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Abstract

In retrospective surveys, records on important variables like re-

spondent’s educational level and social class refer to what is achieved

by the date of the survey. Such anticipatory variables are then used as

covariates in investigations of behavior - such as marriage and divorce

- in life segments that have occurred before the survey-date. A ques-

tion worth investigating in such situations is, thus, as to what extent

any changes in the behavior under study can be attributed to misclas-

sification of respondents across the various levels of the anticipatory

variable; and to what extent they reflect real differences in the behav-

ior across the levels. In this paper, we propose a Bayesian approach

to address this important question and correct the biases in estimates

of covariate effects due to the use of anticipatory variables. This is

accomplished by specifying a continuous-time Markov model for the

incompletely observed time varying covariates and then implement-

ing standard Bayesian data augmentation techniques. The issues are

illustrated by estimating effects of educational level on divorce-risks

within the framework of a multiplicative piece-wise-constant hazard

model. Results show that ignoring the time-inconsistency of anticipa-

tory variables may seriously plague the analyses because the relative

risks across the anticipatory educational level are overestimated.

1. Introduction

Anticipatory covariates are variables whose value refers to what is at-

tained by the date of the survey (interview); but are used to explain be-

haviour in life-course that took place before the survey. Highest educational

level and social class at survey time are typical examples of anticipatory

variables. Such variables are common in many (possibly most) retrospective

studies simply because the data-collection procedure focuses on, say, birth-

or employment-histories, but contain no history on educational careers or
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social class mobility.

In subsequent analyses of such retrospective survey data, these variables

are used as regressors in modeling some outcome variable like rates of mar-

riage or divorce - events that took place long before the survey date. It is

obvious that this causes a time-inconsistency problem because, in such cases,

data that pertain to the date of the survey become less and less informative,

the further from the date of survey is the date of the event of interest.

For instance, suppose education-level achieved by survey date is used as a

covariate in modelling a demographic outcome (such as marriage, childbear-

ing, or divorce) which took place before the survey. Educational progress is

likely to occur between the time of the event (say entry into marriage) and

the survey date. An interesting question would then be as to what extent the

changes in patterns of the phenomena being studied across educational lev-

els can be attributed to changes in the distribution of respondents across the

various levels of education; and to what extent do they reflect real differences

in behaviour of different levels of education. In other words, ignoring the an-

ticipatory nature of such variables potentially produces biased estimates and,

thus, incorrect conclusions with respect to the effect of the covariate on the

phenomena under study.

While many investigators are aware of of this problem, our knowledge

about the strength and direction of the biases in realistic situations is still

too scanty. Among the few works on the topic, Hoem (1996) uses a case

study on Swedish women and warns that use of anticipatory covariates may

ruin a sensible analysis but concludes that the adverse effects may be less

harmful for women who marry after age 20. Alho (1996), on the other hand,

uses simple linear regression framework to show that the magnitude of the

bias introduced by the use of anticipatory covariates cannot be guaranteed

to remain small. Kravdall (2004) suggests stochastic imputation of both ed-

ucational level and enrollment to minimize the adverse effects of incomplete
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educational histories in assessing the importance of education for fertility.

In their study of mortality clustering in India using retrospective history of

births and deaths, Arulampalam and Bhalotra (2003; 2006) suggest not to

include any anticipatory (current-dated) regressors - household asset, toilet

facility, electricity or access to piped water at the date of the survey - in

their analyses. In our view, this may not be the optimal solution because

much valuable information may be lost by totally ignoring such variables.

This view is also shared by more recent works (Hoem & Kreyenfeld, 2006a;

2006b) who argue that anticipatory variables may provide some useful sum-

mary information, anyway. Further, they use empirical examples to address

the issue and propose alternative strategy. They hold, however, that their al-

ternative strategy is weak because it is based on unrealistic assumptions and

that it fails to produce the summary information that is expected of antici-

patory analysis. For a related problem Faucett et al. (1998) concluded that

a Bayesian missing data approach, apart from employing a more sound treat-

ment of the uncertainty stemming from partially unknown covariates, gave

interval estimates with superior coverage as compared to e.g. imputation.

In the present paper, we propose a more general framework to address

this important problem and come up with bias-corrected estimates of effects

of anticipatory covariates. We define a joint model for the out-come vari-

able and the partially unobserved anticipatory variable and using Bayesian

methods we draw inference based on the posterior distributions of model

parameters given what we have observed. The issues addressed are illus-

trated by modeling divorce risks among 1342 Swedish men born 1936-1964

in the framework of a piece-wise constant hazard model (Breslow and Day,

1975; Hoem, 1987). The results show that lack of proper account of antici-

patory variables may seriously plague the analyses because the relative risks

of divorce across the anticipatory educational level are overestimated.

The rest of the paper is organized as follows. In Section 2 we provide
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a brief introduction of the standard multiplicative model with piece-wise-

constant baseline hazard. Sections 3 and 4 are devoted to a step-by-step

description of our proposed Bayesian approach - in Section 3, we extend

the piece-wise-constant hazard model to a conditional hazard model, and

introduce a covariate process with a view to adjust for its anticipatory nature,

while in Section 4, we outline the inference procedure. Our proposed model

is then fitted to a data set, in Section 5, and its performance is compared

with that of a standard model which uses anticipatory covariates, as well

as with one that is based on a reduced data set. Section 6 summarizes the

contents of the paper and provides some concluding remarks.

2. The standard multiplicative two-factor hazard model

For a sample of individuals, consider J educational levels and let Dij

be the number of occurrences, say divorces, at marriage-duration i (i =

1, ..., I) for the jth educational level (j = 1, 2, ..., J) for Tij years of observed

exposure to the risk (of divorce). Note here that the covariate indexed by i

is the grouped-time variable (duration of marriage) measured from the date

of marriage until the date of divorce (for those who got divorced) or until

the interview date (for those still in marriage).

Define

Di+ =
J∑

j=1

Dij, D+j =
I∑

i=1

Dij, (1)

and

D++ =
I∑

i

J∑

j

Dij =
I∑

i=1

Di+ =
J∑

j=1

D+j, (2)

and let Ti+, T+j, and T++ represent similar quantities for the exposure vari-

able T . Usually, divorce risks are assumed to be piece-wise constant in each

of the the I time intervals but may vary between the intervals. In other
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words, the time to divorce is assumed to follow piece-wise exponential distri-

bution for each educational level. Thus, the density function of the time to

divorce in duration group i for a person k with educational level j is given

by

f(tijk) = λij exp (−λijtijk) (3)

where λij is the rate (hazard) of divorce at marriage duration i and for

individuals with educational level j. It is assumed that the populations

defined by the J educational levels have been observed over a fixed time

period, and that censoring is possible so long as it is non-informative in the

sense of Lagakos (1979).

A multiplicative (log-linear) model for the λij arises when we express it

as

λij = βiαj (4)

whereby the divorce rates are obtained from multiplicative contributions of

the ith duration group (βi) and jth level of education (αj). A model of this

form has been suggested for many situations. A brief discussion of its merits

has been given by Breslow and Day (1975) while Hoem (1987) reviews the

statistical theory behind the model.

This model has I +J −1 parameters in general (namely β1, β2, ..., βI , and

α2, α3, ..., αJ), for α1 is tied down by the normalization α1 = 1. In such for-

mulation, αj measures the relative super-/sub-risk of divorce for individuals

with educational level j (relative to those with j = 1) while λi1 = βiα1 =

βi(1) = βi is the risk of divorce at duration-group i in the standard (baseline)

educational group (j = 1).

To construct the likelihood function when (4) holds, we first define Dijk as

an indicator variable of whether the kth sample member having the jth level

of education is divorced (Dijk = 1) or is still in marriage (Dijk = 0) in the ith

duration of marriage. Using (3) and (4) the contribution, to the likelihood,
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of the sub-sample of individuals in the ith duration-group and having the jth

level of education can then be obtained as

Λij =
∏

k

[
(βiαj)

Dijk exp (−tijkβiαj)
]

= (βiαj)
Dij exp (−Tijβiαj) (5)

where

Dij =
∑

k

Dijk, and Tij =
∑

k

tijk.

The likelihood for the entire sample will then be the product of the Λij over

all levels of i and j:

Λ =
∏

i

∏

j

Λij =
∏

i

∏

j

{
(βiαj)

Dij exp (−Tijβiαj)
}

(6)

As we can note from equation (6), the Maximum Likelihood estimates of

the baseline hazards (β̂i) and relative hazards (α̂j) are direct functions of the

number of events (Dij) and the exposure times (Tij). Thus, misclassification

of the events and/or exposure-times into wrong intervals or, most impor-

tantly, into wrong levels of the covariate - as is the case with anticipatory

covariates - will lead to incorrect estimates of the model parameters. This

could potentially ruin the purpose of the analysis. The method we propose

below is intended to adjust for the anticipatory nature of covariates in order

to reduce, if not eliminate, such serious errors in estimating the parameters

βi and αj.

3. Adjusting Anticipatory Covariates Using Bayesian Analysis

In a classical approach, the parameters βi and αj in equation (4) are

assumed to be unknown but fixed quantities to be estimated from data. In

the present paper, these parameters along with the anticipatory covariate

will be treated as variables with some prior distribution. In order to specify
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the joint model for data and covariates, we need to reformulate the hazard

rate model above (the model for data) based on a model for the covariates

such that for any given realisation of the covariate model, the conditional

model for data is consistent with that which was assumed for data when all

covariate values were observed. Apart from defining the covariate proces, the

next two sections introduce some necessary notation so that the underlying

processes are in accordance with the piecewise formulation in (6).

Educational attainment may be viewed as time-varying and, thus, the co-

variate model comprises two key ingredients. Firstly, the anticipatory nature

of data, the fact that observations are made at one point in time, motivates

a continuous-time model for the covariates. Secondly, it seems plausible not

to allow for a respondent to lower his educational level and hence the evo-

lution of the educational attainment ought to be non-decreasing. These two

elements rule out using approaches like that used in Faucett et al. (1998),

where a missing covariate process was used to account for partially missing

smoking status.

3.1 The conditional piecewise exponential hazard rate model

For individual k, consider a continuous-time Markov chain {Xk(t) : t ∈

∆ = [0, τ 1
k ]}, on the finite outcome space J = {0, . . . , J}. The elements of

J can, for example, be different educational levels with J being the highest

possible educational level. The process is modeled as being right-continuous

and non-decreasing. Taking these two elements together we may consider

the processes in terms of the union
⋃maxt Xk(t)

j=0 ∆∗
j of distinct non-overlapping

intervals

∆∗
j = [tj,0, tj,1) = {t ∈ ∆ : Xk(t) = j} , (7)

where the lower and upper bounds are defined such that

Xk(tj,0) = j and Xk(tj,1) = Xk(tj+1,0) = j + 1,
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respectively. Conditional on a realisation Xk of the process, we define the

right-continuous Markov chain {Yk(t) : t ∈ ∆}, defined on the outcome space

Y = {0, 1}, which is also non-decreasing. An example of such realisation is

given in Figure 1, where the educational level, xk(t), (thin line) stays at level

0 until just after t = 1.5, after which it jumps to educational level 1. The

data process, e.g. marriage status, yk(t) (thick line), remains in state 0 for

a little while longer than the educational level process but then jumps to

marriage status 1. In order to define this process in more detail, we assume

that ∆ is partitioned into intervals ∆i, i ∈ I = {1, . . . I}, representing for

example different stages of marriage. Conditional on Xk we can form new

intervals through the intersection of the intervals ∆∗
j and ∆i

∆ij = ∆i ∩ ∆∗
j .

The intervals are really functions of xk but the notational dependency on k

and the corresponding variable is supressed here. For instance, if ∆i = [3, 6)

and ∆∗
j = [4, 7), then ∆ij = [4, 6) is the period when an individual had been

married between 3 and 6 years and had achieved educational level j. The

process {Yk(t) : t ∈ ∆} can be thought of as a non-recurring event and for

each interval ∆ij, we define the time to event t∗ijk with exponential density

f(t∗ijk|λij) = λij exp
(
−λijt

∗
ijk

)
,

for λij > 0. For each interval ∆ij we define a variable Dijk, indicating whether

the event takes place in interval ∆ij or not. Equivalently, if we let m(a, b),

be the length of the interval (a, b), then

Dijk = 1
{
t∗ijk < m(∆ij)

}
.

Note that we do not allow explicitly for withdrawal without having experi-

enced the event (Holford, 1976) at this point. We generally assume that the

events are non-recurring, and denoting by ∂∆ij and ∂(i, j) respectively, the
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Figure 1: A sketch of the underlying processes (covariate process xk(t), thin

line, response variable process, yk(t), thick line)
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interval ∆uv = [ta, tb) and pair (u, v), such that tb is the lower bound of ∆ij,

we have

Pr
(
Dijk = 0|D∂(i,j)k = 1

)
= 1 (8)

and

Pr
(
Dijk = 1|D∂(i,j)k = 0, D∂(∂(i,j))k = 0, . . . , D0,0,k = 0

)
(9)

= Pr
(
t∗ijk < m(∆ij)

)

= 1 − exp (−m(∆ij)λij) .

Equation (8) follows from the assumption that the process Yk(t) is non-

reccurring and equation (9) follows from the properties of the exponential

distribution. We also have the alternative characterization

Dijk = max {Yk(t) : t ∈ ∆ij} − max {Yk(t) : t ∈ ∂∆ij} .

Now, since the time to event has been truncated to the right in the upper

interval bound, we define the exposure time as

tijk = min
{
t∗ijk,m(∆ij)

}
.

The process {Yk(t), Xk(t)}t∈∆ completely determines {Dijk, tijk}, and hence,

given X, {Dijk, tijk} completely determines {Yk(t)}t∈∆. An example of a hy-

pothetical observation {Yk(t), Xk(t)}t∈∆ is given in Figure 1. The dependent

process {Yk(t)}t∈∆ in Figure 1 is represented by the thick band and is su-

perimposed on the covariate process {Xk(t)}t∈∆. Forming the intervals ∆∗
j

according to Eq. (7), we can plot the process in terms of {Dijk, tijk} in a

Lexis diagram, as shown in Figure 2.

In summary, for a given realisation xk, we have a piecewise exponential

hazard rate model with hazard rate λij for each interval ∆ij and density

given by

p(y|λ, x) =
∏

i,j

λ
Dijk

ij exp {−λijtijk} (10)
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Figure 2: The Lexis diagram of the conditional process of {Dijk, tijk} (mar-

riage duration intervals ∆i, and educational level intervals ∆∗
j )
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where the product is taken over relevant intervals (i, j) so that respondents

who have experienced the event are removed since they are no longer at risk of

experiencing the event of interest. For a sample of independent observations

{Dijk, tijk}, we note that products over k in equation (10) reduces to the

likelihood given in equation (6).

3.2 Modeling the covariate process

We now proceed to suggest a simple model for the covariate process. As

will be discussed below, this particular covariate model, in its simplest form,

is rarely adequate. Here it serves as a reference for the presentation of the

inference proceedure and additional elements may easily be added later.

We prefer a fully parametric model for covariates to a deterministic or

stochastic imputation of missing covariate values (Kravdal, 2004). This al-

lows for a consistent way of jointly analysing the dependent variable process

and the covariate process. It is for example hard to say exactly how the

approximation that imputation entails would affect hypothesis testing. A

consistent approach opens for probabilistic model selection. In addition,

available information on the covariates is incorporated into the joint model

and subsequently updated in the process of estimating the model parameters

from the data. If the uncertainty that stems from not having fully observed

the covariate values is neglected the uncertainty about the model parameter

estimates will be underestimated.

For a sample U of individuals, let k,as before, indicate an observation

for the unit k ∈ U . For a simple model for {Xk(t)}t∈∆k , assume that the

educational level follows a continuous-time Markov chain model and that

the time spent in the state x ∈ J is exponential with rate ηx+1 for x < J ,

and that x = J is an absorbing state. Denote the xk(τ
1
k ) holding times

of {Xk(t)}t∈∆k by s1k, . . . , sxk(τ1
k
)k. In the notation of the previous section

sjk = m(∆∗
j). A convenient way to model the holding times is to assume

13



that, independent of j ∈ J , sjk ∼ Exp(ηj).

By modelling the exposure time, i.e. the duration spent in each educa-

tional level, via an exponential distribution, we are adjusting the exposure

times to divorce at each educational level. Given the vector of parameter

values η = (η1, . . . , ηJ)T , the density of xk is then given by

p(xk|η) = C(xk)

xk(τ1
k
)∏

j=0

ηj exp (−sjkηj)

where

C(xk) =





exp
{
−sxk(τ1

k
)+1,kηxk(τ1

k
)+1

}
if xk(τ

1
k ) < J

1 otherwise
,

stems from the censoring.

A drawback of this formulation is that the model is based on the tacit

assumption that sooner or later all individuals will end up in the absorbing

state (attain the highest educational level). This is highly unrealistic and

it could also potentially introduce an unnecessary noise. For instance, if

some individuals reach their highest level of education very early and this

educational level is relatively far from the absorbing state J , the observed

time these individuals remained in this educational state should not, in prin-

ciple, contribute any information to the times between transitions since we

know these individuals are not going to make another transition. In order

to deal with this issue, we need to introduce yet another unobserved latent

variable - an indicator of whether an individual’s reported educational level

is ”terminal” or not. In our empirical illustration, this is achieved via simple

Bernoulli trials though it is possible to use other models like the sequential

probit model.
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4. Inference in the adjusted model

4.1 Posterior distributions

In addition to the two components presented above (a covariate model

and a model for data), we need to specify prior distributions for the unknown

parameters in order to perform statistical inference. The objective is to

obtain the posterior distributions for the parameters once we have a sample U

with (independent) observations on event times and highest reported values

on the covariate (education).

For individual k ∈ U , we observe {Yk(t)}t∈∆k , and at times τk ∈ ∆k, the

highest achieved educational level, xk(τk). The highest achieved educational

level for example provides us with the information that xk(t) = xk(τk) for

t ∈ ∆̃k = [τk, τ
1
k ). Let the indicator function

1{xk(t)
∆̃k

w xk} = min
t∈∆̃k

{1{xk(t) = xk(τk)}},

indicate whether {xk(t)} is concordant with the observation xk(τk), i.e. the

educational level as described by {xk(t)} does not change after k has acheived

his or her highest educational level. Assuming that λ and η are independent a

priori, with prior distributions π(λ) and π(η), respectively, the joint posterior

of X = {xk(t) : t ∈ ∆k, k ∈ U}, λ and η given data y = {yk(t) : t ∈ ∆k, k ∈

U} and {xk(t) : t ∈ ∆̃k, k ∈ U}, is proportional to

π(λ)π(η)
∏

k∈U

p(yk|λ, xk)p(xk|η)1{xk(t)
∆̃k

w xk}. (11)

Before we address the inferential issues related to the above model (the

particular way our data and covariates are combined), we outline, below, the

main ideas in Markov chain Monte Carlo (MCMC) methodology.
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4.2 An outline of the inference scheme

Exact inference for model variates is hampered by the fact that the

joint posterior distribution π(λ, η,X|{xk(t) : t ∈ ∆̃k, k ∈ U}, y) in (11) is

only specified up to an analytically intractable multiplicative constant. We

may however use MCMC to simulate from this distribution (see e.g. Gilks,

Richardson & Spiegelhalter, 1996, for an introduction to Markov chain Monte

Carlo techniques). More specifically, we are able to write the full conditional

posterior distributions

π(θs|θ−s, Data)

for each block θs of posterior variates θ1, . . . , θS - at least up to a multiplica-

tive constant. The subscript −s, is henceforth used as a notational shorthand

referring to all other indices except s. Here θ1, . . . , θS include both parame-

ters λ, and η, as well as X.

This means that we may produce a sequence of draws {θ
(g)
1 , . . . , θ

(g)
S }G

g=0,

by circling through all the S coordinates, sequentially performing draws

θ(g)
s ∼ θs|θ

(g)
1 , . . . , θ

(g)
s−1, θ

(g−1)
s+1 , . . . , θ

(g−1)
S , Data

for each g > 0.

For some of the coordinates the full conditional posterior θs|θ−s, Data is a

standard distribution and we can perform a draw directly, a Gibbs updating

step. For other coordinates, we only have

π(θs|θ−s, Data) ∝f(θs|θ−s, Data),

in which case we use a Metropolis updating step, proposing a move to θ∗
s ,

drawn from the distribution q(θ∗s |θs), and accepting this with probability

α = min{1, A}, where

A =
f(θ∗s |θ−s, Data)

f(θs|θ−s, Data)

q(θs|θ
∗
s)

q(θ∗s |θs)
.
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The distribution q(θ∗s |θs) used for drawing new candidate states is called the

proposal distribution.

The resulting sequence of draws {θ
(g)
1 , . . . , θ

(g)
S }G

g=0 is a sample from the

joint posterior distribution of θ1, . . . , θS given Data. Naturally, this is guar-

anteed only as G tends to infinity but the generated sample may for all

intents and purposes be treated as an ”exact” sample from the posterior dis-

tribution with the usual caveats regarding convergence and autocorrelation

(for details see Gilks et al., 1996; Tierney, 1994). This means that point

estimates of any relevant quantity g(θ1, . . . , θS) can be approximated by the

corresponding ergodic mean of this quantity over the sample, ḡ(θ1, . . . , θS) =

G−1
∑

g(θ
(g)
1 , . . . , θ

(g)
S ).

4.3 The covariate process and its parameters

4.3.1 Exposure times and educational careers

Recall that the number of intervals of the type ∆∗,k
j in (7) is fixed at

xk(τ
1
k ) = xk(τk). However, once the highest achieved educational state is

recorded, the number of intervals constructed from Eq. (7) varies with the

location of the latent transitions in the covariate process. More specifically,

for some (i, j) ∈ I ×J , we may have ∆k
ij = ∅, which may cause a conceptual

difficulty in defining the exposure time tijk. To deal with this we apply the

convention that whenever ∆k
ij = ∅, we set tijk = m(∆k

ij) = 0, and Dijk = 0.

These ”structural zeros” may be thought of as corresponding to the rectangles

in the Lexis diagram that are never entered by the process (see e.g. ∆2,2 in

Figure 2).

In actual empirical fitting of the model to data we have to make a distinc-

tion between two cases: (i) where the exact point in time when the highest

reported educational level is observed or (ii) where it is not observed.

In the first case,

xk(τk) = j
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implies that

xk(t) = j for t ∈ ∆̃k and xk(t) < j for t < τk.

In the second case (when the exact time of transition is not observed),

we have

xk(t) = j for t ∈ ∆̃k

but

xk(τk − ε) = j for some ε > 0

In what follows, the main focus will be on the first case.

4.3.2 Conditional posterior distribution of educational careers

For observed {Yk(t)}t∈∆k , and {xk(t)}t∈∆̃k for k ∈ U , and parameters

θ and η, the fully conditional posterior of x may be treated separately for

each individual k. In general terms, the fully conditional posterior of xk is

proportional to

w(xk; yk, λ, η, {xk(t)}t∈∆̃k) = p(yk|λ, xk)p(xk|η)1{xk(t)
∆̃k

w xk}

=
∏

i,j

λ
Dijk

ij exp {−tijkλij}

×

xk(τ1
k
)∏

j=0

ηj exp {−sjkηj}

×C(xk)1{xk(t)
∆̃k

w xk}.

As mentioned earlier, the sequence {Xk(t) : t ∈ ∆} is completely deter-

mined by its holding times sk = (s1k, . . . , sxk(τ1
k
)k), and thus, in principle, we

need only be able to generate sequences sk of holding times from some density

q, to be able to implement a Metropolis-Hastings up-dating step for the unob-

served educational careers. Since we know that w(xk; yk, λ, η, {xk(t)}t∈∆̃k) >
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0 for sequences that are concordant with xk(τk), it is unnecessary to generate

sequences of holding times for elements different from xk(τk).

When the differences between the ηj’s are small, we may, given sk with

the implied sequence xk in the current iteration, propose a move to s′k with

the implied sequence x′
k, drawn from the rescaled Dirichlet distribution with

density

q(s′k) =
Γ
(∑xk(τk)

j=1 νj

)

∏xk(τk)
j=1 Γ (νj)

τ
1−

P

νj

k

xk(τk)∏

j=1

(s′jk)
νj−1,

for the case (i), such that
∑

s′jk = τk, and where the parameters ν1, . . . , νxk(τk)

may or may not depend on η or sk.

The move is accepted with probability min{1, A}, for

A =
w(x′

k; yk, λ, η, xk(τk))

w(xk; yk, λ, η, xk(τk))

q(sk)

q(s′k)
.

For case (ii), we need an additional holding time for the time that has elapsed

from min(∆∗
xk(τk)) until τk.

If the drawing of the latent educational careers is sensitive to the choice of

proposal distribution in the sense that too many proposed moves are rejected

we may introduce dependency between the current state of the latent educa-

tional career and the proposed educational career by ”centering” the proposal

distribution over the current state. Since the Dirichlet distribution has one

parameter for each coordinate, a suitable way of centering the proposal dis-

tribution over the current state is by fixing the first moment. For s′k following

a Dirichlet(ν), the expected values are given by E(s′k) = τkνj/
∑xk(τk)

j=1 νj. If

we let νj = sjk in drawing s′k, then the proposal distribution of s′k given sk

will be centered over sk and the ratio of proposal densities is given by

log
q(sk)

q(s′k)
=

∑[
log Γ (sjk) − log Γ

(
s′jk
)]

+
[∑(

sjk − s′jk
)]

log τk

+
∑(

s′jk − 1
)
log sjk −

∑
(sjk − 1) log s′jk.
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4.3.3 Conditional posterior distribution of the parameters in educational career

Since η and λ were independent a priori, the only relevant information for

updating the covariate model parameters is provided by the realisations on

the educational careers. This is reflected in the fully conditional distribution

of η given all the rest, which is proportional to

π(η)
∏

k∈U

p(yk|λ, xk)p(xk|η)1{xk(t)
∆̃k

w xk}

∝ π(η)
∏

k∈U

xk(τ1
k
)∏

j=1

ηj exp {−sjkηj}C(xk)

= π(η)
J∏

j=1

η
nj

j exp {−sj+ηj}

where nj = ]{k ∈ U : xk(t) = j, for some t ∈ ∆k}, and sj+ =
∑

k∈U sjk.

If ηj has conjugate prior that is gamma(γj
1, γ

j
2), then the fully conditional

posterior of η given the rest is gamma(γj
1 + nj, γ

j
2 + tj+).

4.4 Conditional distributions for the model parameters

So far we have not dealt with the parameters of interest for the research

question. This part of the inference procedure is straightforward and it is

the way a Bayesian inference scheme would be implemented had we had

completely observed the educational careers (at least the relevant part that

follows the onsets, τ 0
k ). Hence, this portion of the updating scheme only re-

quires that we have classified, correctly or using the anticipatory approach,

the exposure times (tijk) and the event indicators (Dijk). This was also the

intention in modelling the piecewise exponential hazard rate model condi-

tional on the realized educational career.

It is worth noting at this point that while the comprehensive model for

data and covariates may seem complex, the part of the inference procedure

involving the model parameters is extremely straightforward and only in-
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volves standard distributions.

Consider a model with multiplicative hazard rates, λij = βiαj such that

π(βi|β−i, α, y, x, η) ∝ π(λ)
∏

i,j

λ
Dij

ij exp {−tijλij}

∝ π(λ)β
Di+

i exp
{
−βi

∑
j
tijαj

}

where Di+ =
∑

j Dij. With conjugate prior gamma(β̃
(1)
i , β̃

(2)
i ), the fully

conditional posterior is

βi|β−i, α, y, x, η ∼ gamma
[(

β̃
(1)
i + Di+

)
,
(
β̃

(2)
i +

∑
j
tijαj

)]
.

Analogously, with αj gamma(α̃
(1)
j , α̃

(2)
j ) a priori, we have that

αj|α−j, β, y, x, η ∼ gamma
[(

α̃
(1)
j + D+j

)
,
(
α̃

(2)
j +

∑
i
tijβi

)]
.

The conjugate character of this part also illustrates nicely the influence

of the prior distributions. The shape parameter for βi in the fully condi-

tional posterior consists of a part that represents our prior knowledge, β̃
(1)
i ,

and a part that represents data, Di+. The latter is simply a count of the

number of individuals that have experienced the event in age-interval i. A

hyper-parameter β̃
(1)
i equal to 1 thus roughly has the weight of one observa-

tion and when, as in the case with the priors used in the empirical illustra-

tion, we set β̃
(1)
i = 1/1000, the weight assigned to the prior information is a

thousandth of an observation. Analogous interpretations hold for the scale

(hyper-)parameter β̃
(2)
i and its associated function of the exposure times,

∑
j tijαj.

4.5 Accounting for long-term survivors

The covariate model with exponentially distributed holding times is lim-

ited because (i) we are not at liberty to set the location and scale separately
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and (ii), as mentioned previously, the same educational state is assumed to

be terminal for all individuals although some individuals may never proceed

to the highest educational state. In other words, we have the so-called long-

term survivors (individuals who will never experience the event of interest

- in our case, progressing to the next possible educational level). The first

problem is alleviated by assuming that the time individual k ∈ U stays in

educational state x−1 is gamma(ζx, ηx) (instead of exponential). The second

problem may be couched in terms of varying absorbing states Jk. When the

educational process for an individual jumps from a state x to x + 1, we flip

a coin with probability of success φx+1. If the coin-flip is a success we let

Jk = x+1, individual k becomes a long-term survivor, otherwise the process

continues. The covariate model may then be written as

p(xk, Jk|η, ζ, φ) =

min[xk(τ1
k
)−1,Jk−1]∏

j=1

(1 − φj)

× C(xk, Jk)

xk(τ1
k
)∏

j=0

η
ζj

j

Γ(ζj)
exp {−sjkηj}

×1{Jk ≥ xk(τ
1
k )}

and naturally the censoring is a function of both the highest achieved state

xk(τ
1
k ) and the terminal state Jk:

C(xk, Jk) =

{
Γ(ζj, ηj; sxk(τ1

k
)+1,k) if xk(τ

1
k ) < Jk

φxk(τ1
k
) otherwise

where

Γ(a, b; t) =
ba

Γ(a)

∫ ∞

t

xa−1e−xbdx.

The fully conditional posterior of the state parameters is proportional to

π(φ)
J−1∏

j=1

φJ(j)

j (1 − φj)
n−J

(j)
+ ,
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where

J (j) = ]{k ∈ U : Jk = j}, J
(j)
+ = J (1) + · · · + J (j), and n = |U |.

Consequently, when we a priori let φj be independent beta(φ̃1
j , φ̃

2
j), for j =

1, . . . , J−1, the fully conditional posterior of φj is beta(φ̃1
j +J (j), φ̃2

j +n−J
(j)
+ ).

Because of the censoring factor C(xk, Jk), the fully conditional posterior

of the parameters in the models for the times in between educational progress,

ζ and η, is not as straightforward as before when we had exponential holding

times. In the present case, it is given by

π(η, ζ)
∏

k∈U

Γ(ζj, ηj; sxk(τ1
k
)+1,k)

1{Jk>xk(τ1
k
)}

xk(τ1
k
)∏

j=0

η
ζj

j

Γ(ζj)
s

ζj−1
jk exp {−sjkηj}

= π(η, ζ)
∏

k∈U

Γ(ζj, ηj; sxk(τ1
k
)+1,k)

1{Jk>xk(τ1
k
)}

×
J∏

j=0

[
η

ζj

j

Γ(ζj)

]nj
(
∏

k∈U

sjk

)ζj−1

exp {−sj+ηj} .

where nj is as defined before, and where

sj+ =
∑

k∈U :Jk>xk(τ1
k
)

sjk,

with the sum taken over all cases that are not long-term survivors.

Below, we illustrate the above models with empirical data divorce risks

among Swedish men born 1936-64.

5. Empirical illustration: effect of education on divorce risks

5.1 Background

In the study of impacts of educational level attained by the time of mar-

riage on the risks of divorce based on retrospective survey data, we may

23



safely argue that some of the respondents have improved their educational-

level between the time of marriage and the date of interview. Therefore,

at each recorded educational level (except the lowest one) there are some

individuals who, at the time of marriage, belonged to a lower level. If it is

found that those with lower education have lower risks of divorce, then it is

plausible to suspect that the empirical risks of divorce corresponding to the

recorded educational-levels are overestimates of the true rates because many

of the respondents would be misclassified to higher educational levels. The

degree of overestimation depends on the extent of educational progress and

the actual values of the relative risks - both of which are unknown to us. The

aim of the illustration in this section is, therefore, to shed light on this issue

and come up with numerical estimates of the degree of overestimation.

5.2 The Data Set

The data set used in this illustration is an extract from the 1985 Mail Sur-

vey of Swedish men, where information was collected on background variables

as well as detailed retrospective history related to family dynamics (entry

into and exit from marital and non-marital unions, as well as childbearing).

The entire data set consisted of over 3000 men but our present illustration

is based on 1312 ever-married me who were either divorced or still married

by the survey time. These are men who have been exposed to the risk of

divorce, i.e. individuals who have at some point been married and have com-

plete and reliable values on the variables of interest. A distribution of these

men across the ages at which they married and at which they reported to

have completed their recorded highest educational level, is shown in Figure 3.

As is clearly shown in the Figure, an appreciable amount of the men (those

below the diagonal) have completed the attained highest educational level

after they have married (have anticipatory values on the education variable).

Anticipatory analysis - the tradition that is common in the analysis of such
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Figure 3: The age at which the highest educational level was achieved plotted

against the age at marriage for a sample of Swedish men

type of data - amounts to moving these values (those below the diagonal in

Figure 3) to the left, all the way until the diagonal reference line.

Further, a cross tabulation of the sample (see Table 1) shows differen-

tials in percentage divorced across the anticipatory status of education. In-

vestigating the role of misclassification on such differentials is, therefore, a

worthwhile effort.

5.3 Models

The time variable (duration of marriage in years) has been categorized

into five intervals: 0–1, 1–2, 2–3, 3–6, and 6+ years. The lowest educational

level (primary-level) was set as a base-line level and, thus, its corresponding

25



Anticip. status Highest edu. lev Marital Status at Survey % Div.

Married Divorced Total

Non-Anticip. Primary 371 71 442 16

Secondary 433 55 488 11

Post-Secondary 116 21 137 15

Sub total 920 147 1067 14

Anticipatory Primary − − − −

Secondary 66 28 94 30

Post-Secondary 120 31 151 21

Sub total 186 59 245 24

Total 1106 206 1312 16

Table 1: Summary of data structure for the sample of Swedish men

parameter (relative hazard) was set to α1 = 1. Vague gamma(1/1000, 1/1000)

priors were assumed for all parameters, except for φ, the coordinates of which

were assumed to be a priori independent beta(1, 1), i.e. uniform on the

interval (0, 1).

In order to make the Bayesian correction scheme comparable to the antic-

ipatory approach, the latter is also carried out within a Bayesian framework.

While this, at least superficially, may seem like not altering data, using antic-

ipatory covariates in fact corresponds to ”back-dating” the times of highest

educational achievement, τk, for a number of individuals. More specifically,

for individuals k such that τk > τ 0
k , when xk(τ

1
k ) is used anticipatory, xk(τ

0
k )

is set to xk(τk). In Figure 3 this corresponds to moving the marks for the

individuals below the diagonal reference line to the left, all the way to the

reference line. After these manipulations, the analysis is carried out as de-

scribed above, as if τk ≤ τ 0
k for all k.
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Yet another alternative to the Bayesian correction scheme and the antic-

ipatory approach would be to limit the analysis to the respondents for which

we have completely observed the relevant exposure times, i.e. only the in-

dividuals k for which τk ≤ τ 0
k . These individuals are found on or above the

diagonal in Figure 3. Although this seemingly leaves data unaltered in the

sense that we do not manipulate covariate values or data but only reduce the

set of respondents, it is not immediately clear what type of systematic errors

in the analysis this might create beyond the obvious loss of information. We

may call this the reduced data approach (c.f. “available-case” analysis, Little

and Rubin, 1987, sec. 3.3).

It is to be noted that neither the anticipatory manipulations, nor the

Bayesian correction, changes the observed marginal occurrences Di+ and ex-

posures Ti+. For the reduced data approach these marginals are reduced due

to the reduction of the number of respondents but for both the anticipatory

approach and the Bayes-correction the marginal number of occurrences in

age-of-marriage group i and the corresponding exposure time is the same.

How these are distributed among educational categories is shown in Table 5.

As may be understood from the description of the hazard rate model

implemented here, the time at which the highest educational level is achieved

is irrelevant as long as it precedes the time of marriage. However, the time of

highest educational level is relevant for calculating exposure times whenever

it occurs after the time of marriage.

5.4 Results

Figure 4 contains estimates of baseline- and relative-risks of divorce across

the three models we have fitted. The upper-right panel shows that the rel-

ative risk of divorce for people with post-secondary educational level (α3) is

overestimated when we use reduced data or anticipatory version of the covari-

ate education. The extent of overestimation is more pronounced in the case
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Figure 4: Posterior distributions for model parameters. Point estimates and

.95 Highest posterior density intervals for reduced data (circle,gray), antici-

patory data (triangle,red), and the Bayesian covariate model (square,green)
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Highest educational level

Primary Secondary Post-sec.

Bayesian corr. 1 .98 1.07

Anticipatory 1 1.13 1.37

Reduced 1 .96 1.58

Table 2: Estimates of Relative risks αj (relative to α1) for Bayesian covariate

model, Anticipatory, and Reduced

of reduced data. Similarly, the estimate of the second marriage duration (β2)

is underestimated in reduced data. Point estimates of these over/under esti-

mation, which correspond to the expectations with respect to the posteriors

in Figure 4 are given in Tables 2 and 3. The point estimates of λij in Table 4

are obtained as the MCMC estimators of E[βiαj|{xk(t) : t ∈ ∆̃k, k ∈ U}, y]

1

G

G∑

g=1

β
(g)
i α

(g)
j ,

and correspondingly for e.g. E[βi/βi∗|{xk(t) : t ∈ ∆̃k, k ∈ U}, y]. Note that

this is not the same as taking products or ratios of the corresponding point

estimates (a procedure that does not take the interdependencies between

parameters into consideration).

In Tables 2 and 3 we note, among others, that α3 is overestimated by

51% (1.58 vs 1.07) while β2 is underestimated by 91% (0.92 vs 1.83) in the

model with reduced data as compared with the Bayes-adjusted model.

As mentioned above, the distribution of the respondents over different

combinations of Marriage duration and Educational level is given automati-

cally in the reduced data scheme and when using anticipatory analysis. The

details of this are provided in Table 5. Since the allocation of “uncertain”

respondents is stochastic in the Bayesian approach, one way of investigating
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Marr.dur. Bayesian corr. Anticipatory Reduced

0 − 1 1 1 1

1 − 2 1.83 1.83 .92

2 − 3 2.19 2.21 2.10

3 − 6 2.70 2.73 2.37

6− 2.08 2.11 1.87

Table 3: Estimates of Baseline risks βi (relative to β1) for Bayesian covariate

model, Anticipatory, and Reduced

Highest educational level

Marriage duration Primary Secondary Post-sec.

0 − 1 Bayes (B) 1 .98 1.07

Anticipatory (A) 1 1.13 1.37

Reduced (R) 1 .96 1.58

1 − 2 B 1.83 1.79 1.96

A 1.83 2.08 2.50

R .92 .88 1.45

2 − 3 B 2.19 2.13 2.33

A 2.21 2.51 3.02

R 2.10 2.01 3.33

3 − 6 B 2.70 2.63 2.88

A 2.73 3.10 3.73

R 2.37 2.27 3.76

6− B 2.08 2.03 2.22

A 2.11 2.40 2.89

R 1.87 1.80 2.99

Table 4: Estimates of λij (relative to λ1,1) from Bayes covariate model, An-

ticipatory, and Reduced
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the allocation of these respondents is via posterior expected values. These

posterior expected values are also given in Table 5. It may be noted that

D̃ij ≡ EBayes−corr[Dij|{xk(t) : t ∈ ∆̃k, k ∈ U}, y] ≥ Dreduced
ij ,

where Dreduced
ij is the number of occurrences calculated for all k such that

τk ≤ τ 0
k . It is also given that often D̃ij < Danticip

ij since Danticip
ij incor-

porates some cases k for which we know the time of divorce is before τk,

and consequently the corresponding Di,xk(τk),k = 0 (and not Di,xk(τk),k = 1

which is the case in the anticipatory analysis). This is reflected in the ta-

ble where the overestimation of the number of divorces for respondents with

Post-secondary education is well marked in the anticipatory analysis. This

discrepancy is further illustrated by the point estimates of rates in Table 4.

For instance, in Table 5, marriage group 3-6 contains 15 occurences (divorces)

with post-secondary education in the anticipatory model, but only 8 in the

Bayes-adjusted model. The corresponding relative risks as shown in Table 4

are 3.73 and 2.88, respectively.

The marginal posterior distributions of the covariate model parameters

are shown in Figure 5. Since we assumed that all the absorbing states were

observed, the posterior distributions of the probabilities of staying at the pri-

mary school level (φ1) and at the secondary school level (φ2) were straight-

forward to obtain. In addition, since we employed “vague” priors, the two

posteriors are centered tightly over the observed relative frequencies of stay-

ers. Results (not reported here) indicate that the observed distribution of ed-

ucational acheivements is reasonably well reproduced by the covariate model

defined by the parameters ηj and ζj in Figure 5.

6. Summary and Concluding Remarks

It is obvious that inference procedures that attempt to explain current

behaviour by future outcomes (anticipatory analyses) in life-course research
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Dij tij

Mar. dur Edu. lev. Bayes Anticip. Red. Bayes Anticip. Red.

0 − 1 1 4.9 4 4 573 437 437

2 4.1 4 4 576 570 476

3 0 1 0 143 286 135

Total 9 9 8

1 − 2 1 5.7 2 2 539 420 420

2 6.3 5 2 533 534 441

3 2 7 2 154 273 126

Total 14 14 6

2 − 3 1 9.4 7 7 509 407 407

2 3.6 5 3 503 508 418

3 3 4 3 159 257 115

Total 16 16 13

3 − 6 1 22.7 16 16 1, 351 1, 130 1, 130

2 22.3 22 16 1, 306 1, 327 1, 076

3 8 15 7 481 681 285

Total 53 53 39

6− 1 47.4 42 42 3, 842 3, 631 3, 631

2 45.8 47 30 3, 404 3, 360 2, 542

3 21.8 25 9 1, 534 1, 788 498

Total 114 114 81

Table 5: Occurences and exposures by levels of highest achieved educational

level and marriage duration for a sample of Swedish men. (For the Bayesian

covariate model the posterior expectations for occurrences and exposures are

used)
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Figure 5: Posterior distributions for covariate model parameters
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are problematic because they don’t follow the temporal order of events. On

the other hand, due to practical reasons, it is more often than not that event

history data collected at enormous cost lack history on important explanatory

variables such as education and social class. It is then the investigator’s

responsibility to seek appropriate procedures to minimise, if not eliminate,

the problems due to such errors in design before any attempt is made to

estimate the parameters of interest. The primary aim of this paper has been

to address this issue and propose appropriate analytic procedures.

Our specific problem has been that some individuals in our sample have

achieved their reported highest educational level after they have married.

Thus, they should have had lower educational level at the time of marriage

than what they reported at the time of the survey. We have little or no

idea as to how much lower it should be but we do have information on the

age of the individual and year he achieved the reported highest educational

level. We know that using the education variable as it is causes biases in the

estimated relative hazards but the strength and direction of this bias was

unclear. The main goal of our investigation has, therefore, been to come up

with numerical estimates of the direction and strength of such bias.

To achieve our task, we proposed a Bayesian approach in order to makes

use of available information. This is accomplished by specifying a continuous-

time Markov model for the incompletely observed time-varying anticipatory

covariate and implementing standard Bayesian data augmentation techniques

in estimating the adjusted baseline and relative risks.

Empirical findings for our case study indicate that failure to account for

the anticipatory nature of the covariate leads to overestimation of the relative

risks of divorce across educational levels. The extent of overestimation was

higher among individuals with the highest educational level because these

were overrepresented among those who completed their reported highest ed-

ucational level after they have married.
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The work presented here is not, however, without limitations. As briefly

mentioned earlier, educational career is likely to have long-time survivors,

individuals that never proceed to the highest educational level. The standard

approach for dealing with long-time survivors is by applying mixture models

(e.g. Yamaguchi, 1992). In the case of Sweden, there is considerable prior

knowledge about educational carers to draw on, not only in terms of the

times individuals spend in different states but also in terms of determinants

of educational progress. With this in mind a natural further elaboration of

the covariate model would be to include additional covariates in modelling

the educational careers.

A model that has proved useful for educational progress of individuals

is the sequential probit model (Mare, 1979; 1980). This is a more realistic

model for education and only a little more complex than the simplistic model

presented here.

A little more complicated but still more realistic would be to model the

bivariate process directly. For the purposes of the analysis of the present

paper, modeling the events conditionally on education may not be a bad ap-

proximation but it seems plausible to assume that it is not only educational

level that influences divorce risk but that the converse is also true (marital

status influences educational progress). This approach shares some similar-

ities with the way other investigators handled missing covariates in survival

analysis with the accelerated failure time model; jointly modeling the failure

time and covariates (see, for instance, Faucett, Schenker & Elashoff, 1998;

Cho & Schenker, 1999; Meng & Schenker, 1999).

As mentioned before, the joint modelling of covariates and the response

variable of interest facilitates a fully parametric approach to testing hypothe-

ses and addressing the issue of model mis-specification. For differently spec-

ified hazard models the mappings of section 3.1 might, for example, have

to be changed but the approach is still fairly general. Of interest could
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be to test whether the risk of divorce increases with marriage duration,

β1 < β2 < · · · < β5, or if the risk is constant over marriage duration groups,

β1 = β2 = · · · = β5. In other words, a host of questions and problems re-

mains to be investigated in order to make full use of the potential of the fully

Bayesian approach:

• the prior distributions that were used here were for example specified

solelely from the point of view of convenience. A principled approach

for testing hypotheses regarding data requires that more effort is put

into specifying prior distributions.

• in the present work we have treated ordinal time-varying covariates but

in some applications we may have interval-level time-varying covariates.

A covariate model for these interval level covariates would differ sub-

stantially from the one presented here since it would probably not be

possible to model the evolution of the covariates as conveniently in

terms of holding times and jumps. There are several candidate models

in standard statistical theory, such as various diffusion processes, but

things may be complicated if we introduce a monotony akin to the one

presented here.

With the above limitations in mind, however, we were able to make some

important conclusions and comparisons. It is our hope that the findings in

this paper make a modest contribution to the existing knowledge on how to

handle anticipatory covariates and serve as a stimulation to investigators to

reproduce the procedures we present here on their own data sets.
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