g. HLM and MLwiN).

When growth in latent constructs is considered, second orderrh@iels
(Duncan & Duncan, 1996; McArdle, 1988) can be employed. A construct,
such as cognitive ability, is then measured by one or severahiodi at
each occasion. Assuming linear growth, an individual’s score oniedich
cator is the result of an underlying (first order) facterveell as an error
term. In turn, his or her score on the underlying (first ordarofais the



result of an underlying level and growth factor as wellaaserror term.
These models enable researchers to estimate relesitifi the indicators,
and also to test for measurement equalities over time and acogs (see
e.g. Sayer and Cumsille (2002) for a description of factamalriance test-
ing over time for second order LGC models). They decompose tlleaks
variance at each occasion into variance around the growth curveaand
ance specific to measurement.

A description of a second order LGC model will be given below, however
for more thorough descriptions of first order models, see e.g. Dubem-

can, Strycker, Li, and Alpert (1999), McArdle (1988), McArdle @il
(2000), Raykov (2000), and Willet and Sayer (1994). Also, see Sayker
Cumsille (2002) for descriptions of second order models.

2.2. Sample size

We might be interested in knowing the number of individuals needdé-to

tect group differences in levels or growth. We might alsonibereésted in
knowing how the number of measurement occasions and their spacing, the
number of indicators and their reliabilities, expected aitritf participants

over time etc. will affect the total number of individuals cexs Power and
sample sizes in LGC models have been studied, for example, anGund
Muthén (1999), Fan and Fan (2005), Fan (2003), Hertzog, Ghisletta, Lin-
denberger and Oertzen (2006), Muthén and Curran (1997), and Wéanstrém
(2007). Commonly used techniques for doing this include Monte Carlo
simulations and approximations using Satorra and Saris’ (188Bhigue.
Descriptions of Satorra and Saris’ technique can be found iDerman et

al. (1999) and Muthén and Curran (1997).

Researchers have also developed sample size formulas to @gtisions
about sample size for various models. Sample size formolagross-
sectional designs are widely developed (see e.g. Desu & Ragbat990).
Algebraic formulas have also been provided for longitudinal nso@eb.
Diggle, Heagerty, Liang, & Zeger, 2002; Liu & Liang, 1997; Liu, Boytt
Xiong, 2000; Liu, Shih, & Gehan, 2002; Rochon, 1991). Raudenbush and
Liu (2000; 2001) developed variance formulas for group differemces
means and trends in hierarchical linear models that they useddio the
power of these models. Their formulas allow researchers torexyie ef-
fects of duration of the study and frequency of observations, awoibeg
factors, on sample size. Wanstrom (2007) extended their vafiamaelas
for slope differences to account for growth in latent constructaddition,
the formulas in Wéanstrém (2007) can be used in situations whesénieas
levels can be assumed equal for the groups. These formulasedtg for
designs in which participants are observed at equal and equidistea-
sions. In this paper we will present more general algebraign formulas



that can be used for arbitrary measurement occasions, and for arbittary fac
and residual variances.

Measuring the construct of interest with high reliabilityalyy results in
lower needed sample sizes. For example, Wanstréom (2007) noted that
needed sample sizes decreased for higher reliabilities ahdntire indica-

tors can make up some for lower reliabilities. The variaoncmidlas pre-
sented in this paper allow for unequal reliabilities of indicatord we can
explore effects of adding indicators with various reliabiliteesibdels.

An intervention may affect the slope mean for the treatrgemip, however
it may also affect the variance of the slope or the covegidetween the
intercept and the slope (e.g. Muthén & Curran, 1997). A treatmenfanay
example work differently for different individuals and incredlse variance
in the treatment group, or it may work differently for individuat different
levels, producing different covariances between intercepds stopes for
treatment and control. Our formula allows for general and uaiefgctor
variances and covariances.

In second order LGC models, the indicator residuals (measoreamers)
may be correlated over time such that the residual for indicaierat the
first occasion is correlated with the residual for indicatoe at the second
occasion etc. We will look at a simple case of autocortlasiduals. Re-
sults for longitudinal models in which the covariance stractwir the re-
peated measures is compound symmetric have observed that vandnce a
sample size decreases for higher correlations betweenpirated measures
(e.g. Diggle, Heagerty, Liang, & Zeger, 2002). Results for modetls wi
AR(1) structures, however, have found that the relationship is owre
plex. For example, Yi & Panzarella (2002) noted that variancesdsed for
increases in the correlation for models with few occasionstratdhe vari-
ance first increases with increases in the correlation,lerddecreases, for
models with more occasions, the maximum being obtained latendoe
occasions.

Not surprisingly, power increases (or equivalently, samplke décreases) as
intermittent observations are added (e.g. Maxwell, 1998; Raudenbugh &
2001; Wanstréom, 2007; Yi & Panzarella, 2002). Power and sample size will
also depend on the spacing of the added observations. The forpnedas
sented in this paper allow for exploration of effects of spacingaonple

size for LGC models. We will look at some illustrations @&xamine de-
signs with several different spacings.

All participants may not be observed at all occasions, by desigpecause
of dropout for instance. Effects of attrition on power and sanipéemave
been studied in longitudinal models (e.g. Rochon, 1998; Yi & Panzarella,



2002; Zucker & Denne, 2002). For example, Muthén and Muthén (2002)
showed how to use simulations to study effects of attrition on power and
sample size requirements for latent variable models. Ro(H@®8) pre-
sented matrix variance formulas based on GEE methodology and showed
how to incorporate expected attrition into sample size formulieand Pan-
zarella (2002) studied effects of attrition on sample siggirements for
random effect models, and they also presented matrix varianoelésr:
They noted that attrition increases the required sangss,sand simulations
also suggested that missing observations at the end sfuthe have larger
effects on sample size. Our formula allows for an unequal nuafbeeas-
urements for individuals, and we can explore effects of attrdioisample

size in LGC models. In addition, we can evaluate some simple ofiles
thumb for sample size adjustment in cases of attrition, edlsas evaluate
effects of listwise deletion on sample size.

3. The model

3.1 One group

We described a second order LGC model in Wanstrom (2007), however we
assumed that all individuals were observed on all occasionsud_@ow
assume that we will observe individuals on occasions 1T,.but that all
individuals may not be observed on all occasions. We observe individual
=1, ...,n, with K indicators oril; occasions. Let; be the elapsed time since
the start of the study for individuaht occasion. Further, lety,, denote the
observed value for individualon indicatoik at occasion.

A second order LGC model consists of two types of latenalbls:T first
order factorsp=(14, ..., 1r)’, andJ second order factof3=(rz, ..., 75)". The
model may be written in terms of a structural model thatrdess the struc-
ture among the latent variables, and a measurement modetldtas rthe
measurements to the latent variables. A structural model, Whanel 77, are
stacked above each other, may look as follows for individual

(7)(
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wherer, is a column vector with the individual's latent levelted T, meas-
urement occasionsy, is an intercept vectoBy, is a matrix withT;xJ factor
loadings and}, is a random residual vector with mean 0 and covariance ma-
trix X, that may be different between individuals because of differeasm
urement occasions. Thklatent growth factors il are assumed to come
from a normal distribution with mean vectay=(a;, ..., a;)' and covariance



matrix Z, containing the variances and covariances of the growth factors
Since we cannot estimate bathanda, separately, we will set, = 0.

We can write (1) ds
n=a+Bn+{ 2)

where the column vectay contains thél;+J latent factorsg is aT,+J vec-
tor of factor meandB is a {[;+J) x (T;+J) matrix of factor loadings and is a
T,+J vector of latent residuals which is normal with zero me#h Govari-
ance matrixV;.

A measurement model relates the measurements to the latentegriabl
Y=r+An+e, (3)

whereY is the column vector containing thé€l; observed measurements,
T is the column vector containing the correspondiigmeasurement inter-
cepts and\ is aKT;x (T;+J) matrix containing the factor loadindsrelating
the measurements to the factors. We must set the scale faictbes, and
one way of doing this is to fix one factor loading for ea¢énffactor to 1.
The corresponding intercept incan be fixed to O for identification pur-
poses. The column vectercontainsKT; normal error terms with zero mean
and covariance matri®;,. We assume that the covariance matriesre
identical for individuals except for differences caused bfedint times of
measurements.

3.1 An example
Let us consider the simple case where all individuals hase bleserved on
T = 4 equidistant occasion<Consider the path diagram in Figure 1 of a sec-

ond order LGC model. The two latent growth factors, an interceghtaa
slope, describe linear growth; = 73, + 77, X, .

! See also Sayer and Cumsille (2002).
2 This case was also considered in Wanstrén (2007).
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Figure l. Path diagram of a second order LGC model. Ciritidate latent vari-
ables, squares indicate observed variables, orgetlemrrows indicate re-
gression coefficients, and double headed arrowsatel covariances.

The structural model corresponding to Figure 1 can be written
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where

oo 0 0 O 0 0
o o, 0 0 O 0
2
covy=w=0 0 o 00

O 0o o0 o,

0 0 0 0 0 Ou

0 0 0 0 o, af,l |

The measurement model can be written
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where covf) = 0.
3.3 Indicator reliability

As mentioned previously, second order LGC models can model change in
latent constructs. The variance¥Yp can be divided into two parts; the vari-
ance explained by the structural model and error variance. Thbiligti Ry

of indicatork at timet can be defined as the variancerjnthat is explained

by the structural model divided by the total variance, whichesponds to
reliability in classical test theory (e.g. McDonald, 1999).

R, =2V(2,)/ (12 (7,) + o2 ) (4)

where A2 is the indicator factor loadingy/(77,) is the first order factor vari-
ance at timeé, andoy’ is the residual variance of indicatoat timet.



3.4 Two or more groups
Sometimes we want to compare the growth of different populatiutch as
boys and girls, individuals living in urban and rural areas, oerdifft treat-
ment groups in an experimental setting. We extend our notatiorddingaa
superscriptd), g = 1, ...,G, denoting group. Equation (2) becorhes

,7(9) =a9 + B(g)”(g) + Z(g) (5)
and equation (3) becomes

yo) = 7(0) +/\(g),7(g) + glo) (6)
where vectors and matrices containing parameters that rffay loitween
groups are indexed bg. Multiple group analyses may be conducted and
parameters may be estimated simultaneously for the groupsdieskdg &
Soérbom, 1979).
3.5 Analysis of the LGC model
The expected value af from (2) isE(77) = (I —B)™* a and the variance is

V() = (1 -B)* W (I - B)™. The expected value of the observed values is
thus from (3)

E(Y)=7+A(l -B)"a (7)
and the covariance structure is
V(Y)=A(l -B)*w(I -B)*A +0. (8)
Since the lasi columns ofA are zero vectors, we may write (7) as
E(Y)=7+A,Ba,. 9)
Further, (9) may be rewritte&(Y) = Ao(0p,To)' Whereg = (AnBn, 1).
We may also write (8) as

V(Y)=A,B,Z,BA, +AZ A, +0. (10)

% see e.g. Muthén & Curran (1997).



In Wanstrom (2007), we presented well known gersdl least squares
estimates of parameters along with variances ofefitenates. When indi-
viduals have been measured on unequal occasioese thill not be the
same. For each individual, the generalized leasarggestimate of the pa-

rameter @,,To)" is (/\'0.\/.'1/\Oi )_1/\'0ivi'1Y with variance(/\'o.v.‘ll\Oi )_1Where

V; is the variance in (8), assuming that all pararsedee estimable and that
Vi has full rank. For n individuals, the estimate is

LGV, )_lzi":l/\olvi Y. The variance of the estimate is

Var (&P ! fo): in=1/\0i\/i _l/\Oi )_l (11)
which simplifies to(/\o'V‘l/\o)_l/n if all matrices are equal between indi-
viduals.

When we have two or more groups, we might be istetein differences
between group parameters. When we have two groithshey common pa-
rameters, the estimate of the difference betweein garameters is the dif-
ference between the corresponding group estimaigghe variance is the
sum of the variances in the groups

varl 769,79

() -1 (2) -1 (12)
(Zn:l A 'vi(l)‘l/\(;?) +(Zin:1 A2 'Vi(z)'l/\({i)]
which simplifies to (A,"VE2A ) /n® + (A @ E2A @) fne it all

matrices are equal for individuals within groupsl @a 2(A0'V ‘1/\0)_1/n if
all matrices and sample sizes are equal in thegtaaps as well.

In some cases, we may assume that some parametegual in the groups.
This is often the case in experimental situatiohemvthe groups should be
equal at baseling,= 1. Assume, for example, that we have two groups.

a. be the common parameters and” anda ® be the group-specific pa-

rameters. In each grodm?c,d(g))' is normal with meano(, o9y’ and vari-

(o) N (g)- = ,
ance (Z.i Aof‘-*)v.(g) 1/\%’3} . We can stack these expressions above each

other and we have thiﬁc,é’(l),dfc,df(z))'is normal with meanad(, a®, a,
a®) and the covariance matrix is block diagonal withlocks

10



i Oi

(0) \ (q)- - . ,
(Zli /\Oi(g)\/.(g) 1/\(Q)j . We can combine these to form a least squares esti

mate of the parameters and to find its variance & Wanstrom, 2007).

4. Sample size, variance, and standardized efilext s
4.1 Sample size

In case of normality and known covariance matre tisual sample size
formuld’ can be used to determine the group sample siziedder tests

= (/]alz +/]/3)202

es.?

(13)

wheren is the sample size per group,is the significance level, 3 the
power, A,,, and A, quantiles of the normal curve;” / n the variance of the

estimate, ané.s. the effect size or the difference between theraditive and
the null hypotheses.

If we want to find the group sample size neededafaertain length of a
confidence intervah, formula (13) is changed to

@) (14)
h2

Multiple group analyses may be conducted for twonare groups. How-
ever, from now on, we will concentrate on two grewghere the structural

part is linearE(7'?) = a9 + a{¥x . Our focus will be on finding the sam-
ple size needed to detect differences in slopesdsat two groups. The fac-
tor of interest will berr, = 72 — 7Y, with meana, =al? —-a? in a model
with two growth factors, an intercept and a slapesh as the model in Fig-
ure 1.

4.2 Variance
Several researchers have presented algebraic sixpredor the variance of
the estimate of slope differences between two grdupt applies to first

order LGC models when we have equally spaced memsunts for all indi-
viduals, equal variances and sample sizes in thepgt and no assumptions

4 This formula can be found in many statistics boske® e.g. Desu & Raghavarao (1990) for
an overview of sample size formulas.
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on baseline level equalities (Friedman, Furberd)é@Mets, 1985; Rauden-
bush & Liu, 2001). Wanstrom (2007) presented aplaigic expression that
applies to second order models as well. Assumiiad) theasurements are
obtained at times 0, 1, 2, .T-1, the variance of the estimate is

A 2
Var(ﬂ3)=ﬁ(\/2 +0-,272) (15)
where

v oy +0llK
2 re-T)n2

The first term inside the brackels,, is the conditional variance of the least
squares estimate of the individual slope, and #worsd term inside the
bracket is variance between individudfsis the number of indicator§, is
the number of equally spaced measurements fomdiViquaIs,oz,] is the
common first order factor residual variance, angds the common indicator
residual variance.

Wanstrom (2007) also presented an expression #mabe used if we have
reason to assume that the groups have the saminbdseels (intercept
means) and the two factorg and 7z are independent. In that case, the vari-
ance of the estimate is

N 2 1
V =— +0? (16)
() nf 1 (T-1/2f O
[ B\ W A S
vV, V,+o,
where
o; +ollK
V,=———
T

The numerators in formulas (15) and (16) can be usé€13) or (14) to find

the required sample sizes. These formulas wereoee@lin Wanstrém

(2007) and required sample sizes decreased farlaftect sizes, indicator
reliabilities, number of indicators, frequency diservation, and duration of
study. Sample sizes were also larger in designs nit assumptions on
equality of baseline levels.

12



4.3 Standardized effect size

When our interest is in slope differences betwemmugg, the effect size is
the mean difference in slopes between groapsSometimes it is valuable
to standardize the effect. Cohen (1988) suggehtacdat standardized effects
size,d = .2, is small, whereas$ = .5 andd = .8 correspond to medium and
large respectively. There are different ways inchteffectan be standard-
ized in longitudinal models. For example, Raudehbarsd Liu (2001) used
the group slope difference divided by the poputattandard deviation of

the slope
d=a,/\Jo? (17)

whereas Muthén & Curran (1997) and Wanstrém (208éy the difference
between groups at the last time point divided leystandard deviation at the
last time point

g a,D

B \/02 +02 +D%?2 +2Do (18)
M m ) iy

whereD is the intended duration of the study. This wdlb— 1 if we have
measurements at times 0, 1, T-1.

4.4 Numerical example

We will now use variance formulas (15) and (16)et@mine the sample
sizes needed for detecting a small slope differemitie significance level
.05 and power.8. Consider again Figure 1. We will base thisna#l as
coming numerical illustrations on this basic seconder LGC model. We
will assumeK = 3 indicators, all with reliabilityR = .9 att = 1 (we assume
that g7 = 1/9 andA = 1). In addition, we will us@ = 4 occasions, and we

will assume equal first order factor residual vascisasa,f =05, and second

order factor variancesrf;1 =05, 0,2;2 =0.1, and Opm, =0 (which provides

a commonly seen intercept/slope variance ratio fgut& Muthén, 2002)).
We will use effect sizees. = a3 = 0.092, obtained from assuming a small
standardized effect sizk= .2 in (18). This corresponds tio= .29 using the
definition in (17). These parameter values were ated in numerical illus-
trations in Wanstréom (2007).

5 a power level recommended by Cohen (1988) fostivial sciences.

13



With no assumptions on equality in baseline levels, substitute the nu-
merator in (15) fo? in (13)

_ (A, +4,F 0 _(196+08416 x04148 _ .o\ o

es? (0.092

whereo? = 2{v, + 02 )= 2(0.1074+ 0.1) = 0.4148

_ 05+0111/3

andV, = =0.1074.
27 (42 -4)nn2

Assuming equal baseline levels, we substitute timeamator in (16) for?,

2 2 2
o (,,+ Af) o’ _(196+ 0.8416)2 x03556 0 e
es. (092)

o° = +20, = +2x01=
1, ((r-9)/2 1, 15

V, V,+d? 01074 0.1343+05

= 0.3556

_ 05+0.1113

V. =0.1074,
27 (& -4)n2

and

_ 05+0.111/3

V, = 01343

As noted, sample sizes are smaller if we can assgual baseline levels, in
which case we will need 330 individuals per groagmpared to 385.

As mentioned previously, formulas (15) and (16) banused in situations

with equally spaced measurements for all individued well as equal resid-
ual variances at each time point and for each @tdic We will now extend

14



these to situations with arbitrary factor and/@idaal variances and covari-
ances or situations with varying measurement ocnasiOur formulas and
illustrations will be based on the model in Figarbut we will make differ-
ent changes in the assumptions, such as allowingrfequal residual vari-
ances or varying measurement occasions.

5. Arbitrary factor variances and covariances
5.1 Arbitrary reliabilities and residual variances

When the reliabilities of different indicators areequal,o? /K in (15) and

(16) should be replaced d\Z:ﬂl/ajq )_l. When first order factor residual
variancesa,ft are unequal at each time point as well, formulg €k6ends to

A 2 1
Var(7,) == +0o, (19)
n <)2 2 2
T (x-x1], X
t=1 o 2 1
2
t=1 \?t
2 2 1
whereo; =0, +— 1
kZ:;Ufkt

X is the elapsed time since the start of the stadgin is the common sample
size per group. If we cannot assume equal badelets in groups, the sec-
ond term in the denominator inside the bracketpgiears and the variance
increases.

Let us illustrate this formula by examining samplees for designs with
different number of indicators and indicator reilidiles. Using the parameter
values from section 4.4, Figure 2 shows the requgmup sample sizes
when adding one or three indicators of varyingatglities to a one-indicator

15



model with reliability .9 or .6. The bottom horizahline K = 1,R(1) = .9)
shows the sample sizes for a one-indicator mod#i véliability .9. The
bottom curvesK = 2 andK = 4) show the sample sizes needed when adding
one or three indicators of varying reliabilitiegéping the first aR = .9. As
shown, sample sizes do not decrease much whemdiator of low reli-
ability is added to this model. Adding three indiza results in a larger re-
duction in needed sample sizes, although the deersastill not large for
low reliabilities.

460

440 4
420 1
400 1
380 +
360 4

é —
aa § W
320 +

1] N 2 a 4 A 5] g a =] 1
Reliability (R) of Indicators 2, 3, and 4

Group Sample Size

—B K=1,R(1)=6 —6—K=2, R(1)=.6, R(2) varies —A—K=4, R(1)= 6, R(2)-R(4) vary

k=1,R(1)=9 —*—HK=2, R(1)=.9, R(2) varies —S—HK=4, R(1)=19, R(2)-R(4) vary

Figure 2. Required group sample sizes for models with dgfie number of indica-
tors of varying reliabilities. The horizontal linesow sample sizes for a
one-indicator K = 1) model with reliability,R, of .6 or .9. The curves
show sample sizes for the same models where oteesr indicators with
varying reliabilities have been added.

The top horizontal line shows sample sizes for eriadicator model with
reliability .6. Not surprisingly, the reduction gample sizes are larger when
one or three indicators are added, even with srakdlbilities. We can also
see that all curves intersect at one point foabdities of 1. We only need
one indicator if it has perfect reliability.
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We can easily check the number of indicators archibties that are
needed for a certain sample size. Models in Wm/t(;ﬁ“le]/ajd) is the same

will give the same sample size. For example, a maadd one indicator
with reliability .9 (and thus?s = 1/9) will yield the same sample size as a
model with 6 indicators with .6 reliability eacl2/(3% 6) )= 1/9.

5.2 Arbitrary intercept-slope covariances and uakgariances in groups

Often, there is reason to believe that the coveddretween the intercept
and slope is positive, indicating that those withlr than average scores at

baseline also have a higher than average growtlen\gh), # 0, the vari-
ance formula (16) should be replaced by (see al&ostvbm, 2007)

\v.(T-1/2)-0,,)
V, +02 +V,((T-1)/2)

var(i) = 2| v, + o7 -

2 (20)
n

whereV; andV, are given after formulas (15) and (16).

Figure 3 shows required group sample sizes for deinwith varying indica-
tor reliabilities and intercept — slope correlaidn = a,,l,,z/Ja,z,la,z,z ) using

parameter values from section 4.4. As seen, sasipds increase for posi-
tive correlations, especially for models with loeliability indicators. For
large reliabilities, the sample sizes first inceeand then decrease some.

We can see from (20) that the maximum sample sizeeeded when
V,(T-1)/2=0,, , as was also noted in Wanstrom (2007). For example

when the reliabilityR = 1, this occurs fow,,, = .15which corresponds to

= .67. WhenR is smaller, the maximum occurs for larger covarénand
correlations. A minimum sample size is reached for1.
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Group Sample Size

Intercept-Slope Correlation

Figure 3. Required group sample sizes for varying, but etpragroups, intercept-
and slope correlations, and varying reliabilitiesR.

Formula (20) can be used when we assume equaheasand covariances
in the groups, thus the factor “2” in the denomanaHowever variances
may differ between groups, such as when the tredtmeduces variance
increases. In addition, the intercept-slope comasamay differ between
groups. A treatment might work very well for theealdy above average
individuals. We might then have unequal covariarmetsveen the intercept
and slope in the groups. We can easily changeotineufa to handle unequal
variances or covariances. A formula in which weuassthat the slope vari-
ances as well as the intercept-slope covarianéies detween groups can be
written

- {0 () )2
Var(ig) = 2| 2v, + o + g2 (v, (T -1)12)- (0, + sz))
" T 20 +2v((T-1)02)

(21)

where the terms are as defined previously anduperscript in parenthesis
refers to group one or two.

Figure 4 shows group sample sizes for differemtrogpt — slope correlations
for the groups using parameter values from sectidnas previously. The
middle curve shows situations where group two haso zcorrelation,
whereas the correlation varies for group one. Bezanly the sum of the
covariances matters, all else being equal (seg, (A19 middle curve
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Figure 4. Required group sample sizes for varying intercapt slope correlations
in the groups. Group 1 has intercept — slope caticgls r(1) varying be-
tween -1 and 1, and group 2 has intercept — slopelations r(2) =
-0.5 (bottom curve), r(2) = 0 (middle curve), af@)r= 0.5 (top curve).

corresponds to thR = .9 curve in Figure 3 for the interval05<r < 05.
For example, a group one correlation of -1, togeittith a group two corre-
lation of O results in sample sizes 227. This caridaind either from Figure
3 for a common intercept — slope correlation 05 -@ndR = .9 (the sum of
the correlations is -1), or from the middle curveFRigure 4 for r(1)= -1
(r(2)=0), or the bottom curve in Figure 4 for ré1}0.5 (r(2)= -0.5).

5.3 Unequal allocation to groups

Sometimes we want the sample sizes in the grouips tmequal, for cost- or
other reasons. Several authors have discussedesaings in cases of differ-
ential allocation to groups (e.g. Liu, Boyett, &oXig, 2000; Rochon, 1998).
If N andn® denote the required number of individuals in grome and
two respectively, and i® = cn® then the required sample si?€ can be
calculated by the formulas in this paper but tleedie? is replaced by 1 ¢.

If the variances in the groups are not equal, we saanple more individuals
from the group with the larger variance. For exampluthén and Curran
(1997) examined power for LGC models, and notedl ithaas greatest for
designs that were nearly balanced but with slightbre participants in the
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group with the larger variance. Using Neyman aliiocd and given the
total sample sizen, we should choose®” =nd® /(& + &), and n®
=nd? /(" + d?) for optimal allocation, where@ is the standard devia-
tion in group g.

5.4 Correlated errors of measurement
Indicator residuals (errors of measurement) maydoeelated over time. The
variance of the slope difference estimate can bedas element (3,3) in the

matrix

Var(7z,) = %[z'R'lz]‘l 22)

where
10 0
0 1/2 1/2
/=
10 0
0 1/2 -1/2

andR is a block diagonal matrix with blocks containiting covariance ma-
trix of the parameter estimates in each group \(8aaestrom (2007)for more
details).

Any error covariance structure can be specified ws®t with (22). We will
illustrate the formula in a simple case where @wdual of indicator one at
time one is correlated with the residual of indicaine at time two etc. As-

sume thakK =1, thata”2 =0, and thato? =1. Also assume that an autocor-

1Xj =%

relation coefficient can be writtep , where }-x| is the distance be-

tween time pointg andl. For equally spaced measurements at times 0, 1, ...
T-1, the error covariance matrix is

T-1

T-2

1 p P ..p
1 p

o= P - P

6 see most statistics books on sampling methodolegy, Scheaffer, Mendenhall and Ott
(1996).
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Figure 5 shows the required group sample sizegdigring number of occa-
sions, T, and varying correlations between the indicatsrdals, p . When

T = 2, the maximum sample size is reachedder0 (not shown in the fig-
ure). When' > 2, the sample size first increases and theredees for in-
creasing values gb. The maximum is reached for larger valuegp tiie

largerT is. This agrees with results for models with ARgttlictures (e.g. Yi
& Panzarella, 2002). We can also see that the mimnsample size is
reached fop =1, and that the curves intersect at that point. Tuse-

sponds to a situation in which we perfectly measiueeslope means.

2000 -
1800 +
1600 +
1400 +
1200 +
1000 +
800 3=
600 +
400 4
200

0

Group Sample Size

—B-T=2 T=3—AT=4 T=6 —%—T=10 |

Figure 5. Required group sample sizes for autocorrelatsiflwals with number of
occasions]T, and autocorrelation coefficieptfor a one indicator model
with g = 1 andg,” = 0

Although not shown in Figure 5, the sample sizdkhei 330, 330, and 326
for p=.1, .5, and .9 respectively for the model inufggl (withK = 3 indi-
cators, reliabilityR = .9, residual variances,” = .5 at each time point, and
autocorrelated errors). The required sample siregld2, 486, and 404 re-
spectively forR = .3. These may be comparedhte 330 forR= .9 andp =

0, and 464 foR = .3 ando= 0.
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As mentioned, (22) covers any error covariancectira. A special case is
when the indicator residuals are correlated withretation o within the

same time point but independent between time pdimthat caseg’? /K in
the formulas from the previous sections is replacduy
(07 + (K =1)po?)/ K . More generally, if the covariance matrix of tinlii

cators at time is X ,, one should us@'zjkl)'l.

6. General measurement occasions
6.1 General and equal measurement occasions

When we have generally spaced measurement occasiools occur at the
same time points for all individuals, the variafmenula (16) extends to

N 2 1
Var(7,) = =| —————+07 (23)
( 3) n i_'_ X 2 o
vV, V, +o,
o, +ollK
whereV, =— ,
2 -x)°
t=1
. 1
X == ,
&

X is the elapsed time since the start of the stadgV; is as defined previ-
ously. If there are no assumptions of equal baselin groups, the second
term in the denominator inside the bracket disafpea

It is easily seen that the variance (23) decreasik increases in
> (x —x)° and (3 x)? . The first expression indicates that it might be

beneficial to place measurement occasions closttetdoeginning and end.
The second expression indicates that the latemtresurement occasion the
better. The optimal plan is a compromise betweesdhwo factors. If it is
unknown whether the groups start at the same lethedye is no

(Z[T:lxt)2 term in the denominator and only the first term a@rs.
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Figure 6 shows required sample sizes where valtigs(the elapsed time
since the start of the study) are 0, .5, 1, 1.2.2,and 3. The top bar shows
the required sample size for these 7 equally spammssurements. The seven
“X's” (“xxxxxxx") illustrate this situation. The smond bar from above shows
the case where we remove the second measuremeasiamtand thus have
measurements at times 0, 1, 1.5, 2, 2.5, and 3ndtation “XOxXxxxx"

"No missing"

XXXXXXX ]

"One missing"

XOXXXXX ]

XXOXXXX

XXXOXXX

XXXXOXX

XXXXXOX ]

"Three missing"

XO00XXX ]

XOOXXOX

XOXOXOX

\ \ \

1 \ \ \
XX000XX ]

1 \ \ \

\ \ \

\ \ \

XOXX00X

Measurement Occasions (x)

XXX000X ]

"Four missing"

X0000XX ]

X000X0X

XOX000X

XX0000X

X0O0X00X

Group Sample Size

Figure 6. Required group sample sizes for unequally spacedsions. The top bar
shows the “starting model” with 7 equally spacedasions (where “X”
indicates a measurement), and the remaining bang shuations where
some occasions have been removed (“0” indicatesaasurement).

illustrates this situation where “0” indicates n@asurement. In the same
manner, the remaining bars show different situatisrihere we have re-
moved different number of occasions at varying ggac
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In Figure 6, we can see that removing measureme#smns close to the
middle does not affect sample size much, whereastfect is somewhat
larger when removing measurement occasions clofieetgtart point. It is

worst to remove measurement occasions close tenthgpoint. We can also
see, however, that the differences between requasaple sizes are not
large, most sample sizes are between 300 and 350.

6.2 General and unequal measurement occasions

The formulas above deal, in some sense, with isiagtions where all par-

ticipants have been observed on all occasions.gubmtheory from section

3.5, the variance of the estimate of the slopeedifice can be calculated
when we have individually varying occasions. Tlsiglone in the appendix,

and the result is

Var(7,) = Z(Zn: [Z—: + %B (24)

i=1

wheren is the group sample sizg, is the elapsed time since the start of the
study for individual at timet,

X =X -0, |o?

1 e

X

Sul/ot ) ELar ).

=g _+0>X

Yiri Ty m

a\'zl =Vri + 07212 4

- 32
Vri = leaéﬂ /(Xu - Xi) )
0'5“ = 0-”2“ +]/ZKK:l]/0-§kti !

2 2 _ 2 2
g, =0y a?m/ari,

2 2 2 42 <
o —V?i +to, tX 0, t2X0

mi !
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andV, = ]/ZL@/UY?“ )

Variance formula (24) also includes arbitrary factariances and covari-
ances within groups, and arbitrary residual vaeanover time as well as
arbitrary indicator residual variances. It can beven that formulas (15) and
(16) presented in Wanstrém (2007), as well as ftam(19), (20), and (23)
are special cases of (24).

Formula (24) can for instance be used to find theded sample sizes when
we expect attrition during the duration of the stud

6.3 Attrition

Even though we plan to observe individuals on etlasions, we may expect
that some individuals will be lost during the stutlye to attrition. For ex-

ample, we might expect that individuals will progich complete set of
measurements with a certain probability. We migkb axpect others to

drop out at different time points with certain pabiities.

Assume that the elapsed time since the start oftindy isx, t = 1, ..., T.
We also assume that individuals that drop out asé to further study. In
each group, we will then have one subgroup of iddi&ls that has been
observed on occasion 1, one that has been observedcasions 1 and 2,
one that has been observed on occasions 1, 2, @retmne subgroup that
has been observed on occasions 1, 2,T..Let py, be the probability that

individuals are observed exactly the firatoccasions Wherezz1=1 p, =1

(see also Rochon, 1998). For simplicity, we alsua® that attrition occurs
equally in both groups, and that attrition is MA$e¢ Little & Rubin, 1987).
We also assume that variances are equal in thepgramd that the intercept-
covariances are zero. For groups withmeasurements, the variance of the
estimate is

Var (1,),, = %((Yﬁf 1o )+luoz ) (25)
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X, =% /m,

V., =(a,f+aj/K)/m,

Ym
andv, = (aj +0'£2/K)/221(Xt -x.).
We will defineVar(7,) = o?/n,,. The total variance is then

R 1 B
Var (i) =257, p, 102 (26)

Figure 7 shows required group sample sizes fousual situation witi =

4 equally spaced occasions. The bottom bar shasitsiation with no attri-
tion (a response rate of 100% throughout the sty the remaining bars
show some situations with different expectationsatirition. With a 100%
response rate, the required sample size per geo8p0 as we have found
previously.

If we define an observation to be a measuremenaromdividual at one
occasion, bars 2 to 5 from below show situationgretwe expect 7.5% of
the observations to be lost throughout the studyabwarying occasions.
The second bar from below shows the case where @0#te individuals
drop out at the fourth occasion (we lose 7.5% ef dbservations at the
fourth occasion). The third bar from below shows ¢hse where 15% of the
individuals drop out at the third occasion (we 18s£% of the observations
at the third occasion and 3.75% at the fourthjhéhsame manner, the fourth
bar from below shows the case where 10% drop otlteasecond occasion,
and the fifth bar shows the case where 5% dropbatcasions two, three,
and four respectively. We can see that the requeeedple size increases
with attrition, and that the increase depends sdméwn when and how the
attrition occurs. For example, loosing all 7.5%lué# observations at the last
time point (second bar from below) results in a giansize of 375, whereas
loosing 2.5% at occasions 2, 3, and 4 respectiffelyrth bar from below)
results in a sample size of 367. Bars 6 to 9 frafow show situations
where we expect 15% of the observations to beTost.same pattern is seen
here.
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Figure 7. Required group sample sizes for studies withitiattt The X-axis shows
the percentage of participants expected to stalyerstudy at each of four
occasions (response rate) and the Y-axis showethéred group sample
size.

We can also see, from (26), that individuals whly @articipate at the first
time point do not add any precision to the estiamabf differences in slope
means across groups. The fourth bar from below) &i®0% response rate
at occasions 2, 3, and 4, shows the same samplesia response rate of
90% at all four occasion®30/.9 =366.67. This can be understood by real-
izing that participants who are measured at onasen only add precision
to the estimation of the intercept and not to tlupes Even if we could
measure the intercept perfectly in the two grotipis, would not help us in
estimating the difference in slopes. This bar, gmdthird bar from above,
thus also show the required sample size if we wenese listwise deletion,
i.e. only keep the 90% or 70% of the individualspextively who were ob-
served on all occasions. The third bar from aboe lbe compared to the
second bar from below where we keep all availafdeviduals. As shown,
the difference in required sample size is fairhgég and the required sample
size increases substantially if we plan to use amdjviduals with a com-
plete set of measurements. The increase in sanzglessnot as large if we
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use listwise deletion in situations where we lopa#icipants earlier on in
the study (compare e.g. bars three and four frooreb

Formula (26) is quite complex, especially whenrbenber of measurement
occasionsT, is large. Overall, Shobaki, Shivakumar, and $t¢£998) sug-
gested using a simple rule of thumb to adjust thgimally computed re-
guired sample size for expected attritioh:= n (1 + DRP), whera* is the
adjusted sample siza,is the sample size obtained from calculations dase
on zero attrition, and DRP is the dropout rate etgekto occur randomly
across measurements. Using this rule of thumb wairob = 330 for the
case with no attrition. Adjusting this expecting?d &ttrition scattered ran-
domly throughout the measurement occasions gtves 330 (1 + .15) =
379.5 individuals per group. This can be compapat= 371 obtained from
(26) — see the fifth bar from below. In the samennaa, we haver* = 429
(compared ta = 423) for 30% attrition — see the fourth bar frabove, and

n* = 528 (compared to = 589) for 60% attrition — see the second bar from
above. As noticed, there are some discrepancipgsciedly for the case with
60% attrition in which the rule of thumb techniquederestimates the re-
quired sample size by more than 10%. Overall, Tamigl, and Starbuck
(2006) recommended that this rule of thumb be wgeen T =5 equally
spaced measurements, and when expected attrition imore than 40%,
however.

If attrition occurs uniformly throughout the studyge suggest to use a cor-
rection wheren* = n/(1- ¢ DRP). This is based on a theoretical consideration
and assumes that attrition occurs uniformly. If #im is to compare two
group level means, we should choase 1/2. If the aim is to compare two
slope means with no assumptions on equal baseleds| we should choose

c = 3/4. In cases where we assume equality of besédivels,c should be
between 2/3 and 3/4. Usimg= 3/4 to obtain conservative sample sizes, we
obtainn* = 330 /(1 — ¥%.15/4) = 371.8 for 15% attritiom* = 425.8 for 30%
attrition, andn* = 600 for 60% attrition, and these sample sizesvary
close to those obtained by the formula (371, 488,589).

7. Discussion
7.1 Summary and conclusions

We presented algebraic expressions for the variahttee estimate of slope
differences between two groups for LGC models. Tdléyw researchers to
evaluate effects of the number of measurement motgseffect size, num-
ber of indicators and their reliabilities, factoariances and covariances,
correlated errors, and attrition on needed sanipée Results from numeri-
cal illustrations agree with suggestions from YddPanzarella (2002) that
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researchers should focus on obtaining measureraetite end of the study.
As long as we have measurements at the end pdmagping intermittent
occasions does not make a big difference. Althdbighis of course depend-
ent on the variance around the individual regreskines.

If groups can be assumed to have equal baselimés)esbservations at the
end are more important than early observationsases of attrition, we lose
observations at the end, and attrition can thesefocrease sample sizes
needed substantially. Individuals who are only roess at the start of the
study do not add to the precision of measuringstbpe difference between
groups. Using listwise deletion, i.e. using onlgga individuals with a com-
plete set of measurements, can substantially iseréd@e required sample
size, and more so if the attrition occurs primagtythe end. Overall et al.
(2006) recommended a rule of thumb that can be tasedrrect the original
computed sample size for expected dropout. It appe@ work fairly well

in our examples although it underestimated sampés $n some cases. They
recommended it for designs with more than four sicces and a dropout
rate of less than 40% however. We suggested usiother correction if
attrition occurs uniformly, and it appeared to wéok our examples. With
only 4 occasions, as in our examples, attritionsdoet occur uniformly,
however, and this correction should work bettermtioee occasions we have.

Even though observations at the beginning and emdnare important than
middle observations, there are several reasonsdaalesigns with intermit-
tent observations. If we only obtain measurement&/@ occasions say, we
will not be able to test linearity assumptionswi want to test for higher
order trends, we will need even more occasions.stild also keep in
mind that although spacing measurement occasioaguatly so that indi-
viduals are observed more often at the end carehefigial in regards to
needed sample size, this might result in problemsh as memory effects.

A treatment may increase or decrease the variantteeitreatment group. A
program aimed at stimulating cognitive abilitiesdnildren may stimulate

already qifted children more than other children dgample, and increase
the variance in the treatment group. On the otaedhthe program may be
geared towards raising scores of disadvantagedrehil and thus decrease
the variance. If we suspect that treatment willeham effect on the variance,
we should account for this in computing the neeskiple sizes. In addi-

tion, a treatment may affect the covariance betweengrowth factors. A

program that will keep on stimulating already giftehildren may increase
the covariance between the intercept and sloperfait the treatment group
relative to the control group. Factor covariancesy/ rdecrease or increase
the required sample size and should therefore heidered in the design
phase as well.
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Correlations between errors of measurements alsgease or decrease
needed sample sizes. These correlations may atssmube of memory ef-
fects, for example, if the same indicators are useeatedly (e.g. Jéreskog
& Sorbom, 1979). Correlated errors of measuremiedisate that we meas-
ure our constructs with lower measurement precisighen the correlation
between residuals at the first and last occasidarge, this makes up for
lower measurement precision however. We will theed larger sample
sizes for small positive correlations when we hanare than two occasions
(compared to zero correlations), and smaller samsipks for larger correla-
tions. We examined the correlation between adjacg@surements, and an
auto correlation of 0.5 for a two-occasion desigsans that the endpoint
residuals are correlated 0.5, whereas a six oatagsign with autocorrela-
tion 0.5 means that the end point residuals areeleded 0.5 = 0.03. The
decrease in sample size is thus reached soonde$igns with few meas-
urement occasions in our illustrations. It mightnstimes be more appropri-
ate to keep the correlation between the endpoonstant if one is to com-
pare designs with different number of measuremecdsions.

Although we did not specifically evaluate duratminthe study, keeping the
number of measurement occasions constant, thisspexsfically evaluated
in Raudenbush and Liu (2001) and Wéanstrém (200udj.f@mulas include
%, the elapsed time since the start of the studyelivant to evaluate effects
of duration of the study or frequency of observatikeeping one or the
other constant, we can compare models using apatepalues ok.

We used Cohen’s (1988) standardized effect stand@g.d = .2 for a
small effect size) in this paper. However, as dised in Hancock (2001),
Cohen’s (1988) standards refer to observed vasgabled these may be ad-
justed to apply to latent variables. Hancock (208i9wed how the stan-
dardized effect sizes could be adjusted for rditeds of the indicators of
latent constructs. We used observed variable stdsdiathis paper because
one of the aims was to explore reliability effects sample size. However,
researchers may use latent variable standardsathsker effect size stan-
dards of latent variables, see Hancock (2001).

As mentioned previously, several researchers hedkesl power and sam-
ple sizes of LGC models using either simulationSatorra and Saris (1985)
power approximation technique. The sample size ditam presented in
Wanstrom (2007) were found to be practically egeivato both simulations
and Satorra-Saris approximations. Our formulas aaneasonable choice
when choosing a technique for deciding requiredpéarsize. They hold
approximately in cases of nonnormality and unkngavariance matrices as
long as sample sizes are large. However, in caseskmown covariance
matrices, parameter values need to be guesseces/mbm previous studies,
pilot studies, or theory can be used as estimatebe formulas. Because
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estimates used in sample size formulas may notebg accurate, sample
size boundaries may be computed from ranges ofthgpoal parameter
values.

7.2 Future work

Our formulas can be applied to slope differencdsvden groups. Rauden-
bush and Liu (2001) presented formulas for trendgeneral, i.e. for linear
slopes, quadratic slopes etc. Future work may &aktending our formulas
to incorporate higher order polynomials. Anotheywé handling nonlinear
growth in LGC models is to estimate some of th@eléactor loadings. In
other words, we may setto be 0, 1, 2, X, where X is estimated (see e.g.
Meredith & Tisak, 1990; Raykov, 2000). In this waye can either constrain
the estimated factor loading(s) to be equal acgosgps or we can estimate
them in both groups. Effects of estimated factadlogs on sample sizes can
be explored.

Our formulas can be extended in various other whags.example, covari-
ates may be included in the models, additionall¢ereay be added, differ-
ences between more than two groups may be examimedidition, other
aspects than mean differences may be consideresheAtoned previously,
a treatment may affect the variances and/or caveem in the treatment
group. Muthén and Curran (1997) noted that largende sizes were gener-
ally needed to detect baseline-treatment intenastmmmpared to detecting
differences in slope means between groups. Iniadditlertzog et al. (2006)
noted that power to detect differences in covagarimetween slopes in sin-
gle groups were generally low. Future studies nmwestigate factors that
will affect sample sizes needed when we are inetes variances or co-
variances in addition to (or instead of) means.

In conclusion, we extended work by Wanstrom (20870 presented alge-
braic variance expressions that can be used to wenmeeded sample sizes
for detection of differences in group slope meansecond order LGC mod-
els. We found that observations at the beginnirtheard are more important
than middle observations, that observations aetiteare most important if
we assume equal baseline means, and that atca@ioisubstantially increase
the needed starting sample size. We also suggastedrection to needed
sample size that can be used when attrition oamifermly. In addition, we
found that correlations between factors may in@eas decrease needed
sample size. Our formulas can be used for arbitrariances, and in designs
with generally spaced and individually varying m&asnent occasions
when baseline levels may be assumed equal in groups
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Appendix

Assume that individual i = 1, ...,n, is observed on each indicatgrk = 1,

., K, at each occasiant = 1, ..., T; where; is the elapsed time since the
start of the study for individualat timet. LetY,; denote individual’s score
on indicatork at occasiort. We assume, for simplicity, that all indicator
factor loadingsAy., are 1. Conditional on his or her intercept ampslpa-
rametersr; anday;,

Y ONla, +a,%.V, )

where

v, =137 e? ),
a; =0, ]/ Zk LW sh.

and

=20V 00 =% )L (6 - %) 0N v,)

where

V, = leaéﬂ /(Xti =X )21
and

X = z-l X“ (]/ %

N

andY andr; are independent.
Unconditionally,

Y ONla, +a,%.02)

where

— 2 2 42 <
_V?. to, tX o, t2X0,,
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and

r, ON(a,,07)

where

o, =V, +o., (a)
and

COV(Vi, fi ) =0y,

whereo, =0, +0,X.

We can create a new variablg,that is independent of

z =Y -r, (a?m )/(af)D N[a, + a,%’ ; afIJ
where
X =% -0, lo;

ando? =o? -0 107,

We can estimater,, the mean slope, from al:

b= > e (& -7 /o2 )/ 3" (& ~xF /o) where
EEW LA DM

and

b.0Nfe, 5 3 (x -%) /o2

We can estimater, from allr;:
b =2 /o) e,
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and

boNla, ;3" o?)

These two estimates are combined:

(- )/a)+bz.l(a)
& %) joz |+ 2, Wo?)

O')

U)

and

bON[a, Y% -x) oz )+ o)) ()

Assume now that we have two groups. We then hawa) €ach group, an
estimate of the mean that is independeriy,oind b,

> (2/o2)/ S ot ol +alix ¢ ST (o)

where the superscript (g) refers to group. In ramded designs, it is rea-
sonable to assume that the intercepts are equakéetgroupsa” =a?.

We can then estimate’x" - a?%® by

-2 NGt R - S o)y o)

If we, for simplicity, assume thax®” =X® and that we have equal vari-
ances between groups, then

@ -29)xoNp? -a? ¢ )y ve?) ©

Combining (b) and (c) gives
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